JP7333434B2 - 走査型プローブ顕微鏡のための装置および方法 - Google Patents

走査型プローブ顕微鏡のための装置および方法 Download PDF

Info

Publication number
JP7333434B2
JP7333434B2 JP2022023970A JP2022023970A JP7333434B2 JP 7333434 B2 JP7333434 B2 JP 7333434B2 JP 2022023970 A JP2022023970 A JP 2022023970A JP 2022023970 A JP2022023970 A JP 2022023970A JP 7333434 B2 JP7333434 B2 JP 7333434B2
Authority
JP
Japan
Prior art keywords
cantilever
light beam
reflective area
probe
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022023970A
Other languages
English (en)
Other versions
JP2022070996A (ja
Inventor
ウルリヒ マテイカ
クリストフ バウアー
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2022070996A publication Critical patent/JP2022070996A/ja
Application granted granted Critical
Publication of JP7333434B2 publication Critical patent/JP7333434B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • G01Q30/06Display or data processing devices for error compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/045Self-actuating probes, i.e. wherein the actuating means for driving are part of the probe itself, e.g. piezoelectric means on a cantilever probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q40/00Calibration, e.g. of probes
    • G01Q40/02Calibration standards and methods of fabrication thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • G01Q70/12Nanotube tips

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本出願は、2017年3月31日に出願された
Figure 0007333434000001
という標題の独国特許出願DE 10 2017 205 528.6の利益を主張し、それは、その全体が参照により本明細書に組み込まれている。
本発明は、走査型プローブ顕微鏡のための装置および方法に関する。
走査型プローブ顕微鏡は、測定プローブを使用し、サンプルまたはその面(surface)を走査し(scan)、したがって、サンプル面のトポグラフィーの表現を作り出すための測定データを生み出す。走査型プローブ顕微鏡(scanning probe microscope)は、以降ではSPMと略される。異なるSPMタイプが、測定プローブの測定先端部とサンプル面との間の相互作用のタイプに応じて差別化されている。走査型トンネル顕微鏡(STM: scanning tunnelling microscope)が使用される場合が多く、走査型トンネル顕微鏡(STM)では、電圧が、サンプルと測定先端部との間に印加され、それらは、互いに接触せず、結果として生じるトンネル電流が測定される。
原子間力顕微鏡(AFM: atomic force microscope)または走査型力顕微鏡(SFM: scanning force microscope)と称される顕微鏡では、測定先端部は、サンプル面の原子間力、典型的に引力のファンデルワールス力および/または交換相互作用の反発力によって撓ませられる。測定先端部の撓みは、測定先端部とサンプル面との間に作用する力に比例し、この力は、面トポグラフィーを決定するために使用される。
これらの従来のSPMタイプに加えて、たとえば、磁気力顕微鏡、または、光学的および音響的な走査型近接場顕微鏡など、特定の用途の分野のために使用される非常に多数のさらなる器具タイプが存在している。
走査型プローブ顕微鏡は、z方向に、すなわち、サンプル面に対して垂直に、<1nmの分解能によって、サンプル面を走査することができ、1nmの領域の横方向分解能(すなわち、サンプル面の平面内)によって走査することができる。結果的に、SPMは、マイクロテクノロジーおよびナノテクノロジーの多くの分野に関して将来性のある測定機器である。
しかし、SPMの上述の可能性に伴ういくつかの重大な不利益が存在している。走査型プローブ顕微鏡の目立った不利益は、直列の個々のデータポイントの記録、および、測定プローブの機械的な移動によって引き起こされる低い結像速度にある。不利益な効果を伴うさらなるポイントは、局所的なサンプル高さの頻繁に間接的な測定に見出され、それは、測定データ記録の速度を制限する。典型的に、測定プローブは、カンチレバーを有しており、カンチレバーの先端部から、レーザービームが、カンチレバーの曲げを測定する4分割フォトダイオード(four-quadrant photodiode)の上へ反射される。4分割フォトダイオードの信号は、クローズドループ(閉ループ)に関する制御変数としての役割を果たす。この制御ループは、カンチレバーの曲げがもう一度所定の初期値に対応するまで、圧電アクチュエーターの移動を更新する。サンプル面の高さは、圧電アクチュエーターの移動から決定される。
多くの場合、カンチレバーは、追加的に、数10nmの振幅を伴う高い周波数で振動させられる。カンチレバーに関する励起周波数は、通常、その固有周波数(たとえば、600kHz)に対応しており、または、その固有周波数の付近に存在している。
データを記録するときに、アーチファクトが存在しないか、または、数個のアーチファクトだけが存在する場合には、測定プローブとサンプル面との間のz距離に関するクローズドコントロール(閉制御)のバンド幅は、現在のところ、カンチレバーの両方の運転モードに関して、1桁の(single-digit)キロヘルツ範囲に制限されている。
「High speed nano-metrology」, Rev. Sci. Instr., Vol. 82, 043710-1 to 043710-5 (2011)という記事では、著者A.D.L.Humphrisらは、原子間力顕微鏡(AFM)に関する新規のアプローチを説明しており、そこでは、z方向の、すなわち、サンプル面に対して垂直のAFMのカンチレバーの撓みが、フィードバックループによって動作させられる光学ポインターシステムによって測定されるのではなく、カンチレバーの裏側側部の上に放射する干渉計によって測定される。
WO2012/104625およびWO2015/011448は、動的な動作モードで動作される走査型プローブ顕微鏡を説明しており、そこでは、サンプル面からの測定先端部の距離は、干渉計の支援によって測定される。
「Superlubricity of graphite」, Phys. Rev. Lett., Vol. 92, No. 12, p. 126101-1 to 126101-4という記事では、著者M.Dienwiebelらは、摩擦力顕微鏡(FFM: frictional force microscope)の構造、および、摩擦力顕微鏡(FFM)を使用してグラファイトに実施された検査を説明している。
「Fabrication of a novel scanning probe device for quantitative nanotribology」, Sensors and Actuators, Vol. 84 (2000), p. 18-24という記事では、著者T.Zijlstraらは、先行する段落に説明されている摩擦力顕微鏡に関する摩擦力センサー(「摩擦レバー(tribolever)」)の生産を詳細に説明している。
走査型プローブ顕微鏡の結像速度を増加させることに関して上記に列挙された努力にもかかわらず、これらの器具は、依然として、分解能およびデータ記録速度に関して改善の余地を有している。
WO2012/104625 WO2015/011448
A.D.L.Humphris他,「High speed nano-metrology」, Rev. Sci. Instr., Vol. 82, 043710-1 to 043710-5 (2011) M.Dienwiebel他,「Superlubricity of graphite」, Phys. Rev. Lett., Vol. 92, No. 12, p. 126101-1 to 126101-4 T.Zijlstra他,「Fabrication of a novel scanning probe device for quantitative nanotribology」, Sensors and Actuators, Vol. 84 (2000), p. 18-24
したがって、本発明は、走査型プローブ顕微鏡の測定データの精度およびその記録速度を増加させるために使用されうる装置および方法を特定する問題に対処する。
本発明の1つの例示的な実施形態によれば、この問題は、請求項1に記載の装置によって解決される。1つの実施形態では、走査型プローブ顕微鏡のための装置は、(a)少なくとも1つの第1のカンチレバーを有する少なくとも1つの第1の測定プローブであって、少なくとも1つの第1のカンチレバーの自由端部は、第1の測定先端部を有している、少なくとも1つの第1の測定プローブと、(b)少なくとも1つの第1のカンチレバーの自由端部の領域に配置されており、少なくとも2つの光ビームを異なる方向に反射するように具現化されている、少なくとも1つの第1の反射エリアと、(c)第1の測定先端部の位置を決定するために、少なくとも1つの第1の反射エリアによって反射された少なくとも2つの光ビームを使用するように具現化されている少なくとも2つの第1の干渉計とを含む。
本発明による反射エリアは、カンチレバーの自由端部の領域に取り付けられており、そこでは、カンチレバーは、測定先端部も有している。本発明による反射エリアの上へ放射する2つ以上の干渉計からの少なくとも2つ以上の光ビームに起因して、および、反射エリアによって反射されている前記光ビームに起因して、測定先端部の位置が、2以上の次元で直接的に決定されうる。測定プローブの測定先端部の位置を決定するための測定は、測定先端部の直ぐ付近において実施されるので、位置は、非常に高い精度で、すなわち、すべての3つの空間的方向に関してサブナノメートルの精度で決定される。そのうえ、干渉計の支援によって、すべての3つの空間的方向に関して測定を実施することは、測定プローブの測定先端部とサンプル面との間の所定の間隔がクローズドループで制御されるときに起こる速度に伴う問題を回避する。
本発明による装置は、スプリングビームまたはカンチレバーを有するすべてのタイプの走査型プローブ顕微鏡の中に据え付けられうる。さらに、上記に定義されている装置は、すべてのタイプのサンプルを走査するために使用されうる。半導体技術および/またはフォトリソグラフィックマスクの分野における測定問題に関してそれを使用することは、とりわけ有利である。
本発明による装置は、走査型プローブ顕微鏡が測定プローブを動作させる様式から独立して、測定先端部の位置を決定するために使用されうる。これは、本発明による装置は、たとえば、接触モードおよび非接触モードで使用され得、接触モードでは、測定プローブは、サンプル面の上に露出された状態で、サンプル面の上方を走査させられ、非接触モードでは、測定プローブは、振動させられ、そこから所定の間隔においてサンプル面の上方を走査させられるということを意味している。さらに、本発明による装置では、測定先端部の位置は、間欠的な動作モードで使用され得、間欠的な動作モードでは、振動する測定先端部は、振動期間の小さい部分の間にサンプル面に到達し、また、測定先端部の位置は、走査動作モードまたはステップイン走査モードで使用されうる。
そのうえ、上記に定義されている装置は、任意の動作環境において使用され得、すなわち、走査型プローブ顕微鏡の測定プローブは、真空中で、保護ガス雰囲気の中で、たとえば、窒素の中で、反応性周囲の中で、たとえば、酸素周囲の中で、液体の中で、または、大気条件において動作させられうる。
そのうえ、上記に説明されている装置は、任意の現在公知のカンチレバードライブ、たとえば、圧電アクチュエーター、熱アクチュエーター、静電気アクチュエーター、または磁気アクチュエーターなどと組み合わせられうる。そのうえ、本発明による装置は、サンプル面を走査するためのすべての現在公知の測定先端部を使用することが可能である。
少なくとも1つの第1の反射エリアは、第1の測定先端部の反対側にある、少なくとも1つの第1のカンチレバーの側に配置されうる。
結果として、測定プローブのカンチレバーの上に反射エリアを取り付けることは、カンチレバーの著しい変化を必要とせず、したがって、測定プローブの動作挙動の劇的な変化を引き起こさない。
少なくとも1つの第1の反射エリアは、異なる方向から第1の測定先端部の上へ方向付けられている少なくとも2つの光ビームを、自分自身の上へ、すなわち、実質的に逆平行(antiparallel)の方向に反射するように具現化されうる。さらに、少なくとも1つの第1の反射エリアは、鏡のように少なくとも1つの第1の光ビームを反射するように具現化され得、また、少なくとも1つの第1の反射エリアの上のある回折次数の角度について所定の角度範囲の中で入射する少なくとも1つの第2の光ビームに関して、この角度範囲の中で生じる回折光ビームを作り出す。この角度範囲は、0°~20°、好ましくは、0°~15°、より好ましくは、0°~10°、および、最も好ましくは、0°~5°を含むことが可能である。
少なくとも1つの第1の反射エリアは、少なくとも1つの第1の反射部分および少なくとも1つの第2の反射部分を含むことが可能であり、第1の反射部分および第2の反射部分は、平面内に配置されていない。
第1の反射部分は、好ましくは、カンチレバーの上側側部に取り付けられており、それは、z方向に、すなわち、サンプル面に対して垂直に、光ビームを反射する。第2の反射部分および随意的に第3の反射部分は、カンチレバーの測定先端部の上へ斜めに方向付けられた光ビームを反射する。第2の反射された光ビームおよび随意的に第3の反射された光ビームは、横方向(lateral)位置成分、すなわち、x方向および/またはy方向の成分を含有している。これの結果として、(第1の反射部分を通る)z位置に加えて、第2の反射部分および/または第3の反射部分において反射された光ビームから、3つの空間的方向における測定先端部の位置を決定することが可能である。2つの光ビームが使用される場合には、測定先端部の位置は、2つの空間的方向において決定されうる。例として、これは、測定先端部のx座標およびz座標だけが非常に正確に測定される必要がある場合には都合がよい。例として、そのような測定問題は、測定ラインが半導体チップの上に構造化するときに起こる。3つの光ビーム、対応する反射エリア、および3つの干渉計が使用される場合には、3つの空間的方向における測定先端部の位置を確認することが可能である。カンチレバーの測定先端部の正確な位置および長さが未知である場合には、これらは、キャリブレーション(calibration)測定の支援によって決定されうる。
反射部分は、ミラーリング(mirroring)平面エリアの形態で具現化されうる。しかし、湾曲した反射面を有する結像光学エレメントとして反射部分を具現化することも可能である。
反射部分は、好ましくは、カンチレバーの生産プロセスの間に作り出される。このケースでは、反射部分は、測定プローブのカンチレバーの一体の構成部分である。それらの反射性を増加させる目的のために、反射部分は、金属層、たとえば、アルミニウム層もしくは金層、または誘電体反射層によってコーティングされうる。別の実施形態では、反射部分は、また、個別に作り出され、カンチレバーに締結されうる。
少なくとも1つの第2の反射部分は、少なくとも1つの第1の反射部分に対して角度βだけ傾けられて配置され得、および/または、少なくとも1つの第2の反射部分は、カンチレバーの長手方向軸線に対して、角度αにわたって回転させられうる。角度αの絶対値は、0°~90°、好ましくは、15°~75°、より好ましくは、30°~60°、最も好ましくは、40°~50°の範囲を含むことが可能であり、角度βは、10°~80°、好ましくは、20°~70°、より好ましくは、30°~60°、最も好ましくは、40°~50°の範囲を含むことが可能である。
少なくとも1つの第1の反射エリアは、少なくとも1つの第1の反射部分、少なくとも1つの第2の反射部分、および少なくとも1つの第3の反射部分を有することが可能であり、少なくとも1つの第1の反射部分は、カンチレバーの上側側部の上に配置され得、少なくとも1つの第2の反射部分は、角度α=+45°および角度β=+45°を有することが可能であり、少なくとも1つの第3の反射部分は、角度α=-45°および角度β=+45°を有することが可能である。さらに、少なくとも2つの第1の干渉計は、第1の測定先端部の位置を決定する目的のために、少なくとも1つの第1の反射部分、少なくとも1つの第2の反射部分、および少なくとも1つの第3の反射部分によって反射された少なくとも3つの光ビームを使用するように具現化された少なくとも3つの第1の干渉計を含むことが可能である。
さらに、装置は、対物部(objective)を含むことが可能であり、少なくとも1つの反射エリアに入射する少なくとも2つの光ビーム、および、少なくとも2つの反射された光ビームが、対物部を通過する。対物部は、開口数(NA)>0.6、好ましくは、>0.7、より好ましくは、>0.8、最も好ましくは、>0.9を有することが可能である。一般的に、以下の条件が、対物部のNAに適用される:NAObjective>sin(β)。例として、β=45°に関して、これは、NAObjective>0.75が適用されなければならないということを意味している。
少なくとも1つの第1の反射エリアは、回折構造を有することが可能である。
回折構造の形態で具現化されている反射エリアは、最小の変化だけが測定プローブのカンチレバーにおいて実施される必要があるという点において有利である。したがって、測定プローブの動作挙動は、反射エリアによってわずかにだけ修正される。
回折構造は、少なくとも1つのライン回折格子(line grating)を含むことが可能であり、および/または、少なくとも1つのライン回折格子は、ブレーズド回折格子(blazed grating)を含むことが可能である。
ブレーズド回折格子の形態のライン回折格子を具現化する結果として、用いられる回折次数に関して回折効率を最適化することが可能である。好ましくは、回折次数1次が、第2の反射された光ビームとして、および、随意的に第3の反射された光ビームとして使用される。
回折構造は、互いに対して回転させられて配置されている少なくとも2つのライン回折格子を含むことが可能である。少なくとも2つのライン回折格子は、±60°~±120°、好ましくは、±65°~±115°、より好ましくは、±70°~±110°、最も好ましくは、±80°~±100°の角度だけ、互いに対して回転させられて配置されうる。さらに、少なくとも2つのライン回折格子は、カンチレバー長手方向軸線に対して±45°の角度だけ配向されうる。少なくとも2つのライン回折格子の格子定数は、λ/(2・cosθ)であることが可能であり、ここで、λは、用いられる光ビームの波長を特定しており、θは、面法線に対して、反射エリアの上のその入射角度を示している。
ここで、および、本出願の他のどこかにおいて、「実質的に」という表現は、この測定に関して使用されている先行技術による測定機器によって、測定変数がその公差内にあるという表示を示している。
少なくとも1つの反射エリアおよび少なくとも1つのカンチレバーは、一体的な実施形態を有することが可能である。この実施形態は、カンチレバーの生産プロセスの間の反射エリアの生産を促進させる。これは、反射エリアのコスト効率の良い生産を保証する。そのうえ、反射エリアの一体的な生産は、カンチレバーに対するその調節の必要性を無しで済ます。
少なくとも1つの反射エリアは、誘電体反射層および/または金属層、たとえば、アルミニウム層、銀層、または金層を含むことが可能であり、それは、第1の測定先端部の反対側に存在する、少なくとも1つの第1のカンチレバーの側に適用され、回折構造がその中に導入されている。回折構造は、リソグラフィーによって少なくとも1つの反射エリアの上へ適用されうる。代替的に、反射エリアの機械的な加工によって回折構造を作り出すことも可能である。
カンチレバーの上部側部の上への反射構造の蒸着は、反射エリアの反射が干渉計の露出波長に対して高いという点において有利である。別の実施形態では、回折構造は、カンチレバーの上側側部の上に直接的に発生させられうる。
さらに、装置は、マルチセグメントフォトダイオード(multi-segment photodiode)を有することが可能であり、マルチセグメントフォトダイオードは、少なくとも2つの反射された光ビームのうちの1つから、カンチレバーの長手方向軸線に対する少なくとも1つの第1のカンチレバーの第1の測定先端部の傾き、および/または、少なくとも1つの第1のカンチレバーの自由端部のツイスト(twist)を検出するように具現化されている。
マルチセグメントフォトダイオードは、4分割フォトダイオードを含むことが可能である。マルチセグメントフォトダイオードの代わりに、オートコリメーション望遠鏡が使用され得、オートコリメーション望遠鏡は、少なくとも2つの反射された光ビームのうちの1つから、カンチレバーの長手方向軸線に対する少なくとも1つの第1のカンチレバーの第1の測定先端部の傾き、および/または、少なくとも1つの第1のカンチレバーの自由端部のツイストを検出するように具現化されている。さらに、マルチセグメントフォトダイオードの機能は、少なくとも2つの干渉計によって交換されうる。そのうえ、測定されるカンチレバーの傾きおよび/またはツイストは、また、上述のキャリブレーションプロセスの中でも使用されうる。
さらに、装置は、少なくとも1つのデータ処理装置を有することが可能であり、少なくとも1つのデータ処理装置は、少なくとも2つの第1の干渉計の測定信号から、少なくとも2つの空間的方向における走査型プローブ顕微鏡の第1の測定先端部の位置を決定するように具現化されている。
さらに、装置は、少なくとも1つの走査装置を有することが可能であり、少なくとも1つの走査装置は、サンプル面の上方において少なくとも1つの第1の測定プローブを走査させるように具現化されている。そのうえ、少なくとも1つの走査装置は、走査の間に、少なくとも、断面において、少なくとも1つのカンチレバーに関してフィードバックを使用しないように具現化されうる。カンチレバーの測定先端部の位置は、2つ以上の干渉計によって、2つのまたは3つの空間的方向に直接的に測定される。したがって、少なくとも、断面において、少なくとも1つの第1のカンチレバーに関するz位置に対して、フィードバック無しで済ますことが可能である。結果として、サンプルのz位置および/または測定プローブのz位置を補正するためにクローズドループコントロール(閉ループ制御)を待つ必要なしに、カンチレバーの測定先端部の高さを読むことが可能になる。
サンプル面に対する測定先端部の位置がクローズドフィードバックループ(閉フィードバックループ)の中で決定されないということに起因して、上記に定義されている装置によって走査することは、フィードバックループのバンド幅限界(bandwidth limitation)を受けず、したがって、これに付随するデータ記録速度の制限を受けない。
走査装置は、隣り合う測定ポイント同士の間の横方向間隔をサンプル面の輪郭に適合させるようにさらに具現化されうる。
ここで説明されているような走査プロセスの実質的な利点は、サンプル面を走査するための個々の測定ポイントが、等距離のインターバルに設置されている必要がないということである。その代わりに、走査ラインに沿った個々の測定ポイント同士の間の間隔は、この領域におけるサンプル面の局所的な輪郭に適合されている。これの結果として、とりわけ、大きいアスペクト比を有するサンプルのケースにおいて、データを記録する精度を増加させることが可能である。アスペクト比は、構造の(最小の)幅に対するその高さまたは深さの比を示している。
さらに、装置は、少なくとも1つの回転装置を有することが可能であり、少なくとも1つの回転装置は、少なくとも1つの第1の測定プローブおよびサンプルを互いに対して回転させるように具現化されている。
測定プローブが回転させられるか、サンプルが回転させられるか、または、測定プローブおよびサンプルの両方が回転させられるかということは関係がない。
少なくとも1つの測定プローブは、走査型プローブ顕微鏡の測定ヘッドの中において、サンプル面に向けて傾けられた、少なくとも1つの第1の測定プローブの据え付けを促進させるように具現化されうる。測定プローブは、自由端部の反対側に存在する締結領域を有することが可能であり、締結領域は、走査型プローブ顕微鏡の測定ヘッドの中に測定プローブを締結するように具現化されている。
少なくとも1つの第1の測定プローブの少なくとも1つの第1のカンチレバーは、サンプル面に対して、3°~40°、好ましくは4°~35°、より好ましくは、5°~30°、最も好ましくは、5°~25°の範囲の中の傾き角度を有することが可能である。
そのうえ、装置は、傾き装置を有することが可能であり、傾き装置は、サンプル面に対して少なくとも1つの第1のカンチレバーを傾けるように具現化されている。
サンプル面に向けてカンチレバーを傾けることによって、局所的なサンプル法線に対するカンチレバーの測定先端部の角度が低減され、その結果として、測定プローブの測定先端部によってサンプル面を走査する精度が増加させられる。サンプル面の急勾配のまたはオーバーハングしている(overhanging)壁部は、傾けられたカンチレバーを使用して、とりわけ、サンプルに対する測定プローブの相対的な回転にも関係して、再現可能な方式で測定されうる。
そのうえ、装置は、少なくとも1つの第1のカンチレバーに関する傾き角度を決定するように具現化されている少なくとも1つの構造エレメントを有するキャリブレーション装置を有することが可能である。
キャリブレーション装置の支援によって、測定プローブによって使用される測定先端部に関して、サンプルの局所的な輪郭を可能な限り最良に走査するための傾き角度を決定することが可能である。
さらに、装置は、(a)少なくとも1つの第2のカンチレバーを有する少なくとも1つの第2の測定プローブであって、少なくとも1つの第2のカンチレバーの自由端部は、第2の測定先端部を有している、少なくとも1つの第2の測定プローブを有することが可能であり、(b)少なくとも1つの第1の測定プローブおよび少なくとも1つの第2の測定プローブは、互いに平行に配置されていない。
そのうえ、装置は、(a)少なくとも1つの第2のカンチレバーを有する少なくとも1つの第2の測定プローブであって、少なくとも1つの第2のカンチレバーの自由端部は、第2の測定先端部を有している、少なくとも1つの第2の測定プローブと、(b)少なくとも1つの第2のカンチレバーの自由端部の領域に配置されており、少なくとも2つの光ビームを異なる方向に反射するように具現化されている、少なくとも1つの第2の反射エリアと、(c)第2の測定先端部の位置を決定するために、少なくとも1つの第2の反射エリアによって反射された少なくとも2つの光ビームを使用するように具現化されている少なくとも2つの第2の干渉計とを有することが可能であり、(d)少なくとも1つの第1の測定プローブおよび少なくとも1つの第2の測定プローブは、互いに平行に配置されていない。
結果的に、第2の測定プローブは、走査型プローブ顕微鏡の測定プローブの公知の動作モードのうちのいずれか1つで動作する従来の測定プローブであることが可能である。しかし、第2の実施形態では、本発明による反射エリアを備えた第2の測定プローブを装備することが可能であり、2つ以上の干渉計から生じる光ビームが、反射エリアに入射する。
測定プローブおよび/またはサンプルを回転させることは、機械的に複雑なプロセスであり、これを実施することは、いくらかの時間を必要とする。第2の測定プローブを使用して、大きいアスペクト比を有するサンプル面を走査する目的のために、サンプルと測定プローブとの間の必要な回転の数を著しく低減させることが可能である。
さらに、装置は、対物部を有することが可能であり、少なくとも1つの第1の反射エリアに入射する少なくとも2つの光ビーム、第1の反射エリアによって反射された少なくとも2つの光ビーム、少なくとも1つの第2の反射エリアに入射する少なくとも2つの光ビーム、第2の反射エリアによって反射された少なくとも2つの光ビームが、対物部を通過する。
さらに、少なくとも1つの走査装置は、第1の測定プローブの第1の測定先端部の隣り合う第1の測定ポイント同士の間の第1の間隔、および、第2の測定プローブの第2の測定先端部の隣り合う第2の測定ポイント同士の間の第2の間隔を、互いに独立して調節するように具現化されうる。これは、大きいアスペクト比を有するサンプル面のパーツを走査するときのフレキシビリティーを増加させる。
少なくとも1つの第1の測定プローブおよび少なくとも1つの第2の測定プローブは、実質的に逆平行の方式で配置されうるか、または、互いに対して90°だけ実質的に回転させられうる。
さらに、装置は、(a)少なくとも1つのさらなるカンチレバーを有する少なくとも1つのさらなる測定プローブであって、少なくとも1つのさらなるカンチレバーの自由端部は、さらなる測定先端部を有している、少なくとも1つのさらなる測定プローブと、(b)少なくとも1つのさらなるカンチレバーの自由端部の領域に配置されており、少なくとも2つの光ビームを異なる方向に反射するように具現化されている、少なくとも1つのさらなる反射エリアと、(c)さらなる測定先端部の位置を決定するために、少なくとも1つのさらなる反射エリアによって反射された少なくとも2つの光ビームを使用するように具現化されている少なくとも2つのさらなる干渉計とを有することが可能である。
少なくとも1つの第1の測定プローブ、少なくとも1つの第2の測定プローブおよび少なくとも1つのさらなる測定プローブは、互いの間に等距離の角度インターバルを備えて配置されうる。
互いに対して120°の角度を有する3つの測定プローブを備える構成は(測定プローブの測定先端部は、そのような構成の中で互いに隣り合っている)、そのような構成を構築するために必要な費用と、それによって取得可能なデータを記録するときの速度および精度との間の妥協点を表す可能性がある。これは、とりわけ、原子構造もしくは分子構造、または、生物学的な材料を検査するときに適用される。
十字形状の配置で互いに対して実質的に90°の角度を有する4つの測定プローブを備える実施形態は、半導体技術からの多くのサンプルの構造に適合されており、したがって、それは、半導体構造および/またはフォトリソグラフィックマスクを解析するのに都合がよい。
そのうえ、装置は、対物部を有することが可能であり、少なくとも1つの第1の反射エリアに入射する少なくとも2つの光ビーム、第1の反射エリアによって反射された少なくとも2つの光ビーム、少なくとも1つの第2の反射エリアに入射する少なくとも2つの光ビーム、第2の反射エリアによって反射された少なくとも2つの光ビーム、少なくとも1つのさらなる反射エリアに入射する少なくとも2つの光ビーム、および、さらなる反射エリアによって反射された少なくとも2つの光ビームが、対物部を通過する。
少なくとも1つの傾き装置は、少なくとも1つの第1の測定プローブ、少なくとも1つの第2の測定プローブ、および少なくとも1つのさらなる測定プローブを、互いに独立して傾けるように具現化されうる。少なくとも1つの走査装置は、サンプル面の上方で、少なくとも1つの第1の測定プローブ、少なくとも1つの第2の測定プローブ、および少なくとも1つのさらなる測定プローブを、順次的(sequential)に走査させるように具現化されうる。そのうえ、少なくとも1つのスキャナー装置は、少なくとも1つの第1のカンチレバーの第1の測定先端部の隣り合う測定ポイント同士の間の第1の間隔、少なくとも1つの第2のカンチレバーの第2の測定先端部の隣り合う測定ポイント同士の間の第2の間隔、および、少なくとも1つのさらなるカンチレバーのさらなる測定先端部の測定ポイント同士の間の少なくとも1つのさらなる間隔を、互いに独立して調節するように具現化されうる。
少なくとも1つの第1のカンチレバーの第1の測定先端部、少なくとも1つの第2のカンチレバーの第2の測定先端部、および、少なくとも1つのさらなるカンチレバーのさらなる測定先端部は、互いから<100μmの間隔、好ましくは、<50μmの間隔、より好ましくは、<30μmの間隔、最も好ましくは、<10μmの間隔を有することが可能である。
そのうえ、装置は、データ処理装置を有することが可能であり、データ処理装置は、少なくとも2つの第1の干渉計の測定信号から、少なくとも2つの第2の干渉計の測定信号から、および、少なくとも2つのさらなる干渉計の測定信号から、少なくとも2つの空間的方向における、走査型プローブ顕微鏡の第1の測定先端部の位置、走査型プローブ顕微鏡の第2の測定先端部の位置、および、走査型プローブ顕微鏡のさらなる測定先端部の位置を決定するように具現化されている。
さらに、データ処理装置は、少なくとも1つのアルゴリズムを含むことが可能であり、少なくとも1つのアルゴリズムは、少なくとも2つの第1の干渉計の測定信号から、2つの空間的方向における第1の測定先端部の位置を決定するように具現化されており、および/または、3つの干渉計の測定信号から、3つの空間的方向における第1の測定先端部の位置を決定するように具現化されており、少なくとも1つのアルゴリズムは、ハードウェアで、または、ハードウェアおよびソフトウェアの組み合わせで具現化されている。
少なくとも1つの第1のカンチレバーの締結領域、少なくとも1つの第2のカンチレバーの締結領域、および、少なくとも1つのさらなるカンチレバーの締結領域は、一体的な実施形態を有することが可能である。少なくとも1つの第1のカンチレバーの締結領域、少なくとも1つの第1のカンチレバー、少なくとも1つの第2のカンチレバーの締結領域、少なくとも1つの第2のカンチレバー、少なくとも1つのさらなるカンチレバーの締結領域、および、少なくとも1つのさらなるカンチレバーは、一体的な実施形態を有することが可能である。少なくとも1つの第1のカンチレバーの締結領域、少なくとも1つの第1のカンチレバー、少なくとも1つの第1のカンチレバーの第1の測定先端部、少なくとも1つの第2のカンチレバーの締結領域、少なくとも1つの第2のカンチレバー、少なくとも1つの第2のカンチレバーの第2の測定先端部、少なくとも1つのさらなるカンチレバーの締結領域、少なくとも1つのさらなるカンチレバー、および、少なくとも1つのさらなるカンチレバーのさらなる測定先端部は、一体的な実施形態を有することが可能である。
さらなる例示的な実施形態によれば、上記に説明されている問題は、走査型プローブ顕微鏡によってサンプル面を検査するための方法によって解決される。走査型プローブ顕微鏡によってサンプル面を検査するための方法は、(a)少なくとも1つの第1のカンチレバーの自由端部の領域に配置されている少なくとも1つの第1の反射エリアの上に、少なくとも1つの第1の干渉計からの少なくとも1つの第1の光ビームを方向付けるステップであって、少なくとも1つの第1のカンチレバーは、第1の測定先端部を有している、ステップと、(b)少なくとも1つのカンチレバーの自由端部の領域に配置されている少なくとも1つの第1の反射エリアの上に、少なくとも1つの第2の干渉計からの少なくとも1つの第2の光ビームを方向付けるステップであって、少なくとも1つの第1の反射エリアは、少なくとも1つの第1の光ビームおよび少なくとも1つの第2の光ビームを異なる方向に反射する、ステップと、(c)サンプル面を検査する目的のために、少なくとも1つの第1の反射エリアによって反射された少なくとも1つの第1の光ビーム、および、少なくとも1つの第1の反射エリアによって反射された少なくとも1つの第2の光ビームを使用するステップとを含む。
本出願において、干渉計は、干渉計のパッシブコンポーネントを示しており、すなわち、光源無しの状態、および、カンチレバーに適用された反射エリア無しの状態になっており、前記反射エリアは、2つ以上の干渉計から生じる2つ以上の光ビームのための反射エレメントとして作用している。
方法は、少なくとも1つの第1のカンチレバーの第1の測定先端部によって、サンプル面を走査するステップを含むことが可能である。
さらに、方法は、少なくとも1つの第1の走査装置によるフィードバックを使用することなく、少なくとも断面において、サンプル面の上方で少なくとも1つの第1のカンチレバーを走査させるステップを含むことが可能である。
さらに、方法は、(d)走査型プローブ顕微鏡の測定ヘッドの中に所定の傾きで少なくとも1つの第1の測定プローブを据え付けるステップと、(e)少なくとも1つの第1の走査装置によって、傾けられた第1のカンチレバーを用いて走査するステップとを含むことが可能である。
さらに、方法は、(f)少なくとも1つの第1の傾き装置によって、サンプル面に対して少なくとも1つの第1のカンチレバーを傾けるステップと、(g)少なくとも1つの第1の走査装置を使用して、傾けられた第1のカンチレバーを用いた走査を繰り返すステップとを含むことが可能である。
そのうえ、方法は、少なくとも1つの第1のカンチレバーの傾き有りおよび無しの走査からの測定データを相関付けするステップを含むことが可能である。
そのうえ、方法は、(h)互いに対する少なくとも1つの第1のカンチレバーおよびサンプルの回転を実施するステップと、(i)サンプル面の上方で少なくとも1つの第1のカンチレバーの傾けられた状態における走査を繰り返すステップとを含むことが可能である。
加えて、方法は、回転有りおよび無しの走査の測定データを相関付けするステップを含むことが可能である。加えて、方法は、少なくとも1つの第1の傾けられたカンチレバーの走査、および、サンプル面の上方での少なくとも1つの第2の傾けられたカンチレバーの走査の測定データを相関付けするステップを含むことが可能であり、少なくとも1つの第1のカンチレバーおよび少なくとも1つの第2のカンチレバーは、互いに平行に配置されていない。
別の態様では、コンピュータープログラムは、命令を含み、命令は、上記に特定されている態様のうちの1つによる装置によって実行されるときに、上記に説明されている方法のうちの1つの方法のステップを装置に実施させる。
さらなる例示的な実施形態によれば、上記に説明されている問題は、走査型プローブ顕微鏡の少なくとも1つの第1の測定プローブの走査パラメーターを、検査されることとなるサンプルに適合させるための方法によって解決される。走査型プローブ顕微鏡の少なくとも1つの第1の測定プローブの走査パラメーターを、検査されることとなるサンプルに適合させるための方法は、(a)検査されることとなるサンプルの第1のデータを取得するステップと、(b)第1のデータから、検査されることとなるサンプルのサンプル面の少なくとも1つの部分の輪郭を示すための変数を決定するステップと、(c)決定された変数から、走査型プローブ顕微鏡の少なくとも1つの測定プローブの隣り合う測定ポイント同士の間の間隔を決定するステップとを含む。
輪郭を示すための変数を決定するステップは、サンプル面の少なくとも1つの部分の1つまたは複数の局所的な勾配を形成するステップを含むことが可能である。
さらに、輪郭を示すための変数を決定するステップは、走査型プローブ顕微鏡の測定ヘッドの中での少なくとも1つの第1のカンチレバーの傾けられた据え付けを含むことが可能である。そのうえ、輪郭を示すための変数を決定するステップは、少なくとも1つの第1のカンチレバーを傾けるステップを含むことが可能であり、少なくとも1つの第1のカンチレバーは、第2の測定に関して決定される変数に応じて、その自由端部において、少なくとも1つの測定プローブの第1の測定先端部を有している。
加えて、方法は、走査型プローブ顕微鏡の測定ヘッドの中への傾けられたカンチレバーの据え付けのための傾き角度を決定するステップ、および/または、決定される変数に応じて、少なくとも1つの第1の傾き装置のための傾き角度を決定するステップを含むことが可能である。
さらに、方法は、さらなる測定に関して決定される変数に依存する様式で、少なくとも1つの測定プローブをサンプルに対して回転させるステップを含むことが可能である。そのうえ、方法は、決定される変数に依存する様式で、少なくとも1つの測定プローブのための回転の角度を決定するステップを含むことが可能である。
少なくとも1つの測定プローブは、少なくとも1つの第1の測定プローブおよび少なくとも1つの第2の測定プローブを含むことが可能であり、方法は、決定された変数から、検査されることとなるサンプル面の上方(over)を走査するのに適切な測定プローブを決定するステップをさらに含むことが可能である。
第1のデータは、データベースから取得され得、検査されることとなるサンプルの設計データが、データベースの中に記憶されている。
第1のデータは、隣り合う測定ポイント同士の間の一定の間隔での、サンプル面の上方の少なくとも1つの第1の測定プローブの走査から取得されうる。第1のデータは、少なくとも1つの測定プローブのカンチレバーの傾き無しで、少なくとも1つの第1の測定プローブの走査から取得されうる。さらに、第1のデータは、カンチレバーの傾き無しで、少なくとも1つの測定プローブの走査と組み合わせて、設計データから決定されうる。
最後に、さらなる態様では、コンピュータープログラムは、コンピューターシステムによって実行されるときに、上記に特定された態様のうちの1つの方法のステップをコンピューターシステムに実施させる命令を含む。コンピューターシステムは、上記に定義されている装置のデータ処理装置を含むことが可能である。
以下の詳細な説明は、図面を参照して、本発明の現時点で好適な例示的な実施形態を説明している。
測定プローブの概略説明図を通る断面を示す図である。 先行技術による測定プローブおよび光ポインタシステム(light-pointer system)の概略説明図を再現する図である。 部分的な像Aにおいて、ガラスプレートの対物部および測定プローブの概略表現図を通る断面を示しており、また、部分的な像Bにおいて、部分的な像Aの測定プローブのカンチレバーの上面図を特定する図である。 部分的な像Aにおいて、本発明による装置のいくつかの重要なコンポーネントを通る概略断面を再現しており、また、部分的な像Bにおいて、3つの反射部分の形態の本発明による反射エリアの実施形態を有するカンチレバーの上面図を表す図である。 部分的な像Aにおいて、角度βの定義を明瞭にし、また、部分的な像Bにおいて、角度αの定義を明瞭にする図である。 回折光学エレメントの形態で具現化された反射エリアの概略説明図を図示する図である。 角度θで入射する放射がこの角度である回折次数を有するように設計されているライン回折格子を通る概略断面を表す図である。 図7のlink回折格子を再現する図であり、そこでは、光ビームが、角度δおよび角度θ-δで入射しており、光ビームが、角度δで反射され、回折された光ビームが、角度θ+δで生じることを示す図である。 ブレーズド回折格子状(blazed-grating-like)の構造の形態の回折光学エレメントを有するカンチレバーを通る断面を特定する図である。 90°にわたって回転させられた2つのライン回折格子の実施形態において、反射エリアを有するカンチレバーの概略上面図であり、前記ライン回折格子は、カンチレバーの長手方向軸線に対して45°の角度にわたって回転させられており、3つの入射光ビームから生じる焦点(focal spot)を有していることを示す図である。 マーキングから、半導体構造またはフォトリソグラフィックマスクの構造エレメントの限界寸法(CD:critical dimension)、および、その間隔を決定するための構造を通る概略断面を表す図である。 サンプル面に向けて傾けられたカンチレバーを通る概略断面を図示する図であり、前記カンチレバーは、本発明による反射エリアを有していることを示す図である。 サンプル面に向けて傾けられていない第2のカンチレバーを備えた図12を示す図である。 逆平行の配置で2つの傾けられたカンチレバーを備えた図12を示す図である。 図11の構造の上方の図13の構成(すなわち、2つの傾けられたカンチレバーを備える)による2つの走査を概略的に表す図である。 2つのカンチレバーの横方向オフセットを決定するためのキャリブレーション装置を通る概略断面を再現する図である。 部分的な像Aにおいて、4つの交差したカンチレバーを有する構成を通る断面を再現しており、また、部分的な像Bにおいて、4つの交差したカンチレバーの上面図を再現する図である。 傾き装置を有する装置を通る概略断面を示す図である。 非常に急勾配の、垂直の、およびオーバーハングしているフランクを備えたサンプルの輪郭の上方の、図13もしくは図14または図17もしくは図18の構成のうちの1つの1次元の測定ポイント密度の概略断面を図示する図である。 走査型プローブ顕微鏡によってサンプル面を検査するための方法のフローチャートである。 走査型プローブ顕微鏡の測定プローブの走査パラメーターを検査されることとなるサンプルに適合させるための方法のフローチャートである。
従来の走査型プローブ顕微鏡のいくつかの困難は、図1から図3に基づき簡潔に言及されている。それに続いて、本発明による装置の現時点で好適な実施形態、および、本発明による方法の現時点で好適な実施形態が、より詳細に説明されることとなる。
図1は、測定プローブ100の概略説明図を通る縦断面図を示している。測定プローブ100は、曲げビーム、スプリングビーム、またはカンチレバー110を含む。例示的なカンチレバー110は、おおよそ20μmの長さ(x方向)およびおおよそ10μmの幅(y方向)を有している。カンチレバー110は、上側側部120または表側側部120、および、下側側部130または裏側側部130を有している。カンチレバー110は、半導体材料、たとえば、シリコン、化合物半導体、たとえば、窒化ケイ素、または金属から作り出されうる。
カンチレバー110の右側端部において、カンチレバー110は、締結領域180、締結プレート180、またはハンドルチップ180に接続されている。締結領域180は、好ましくは、すべての3つの空間的方向に数ミリメートルの領域の中の寸法を有している。多くの場合に、締結領域180および測定プローブ100のカンチレバー110は、一体的な方式で作り出され、締結領域180およびカンチレバー110が実質的に同じ材料組成を有するようになっている。測定プローブ100は、締結領域180の支援によって、走査型プローブ顕微鏡(図1には図示せず)の測定ヘッドのホルダーに締結されている。これは、たとえば、クランピングによって達成されうる。
測定先端部150が、カンチレバー110の自由端部140の領域において、カンチレバー110の下側側部130に適用されている。測定先端部150は、カンチレバー110の一体の構成部分であることが可能である。この実施形態では、測定先端部150の材料組成、および、カンチレバー110の材料組成は、実質的に同じである。また、測定先端部150は、独立したユニットとして作り出され得、カンチレバー110に接続されうる。カンチレバー110と同様の様式で、測定先端部150は、半導体材料、化合物半導体、または、金属もしくは金属合金から製造されうる。
長くて細い先端部160(それは、「ウィスカー(whisker)」と称される)が、追加的に、測定先端部150の下側端部に、または、測定先端部150の先端部155に適用されうる。下記では、長くて細い先端部160は、ウィスカーという技術用語によって参照される。例として、ウィスカー160は、シリコン、窒化ケイ素、炭化ケイ素、二酸化ケイ素から作り出され得、および/または、カーボンナノチューブ、修正されたカーボンナノチューブ、もしくは、電子ビームによって蒸着されたカーボン構造(電子ビーム蒸着(EBD: electron beam deposited)カーボン)を含むことが可能である。
ウィスカー160の先端部170は、本出願が測定先端部150の位置を決定することについて言及するときに、決定されることとなる場所を示す。測定先端部150がウィスカー160を有していない場合には、測定先端部150の先端部155が、測定先端部150の位置を決定するときに、決定されることとなる場所を示す。
間隔190は、カンチレバー110の自由端部140から、測定先端部150の先端部155、または、ウィスカー160の先端部170の距離を示す。図3の文脈において説明されることとなるように、間隔190は、カンチレバー110の上側側部120の上に入射する光ビームのスポット寸法よりも大きくなっているべきである。
図2のダイアグラム200は、カンチレバー110、締結領域180、および、先端部155を有する測定先端部150を備えた、測定プローブ210を通る概略縦断面を示している。さらに、図2は、光ポインタシステム220を通る概略縦断面を再現している。光ポインタシステム220の光源230は、カンチレバー110の上側側部120の領域250の上に光ビーム240を放射し、測定先端部155は、前記領域において、カンチレバー110の裏側側部130に取り付けられている。光ビーム240は、カンチレバー110の上側側部120によって反射され、反射された光ビーム260として、マルチセグメントフォトダイオード270の上に入射する。例として、光ポインタシステム220のマルチセグメントフォトダイオード270は、4分割フォトダイオードであることが可能である。
マルチセグメントフォトダイオード270は、測定先端部150の先端部155とサンプルとの相互作用によって引き起こされるカンチレバー110の湾曲の変化を検出する。クローズドループコントロールが、測定プローブ210の締結領域180を移動させることによって、または、垂直方向に、すなわち、z方向にサンプルを移動させることによって、検出されるカンチレバー110の湾曲の変化を補償する(図2には示されていない)。結果的に、サンプル面と測定先端部150との間の相互作用は、測定プローブ210の移動またはサンプルの移動から間接的に確認される。
クローズドコントロールループ(閉制御ループ)において測定先端部150の位置を決定するために測定プローブ210またはサンプルを移動させることは、時間のかかるプロセスである。測定プローブ210のデータ記録は、クローズドループコントロールのバンド幅によって限定され、それは、現在では、1桁のkHz範囲の中に存在している。
図3の中のダイアグラム300の部分的な像Aは、検出配置を通る概略断面を示しており、検出配置は、図2の光ポインタシステム220と比較して、より速いデータ記録を促進させる。図3に図示されている検出配置では、測定先端部150の先端部170の位置を決定するための干渉計が使用される。干渉計(図3には示されていない)は、反射された光ビーム330から、測定プローブ210の測定先端部150の先端部170のz位置を確認し、測定プローブ210の締結領域は、明瞭化のために図3および後続の図では表示を控えている。
対物部310は、カンチレバー110の自由端部140の上側側部120の上に光ビーム320を方向付ける。光ビーム320は、カンチレバー110の上に入射し、反射された光ビーム330は、ガラスプレート(glass plate)340を通過し、ガラスプレート340は、図3のダイアグラムに図示されている例では、対物部310における周囲条件から測定プローブ100の真空領域を分離する。部分的な像Bは、測定プローブ210のカンチレバー110の上側側部120および入射光ビーム320の焦点350の上面図を提示している。図1の文脈においてすでに述べられているように、カンチレバー110は、おおよそ10μmの幅を有していることが多い。カンチレバー110の上に入射する光ビームは、典型的に、数マイクロメートル(たとえば、3μm)の焦点直径FWHM(半値全幅: full width at half maximum)を有している。カンチレバー110の自由端部140から光ビームの中心の間隔は、焦点の直径の半分よりも大きくなっているべきであり、たとえば、3μmの焦点直径に関して、3μmになっている。
測定先端部150のz位置を決定することは、クローズドコントロールループのバンド幅限界を受けず、結果的に、それは、図2に略述されている光ポインタシステムよりも速くて正確である。これらの進歩にかかわらず、測定先端部150の位置を確認することは、依然として、データ記録の精度および速度に関して、とりわけ、測定先端部150の横方向位置に関して、改善の可能性を有している。
図4は、本発明による装置400の例示的な実施形態のいくつかの本質的なコンポーネントを概略的に示している。部分的な像Aは、概略縦断面を提示しており、部分的な像Bは、測定プローブ415のカンチレバー410の上側側部120の上面図を図示している。カンチレバー410の上側側部120は、本発明による反射エリア420を有している。図3に図示されている例では、反射エリア420は、第1の反射部分425、第2の反射部分430、および第3の反射部分435を含む。第1の反射部分425は、測定プローブ415のカンチレバー410の上側側部120の上に配置されている。第2の反射部分430および第3の反射部分435は、カンチレバー410の長手軸(longitudinal axis)510に対して角度αにわたって回転させられて配置されている。これは、図5の部分的な像Bにおいて明瞭にされている。
図5の部分的な像Bは、ある実施形態を示しており、そこでは、第2の反射部分430および第3の反射部分435は、カンチレバー410の長手軸に対して角度α=±45にわたって回転させられている。結果として、カンチレバー410の長手軸510に対する対称性が維持される。図5の部分的な像Aは、角度βを定義している。それは、所定の角度を特定しており、第2の反射部分430および第3の反射部分435は、z方向に対して、すなわち、第1の反射部分425の垂線に対して、その角度だけxy平面から外へ傾けられている。図4および図5に提示されている例では、以下が適用される:β=45°。
再度図4を参照すると、第1の反射部分425、第2の反射部分430、および第3の反射部分435は、好ましくは、装置400によって使用される光ビームに対して高い反射性を有している。これを実現するために、反射部分425、430、および、随意的に435が金属起源を有していない場合には、反射部分425、430、および435は、好ましくは、金属コーティングまたは誘電体反射コーティングを有している。
第1の光ビーム440は、第1の反射部分425に入射し、それは、第1の反射部分425の上に焦点442を作り出す。第1の光ビーム440は、第1の反射部分425によって反射され、反射された第1の光ビーム445として対物部470を通過し、ビームスプリッター402に入射する。第1の光ビーム440は、最大光学強度のその中心が測定先端部150の先端部155、170の上に存在するように、第1の反射部分の上に調節される。
ビームスプリッター402は、反射された第1の光ビーム445を、2つの光ビーム446、447へ、好ましくは、同じ強度で分割する。光ビーム446は、第1の干渉計475の中へ進入し、第1の干渉計475によって検出される。干渉計475は、発生させられた測定信号をデータ処理装置495に送信する。データ処理装置495は、干渉計475の測定信号から、測定先端部150の先端部155、170のz位置を決定する。
光ビーム447は、4分割フォトダイオード490に入射する。4分割フォトダイオード490は、2つの目的を満たす。第1に、それは、カンチレバー410の反射エリア420に対して、対物部470を調節する役割を果たす。第2に、4分割フォトダイオード490は、カンチレバー410の長手軸510に対するカンチレバー410の測定先端部150の傾きの決定を促進させ、および/または、カンチレバー410の締結領域180に対する、本発明による反射エリア420がその中に配置されているカンチレバー410の領域のトーション(torsion:ねじれ)もしくはツイスト(twist:曲がり、くねり)の決定を促進させ、したがって、y方向への測定先端部150の先端部155、170の移動を促進させる。測定プローブ415のカンチレバー410が振動するように励起される、走査型プローブ顕微鏡の動作モードでは、そのうえ、低減する変調振幅に基づいて、測定先端部150とサンプルとの間の接触を迅速に検出するために、4分割フォトダイオード490を使用することが可能である。
第2の干渉計480からの第2の光ビーム450は、同様に、対物部470を通過し、図4の例では、45°の角度で、z方向に対して、第2の反射部分430に入射し、その上に焦点452を作り出す。第2の光ビーム450は、第2の反射部分430を通るその延長が測定先端部150の先端部155、170に入射することとなるように、第2の反射部分430の上に調節される。
第2の反射部分430によって反射された光ビーム455は、対物部470を通過し、干渉計480に進入する。干渉計480によって作り出される測定信号は、同様に、データ処理装置495に供給される。データ処理装置495は、2つの干渉計480および485の測定信号から、測定先端部150の先端部155、170のz位置および横方向位置を確認する。横方向は、第1の反射部分425に対する第2の反射部分430のアライメントから決定される。これは、2つの反射部分425および430が、z方向および横方向(すなわち、xy平面内の方向)に関して、測定先端部150の先端部155、170の位置を決定するのに十分であるということを意味している。
図4に図示されている例では、第3の干渉計485は、測定先端部150の先端部170の上に第3の光ビーム460を方向付けるために使用されている。第3の光ビーム460の調節に関して、第2の光ビーム450に関して上記に提供されている説明が適用される。2つの干渉計480および485の選択された角度αおよびβ、または、それらの出て行く光ビーム450、455(すなわち、反射部分430および435に入射する光ビーム450、460)、および、入って来る光ビーム460、465(すなわち、反射部分430、435によって反射された光ビーム455、465)は、部分的な像Aの断面において一致している。
第3の干渉計485の光ビーム460は、第3の反射部分435に入射し、焦点462を作り出す。第3の反射部分435によって反射された光ビーム465は、対物部470を通過し、第3の干渉計485によって検出される。第3の干渉計485によって作り出される測定信号は、データ処理装置495へとガイドされる。図4に図示されているように、第2の反射部分430に関してα=β=45°になっており、第3の反射部分435に関してα=-45°およびβ=+45°になっている、第1の反射部分425、第2の反射部分430、および第3の反射部分435の例示的な構成に関して、第2の反射部分430および第3の反射部分435に入射するビーム450および460の方向は、以下によって与えられる。
Figure 0007333434000002

Figure 0007333434000003
空間的方向に関する符号は、反射されたビーム455および465に関して反転されている。データ処理装置495は、3つの干渉計475、480、および485の測定信号から、3つの空間的方向への測定先端部150の先端部155、170の位置を確認することが可能である。実際には、測定先端部150の上の入射光ビーム440、450、および460の正確な調節は困難である。これは、とりわけ、測定先端部150の横方向位置を決定するときに、測定誤差をもたらす可能性がある。カンチレバー410に対する測定先端部150の正確な位置決め、および、測定先端部150の長さが正確に知られていない場合には、この問題は悪化させられる可能性がある。
少なくとも2つの測定値が、これらの困難を克服するために使用されうる。第1に、測定先端部150の先端部155、170の位置は、キャリブレーション測定の支援によって決定されうる。調節問題は、z方向へのカンチレバー410の湾曲を決定するために使用されているマルチセグメントフォトダイオード490の信号に起因して拡散されうる。カンチレバー410の湾曲は、x方向への測定先端部150の先端部155、170の移動をもたらす。さらに、カンチレバー410は、サンプル面との相互作用の結果として、ツイストまたはトーションを経験する可能性があり、y方向への測定先端部150の先端部155、170の移動をもたらす。マルチセグメントフォトダイオード490によって供給される測定信号は、データ処理装置495によって使用され、カンチレバー410の自由端部140の傾きおよび/またはトーションを確認することが可能であり、測定先端部150の先端部155、170の横方向位置を決定するときに、それを考慮に入れることが可能である。
対物部470は、好ましくは、0.7~0.95の範囲にある開口数(NA:numerical aperture)を有している。大きいNAの対物部470は、光ビーム440、450、および460のためのビームガイダンスをわずかにだけ制限する。対物部470のNAは、反射エリア420に入射する光ビーム440、450、460および反射された光ビーム445、455、465を結像する(image)ことができるように十分に大きくなければならない。角度β=45°で配置されている少なくとも1つの第2の反射部分430を備えた水平方向に配置されているカンチレバー410に関して、対物部470は、少なくとも以下のようなNAを有していなければならない:NA>sin(β)=sin45°=0,71。光ビーム440、445、450、455、460、465の発散のための予備を含むので、対物部470は、0.8以上のNAを有するべきである。下記の図14から、サンプル面に向けてカンチレバー410を傾けることは、必要とされる対物部470のNAを低減させるということを推量することが可能である。
正確で迅速なホモダイン(homodyne)干渉計またはヘテロダイン(heterodyne)干渉計が、干渉計470、480、および485として使用されうる。便宜上、干渉計475、480、485は、電磁スペクトルの可視範囲の中の波長を使用している。これは、装置400の調節を簡単化する。例として、633nmの波長において放出するヘリウム-ネオンレーザーが、干渉計475、480、および485のための光源として使用されうる。代替的に、532nmの波長においてコヒーレント放射を放出する、周波数が2倍のNd-YAG(ネオジム-ドープされたイットリウムアルミニウムガーネット)レーザーが使用されうる。
マルチセグメントフォトダイオードの例として、図4の例に図示されている4分割フォトダイオード490の代わりに、オートコリメーション望遠鏡、または、少なくとも2つの、好ましくは3つの干渉計の組み合わせが、カンチレバー410の湾曲および/またはカンチレバー410のツイストを決定するために、すなわち、xy平面内での測定先端部150の先端部155、170の移動を確認するために、装置400の中で使用されうる。
データ処理装置495は、1つまたは複数のアルゴリズムを有しており、データ処理装置495は、干渉計475、480、および485の測定信号から、測定先端部150の先端部155、170の位置を計算するために、1つまたは複数のアルゴリズムを使用することが可能である。1つまたは複数のアルゴリズムは、ハードウェア、ソフトウェア、ファームウェア、または、それらの組み合わせの形態で具現化されうる。
2つの反射部分425および430、または、3つの反射部分425、430、および435の形態の反射エリア420を作り出すことは、複雑なプロセスである。したがって、反射エリア420の代替的な実施形態が下記に説明されている。図6は、カンチレバー610を提示しており、カンチレバー610の反射エリア420は、回折構造620を有している。
図7は、ライン回折格子720として具現化されている反射構造420をカンチレバー610の上に提示している。図7は、回折格子720に入射する光ビーム440、450、460、および、回折格子720によって反射された光ビーム445、ならびに、回折次数1次の回折された光ビームが、互いに対して実質的に逆平行に伝播するように設計されている構成を明瞭にしている。これは、ライン回折格子720は、反射されたビーム445および回折されたビーム755を作り出し、対物部470を通るそのビーム経路は、図4に図示されているビーム経路と実質的に同一になっているということを意味している。このケースでは、測定プローブのカンチレバー610は、反射エリア420として回折構造620を有しており、測定プローブは、測定プローブ415に関して容易に置き換えられ得、測定プローブ415のカンチレバー410は、2つの反射部分425、430または3つの反射部分425、430、435として具現化される反射エリア420を有している。図7の部分的な像Aは、z方向にライン回折格子720に入射する光ビーム440、および、ライン回折格子720によって反射された光ビーム445を図示している。反射された光ビーム445は、ライン回折格子720によって反射されるが、回折されてはいない。
図4の文脈において説明されているように、ライン回折格子720に入射する3つの光ビーム440、450、および460は、有利には、それらの延長(図7の中の点線780によって示されている)がライン回折格子720を越えて測定先端部150の先端部155、170の中で交差するように、互いに調節される。結果として、アッベ誤差(Abbe errors)は、大きく回避される。
図7の部分的な像Bは、入射角度θで回折格子720に入射する第2の光ビーム450および/または第3の光ビーム460に関する状況を明瞭にしている。ライン回折格子720は、格子定数730:
Figure 0007333434000004
を有している。ここで、λは、用いられる光ビーム450、460の波長を示している。θ=45°の光ビーム450、460のための入射角度に関して、格子定数720に関して以下が現れる:
Figure 0007333434000005
この条件が満たされる場合には、ライン回折格子720に入射する光ビーム450、460、ならびに、回折次数1次(より正確には、回折次数-1次)の回折された光ビーム755、765が、平行または逆平行に伝播する。回折されていない反射された光ビーム750、760は、測定先端部150の先端部155、170の位置を決定するために使用されない。
図8は、入射光ビーム840および反射された(回折されていない)光ビーム845が回折格子垂線に対して角度δを有するとした場合の、ライン回折格子720によって反射されたビーム845、855、および865の生産を図示している。角度θ-δで回折格子720に入射する光ビーム450、460は、角度θ+δで回折される。上記に説明されているように、反射されたビーム850、860は、カンチレバー610の測定先端部150の先端部170の位置を決定するために使用されない。その代わりに、角度θ+δで回折された光ビーム855、865(それは、図7と同様の様式で、-1次の回折を示す)は、測定先端部150、または、測定先端部150の先端部155、170の(横方向)位置を決定するために、干渉計480、485によって使用される。
図9は、カンチレバー610を提示しており、カンチレバー610の反射エリア420は、ブレーズド回折格子920のものと同様の実施形態を有している。ブレーズド回折格子920の回折効率は、-1次の回折に関して最適化されている。反射された光ビーム750、760または850、860の中へ入る、ブレーズド回折格子920に入射する光ビーム450、460の光学強度がそれほど大きくないことに起因して、対物部470は、より少ない未使用の放射を収集する。しかし、より重要なことは、-1次の回折の使用可能な強度が、図7および図8に図示されているライン回折格子720と比較して増加するということである。z方向における、および、xy平面内の横方向寸法における測定先端部150の位置は、ライン回折格子720またはブレーズド回折格子状の構造920の支援によって確認されうる。
図10は、測定プローブ1000のカンチレバー610を示しており、その反射されたエリア420は、交差ライン回折格子1020を有している。2つのライン回折格子1020のラインは、図10に図示されている例では、互いに対して垂直になっている。交差ライン回折格子1020の2つのラインは、カンチレバーの長手軸510に対して±45°だけ回転させられている。入射する第2の光ビーム450、および、入射する第3の光ビーム460は、垂直方向に入射する第1の光ビーム440の焦点442の中において、交差ライン回折格子(crossed line grating)1020の上に部分的に重ね合わせられており、前記第1の光ビームは、明瞭化のために図10では表示を控えている。さらに、測定プローブ1000の締結領域180は、図10の中では省略されている。
干渉計475、480、および、随意的に485が、平行のまたは逆平行の出て行く光ビーム440、450、および、随意的に460、ならびに、入って来る光ビーム445、455、および、随意的に465を有する場合には、図10の中の測定プローブ1000のカンチレバー610は、多くの調節出費を生じさせることなく、図4の測定プローブ415のカンチレバー410に代わることが可能である。
しかし、交差ライン回折格子1020の中の2つのライン回折格子が互いに対して90°だけ回転させられるという必要はない。むしろ、交差ライン回折格子1020を形成する2つのライン回折格子が、たとえば、45°、60°、または75°の角度にわたって、互いに対して回転させられることで十分である。さらに、交差ライン回折格子1020に入射する光ビーム440、450、460、ならびに、反射された光ビーム445および回折された光ビーム755、765が、互いに対して平行または逆平行になっている必要はない。また、交差ライン回折格子1020は、図8に説明されているビームガイダンスのために使用されうる。好ましくは、交差回折格子(crossed grating)1020のライン回折格子は、ブレーズド回折格子状の構造920の形態で具現化されている。
図11は、構造1100を通る概略断面を示しており、構造1100に基づいて、本発明による装置400の有利な使用が説明されている。例として、構造1100は、半導体構造またはフォトリソグラフィックマスクを有することが可能である。構造1100は、基板1110を含み、基板1110の上に、マーキング1120が適用されている。さらに、構造1100は、構造エレメント1130を有しており、構造エレメント1130の寸法は、限界寸法(CD)を表しており、したがって、走査型プローブ顕微鏡の支援によって測定されるべきである。間隔D1は、マーキングの左側縁部からの構造エレメント1130の左側縁部の距離を示しており、間隔D2は、構造エレメント1130の右側縁部と構造1100のマーキング1120の右側縁部との間の距離を表している。
図12は、装置1200を示しており、装置1200は、装置400の対物部470、および、測定先端部150を備えたカンチレバー1210を使用している。カンチレバー1210は、反射部分425、430、もしくは425、430、435の形態の、または、ライン回折格子720、ブレーズド回折格子920、もしくは交差ライン回折格子1020の形態の回折構造620の形態の、本発明による反射エリア420を有している(図12もしくは後続の図には図示されていない)。図12の例では、カンチレバー1210は、水平方向に対して実質的に22°の角度だけサンプル面に向かう方向に傾斜させられている。5°~45°の範囲にある傾き角度が、有利であるということが見出された。
カンチレバー1210を傾けられた状態で走査型プローブ顕微鏡の測定ヘッドに取り付けるために、カンチレバーの締結領域180の上側側部は、走査型プローブ顕微鏡の測定ヘッドの中に対応する測定プローブを据え付けた後にカンチレバー1210がサンプル面に向けて傾けられているように、くさび形状の形態を有することが可能である(図12には図示されていない)。第2の実施形態では、測定ヘッドの受容部は、斜めの据え付け位置をとり、測定プローブの据え付けの後に、そのカンチレバー1210がサンプル(図12には示されていない)に向けて傾斜させられるかまたは傾けられるようになっている。そのうえ、走査型プローブ顕微鏡の測定ヘッドの中で測定プローブとともにくさび形状の構造を使用することは、さらなる実施形態においても可能である。最後に述べられた例示的な実施形態は、複数のくさび形状の構造が利用可能な状態に維持されることができ、当該複数のくさび形状の構造が、異なる(さまざまな)くさび角度を有しており、検査されることとなるサンプルに適合される様式で測定プローブとともに測定ヘッドの中へ挿入されうるという点において有利である。結果として、異なる(さまざまな)傾き角度は、簡単な様式でカンチレバー1210に関して現実化されうる(図12には再現されていない)。
傾けられたまたは傾斜させられたカンチレバー1210は、再現可能な様式で、構造エレメント1130の基板1110の面、および、マーキング1120の面を走査することが可能である。傾けられたカンチレバー1210は、好ましくは、構造エレメント1130の実質的に垂直の右側横方向面を走査するために使用され、また、構造1100のマーキング1120の同様に実質的に垂直の右側側壁部を解析するために使用される。カンチレバー1210またはその測定先端部150は、そのカンチレバーが傾けられていない測定プローブよりも大きい精度によって、構造1100のこれらの領域を走査することが可能である。
構造エレメント1130の左側側壁部、および、マーキング1120の左側側壁部を走査する目的のために、カンチレバー1210は、構造1100に対して実質的に180°にわたって回転させられる。これは、z軸の周りに構造1100を回転させることによって、z軸の周りにカンチレバー1210を回転させることによって、または、構造1100およびカンチレバー1210の組み合わせられた回転によって実現されうる。180°にわたって回転させられる構成によれば、カンチレバー1210は、傾けられたカンチレバー1210によって、信頼性の高い様式で、図11に図示されている構造エレメント1130の左側側壁部およびマーキング1120の左側側壁部を走査するために使用されうる。図4のデータ処理装置495は、2つの走査の測定データから、構造1100の現実的な輪郭を作り出すことが可能である。
図13の装置1300は、第2のカンチレバー410、610を備えた図12の装置1200を示しており、第2のカンチレバー410、610は、同様に、本発明による反射エリア420を有している。第2のカンチレバー410、610は、サンプル面に向けて傾けられていない。図13に図示されている例では、カンチレバー1210およびカンチレバー410、610は、逆平行の配置を有している。しかし、これは、装置1300が機能するために必要ではない。その代わりに、2つのカンチレバー1210および410または610は、互いに対して任意の角度を含むことが可能である。好適な角度は、0°、60°、90°、および180°である。
反射エリア420に入射する光ビーム440、450、および460が、図13に示されている。第2のカンチレバー410、610は、3つの目的を満たしている。第1に、それは、未知のサンプルの高速概観走査を促進させる。第2に、それは、基板1110、マーキング1120、および構造エレメント1130の面を走査するときに、より大きい精度を促進させる。その理由は、これらの領域において、図11に図示されている例示的な構造1100に関して、サンプル法線およびカンチレバー410、610の測定先端部150が、実質的に平行になっているからである。第3に、カンチレバー410、610の測定先端部150は、幅の狭い深いトレンチ(narrow deep trenches)のベース(base)を走査することを促進させ、幅の狭い深いトレンチは、傾きに起因して、傾けられたカンチレバー1210の測定先端部150によって到達されることはできない。
第2の実施形態では(図13に特定されていない)、第2の測定プローブ1315は、従来の測定プローブ100によって代わられうる。
図14の装置1400は、図12の装置1200と、カンチレバー1210に対して逆平行の構成の第2の傾けられたカンチレバー1410とを含む構成を表している。傾けられたカンチレバー1210および1410の両方は、本発明による反射エリア420を有している。光ビーム1240、1250、および、随意的に1260は、カンチレバー1210の反射エリア420に入射しており、光ビーム1440、1450、および、随意的に1460は、カンチレバー1410の反射エリア420に入射している。装置1400の利点は、マーキング1120および構造エレメント1130の左側側壁部および右側側壁部を精密に走査するための回転、ならびに、これに付随する装置1400の問題が、回避されうるか、または、少なくとも著しく低減されうるという点にある。カンチレバー1210および1410の反射エリア420によって反射された光ビームは、明瞭化のために図14では表示を控えている。
図13の議論の文脈においてすでに説明されているように、カンチレバー1210および1410の1つの逆平行の配置は、装置1400が機能することのために必須ではない。例として、2つのカンチレバー1210および1410は、代替的な例示的な実施形態では、互いに対して90°の角度を有している。
図15は、図11の構造1100の基板1110、マーキング1120、および構造エレメント1130の上方の、2つの傾けられたカンチレバー1210および1410の、または、そのウィスカー160を備えた測定先端部150の、走査1510および1520を再現している。サンプル面に向けて、または、解析されることとなる構造1100に向けて、カンチレバー1210および1410を傾けることによって、局所的なサンプル法線と測定先端部150(または、測定先端部150の上のウィスカー160)との間の角度が低減され、したがって、急勾配の側壁部を備えた構造を走査するときに、精度が増加させられる。測定先端部150およびウィスカー160を備えたカンチレバー1210の走査1510は、マーキング1120の右側側壁部、および、構造エレメント1130の右側側壁部を精密におよび再現可能に走査することが可能であり、一方、マーキング1120の左側側壁部、および、構造エレメント1130の左側側壁部の走査は、ほとんど可能ではなく、構造1100のこれらのパーツについての信頼性の高い記述を促進させない。マーキング1120および構造エレメント1130の左側側壁部および右側側壁部に関する記述は、カンチレバー1410のウィスカー160の走査1520に関して置き換えられる。カンチレバー1210または1410を傾けることは、構造1100のパーツ(parts)の走査を改善し、構造1100に関する測定先端部150またはウィスカー160は、面に向けて傾けられているが、検査されることとなる構造1100のパーツに関する分解能を低減させ、サンプル法線に対するその角度は、カンチレバー1210、1410を傾けることによって増加させられる。
データ処理装置495は、カンチレバー1210によるマーキング1120の右側側壁部および構造エレメント1130の右側側壁部の走査1510の測定データから、ならびに、カンチレバー1410によるマーキング1120の左側側壁部および構造エレメント1130の左側側壁部の走査1520の測定データから、構造1100の現実的な像を作り出すことが可能である。とりわけ、構造エレメント1130の幅、厚さ、またはCD、およびその高さ(図11には図示されていない)が、構造1100の上方の走査型プローブ顕微鏡の走査1510および1520のデータから確認されうる。さらに、マーキング1120と構造エレメント1130との間の間隔が、測定された間隔D1およびD2から計算されうる。最後に特定された用途は、互いに対するカンチレバー1210および1410の測定先端部150の間隔のキャリブレーション無しで済ますことが可能である。
図16は、キャリブレーション装置1600を通る概略断面を図示している。キャリブレーション装置1600は、カンチレバー410、610または1210、1410の上の測定先端部150の配置、および、測定先端部150の上のウィスカー160の位置決めを決定するために使用されうる。さらに、キャリブレーション装置1600は、カンチレバー410、610、1210、1410の反射エリア420から、測定先端部150の先端部155、170の間隔を確認するために使用されうる。
逆平行の配置で2つの傾けられたカンチレバー1210および1410を備えた図14の装置1400は、図11の2次元の構造1100に関して(たとえば、xz-playing内において)、検査されることとなるサンプルに対するカンチレバー1210および1410の回転を回避することを促進させる。図17に略述されている装置1700は、カンチレバーとサンプルとの間の回転を実施する必要なしに、3次元の構造の精密な検査を可能にする。
部分的な像Aは、4つのカンチレバー1210、1410、1710、および1760の十字形状の配置の上面図(部分的な像Bに示されている)に関して、ライン1705に沿った断面を示している。4つのカンチレバー1210、1410、1710、および1760のそれぞれは、反射エリア420を有している。部分的な像Aは、2つの第1の干渉計475、480または3つの第1の干渉計475、480、485の反射エリア420に入射する光ビーム1240、1250、および、随意的に1260、ならびに、2つのまたは3つの第2の干渉計の反射エリア420に入射する光ビームを表している。第2の干渉計は、図17に示されていない。
部分的な像Bは、第1の干渉計475からカンチレバー1210に入射する第1の光ビーム1240の焦点1242を表している。焦点1442、1742、および1792は、垂直方向に反射エリア420に入射する光ビーム1440、1740、および1790に属している。2つの最後に述べられた光ビームは、図17には図示されていない。図17に図示されている装置1700は、最大で12個の干渉計を有しており、干渉計は、図17には示されていないが、カンチレバー1210、1410、1710、および1760の測定先端部150の先端部155、170の位置を確認するために使用される。図4の文脈において説明されているように、これは、たとえば、データ処理装置495によって達成されうる。
図18は、カンチレバー1810を通る断面を概略的に表しており、カンチレバー1810は、アクチュエーター1800によって一時的に傾けられるかまたは曲げられる。カンチレバー1810は、異なる材料組成を有する2つの層を有している(図18には図示されていない)。とりわけ、2つの層は、異なる(便宜上、非常に異なる)熱膨張係数を有している。さらに、カンチレバー1810は、本発明による、反射部分425、430、および、随意的に435の形態の反射エリア420、または、ライン回折格子720、920もしくは2つの交差ライン回折格子1020の形態の回折構造620を有している。反射エリア420は、第1の光ビーム440、第2の光ビーム450、および、随意的に第3の光ビーム460によって、対物部470を通して照射されている。反射された光ビーム445、455、および、随意的に465は、明瞭化のために表示を控えている。
図18に図示されている例では、アクチュエーター1800または傾き装置1800は、光源1850を含む。例として、それは、レーザーシステムとして、または、LED(発光ダイオード)として具現化されうる。光源1850の光ビーム1860は、締結領域180の付近において、カンチレバー1810の上に、対物部470を通して導かれる。吸収された光子は、カンチレバー1810を局所的に加熱し、また、カンチレバー1810の2つ以上の層の異なる熱膨張係数の結果として、サンプル面に向けて、または、サンプル面から離れるように、所定の様式で、カンチレバー1810の自由端部140を曲げる。カンチレバー1810の曲げは、光ビーム1860の強度を介して調節されうる。カンチレバー1810の曲げは、光源1850によるカンチレバー1810の照射をスイッチオフした後に逆にされ、自由端部140、ひいては、測定先端部150が、その初期状態に戻る。これは、カンチレバー1810が、サンプルまたは図11の構造1100の上方を、傾けられた状態でおよび傾けられていない状態で走査するために使用されうるということを意味している。
光源1850の代わりに、活性化可能な傾き装置1800は、抵抗エレメントを含むことが可能であり、抵抗エレメントは、カンチレバーに適用されているか、または、カンチレバーの中に一体化されている(図18には示されていない)。抵抗エレメントは、抵抗エレメントを通る調節可能な電流によって、再現可能な様式でカンチレバーの一時的な曲げを促進させ、したがって、カンチレバーの長手軸(x方向)に対してカンチレバーの測定先端部150が傾くことまたは曲がることを促進させる。傾き装置1800は、傾けられたカンチレバー1210、1410、1710、および1760の代わりに、または、追加的にもしくは代替的に、図12~図14および図17のカンチレバー410、610、1210、1410、1710、1760の中へ一体化されうる。
図18に提示されている構成は、さらなる傾けられていないカンチレバーを含むことが可能である(図18には図示されていない)。例として、さらなるカンチレバーの測定先端部150の位置は、光ポインタシステム220によって、および/または、1つの、2つの、もしくは3つの干渉計によって測定されうる。例として、このさらなるカンチレバーは、上記に説明されている問題(高速概観走査(fast overview scan)、深いトレンチの走査、および/または、サンプルの平面的なエリアもしくはわずかにだけ傾斜させられているエリアの精密な測定)のうちの1つまたは複数に挑むことが可能である。
大きいアスペクト比を有するサンプル、または、急勾配の、垂直の、もしくはさらにはオーバーハングしている側壁部を走査するときに生じる困難のうちのいくつかが、図13から図15の文脈において議論された。測定プローブのカンチレバー1210、1410、1710、1760をサンプル面に向けて傾けることは、これらの困難を克服するかまたは劇的に低減させるための手段として説明された。図19は、急勾配の壁部の信頼性の高い走査を促進させるさらなる態様を提示している。
図19は、2つの階段形状の隆起部1920および1940を備えたサンプル1900のセクションの概略断面を示しており、2つの階段形状の隆起部1920および1940は、トレンチ1930によって分離されている。2つの隆起部は、実質的に平面的な面1915および1945を有しており、2つのトレンチ1930および1955は、同様に、実質的に平面的な面1932および1957を有している。隆起部(elevation)1920は、急勾配の滑らかな右側側壁部1925を有している。第2の隆起部1940は、急勾配の粗い左側側壁部1935、および、急勾配の部分的にオーバーハングしている右側側壁部1950を有している。全体的に、輪郭1910、ひいては、サンプル1900のサンプル面1905は、大きいアスペクト比を有している。
その測定先端部150が面1915、1932、1945、および1957に対して垂直に配向されている走査型プローブ顕微鏡の測定プローブによって、サンプル1900の輪郭1910を走査することは、側面1925、1935、および1950の領域において、信頼性の高い測定データを供給しない。図15の文脈において説明されているように、走査1510および1520を実施する前に、カンチレバー1210および1410の測定先端部150またはウィスカー160を傾けることは、データ記録の精度を著しく改善する。
典型的に、サンプルの輪郭1910は、等距離の間隔で、サンプル面と相互作用させられている測定プローブの測定先端部150に起因して走査される。走査型プローブ顕微鏡のデータ記録の精度は、検査されることとなるサンプル1900の輪郭1910に適合されるように測定ポイントが設定される間隔に起因して、著しく増加させられうる。この方法は、カンチレバー410、610、1210、1410、1710、1760、1810が面1915および1945に対して傾けられているかまたは傾けられていないかということから独立して適用されうる。
図19は、2つの傾けられたカンチレバー、たとえば、図14のカンチレバー1210および1410に関するこの手順を明瞭にしている。破線の矢印1960は、サンプル1900へのカンチレバー1410の測定先端部150のアプローチの方向を特定している。点線の矢印1970は、サンプル1900の面1905へのカンチレバー1210の測定先端部150のアプローチの経路を象徴している。実質的に平面的な面1915、1932、1945、および1957は、カンチレバー1410の測定先端部150によって、隣り合う測定ポイント同士の間の大きい間隔1965で走査され、また、カンチレバー1210の測定先端部150によって、2つの隣り合う測定ポイント同士の間の大きい間隔1975で走査される。カンチレバー1210および1410に関する隣り合う測定ポイント同士の間の間隔1965および1975は、同じサイズを有するように、または、異なるように選択されうる。さらに、すべての実質的に平面的な面1915、1932、1945、および1957に関する間隔が、同じになるかまたは異なるように選択されうる。そのうえ、カンチレバー1210または1410に関する測定ポイントの間隔(その測定先端部150は、検査されることとなるサンプル面1905から離れる方に向いている)は、同様に、たとえば、1つまたは複数の間隔1965、1975(それによって、平面的な面1915、1932、1945、および1957が走査される)のように、大きくなるように選択されうる。
走査の間の1次元の測定データ密度は、急勾配の側壁部1925、1935、1950の領域において著しく増加させられ、急勾配の側壁部1925、1935、1950において、カンチレバー1210または1410の測定先端部150は、サンプル面1905に向けて指している。図19では、これは、カンチレバー1210が1次元の測定ポイント密度1985によって第1の隆起部1920の右側側壁部1925を走査するケースである。第2の隆起部1940の右側側壁部1950は、隣り合う測定ポイント同士の間の間隔1985で、または、隣り合う測定ポイント同士の間の同様の間隔で、カンチレバー1210によって走査されうる。第2の隆起部1940の左側側壁部1935は、1次元の測定ポイント密度1995によって、カンチレバー1410の測定先端部150によって走査される。カンチレバー1210および1410の隣り合う測定ポイント同士の間の間隔1985および1995は、同じであるかまたは異なることが可能である。そのうえ、側壁部1925、1935、および1955の中の隣り合う測定ポイント同士の間の間隔は、変化することが可能であり、または、一定になるように選択されうる。
隣り合う測定ポイント同士の間の間隔は、たとえば、サンプル1900の設計データから確認されうる。次いで、側壁部1925、1935、および1950の急勾配性、ならびに、その高さは、設計データから計算されうる。走査1510、1520に沿った隣り合う測定ポイント同士の間の間隔は、たとえば、装置400のデータ処理装置495の中で走るアルゴリズムによって、これらのデータから計算されうる。例として、輪郭1910の局所的な勾配は、設計データから確認されうる。走査1510、1520に沿った測定データポイントの1次元の密度は、局所的な勾配から計算され得、または、領域にわたって平均化された局所的な勾配から計算されうる。
代替的な実施形態では、場所依存性の間隔1965、1975、1985、および1995を決定するために必要とされるデータが、サンプル1900の面1905のおおよその概観走査またはサーベイ走査から記録される。それが容易に可能である場合には、概観走査は、傾けられていないカンチレバー410、610、810を使用して実施される。しかし、概観走査は、また、上記に説明されている例示的な実施形態から、1つまたは複数の傾けられたカンチレバーを使用して実施されうる。
さらに、急勾配の側壁部1925、1935、1950を走査するための最良の可能な傾き角度が、局所的な勾配から決定されうる。そのうえ、決定された局所的な勾配は、検査されることとなる輪郭1910に対するカンチレバーの回転の理想的な角度を確認するために使用されうる。
1次元の測定ポイント密度を決定することは、上記に述べられているように、装置400のデータ処理装置495の中で実施されうるか、または、外部において、データ処理装置495によって実施されうる。
図20は、サンプル面1905、とりわけ、高いアスペクト比および/または急勾配の側壁部1925、1935、および1950を有する面を検査するために使用されうる方法のフローチャート2000を再現している。方法は、2010において始まる。第1のステップ2020において、少なくとも1つの第1の光ビーム440が、少なくとも1つの第1の干渉計470から、少なくとも1つの第1のカンチレバー410、610、1210、1410、1710、1760、1810(それは、第1の測定先端部150を有する)の自由端部140の領域の中に配置されている少なくとも1つの第1の反射エリア420の上へ方向付けられる。同時に、ステップ2030において、少なくとも1つの第2の光ビーム450、460が、少なくとも1つの第2の干渉計480、495から、第1のカンチレバー410、610、1210、1210、1410、1710、1760、1810の自由端部140の領域の中に配置されている少なくとも1つの第1の反射エリア420の上へ方向付けられ、少なくとも1つの第1の反射エリア420が、少なくとも1つの第1の光ビーム440および少なくとも1つの第2の光ビーム450、460を異なる方向に反射する。ステップ2040において、少なくとも1つの第1の反射エリア420によって反射された少なくとも1つの第2の光ビーム450、460、および、少なくとも1つの第1の反射エリア420によって反射された少なくとも1つの第2の光ビーム450、460が、サンプル面1905を検査する目的のために使用される。方法は、ステップ2050において終了する。
最後に、図21は、走査型プローブ顕微鏡の少なくとも1つの測定プローブの走査パラメーターを検査されることとなるサンプル1900に適合させるために使用される方法のフローチャート2100を提示している。方法は、ステップ2110において始まる。ステップ2120において、検査されることとなるサンプル1900の第1のデータが取得される。データは、データベースから取得され得、検査されることとなるサンプル1900の設計データは、データベースの中に記憶されている。代替的に、または追加的に、第1のデータが、検査されることとなるサンプル1900の一部の概観走査から取得されうる。ステップ2130において、検査されることとなるサンプル1900のサンプル面1905の少なくとも1つの部分の面輪郭1910を説明するための変数が、第1のデータから決定される。ステップ2140において、走査型プローブ顕微鏡の少なくとも1つの測定プローブの隣り合う測定ポイント同士の間の間隔が、決定された変数から決定される。方法は、ステップ2150において終了する。

Claims (18)

  1. a. 少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)を有する少なくとも1つの第1の測定プローブ(415、1000)であって、前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の自由端部(140)は、第1の測定先端部(150)を有している、少なくとも1つの第1の測定プローブ(415、1000)と、
    b. 前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の前記自由端部(140)の領域に配置されている少なくとも1つの第1の反射エリア(420)であって、前記少なくとも1つの第1の反射エリア(420)は、回折構造(620)を有しており、前記少なくとも1つの第1の反射エリア(420)は、入射する少なくとも1つの第1の光ビーム(440、840、1240、1440)を少なくとも1つの反射された第1の光ビーム(445、845)として反射するように、そして、入射する少なくとも1つの第2の光ビーム(450、460、1250、1260、1450、1460)を少なくとも1つの回折された第2の光ビーム(755、765、855、865)として回折させるように具現化されており、前記少なくとも1つの反射された第1の光ビーム(445、845)の方向と、前記少なくとも1つの回折された第2の光ビーム(755、765、855、865)の方向と、が互いに異なる、少なくとも1つの第1の反射エリア(420)と、
    c. 前記第1の測定先端部(150)の位置を決定するために、前記少なくとも1つの反射された第1の光ビーム(445、845)と、前記少なくとも1つの回折された第2の光ビーム(755、765、855、865)と、を使用するように具現化されている、少なくとも2つの第1の干渉計(475、480、485)と
    を有する、走査型プローブ顕微鏡のための装置(400)。
  2. 前記少なくとも1つの第1の反射エリア(420)は、前記第1の測定先端部(150)の反対側にある、前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の側に配置されている、請求項1に記載の装置(400)。
  3. 対物部(470)をさらに有し、前記少なくとも1つの第1の反射エリア(420)に入射する少なくとも1つの第1の光ビーム(440、840、1240、1440)、前記少なくとも1つの第1の反射エリア(420)に入射する少なくとも1つの第2の光ビーム(450、460、1250、1260、1450、1460)、前記少なくとも1つの反射された第1の光ビーム(445、845)、および前記少なくとも1つの回折された第2の光ビーム(755、765、855、865)が、前記対物部(470)を通過する、請求項1または2に記載の装置(400)。
  4. 前記回折構造(620)は、リソグラフィーによって前記少なくとも1つの第1の反射エリア(420)の上へ適用されているか、または、前記回折構造は、機械的な加工によって作り出されている、請求項1~3のいずれかに記載の装置(400)。
  5. 前記回折構造(620)は、少なくとも1つのライン回折格子(720)を含み、および/または、前記少なくとも1つのライン回折格子(720)は、ブレーズド回折格子(920)を含む、請求項1~4のいずれかに記載の装置(400)。
  6. 前記回折構造(620)は、互いに対して回転させられて配置されている少なくとも2つのライン回折格子(720)を含む、請求項1から5までのいずれかに記載の装置(400)。
  7. 少なくとも2つのライン回折格子(720)は、±60°~±120°の角度だけ互いに対して回転させられ、および/または、前記少なくとも2つのライン回折格子(720)は、カンチレバー長手方向軸線(510)に対して±45°の角度だけ配向されている、請求項6に記載の装置(400)。
  8. 前記少なくとも1つの第1の反射エリア(420)は、前記カンチレバー(410、610、1210、1410、1710、1810)の一体的部分である、請求項1~7のいずれかに記載の装置(400)。
  9. マルチセグメントフォトダイオード(490)をさらに有し、前記マルチセグメントフォトダイオード(490)は、前記少なくとも1つの反射された第1の光ビーム(445、845)から、前記カンチレバー(410、610、1210、1410、1710、1760、1810)の長手軸(510)に対する前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の前記第1の測定先端部(150)の傾き、および/または、前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の前記自由端部(140)のツイストを検出するように具現化されている、請求項1~8のいずれかに記載の装置(400)。
  10. 少なくとも1つの走査装置をさらに有し、前記少なくとも1つの走査装置は、サンプル面(1905)の上方で前記少なくとも1つの第1の測定プローブ(415、1000)を走査するように具現化されている、請求項1~9のいずれかに記載の装置(400)。
  11. 前記走査装置は、隣り合う測定ポイント同士の間の横方向間隔(1965、1975、1985、1995)を前記サンプル面(1905)の輪郭(1910)に適合させるようにさらに具現化されており、隣り合う測定ポイント同士の間の横方向間隔(1965、1975、1985、1995)の適合は、サンプル(1900)の前記輪郭(1910)が平らな面(1915、1932、1945、1957)から外れるときに隣り合う測定ポイント同士の間の横方向間隔(1965、1975、1985、1995)を小さくすることを含む、請求項10に記載の装置(400)。
  12. 前記少なくとも1つの第1の測定プローブ(415、1000)は、サンプル面(1905)に向けて傾けられた前記走査型プローブ顕微鏡の測定ヘッドの中で、前記少なくとも1つの第1の測定プローブ(415、1000)を据え付けるように具現化されている、請求項10または11に記載の装置(400)。
  13. a. 少なくとも1つの第2のカンチレバー(110、410、610、1210、1410、1710、1760、1810)を有する少なくとも1つの第2の測定プローブ(1315)であって、前記少なくとも1つの第2のカンチレバー(110、410、610、1210、1410、1710、1760、1810)の自由端部は、第2の測定先端部(150)を有している、少なくとも1つの第2の測定プローブ(1315)をさらに有し、
    b. 前記少なくとも1つの第1の測定プローブ(415、1000)および前記少なくとも1つの第2の測定プローブ(1315)は、互いに平行に配置されていない、
    請求項1~12のいずれかに記載の装置(400)。
  14. 前記少なくとも1つの第1の測定プローブ(415、1000)および前記少なくとも1つの第2の測定プローブ(1315)は、実質的に逆平行の方式で配置されているか、または、互いに対して90°だけ実質的に回転させられている、請求項13に記載の装置(400)。
  15. a. 少なくとも1つのさらなるカンチレバー(1710、1760)を有する少なくとも1つのさらなる測定プローブ(1715、1765)であって、前記少なくとも1つのさらなるカンチレバー(1710、1760)の自由端部(140)は、さらなる測定先端部(150)を有している、少なくとも1つのさらなる測定プローブ(1715、1765)と、
    b. 前記少なくとも1つのさらなるカンチレバー(1710、1760)の前記自由端部(140)の領域に配置されており、少なくとも1つの第3の光ビーム(440、840)を反射するように、および、少なくとも1つの第4の光ビーム(450、460、1250、1260、1450、1460)を回折させるように具現化されている、少なくとも1つのさらなる反射エリア(420)であって、少なくとも1つの反射された第3の光ビーム(445、845)の方向と、少なくとも1つの回折された第4の光ビームの方向と、が互いに異なる、少なくとも1つのさらなる反射エリア(420)と、
    c. 前記さらなる測定先端部(150)の位置を決定するために、前記少なくとも1つの反射された第3の光ビーム(445、845)と、前記少なくとも1つの回折された第4の光ビーム(755、765、855、865)を使用するように具現化されている少なくとも2つのさらなる干渉計と
    をさらに有する、請求項13または14に記載の装置(400)。
  16. 対物部(470)をさらに有し、
    前記少なくとも1つの第1の反射エリア(420)に入射する少なくとも1つの第1の光ビーム(440、840、1240)、前記少なくとも1つの第1の反射エリア(420)に入射する少なくとも1つの第2の光ビーム(450、460、1250、1260)、前記少なくとも1つのさらなる反射エリア(420)に入射する少なくとも1つの第3の光ビーム(440、840)、および前記少なくとも1つのさらなる第1の反射エリア(420)に入射する少なくとも1つの第4の光ビーム(450、460、1250、1260、1450,1460)
    前記第1の反射エリア(420)によって反射された前記少なくとも1つの第1の光ビーム(445、845)、
    前記少なくとも1つのさらなる反射エリア(420)によって反射された前記少なくとも1つの第3の光ビーム(445、845)、
    前記少なくとも1つの第1の反射エリア(420)によって回折された前記少なくとも1つの第2の光ビーム(755、765、855、865)、および、
    前記少なくとも1つのさらなる反射エリア(420)によって回折された前記少なくとも1つの第4の光ビーム(755、765、855、865)
    が、前記対物部(470)を通過する、請求項15に記載の装置(400)。
  17. 走査型プローブ顕微鏡によってサンプル面(1905)を検査するための方法であって、
    a. 少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の自由端部(140)の領域に配置されている少なくとも1つの第1の反射エリア(420)の上に、少なくとも1つの第1の干渉計(475)からの少なくとも1つの第1の光ビーム(440、840、1240、1440)を方向付けるステップであって、前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)は、第1の測定先端部(150)を有している、ステップであって、前記少なくとも1つの第1の反射エリア(420)は回折構造(620)を有しており、前記少なくとも1つの第1の反射エリア(420)は、前記少なくとも1つの第1の反射エリア(420)に入射する少なくとも1つの第1の光ビーム(440、840、1240、1440)を少なくとも1つの反射された光ビーム(445、845)として反射する、ステップと、
    b. 前記少なくとも1つの第1のカンチレバー(410、610、1210、1410、1710、1760、1810)の前記自由端部(140)の前記領域に配置されている前記少なくとも1つの第1の反射エリア(420)の上に、少なくとも1つの第2の干渉計(480、485)からの少なくとも1つの第2の光ビーム(450、460、1250、1260、1450、1460)を方向付けるステップであって、前記回折構造(620)を有する前記少なくとも1つの第1の反射エリア(420)は、前記少なくとも1つの第1の反射エリア(420)に入射する前記少なくとも1つの第2の光ビーム(450、460、1250、1260、1450、1460)を少なくとも1つの回折された光ビーム(755、765,855、865)として回折させ、前記少なくとも1つの反射された光ビーム(445、845)の方向と、前記少なくとも1つの回折された光ビーム(755、765、855、865)の方向と、が互いに異なる、ステップと、
    c. 前記サンプル面(1905)を検査する目的のために、前記少なくとも1つの反射された光ビーム(445、845)、および、前記少なくとも1つの回折された光ビーム(755、765、855、865)を使用するステップと
    を含む、方法。
  18. 請求項1~16のいずれかに記載の装置(400)によって実行されるときに、請求項17に記載の方法のステップを前記装置(400)に実施させる命令を含むコンピュータープログラム。
JP2022023970A 2017-03-31 2022-02-18 走査型プローブ顕微鏡のための装置および方法 Active JP7333434B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102017205528.6A DE102017205528B4 (de) 2017-03-31 2017-03-31 Vorrichtung und Verfahren für ein Rastersondenmikroskop
DE102017205528.6 2017-03-31
JP2019553808A JP7029469B2 (ja) 2017-03-31 2018-03-05 走査型プローブ顕微鏡のための装置および方法
PCT/EP2018/055282 WO2018177685A1 (en) 2017-03-31 2018-03-05 Apparatus and method for a scanning probe microscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019553808A Division JP7029469B2 (ja) 2017-03-31 2018-03-05 走査型プローブ顕微鏡のための装置および方法

Publications (2)

Publication Number Publication Date
JP2022070996A JP2022070996A (ja) 2022-05-13
JP7333434B2 true JP7333434B2 (ja) 2023-08-24

Family

ID=61569269

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019553808A Active JP7029469B2 (ja) 2017-03-31 2018-03-05 走査型プローブ顕微鏡のための装置および方法
JP2022023970A Active JP7333434B2 (ja) 2017-03-31 2022-02-18 走査型プローブ顕微鏡のための装置および方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019553808A Active JP7029469B2 (ja) 2017-03-31 2018-03-05 走査型プローブ顕微鏡のための装置および方法

Country Status (6)

Country Link
US (2) US11237185B2 (ja)
EP (1) EP3602080A1 (ja)
JP (2) JP7029469B2 (ja)
DE (1) DE102017205528B4 (ja)
TW (1) TWI675206B (ja)
WO (1) WO2018177685A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205528B4 (de) 2017-03-31 2021-06-10 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren für ein Rastersondenmikroskop
US11456149B2 (en) * 2020-03-30 2022-09-27 Fei Company Methods and systems for acquiring 3D diffraction data
US11460419B2 (en) 2020-03-30 2022-10-04 Fei Company Electron diffraction holography
CN112964909B (zh) * 2020-09-16 2023-12-01 中国科学院沈阳自动化研究所 一种原子力显微镜多探针同时独立运动测量方法与装置
TWI785906B (zh) * 2021-11-26 2022-12-01 國立成功大學 具奈米解析度之檢定力學與磁性特徵的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020104963A1 (en) 1998-09-26 2002-08-08 Vladimir Mancevski Multidimensional sensing system for atomic force microscopy
JP2015526739A (ja) 2012-08-31 2015-09-10 インフィニテシマ リミテッド 複数プローブの検出及び作動
JP2017508156A (ja) 2014-02-28 2017-03-23 インフィニテシマ リミテッド 複数の作動場所を有するプローブ・システム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100703A (ja) * 1981-12-11 1983-06-15 Yokogawa Hokushin Electric Corp 光学式スケ−ル読取装置
JPH06289036A (ja) * 1993-03-30 1994-10-18 Nikon Corp カンチレバー及び走査型フォース顕微鏡
JPH06294638A (ja) * 1993-04-06 1994-10-21 Olympus Optical Co Ltd 表面形状測定装置
US6520005B2 (en) * 1994-12-22 2003-02-18 Kla-Tencor Corporation System for sensing a sample
US5948972A (en) 1994-12-22 1999-09-07 Kla-Tencor Corporation Dual stage instrument for scanning a specimen
JPH09218211A (ja) * 1996-02-13 1997-08-19 Horiba Ltd カンチレバー走査プローブ顕微鏡
JPH11118858A (ja) * 1997-10-15 1999-04-30 Nikon Corp 電位計測装置および回路検査装置
JP4162292B2 (ja) 1998-07-07 2008-10-08 セイコーインスツル株式会社 情報記録媒体および情報再生装置
WO2000019166A1 (en) * 1998-09-26 2000-04-06 Xidex Corporation Multidimensional sensing system for atomic force miscroscopy
JP3261451B2 (ja) * 1999-03-10 2002-03-04 独立行政法人産業技術総合研究所 摩擦力検出用カンチレバー
US6298715B1 (en) * 1999-12-22 2001-10-09 Mfi Technologies Corporation Scanning force microscope probe cantilever with reflective structure
US6642517B1 (en) 2000-01-25 2003-11-04 Veeco Instruments, Inc. Method and apparatus for atomic force microscopy
JP2002168754A (ja) 2000-11-30 2002-06-14 Japan Science & Technology Corp 走査型プローブ顕微鏡装置
JP2005308756A (ja) 2001-06-19 2005-11-04 Japan Science & Technology Agency カンチレバーの検出及び制御のための装置
US7230719B2 (en) * 2003-12-02 2007-06-12 National University Of Singapore High sensitivity scanning probe system
EP1555676A3 (en) * 2004-01-14 2006-09-13 FEI Company Method of operating a probe microscope
US7395698B2 (en) * 2005-10-25 2008-07-08 Georgia Institute Of Technology Three-dimensional nanoscale metrology using FIRAT probe
US7557933B2 (en) * 2006-02-14 2009-07-07 Japan Science And Technology Agency Measuring probe, sample surface measuring apparatus and sample surface measuring method
KR20080110234A (ko) * 2007-06-15 2008-12-18 한국표준과학연구원 원자 탐침 현미경의 헤드 모듈부
JP5492383B2 (ja) * 2008-02-27 2014-05-14 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡及びこれを用いたパターン寸法計測方法
CN103429526B (zh) 2011-01-31 2016-05-11 英菲尼特斯马有限公司 自适应模式扫描探针显微镜
GB201201640D0 (en) * 2012-01-31 2012-03-14 Infinitesima Ltd Photothermal probe actuation
GB201218350D0 (en) * 2012-10-12 2012-11-28 Infinitesima Ltd Multiple probe actuation
US8895923B2 (en) * 2012-11-20 2014-11-25 Dcg Systems, Inc. System and method for non-contact microscopy for three-dimensional pre-characterization of a sample for fast and non-destructive on sample navigation during nanoprobing
DE102013107803A1 (de) 2013-07-22 2015-01-22 Visiotex GmbH Elastischer Schuh
GB201313064D0 (en) 2013-07-22 2013-09-04 Infinitesima Ltd Probe Microscope
DE102014101308B4 (de) * 2014-02-03 2022-01-27 Stoba Holding Gmbh & Co. Kg Kraftstoffeinspritzdosiereinrichtung, Kraftstoffeinspritzdüse, Werkzeug zum Herstellen einer Kraftstoffeinspritzdosiereinrichtung und Verfahren zum Herstellen einer Kraftstoffdosiereinrichtung
DE102017205528B4 (de) 2017-03-31 2021-06-10 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren für ein Rastersondenmikroskop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020104963A1 (en) 1998-09-26 2002-08-08 Vladimir Mancevski Multidimensional sensing system for atomic force microscopy
JP2015526739A (ja) 2012-08-31 2015-09-10 インフィニテシマ リミテッド 複数プローブの検出及び作動
JP2017508156A (ja) 2014-02-28 2017-03-23 インフィニテシマ リミテッド 複数の作動場所を有するプローブ・システム

Also Published As

Publication number Publication date
EP3602080A1 (en) 2020-02-05
TW201842338A (zh) 2018-12-01
WO2018177685A1 (en) 2018-10-04
DE102017205528A1 (de) 2018-10-04
TWI675206B (zh) 2019-10-21
US11237185B2 (en) 2022-02-01
US20200025796A1 (en) 2020-01-23
DE102017205528B4 (de) 2021-06-10
JP2020512563A (ja) 2020-04-23
JP7029469B2 (ja) 2022-03-03
US11796563B2 (en) 2023-10-24
US20220146548A1 (en) 2022-05-12
JP2022070996A (ja) 2022-05-13

Similar Documents

Publication Publication Date Title
JP7333434B2 (ja) 走査型プローブ顕微鏡のための装置および方法
US7091476B2 (en) Scanning probe microscope assembly
US7474410B2 (en) Nanometer-precision tip-to-substrate control and pattern registration for scanning-probe lithography
US6281491B1 (en) Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images
US20030233870A1 (en) Multidimensional sensing system for atomic force microscopy
JP2008051556A (ja) 光学式変位検出機構及びそれを用いた表面情報計測装置
JP2008051555A (ja) 光学式変位検出機構及びそれを用いたプローブ顕微鏡
US8051493B2 (en) Probe microscopy and probe position monitoring apparatus
US6718821B1 (en) Laser interferometry force-feedback sensor for an interfacial force microscope
JP4498081B2 (ja) 散乱型近接場顕微鏡およびその測定方法
CN110869772B (zh) 控制探针尖端倾斜角度的扫描探针系统
WO2023021867A1 (ja) 走査プローブ顕微鏡とそれに使用される試料
WO2000019166A1 (en) Multidimensional sensing system for atomic force miscroscopy
JP2019049487A (ja) 走査型プローブ顕微鏡の校正方法
Voigtländer et al. Cantilevers and Detection Methods in Atomic Force Microscopy
JP3450460B2 (ja) 走査型プローブ顕微鏡
JP3242787B2 (ja) フォトン走査トンネル顕微鏡
JP2006226901A (ja) 近接場光プローブ、この近接場光プローブの作製方法および作製装置
JP2002139459A (ja) X線撮像法およびx線撮像装置
JPH06221845A (ja) 原子間力顕微鏡等のカンチレバーの変形検出装置
JPH04285810A (ja) 表面評価装置および表面加工装置
JPH11174064A (ja) 測定装置
JPH06258067A (ja) 原子間力顕微鏡
JP2004101424A (ja) 散乱型近接場顕微鏡および散乱型近接場分光システム
JPH10326740A (ja) 位置検出装置及びそれを用いた加工機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7333434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150