WO2023012881A1 - ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック - Google Patents

ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック Download PDF

Info

Publication number
WO2023012881A1
WO2023012881A1 PCT/JP2021/028664 JP2021028664W WO2023012881A1 WO 2023012881 A1 WO2023012881 A1 WO 2023012881A1 JP 2021028664 W JP2021028664 W JP 2021028664W WO 2023012881 A1 WO2023012881 A1 WO 2023012881A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
region
steel plate
less
thickness
Prior art date
Application number
PCT/JP2021/028664
Other languages
English (en)
French (fr)
Inventor
幸一 能勢
淳子 今村
悠 佐藤
秀哉 上仲
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to EP21952711.6A priority Critical patent/EP4382627A4/en
Priority to CN202180100825.9A priority patent/CN117716058A/zh
Priority to PCT/JP2021/028664 priority patent/WO2023012881A1/ja
Priority to KR1020247003626A priority patent/KR20240028470A/ko
Publication of WO2023012881A1 publication Critical patent/WO2023012881A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/06Compressing powdered coating material, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to stainless steel plates.
  • a separator in a polymer electrolyte fuel cell has the following functions. ⁇ Function as a conductive component that contacts with a gas diffusion layer (GDL) to obtain electrical continuity, ⁇ The function as a battery cell container that creates an aqueous solution corrosive environment in which corrosive components such as those originating from the electrolyte membrane are contained in internally generated water or condensed water, and ⁇ Oxidizing gases such as oxygen and air, and fuels such as hydrogen Function as a flow path for circulating gas and supplying gas to a membrane electrode assembly (MEA) via a GDL.
  • GDL gas diffusion layer
  • materials for separators are required to have (1) low contact resistance with carbon paper, (2) high corrosion resistance that does not dissolve in the internal environment of the fuel cell, and (3) high workability for shaping. .
  • Patent Documents 1 to 4 describe treating stainless steel in a high-temperature nitrogen atmosphere to absorb nitrogen and convert the structure to austenite.
  • a metal separator for PEFC is manufactured by using a metal foil with a thickness of about 100 ⁇ m and molding it into a shape with fine grooves.
  • a fuel cell is assembled by combining this with carbon paper, a gasket, a sealing material, etc., which will be the MEA or GDL, and the fuel cell is further combined to form a fuel cell stack.
  • the object of the present invention is to provide a stainless steel plate with good corrosion resistance that is sufficiently magnetic to be held and swung around by magnetic force, and to provide such a stainless steel plate with good corrosion resistance.
  • the surface layer has a region (first region) mainly composed of an austenite phase with high corrosion resistance, and the structure having a region (second region) mainly composed of a ferrite phase with magnetism inside. It was conceived that a stainless steel sheet that is compatible with magnetism and magnetism can be obtained.
  • the surface layer consists of a region mainly composed of austenite phase, and the inside consists of a region mainly composed of ferrite phase. It has been found that structures can be formed.
  • the present invention was completed based on the above findings.
  • the gist of the present invention is as follows.
  • a stainless steel plate has a thickness of 5 to 200 ⁇ m, and in a cross section perpendicular to the rolling direction, a first region mainly composed of an austenite phase formed in a surface layer of one or both surfaces, and a A stainless steel sheet comprising a second region which is a region and is mainly composed of a ferrite phase, wherein the area ratio of the second region is 20% or more.
  • the chemical composition of the second region is, in mass %, Cr: 20.00 to 26.00%, N: 0.10% or less, Si: 2.00% or less, C: 0.040% or less, P: 0.030% or less, S: 0.030% or less, Mn: 1.50% or less, Cu: 0.50% or less, Mo: 3.00% or less, Ni: 5.00% or less, Ca: 50 ppm or less, sol. Al: 300 ppm or less, Balance: The stainless steel plate according to [1] above, which is Fe and impurities. [3] The chemical composition of the first region is, in mass %, N: 0.01 to 5.0%, The stainless steel plate according to [2] above, which is the same as the second region except for N.
  • a fuel cell separator comprising the stainless steel plate according to any one of [1] to [4].
  • a fuel cell comprising the fuel cell separator according to [5] above.
  • a fuel cell stack comprising a plurality of fuel cells according to [6].
  • FIG. 1 is an example of a cross-sectional photograph of a stainless steel plate having a first region mainly composed of austenite phase and a second region mainly composed of ferrite phase.
  • FIG. 2 is an example of a cross-sectional photograph of a stainless steel plate that does not have the second region.
  • FIG. 3 is a flow diagram showing an example of a method for manufacturing a stainless steel plate according to one embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing an example of a fuel cell.
  • FIG. 5 is a perspective view of a fuel cell that is an assembly of multiple cells.
  • a stainless steel plate according to one embodiment of the present invention will be described in detail below.
  • a stainless steel plate according to one embodiment of the present invention has the chemical composition described below.
  • “%” and “ppm” of element contents mean mass % and mass ppm, respectively, unless otherwise specified.
  • Chromium (Cr) has the effect of forming a Cr 2 O 3 passive film on the surface of stainless steel to improve corrosion resistance.
  • the lower limit of Cr content is 20%. If it is less than 20.00%, the structure austenitized by nitrogen absorption may contain a large amount of martensite phase. In addition, when Cr is small, there is a possibility that deformation-induced martensite phase is generated when severe deformation is performed. On the other hand, as the Cr content increases, the deformation resistance increases.
  • the reason why the upper limit of the Cr content is 26.00% is to ensure more stable manufacturability (especially the flatness of thin steel sheets).
  • the lower limit of the Cr content is preferably 21.00%, 22.00% and 23.00%.
  • the upper limit of Cr content is preferably 25.00% and 24.00%.
  • N in the first region 0.01 to 5.00%
  • Nitrogen (N) in the first region has the effect of improving corrosion resistance by being contained within a range that does not form nitrides in the stainless steel. It is also an element that promotes austenitization of stainless steel.
  • the lower limit of the N content is 0.01%. This is to ensure the minimum amount of nitrogen required to obtain a structure mainly composed of an austenite phase in the surface layer of the Fe--Cr--N stainless steel.
  • the upper limit of the N content is 5.00%. This is to suppress the formation of nitrides such as Cr 2 N and CrN in crystal grains.
  • the lower limit of N content is 0.02%, 0.04%, 0.06%, 0.08%, 0.10%, 0.12%, 0.14%, 0.16%, 0.18 %, 0.20%, 0.25%, 0.30%, 0.35%, or 0.40%.
  • the upper limit of N content is 4.75%, 4.50%, 4.25%, 4.00%, 3.75%, 3.50%, 3.25%, 3.00%, 2.80 %, 2.60%, 2.40%, 2.20%, 2.00%, 1.80%, 1.60%, 1.50%, 1.40%, 1.30%, or 1. It can be 20%.
  • N in Second Region 0.10% or Less Nitrogen (N) in the second region is preferably 0.10% or less.
  • a base material having the same chemical composition as that of the second region is rolled to a predetermined plate thickness, and then the surface is nitrided to form the first region.
  • the N content in the base material exceeds 0.10%, the deformation resistance increases, making it difficult to roll into a steel sheet.
  • the N content of the second region is the same as that of the base material, the N content of the second region should be 0.10% or less.
  • the upper limit of the N content in the base material (that is, the second region) is preferably 0.09%, 0.08%, 0.07%, 0.06% or 0.05%.
  • Si 2.00% or less Silicon (Si) does not have to be contained. Since Si is an element that deteriorates the workability of stainless steel, it is usually not an element that is positively added. On the other hand, Si forms SiO 2 on the surface of stainless steel when it is exposed to a perpassive corrosion environment, and exhibits the action of covering and protecting the Cr 2 O 3 passive film.
  • the upper limit of the Si content is 2.0%. If the Si content exceeds 2.00%, workability deteriorates, and a brittle ⁇ phase tends to precipitate during manufacturing, which may cause cracks in the steel plate processing process, or may cause poor flatness and press working. The shape may not be suitable.
  • the upper limit of Si content is preferably 1.90%, 1.80%, 1.70%, 1.60% or 1.50%. When Si is contained, it is preferably 0.10% or more.
  • C 0.040% or less Carbon (C) may not be contained.
  • C is a solid-solution strengthening element and contributes to strength improvement of stainless steel.
  • the stainless steel sheet of the present embodiment contains a certain amount or more of N, solid solution strengthening by N is sufficient, and C does not need to be added. If the C content is too high, a large number of carbides are formed during the manufacturing process, and these carbides act as starting points for fracture, deteriorating the formability of the steel. Therefore, the C content is set to 0.040% or less.
  • the upper limit of the C content is preferably 0.038%, 0.036%, 0.034%, 0.032% or 0.030%. When C is contained, it is preferably 0.001% or more.
  • Phosphorus (P) is an impurity. P segregates at grain boundaries during solidification and increases the susceptibility to solidification cracking. Therefore, it is preferable that the P content be as low as possible. Therefore, the P content is set to 0.030% or less.
  • S 0.030% or less Sulfur (S) is an impurity. S segregates at grain boundaries during solidification and increases the susceptibility to solidification cracking. Therefore, it is preferable that the S content be as low as possible. Therefore, the S content should be 0.030% or less.
  • Mn 1.50% or less Manganese (Mn) may not be contained. Mn suppresses deterioration of hot workability due to S. Mn also deoxidizes stainless steel. However, when the Mn content increases, precipitation of an intermetallic compound phase such as a ⁇ phase is promoted. Precipitation of the ⁇ phase reduces the structural stability and reduces the toughness and ductility of the stainless steel. Therefore, the Mn content is set to 1.50% or less.
  • the upper limit of the Mn content is preferably 1.40%, 1.30%, 1.20%, 1.10%, 1.00%, 0.90%, 0.80%, 0.70%0. 60%, or 0.50%. When Mn is contained, it is preferably 0.10% or more.
  • Cu 0.50% or less Copper (Cu) does not have to be contained.
  • Cu tends to segregate at grain boundaries and is an austenite stabilizing element.
  • Cu acts as a solid-solution strengthening element and contributes to an increase in high-temperature strength required as a structural material, so it may be contained as necessary.
  • a high Cu content suppresses ferrite formation during solidification during casting and increases the susceptibility to solidification cracking.
  • the Cu content is set to 0.50% or less.
  • the upper limit of the Cu content is preferably 0.47%, 0.43%, 0.40%, 0.37%, 0.33%, 0.30%, 0.27%, 0.23%, 0 .20%.
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo when it is desired to enhance the corrosion resistance in particular, Mo has the effect of enhancing the corrosion resistance of stainless steel, so it may be added in the range up to 3.00%.
  • Mo is an expensive element classified as a rare metal, and is not preferable from the viewpoint of providing economical materials.
  • Mo content if the Mo content is too high, the hot workability is lowered, and a structure mainly composed of an austenite phase may not be obtained in the surface layer. Therefore, Mo content shall be 3.00% or less.
  • the upper limit of the Mo content is preferably 2.75%, 2.50%, 2.25%, 2.00%, 1.80%, 1.60%, 1.50%, 1.30%, 1 .10%, 1.00%, 0.90%, 0.80%, 0.70%, 0.60%, or 0.50%.
  • Mo is contained, it is preferably 0.01% or more, 0.05% or more, 0.10% or more, 0.20% or more, or 0.30% or more.
  • Nickel (Ni) does not have to be contained.
  • Ni is an element that promotes the austenitization of stainless steel and also contributes to the improvement of corrosion resistance. may be contained in
  • Ni is an element belonging to rare metals, and is not preferable from the viewpoint of providing an economically efficient material.
  • the elution of Ni ions may reduce the oxygen reduction reaction rate at the interface between the platinum catalyst and the polymer electrolyte membrane. Therefore, the Ni content is set to 5.0% or less.
  • the upper limit of Ni content is preferably 4.50%. 4.00%, 3.50%, 3.00%, 2.50%, 2.00%, 1.50%, 1.00%, 0.80%, 0.70%, 0.6%, It may be 0.5%, 0.4%, 0.3% or 0.2%.
  • Ni is contained, it is preferably 0.10% or more.
  • Ca less than 50 ppm Calcium (Ca) is an impurity.
  • CaS and MnS are known as non-metallic inclusions that can cause corrosion of stainless steel.
  • the Ca content is set to less than 50 ppm in order not to generate a large amount of CaS, which is a starting point for corrosion.
  • sol. Al less than 300 ppm
  • Aluminum (Al) may not be contained. Al deoxidizes stainless steel. However, if the Al content is too high, the cleanliness of the steel will be reduced and the workability and ductility of the stainless steel will be reduced. Therefore, the Al content is less than 300 ppm. When Al is contained, it is preferably 100 ppm or more. In this specification, the Al content means the content of acid-soluble Al (sol. Al).
  • the rest of the chemical composition of the stainless steel sheet according to this embodiment is Fe and impurities.
  • impurities refers to elements that are unintentionally mixed in from ores and scraps used as raw materials for steel, or elements that are mixed in from the environment during the manufacturing process.
  • the stainless steel plate according to this embodiment has a thickness of 5-200 ⁇ m. Let thickness be average thickness.
  • the reason why the lower limit of the plate thickness is set to 5 ⁇ m is that if the plate thickness is less than 5 ⁇ m, it becomes difficult to economically manufacture by rolling while maintaining a good shape. This is because the risk of defects such as the occurrence of defects increases. Since the separator is also a partition, no through pits are allowed. This is not the case when used for purposes other than separators.
  • the lower limit of the plate thickness is preferably 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, or 50 ⁇ m.
  • the upper limit of the plate thickness is preferably 180 ⁇ m, 160 ⁇ m, 140 ⁇ m, 120 ⁇ m, 110 ⁇ m, or 100 ⁇ m.
  • the stainless steel sheet according to the present embodiment includes a layered first region mainly composed of an austenite phase formed in the surface layer (layer immediately below the surface) of one or both surfaces (front and back surfaces or either one surface), It has a layered second region which is a layer other than the first region and is mainly composed of a ferrite phase.
  • the second region has a cross-sectional area ratio of 20% or more in a cross section perpendicular to the rolling direction.
  • the stainless steel plate according to this embodiment may be composed only of the first region and the second region. For example, when the surface layers on both surface sides of the steel sheet have the first regions, the second regions are formed between the first regions on both surface layers.
  • the stainless steel plate according to the present embodiment has a layered first region mainly composed of an austenite phase formed on the front and back surfaces or on the surface layer of either one of the surfaces.
  • the stainless steel plate according to this embodiment thereby has excellent corrosion resistance.
  • the first region includes all phases detectable by X-ray diffraction (XRD) (ferrite phase, austenite phase, iron phases such as martensite phases, compound phases such as Cr 2 N and CrN, passive This is the region mainly composed of austenite phase.
  • the region mainly composed of the austenite phase is the sum of the peak intensities of the top two strongest peaks of the austenite phase (IA) in XRD from the surface, and the peak intensity of the top two strongest peaks of the other phases (IB) is greater than or equal to twice the sum of (IB).
  • IA in the first region is more preferably 3-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, 9-fold or more, or 10-fold or more than IB.
  • the thickness of the first region is arbitrary.
  • the thickness of the first region is preferably 2 ⁇ m or more at the thinnest portion. More preferably, the thickness of the first region is 3 ⁇ m or more at the thinnest portion.
  • the thickness of the first region is preferably 40% or less of the thickness of the stainless steel plate at the thickest portion. More preferably, the thickness of the first region is 30% or less of the thickness of the stainless steel plate at the thickest portion.
  • the stainless steel sheet according to the present embodiment has a layered second region, which is a layer other than the first region and mainly composed of ferrite phase.
  • the stainless steel plate according to the present embodiment can thereby have sufficient magnetism for holding and swinging by magnetic force.
  • the second region is mainly composed of ferrite phase among all phases detectable by XRD (including iron phases such as ferrite phase, austenite phase, martensite phase, and compound phases such as Cr 2 N and CrN). area.
  • the stainless steel plate is preferably a sample ground from one side to half the plate thickness (the center of the plate thickness in the cross-sectional direction), and XRD with the half plate thickness position as the measurement surface is the strongest of the ferrite phases up to the two highest Refers to the region where the sum of the peak intensities (IF) of the peaks is more than double the sum of the peak intensities (IB) of the top two strongest peaks of the other phases.
  • the IF in the second region is more preferably 3-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, 9-fold or more, or 10-fold or more that of IB.
  • the inclusion of the martensite phase is judged by observing the structure with an optical microscope.
  • a martensitic structure exhibiting a lath-like or needle-like structure can be easily distinguished from a granular ferrite structure.
  • the ferritic stainless steel is manufactured by a method in which the austenite phase is introduced from the surface by nitrogen absorption, the second region is not the austenite phase even during high-temperature treatment, so the martensite phase generated from the austenite phase when the temperature is lowered is usually not present.
  • the thickness of the second region is arbitrary as long as it satisfies the regulation of the cross-sectional area ratio described later. However, if there is a place where the second region is thick enough to reach the surface, the ferrite phase, which is inferior in corrosion resistance to the surrounding austenite phase, is likely to be exposed on the surface, and corrosion may proceed selectively. Therefore, the thickness of the second region is preferably (thickness of stainless steel plate - 4 ⁇ m) or less at the thickest portion. More preferably, the thickness of the second region is (thickness of stainless steel plate - 6 ⁇ m) or less at the thickest portion.
  • the thickness of the second region is preferably 20% or more of the thickness of the stainless steel plate at the thinnest portion. More preferably, the thickness of the second region is 40% or more of the thickness of the stainless steel plate at the thinnest portion.
  • the area ratio of the above-described second region in the cross section perpendicular to the rolling direction (also referred to as the cross-sectional area ratio) is 20% or more. .
  • the stainless steel plate according to the present embodiment can thereby have sufficient magnetism for holding and swinging by magnetic force.
  • the lower limit of the cross-sectional area ratio of the second region is preferably 30%.
  • the cross-sectional area ratio of the second region is too high, the ferrite phase may be exposed on the surface.
  • the upper limit of the cross-sectional area ratio of the second region is preferably 80%, 70%, or 60%.
  • the cross-sectional area ratio of the second region is measured as follows.
  • a test piece is taken from a stainless steel plate so that the cross section perpendicular to the rolling direction is the observation surface. Polish and etch the viewing surface.
  • an etchant containing aqua regia and glycerin in a volume ratio of 4:1 can be suitably used.
  • FIG. 1 is an example of a cross-sectional photograph of a stainless steel plate having a first region A1 and a second region A2.
  • FIG. 2 is an example of a cross-sectional photograph of a stainless steel plate that does not have the second region.
  • FIG. 1 is a cross-sectional photograph of TP No. 4 of an example described later. As shown in FIG. 1, when the stainless steel plate has a first region A1 and a second region A2, the boundary between them can be clearly distinguished by etching.
  • the boundary between the first region and the second region is determined by analyzing the crystal grains sandwiching the boundary by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). You can also check. Specifically, when the elements are limited to Cr, Fe, and N and semi-quantitative analysis is performed by SEM-EDS, N ⁇ 1.0 atomic % in the first region, and N ⁇ 1.0 atomic percent in the second region. %.
  • each area is determined using image analysis software. Let A be the area of the second region, B be the area of the region other than the second region, and obtain the cross-sectional area ratio of the second region from A/(A+B).
  • the stainless steel plate is long, it is desirable to measure the cross-sectional area ratios of a plurality of evenly cut stainless steel plates (for example, 10 cross-sections) and calculate the average.
  • the stainless steel sheet according to the present embodiment has a small percentage of phases other than the austenite phase and the ferrite phase as an average of the entire thickness of the stainless steel sheet. More specifically, all phases detectable by XRD (ferrite phase, austenite phase, martensite phase, and other iron phases, Cr 2 N, CrN, and other compound phases) are included as an average of the entire thickness of the stainless steel plate. ), the ratio of phases other than the austenite phase and the ferrite phase is preferably small.
  • the stainless steel plate according to this embodiment has a thickness of 5 to 200 ⁇ m, which is too thin to evaluate the total thickness by XRD.
  • the structure of a stainless steel plate can be evaluated by stacking a plurality of stainless steel plates, obliquely polishing the stacked stainless steel plates, and then measuring the result by XRD. For example, 10 stainless steel plates with a thickness of 30 ⁇ m cut to a width of 20 mm are piled up, embedded in resin, and magnified 10 times by polishing at an angle of 6° to obtain a sample having an evaluation surface of 3 mm ⁇ 20 mm. .
  • the XRD is measured so that the evaluation surface of such a sample is all within the X-ray irradiation area.
  • the sum of the total four peak intensities (IAF) of the top two strongest peaks of the ferrite phase and the top two strongest peaks of the austenite phase, and all phases other than the ferrite phase and the austenite phase It is preferable that the sum of the peak intensities (IBS) of the two strongest peaks in the top satisfies the relationship of IBS/IAF ⁇ 0.1. More preferably, IBS/IAF ⁇ 0.05.
  • the area ratios of the ferrite phase and the martensite phase are obtained by observing the cross-sectional structure with an optical microscope, and the peak intensity of the ⁇ phase is proportionally divided by the area ratio.
  • the stainless steel plate according to this embodiment can have a conductive layer containing a conductive carbonaceous material on at least one surface. This lowers the contact resistance with the gas diffusion layer.
  • Examples of conductive carbonaceous materials include graphite and carbon black such as acetylene black and ketjen black.
  • Ketjenblack commercially available products such as Ketjenblack EC, Ketjenblack EC600JD, carbon ECP, and carbon ECP600JD manufactured by Lion Corporation can be used.
  • Acetylene black includes Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo.
  • the conductive layer contains graphite can be confirmed, for example, by showing a graphite peak in the Raman spectrum of the conductive layer. Specifically, by Raman spectroscopy of the conductive layer, when the peaks of the D band and the G band are obtained and the half width of the G band is 100 cm ⁇ 1 or less, the conductive layer is considered to contain sufficient graphite. can judge. If the half width of the G band exceeds 100 cm ⁇ 1 , it can be determined that the conductive layer does not contain graphite sufficiently.
  • the conductive layer may be a carbon-resin composite layer having a carbonaceous material dispersed in a matrix resin.
  • a carbon-resin composite layer includes a carbonaceous material and a matrix resin made of a thermoplastic resin or a thermosetting resin.
  • the carbon-resin composite layer preferably has a volume ratio (C/R) between the carbonaceous material (C) and the matrix resin (R) of 6/4 to 9/1. If the volume ratio (C/R) is less than 6/4, the electrical conductivity may be lowered, and if it is greater than 9/1, the softness, flexibility and corrosion resistance may be inferior.
  • the thickness of the carbon-resin composite layer is preferably 0.02-5.0 mm. If the thickness is less than 0.02 mm, corrosion may start from a slight crack in the carbon-resin composite layer, and if it is more than 5.0 mm, flexibility may be adversely affected.
  • the thickness of the carbon-resin composite layer is more preferably 0.05 to 2.0 mm.
  • the carbonaceous material forming the carbon-resin composite layer is not limited to this, but one or more of powders such as natural graphite, artificial graphite, expanded graphite, expanded graphite, flake graphite, and spherical graphite. Mixtures can be used. From the viewpoint of flexibility and conductivity, it is preferable to contain expanded graphite or expanded graphite powder.
  • the matrix resin forming the carbon-resin composite layer may be a thermoplastic resin or a thermosetting resin.
  • Thermoplastic resins include, but are not limited to, polypropylene resin (PP), polyethylene resin (PE), polyamide resin (PA), polyphenylene sulfide resin (PPS), polymethylpentene resin (PMP), polyetheretherketone resin. (PEEK), polyphenylene ether resin (PPE), liquid crystal polymer resin (LCP), polyamideimide resin (PAI), polysulfone resin (PSU), polyethylene terephthalate resin (PET), and polybutylene terephthalate resin (PBT). Mixtures of more than one species can be used.
  • PP polypropylene resin
  • PE polyethylene resin
  • PA polyamide resin
  • PPS polyphenylene sulfide resin
  • PMP polymethylpentene resin
  • PEEK polyphenylene ether resin
  • LCP liquid crystal polymer resin
  • PAI polyamideimide resin
  • PSU polysulfone resin
  • PET polyethylene terephthalate resin
  • PBT polybutylene ter
  • polyolefin resins such as PP, PE, and PMP
  • a modified polyolefin resin in which part or all of the polyolefin resin is graft-modified with an unsaturated carboxylic acid or a derivative thereof.
  • the use of such a modified polyolefin resin can be expected to improve flexibility and adhesion to stainless steel plates, thereby reducing contact resistance.
  • thermosetting resin is not limited to this, but one or a mixture of two of phenolic resin and epoxy resin can be used.
  • the stainless steel plate according to this embodiment may further include an adhesive layer between the surface of the stainless steel plate and the conductive layer.
  • the adhesive composition forming the adhesive layer is not limited to this, but an adhesive composition containing an adhesive polyolefin resin (for example, Admer (trade name) manufactured by Mitsui Chemicals, Inc.), graft-modified with an unsaturated carboxylic acid.
  • Adhesive composition containing modified polyolefin resin e.g., Unistol (trade name) manufactured by Mitsui Chemicals, Inc.
  • adhesive composition containing modified polyolefin resin graft-modified with halogen e.g., Toyo manufactured by Toyobo Co., Ltd.
  • Tack (trade name)
  • phenolic resin adhesive composition for example, AH-1148 (trade name) manufactured by Lignite Co., Ltd.
  • epoxy resin adhesive composition for example, YSLV-80XY manufactured by Nippon Steel Chemical & Materials Co., Ltd. ( trade name)
  • the adhesive composition preferably contains a modified polyolefin resin in which part or all of the polyolefin resin is graft-modified with an unsaturated carboxylic acid or derivative thereof (see, for example, JP-A-2005-146178).
  • the thickness of the adhesive layer is preferably 0.1-10 ⁇ m. If the thickness of the adhesive layer is less than 0.1 ⁇ m, the adhesive strength may be insufficient. If the thickness of the adhesive layer exceeds 10 ⁇ m, the conductivity may be insufficient.
  • FIG. 3 is a flowchart showing an example of a method for manufacturing a stainless steel plate according to this embodiment. This manufacturing method is merely an example, and the manufacturing method of the stainless steel plate according to this embodiment is not limited to this method.
  • This manufacturing method includes a step of preparing a slab (step S1), a step of hot rolling and cold rolling the slab to obtain a rolled steel plate with a thickness of 5 to 200 ⁇ m (step S2), and nitrogen gas in the rolled steel plate. and a step of annealing and cooling in a gas atmosphere (step S3).
  • step S1 a step of preparing a slab
  • step S2 a step of hot rolling and cold rolling the slab to obtain a rolled steel plate with a thickness of 5 to 200 ⁇ m
  • nitrogen gas in the rolled steel plate step S2
  • step S3 a step of annealing and cooling in a gas atmosphere
  • the chemical composition of this slab is the same as the chemical composition of the stainless steel plate described above, except for the N content.
  • the reason why the N content of the slab is set to 0.1% or less is that if the N content exceeds 0.1%, the deformation resistance becomes high and it becomes difficult to form a steel plate by rolling.
  • the upper limit of the N content of the slab is preferably 0.05%.
  • the process of preparing the slab is not limited to this, but can be, for example, as follows.
  • Dissolve the ingredients As raw materials, ferrochromium and ferrosilicon for stainless steel production, cast iron, ferritic stainless steel scraps, and the like can be used. Melting is mainly done in an electric furnace. At the laboratory level, it can also be done in a vacuum induction furnace. Refining is performed to reduce carbon content, gas components, and metal inclusions. For refining, an AOD (Argon-Oxygen-Decarburization) method, a VOD (Vacuum-Oxygen-Decarburization) method, a V-AOD method, or the like can be applied. After that, the slab is made into a shape suitable for rolling by casting into a continuous casting machine or a case. The chemical composition of the slab can be adjusted by mixing raw materials and refining conditions.
  • Hot rolling and cold rolling may be performed repeatedly, and if necessary, intermediate heat treatment such as annealing and pickling may be performed. Moreover, in addition to hot rolling and cold rolling, hot forging and cutting may be further performed as necessary.
  • the rolling process is not limited to this, but can be performed as follows, for example.
  • the slab is hot rolled into a hot coil by a tandem mill or Steckel mill.
  • This hot coil is annealed and pickled. Furthermore, it is cold-rolled by a multi-roll cold rolling mill to obtain a rolled steel sheet having a thickness of 5 to 200 ⁇ m.
  • the ratio of the partial pressure of nitrogen to the total pressure of the processing gas is preferably 0.2-0.9.
  • the ratio of the partial pressure of nitrogen to the total pressure is less than 0.2, nitrogen is not sufficiently supplied from the surface, and when the steel plate is thick, the first region is formed so as to cover the entire front and back surfaces of the steel plate. become difficult to do.
  • the ratio of the partial pressure of nitrogen to the total pressure of the processing gas is higher than 0.9, Cr nitrides are excessively formed on the surface, which may cause cracks during processing.
  • the upper limit of the ratio of nitrogen partial pressure to total process gas pressure is preferably 0.75.
  • Hydrogen is preferably used as the gas mixed with nitrogen so as not to oxidize the steel sheet. Argon may be used in place of or in addition to hydrogen.
  • the annealing temperature is preferably 950-1200°C. If the annealing temperature is less than 950° C., not only the austenite phase but also the Cr 2 N phase exist in the equilibrium state, so there is a possibility that the ⁇ phase fraction in the first region cannot be increased. On the other hand, if the annealing temperature exceeds 1200° C., especially when Si is contained, a liquid phase may be generated near the grain boundary and melted to cause embrittlement.
  • the annealing temperature varies depending on the Cr content, but is preferably 1050 to 1150°C.
  • the annealing holding time must be controlled within a narrow range depending on the thickness and nitrogen partial pressure of the steel sheet. This is because austenitization due to nitrogen absorption progresses from the surface to the inside of the sheet thickness over time, and it is necessary to stop the progress of austenitization in the course of manufacturing the stainless steel sheet according to the present embodiment. If the holding time is too short, the ferrite phase may remain on the surface even if the sheet thickness is thin. On the other hand, if the retention time is too long, the cross-sectional area ratio of the second region will be too low, and the attractive force to the magnet will be insufficient.
  • the annealed steel plate is cooled.
  • the steel sheet after annealing is preferably cooled quickly. Slow cooling of the steel sheet after annealing may result in excessive precipitation of nitrides in the intermediate temperature range.
  • the steel plate of the present embodiment has a thickness of 5 to 200 ⁇ m and a small heat capacity relative to the heat radiation area, it can be cooled sufficiently quickly by allowing it to cool outside the furnace. Water cooling is not preferable because it deforms due to quenching strain.
  • the annealing process can be performed, for example, by passing the steel sheet through an annealing line called a continuous bright annealing line.
  • a first region mainly composed of an austenite phase is formed in the surface layers of the front and back surfaces of the steel sheet.
  • the surface layer of the steel sheet after the annealing process has an N content of 0.01 to 5.0% by mass, and is adjusted so that the cross-sectional area ratio of the second region is 20% or more. If the surface layer of only one surface is to be austenite phase, the opposite surface (the surface not to be austenite phase) should be masked.
  • the N content of the steel sheet after the annealing process can be adjusted by the N content of the slab and the annealing conditions. Specifically, by increasing the N content of the slab, increasing the nitrogen partial pressure during annealing, increasing the annealing temperature, or extending the annealing holding time, the N content of the steel sheet after the annealing process is increased. Content can be higher.
  • the steel sheet after the annealing process may be pickled with a solution containing a non-oxidizing acid (step S4).
  • This pickling step is an optional step and may not be carried out.
  • the surface contact resistance of the steel sheet can be lowered.
  • a non-oxidizing acid is used so as not to oxidize the surface of the steel sheet.
  • Acids that can be used are, for example, (1) hydrofluoric acid, (2) sulfuric acid, (3) hydrochloric acid, and mixed acids of these acids.
  • the concentration of hydrofluoric acid is preferably 1 to 5% by mass.
  • the treatment temperature is preferably 35-75°C. Below 35°C, processing may take a long time. Also, in summer, the temperature rise due to heat generated during pickling cannot be fully controlled, and there is a possibility that stable treatment cannot be performed depending on the outside temperature. On the other hand, if the temperature is higher than 75° C., corrosive fumes may be generated from the processing liquid.
  • the treatment temperature is more preferably 40-55°C.
  • the treatment time is preferably 2-10 minutes.
  • the concentration of sulfuric acid is preferably 10 to 40% by mass.
  • the treatment temperature is preferably 35-75°C. Below 35°C, processing may take a long time. Also, in summer, the temperature rise due to heat generated during pickling cannot be fully controlled, and there is a possibility that stable treatment cannot be performed depending on the outside temperature. On the other hand, if the temperature is higher than 75° C., harmful SOx gas may be generated from the processing liquid.
  • the concentration is more preferably 15-30 mass %.
  • the treatment temperature is more preferably 50-60°C.
  • the treatment time is preferably 0.5 to 5 minutes.
  • the concentration of hydrochloric acid is preferably 4 to 15% by mass.
  • the treatment temperature is preferably 35-75°C. If the temperature is less than 35°C, the treatment may take a long time. Also, in summer, the temperature rise due to heat generated during pickling cannot be fully controlled, and there is a possibility that stable treatment cannot be performed depending on the outside temperature. On the other hand, if the temperature is higher than 75° C., corrosive fumes may be generated from the processing liquid.
  • the concentration is more preferably 4-12 mass %.
  • the treatment temperature is more preferably 40-55°C.
  • the treatment time is preferably 2-15 minutes.
  • an austenitic stainless steel sheet and a ferritic stainless steel sheet may be superimposed and clad-rolled to produce the stainless steel sheet according to the present invention. If it is desired to form the first regions on both sides, both sides of the ferritic stainless steel plate should be clad with an austenitic stainless steel plate. If it is desired to form the first region only on one side, one side of the ferritic stainless steel plate may be clad with an austenitic stainless steel plate.
  • a massive (block-shaped, etc.) conductive carbonaceous material is slid against the Cr nitride film on the surface of the stainless steel plate.
  • the conductive carbonaceous material is preferably graphite.
  • Graphite has weak bonds between planes of six-membered rings of carbon atoms. Therefore, when the graphite is slid on the Cr nitride film, the graphite turns into scaly particles and is oriented substantially parallel to the surface of the Cr nitride film. As a result, the surface of the Cr nitride film can be efficiently covered with graphite.
  • a mixture containing a carbonaceous material and a matrix resin is hot-pressed directly onto the surface of a stainless steel plate.
  • a slurry obtained by dispersing a carbonaceous material and a matrix resin in a solvent may be applied to the surface of a stainless steel plate using a doctor blade or the like, dried and then hot-pressed.
  • a powder mixture containing the powder of the carbonaceous material and the powder of the matrix resin is hot-pressed to form the carbon-resin composite layer in advance, and the obtained carbon-resin composite layer is is particularly preferably laminated on the surface of a stainless steel plate by hot pressing.
  • the surface of the stainless steel plate may be coated with an adhesive composition.
  • the stainless steel plate and the carbon-resin composite layer are laminated via an adhesive layer.
  • the use of the stainless steel plate according to one embodiment of the present invention includes fuel cell separators.
  • a fuel cell separator according to one embodiment of the present invention has the stainless steel plate according to this embodiment. More specifically, the fuel cell separator according to this embodiment is a stainless steel plate according to this embodiment on which irregularities or the like that function as flow paths are formed.
  • the fuel cell separator according to this embodiment can be manufactured by pressing the stainless steel plate according to this embodiment. That is, in other words, it is a fuel cell separator having a part formed by processing the stainless steel plate according to the present embodiment.
  • a fuel cell according to one embodiment of the present invention has the fuel cell separator according to this embodiment.
  • a fuel cell stack according to one embodiment of the present invention has a plurality of fuel cells according to this embodiment.
  • FIG. 4 is an exploded perspective view showing the configuration of a cell 10, which is an example of a polymer electrolyte fuel cell.
  • FIG. 5 is a perspective view of a polymer electrolyte fuel cell 1 that is an assembly (stack) of a plurality of cells 10.
  • FIG. The cell 10 in FIG. 4 and the polymer electrolyte fuel cell 1 in FIG. 5 are both examples, and the configurations of the fuel cell and the fuel cell stack according to this embodiment are not limited to these.
  • the cell 10 has an anode (anode-side gas diffusion electrode layer or fuel electrode film) 3 on one side of a solid polymer electrolyte membrane 2 and a cathode (cathode-side gas diffusion electrode layer or oxidation layer) on the other side.
  • the electrode film) 4 is laminated, and separators 5a and 5b are laminated on both sides of the laminate.
  • the fuel cell separator according to the present embodiment may be a separator (water separator) having a flow path for cooling water.
  • the fuel cell stack according to this embodiment may be a water-cooled fuel cell in which a water separator is arranged between cells or every few cells.
  • a fluorine-based proton conductive membrane having a hydrogen ion exchange group can be used as the solid polymer electrolyte membrane 2.
  • the anode 3 and the cathode 4 may be provided with catalyst layers made of particulate platinum catalyst, graphite powder, and, if necessary, fluororesin having hydrogen ion exchange groups. In this case, the reaction between the fuel gas or the oxidizing gas and the catalyst layer is accelerated.
  • a flow path 6a is provided in the separator 5a.
  • a fuel gas (hydrogen or hydrogen-containing gas) A flows through the flow path 6 a to supply hydrogen to the anode 3 .
  • a flow path 6b is provided in the separator 5b.
  • An oxidizing gas B such as air is flowed through the flow path 6 b to supply oxygen to the cathode 4 . The hydrogen and oxygen thus supplied cause an electrochemical reaction to generate DC power.
  • the stainless steel plate according to the embodiment of the present invention is used for fuel cell separators. It can be applied as a shielding material, or as an electromagnetic wave absorbing material that supports a wide band by compounding with magnetic particles, metal nanoparticles, carbon black nanoparticles, or the like.
  • the stainless steel sheet having corrosion resistance and magnetism has various uses, and it goes without saying that the uses will extend beyond those specified in the present application.
  • the present invention will be described in more detail below with reference to examples.
  • An example is the case of having the first regions on both surface layers of the stainless steel plate.
  • the invention is not limited to these examples.
  • the first region is formed only on one surface, the other surface can be masked and annealed.
  • Example 1 (no conductive layer)
  • Table 1 (no conductive layer)
  • Steels of 17 chemical compositions shown in Table 1 were melted in a high-frequency induction heating 30 kg vacuum melting furnace to produce cast ingots having a substantially truncated cone shape with a diameter of 125 to 115 mm and a height of 320 mm.
  • Annealing treatment A material having a width of 70 mm and a length of 200 mm was cut from each rolled steel sheet, and subjected to bright annealing treatment and nitrogen absorption treatment in a solid state (hereinafter referred to as "annealing treatment") by a continuous annealing simulator.
  • the conditions for the annealing treatment were as shown in Table 3 below. After holding at the temperature described in the "holding temperature” column of Table 3 for the time described in the "holding time” column, a heat treatment was performed by quenching. The average cooling rate up to 500°C was 8 to 10°C/sec.
  • FIG. 1 shows a cross-sectional photograph of the stainless steel plate of TP No. 4 in Table 3 below. As shown in FIG. 1, when the stainless steel plate had the first area A1 and the second area A2, the boundary between them could be clearly distinguished by etching.
  • the region mainly composed of ferrite phase was etched deeper than the region mainly composed of austenite phase.
  • the difference in etching for each crystal grain was small, the grain boundaries were etched thinly, and the grains were etched relatively smoothly. It is considered that this is because nitrogen penetration does not occur and only the heat history due to the high-temperature annealing remains as it is in the original ferrite phase.
  • the region mainly composed of the austenite phase was etched shallower than the region mainly composed of the ferrite phase.
  • the difference in etching for each crystal grain was large, the grain boundary was etched relatively clearly, and the grain interior was also etched relatively roughly. This is considered to be due to the fact that strain was accumulated in the grains because the ferrite phase was transformed into the austenite phase due to nitrogen enrichment due to nitrogen penetration while the surroundings were constrained in the solid phase state.
  • the first region consisted of a structure mainly composed of an austenite phase and the second region consisted of a structure mainly composed of a ferrite phase.
  • XRD was measured by the ⁇ -2 ⁇ method in the 2 ⁇ range of 10° to 110° using a Co ray source under excitation conditions of 30 kV and 100 mA using an X-ray diffraction measurement apparatus RINT2500 manufactured by Rigaku.
  • XRD X-ray diffraction analysis was performed on each of them.
  • the surface region is austenite It was judged that it consisted of an organization mainly composed of phases.
  • the sum of the peak intensities of the top two strongest peaks of the ferrite phase is double the sum of the peak intensities of the top two strongest peaks of the other phases.
  • the surface layer region consisted of a structure mainly composed of a ferrite phase.
  • Magnetic Attraction (Magnetic Attraction) Test A simple test using a commercially available magnet was conducted in order to evaluate the presence or absence of an attractive force to the magnet sufficient for transportation by the magnet.
  • a 100 mm x 100 mm test piece was cut from each stainless steel plate, and a 100 mm x 100 mm x 5 mm polypropylene (PP) plate was stacked on top of it to evaluate whether the test piece could be lifted with an evaluation magnet.
  • a magnet for evaluation a cylindrical neodymium magnet ( ⁇ 10 ⁇ 10 mm, material symbol N40) manufactured by Neomag was used.
  • a test piece is placed on a wooden horizontal and smooth table, a PP plate is placed on it so as to completely overlap, a magnet for evaluation is placed in the center of the PP plate, and only the magnet is held. I picked it up quietly. At this time, when the test piece adhered to the magnet through the PP plate and was lifted together, it was evaluated as "Pass”, and when only the magnet was lifted without the test piece being lifted, it was evaluated as "Fail”.
  • the maximum current density at 0.9 V or higher which is thought to have entered the transpassive region, was used as an index of transpassive corrosion resistance. If the maximum current density at 0.9 V or higher was less than 100 ⁇ A/cm 2 , the resistance to transpassivation corrosion was excellent, and the corrosion resistance was evaluated as “good”. If the maximum current density was 100 ⁇ A/cm 2 or more, the resistance to transpassive corrosion was poor, and the corrosion resistance was evaluated as "insufficient”.
  • the stainless steel plates with TP numbers 2 to 24 and 27 to 33 showed good results in the magnetic adhesion test and corrosion resistance test.
  • the TP No. 1 stainless steel plate had insufficient corrosion resistance. This is believed to be due to the Cr content of material 1 being too low.
  • the TP number 25 stainless steel plate had insufficient magnetic attraction. This is probably because the cross-sectional area ratio of the second region was low. The reason why the cross-sectional area ratio of the second region of the stainless steel plate of TP number 25 was low is considered to be that the annealing time was too long in relation to the thickness of the plate material and the annealing atmosphere.
  • the stainless steel plate of TP No. 26 had insufficient corrosion resistance. This is probably because the ferrite phase was partially exposed on the surface of the stainless steel plate. The reason why the ferrite phase was partially exposed on the surface is considered to be that the annealing time was too short in relation to the thickness of the plate material and the annealing atmosphere.
  • the TP number 34 stainless steel plate had insufficient magnetic attraction. This is probably because the cross-sectional area ratio of the second region was low. The reason why the cross-sectional area ratio of the second region of the stainless steel plate of TP number 34 was low is considered to be that the Ni content of the material 16 was too high and the austenization progressed too much in the annealing process.
  • Example 2 (with conductive layer) A conductive layer was formed on both sides of the stainless steel plate of Example 1 by the following method after the pickling treatment. The thickness of the conductive layer per side was set to 50 ⁇ m.
  • a modified polyolefin resin adhesive (manufactured by Mitsui Chemicals, Inc., UNISTOL (trade name)) was used as the adhesive composition for forming the adhesive layer.
  • a modified polyolefin resin adhesive was applied to the surface of the pickled stainless steel plate using a desktop coater so as to have a coating thickness of 5 ⁇ m, and dried at room temperature for 10 minutes to form an adhesive layer.
  • An adhesive layer was also formed on the back surface in the same manner.
  • 0.2 g or 0.06 g of the powder mixture was evenly put into a female mold with a volume of 100 ⁇ 100 ⁇ 20 mm of a pressing device (desktop hot press MP-SCL manufactured by Toyo Seiki Seisakusho), and hot as a pre-press. Pressing (pressure: 2 MPa, temperature: 180° C.) was performed to form a sheet (thickness: 50 ⁇ m). The obtained sheet was placed on both sides of the base material with the adhesive layer prepared above, and pressed at a heating temperature of 180° C. and a pressure of 5 MPa (main pressing, molding time: 10 minutes).
  • solid polymer fuel cell solid polymer electrolyte membrane 3 anode 4 cathode 5a, 5b separators 6a, 6b flow path 10 cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、耐食性が良好なステンレス鋼板であって磁力による保持、振り回しができるだけの磁性を有することを課題とし、それを解決するために、5~200μmの厚みを有し、圧延方向に垂直な断面において、一方または両方の表面の表層に形成されたオーステナイト相を主体とする第1領域と、前記第1領域以外の領域であってフェライト相を主体とする第2領域とを有し、前記第2領域の面積率が20%以上であるステンレス鋼板である。

Description

ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
 本発明は、ステンレス鋼板に関する。
 電子機器の小型化、軽量化にともない、電子機器のポータブル化、モバイル化が進展し、多くの電子機器の小型化、軽量化が求められている。特に、スマートフォンなどの電子機器に要求される電池の小型化、軽量化は、時代の最先端レベルの仕様を要求されている。さらには、脱炭素社会の構築のため、自動車用電池や、家庭用の電池の需要も高まり、小型化、軽量化と併せて材料自体の強度や耐食性などの機能も求められている。そのような用途にステンレス鋼板の適用が期待されている。
 例えば、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)におけるセパレータは、次の機能を担っている。
・ガス拡散層(GDL:Gas Diffusion Layer)と接触して電気的な導通を取る導通部品としての機能、
・内部で生成した水、あるいは結露した水に電解質膜起因等の腐食成分が含まれた水溶液腐食環境となる電池セルの容器としての機能、及び
・酸素や空気等の酸化ガス、水素等の燃料ガスを流通させGDLを介して膜/電極接合体(MEA:Membrane Electrode Assembly)にガスを供給する流路としての機能。
 そのため、セパレータ用の材料には、(1)カーボンペーパーとの低接触抵抗、(2)燃料電池の内部環境で溶出しない高耐食性、及び(3)形状作りのための高い加工性等が求められる。
 特許文献1~4には、ステンレス鋼を高温の窒素雰囲気で処理し、窒素を吸収させて組織をオーステナイト化することが記載されている。
国際公開公報WO2019/058409号 特開2006-316338号公報 特開2004-68115号公報 特開2012-92413号公報
 一般に、PEFC用金属セパレータは、厚みが100μm程度の金属箔を用い、微細な溝を設けた形状に成型することにより製造する。これをMEAやGDLとなるカーボンペーパー、ガスケット、シール材等と組み合わせて、燃料電池セルを組み、さらに燃料電池セルを組み合わせて燃料電池スタックを構成する。
 このような燃料電池の製造工程では、金属箔のセパレータを、溝形状等を変形させることなく保持し、振り回し、移動させて組み立てができるように取り扱う必要がある。これらを量産的に行うには、高速で動くロボットを用いることが考えられる。しかし、容易に変形する金属箔を機械的に掴むように制御することは困難である。吸盤等によって吸着して保持する方法も、溝構造の流路が形成されたセパレータには適用できない。磁力による保持が一つの解決方法であるが、耐食性の要求されるセパレータ用の材料として適しているオーステナイト系ステンレスは非磁性であり、磁力による保持ができない。このように、耐食性などの機能的に優れたステンレス鋼部品であっても加工形状によっては機械的搬送が難しい場合があり、磁力による保持搬送が要望されている。
 本発明は、耐食性が良好なステンレス鋼板であって磁力による保持、振り回しができるだけの磁性を有することを課題とし、そのような耐食性が良好なステンレス鋼板を提供することを目的とする。
 本発明者らは、上記の課題を解決するため、種々の検討を行った。その結果、表層に耐食性の高いオーステナイト相を主体とする領域(第1領域)を有し、内部に磁性を持つフェライト相を主体とする領域(第2領域)を有する構造とすることで、耐食性と磁性とを両立したステンレス鋼板が得られることを着想した。
 これは、フェライト系ステンレス鋼に窒素を吸収させて組織をオーステナイト化する途中で反応を制御することにより、表層がオーステナイト相を主体とする領域からなり、内部がフェライト相を主体とする領域からなる構造を形成することができることを見出した。以上の知見に基づいて、本発明は完成された。本発明の趣旨は、以下のとおりである。     
[1]
 ステンレス鋼板であって、
前記ステンレス鋼板は、5~200μmの厚みを有し、圧延方向に垂直な断面において、一方または両方の表面の表層に形成されたオーステナイト相を主体とする第1領域と、前記第1領域以外の領域であってフェライト相を主体とする第2領域とを有し、前記第2領域の面積率が20%以上であることを特徴とするステンレス鋼板。
[2]
 前記第2領域の化学組成が、質量%で、
 Cr:20.00~26.00%、
 N :0.10%以下、
 Si:2.00%以下、
 C :0.040%以下、
 P :0.030%以下、
 S :0.030%以下、
 Mn:1.50%以下、
 Cu:0.50%以下、
 Mo:3.00%以下、
 Ni:5.00%以下、
 Ca:50ppm以下、
 sol.Al:300ppm以下、
 残部:Fe及び不純物である、前記[1]に記載のステンレス鋼板。
[3]
 前記第1領域の化学組成が、質量%で、
 N:0.01~5.0%であり、
 N以外は前記第2領域と同じである、前記[2]に記載のステンレス鋼板。
[4]
 少なくとも一方の表面に導電性の炭素質材を有する導電層をさらに有する、前記[1]~[3]の何れか一項に記載のステンレス鋼板。
[5]
 前記[1]~[4]の何れか一項に記載のステンレス鋼板を有する、燃料電池用セパレータ。
[6]
 前記[5]に記載の燃料電池用セパレータを有する、燃料電池セル。
[7]
 前記[6]に記載の燃料電池セルを複数有する、燃料電池スタック。
 本発明によれば、磁力による保持、振り回しができるだけの磁性を有し、かつ、耐食性が良好なステンレス鋼板が得られる。
図1は、オーステナイト相を主体とする第1領域とフェライト相を主体とする第2領域とを有するステンレス鋼板の断面写真の一例である。 図2は、第2領域を有さないステンレス鋼板の断面写真の一例である。 図3は、本発明の一実施形態によるステンレス鋼板の製造方法の一例を示すフロー図である。 図4は、燃料電池セルの一例を示す分解斜視図である。 図5は、複数のセルの集合体である燃料電池の斜視図である。
 以下、本発明の一実施形態によるステンレス鋼板を詳述する。
 [ステンレス鋼板]
 [化学組成]
 本発明の一実施形態によるステンレス鋼板は、以下に説明する化学組成を有する。以下の説明において、元素の含有量の「%」及び「ppm」は、特に断りの無い限り、それぞれ質量%及び質量ppmを意味する。
 Cr:20.00~26.00%
 クロム(Cr)は、ステンレス鋼の表面でCr不動態皮膜を形成して耐食性を向上させる作用を有する。Cr含有量の下限は20%とする。20.00%未満では、窒素吸収によりオーステナイト化させた組織にマルテンサイト相が多く含まれる可能性がある。また、Crが少ないと強加工を行うと加工誘起マルテンサイト相が生成する可能性がある。一方、Cr含有量の増加にしたがって、変形抵抗は高くなる。Cr含有量の上限を26.00%とするのは、より安定した製造性(特に板厚の薄い鋼板の平坦性)を担保するためである。Cr含有量の下限は、好ましくは21.00%、22.00%、23.00%にするとよい。Cr含有量の上限は、好ましくは25.00%、24.00%にするとよい。
 第1領域のN:0.01~5.00%
 第1領域の窒素(N)は、ステンレス鋼中で窒化物を生成しない範囲で含有することにより、耐食性を向上させる作用を有する。また、ステンレス鋼のオーステナイト化を促進する元素でもある。N含有量の下限は、0.01%である。これは、Fe-Cr-N系ステンレス鋼において、表層にオーステナイト相を主体とする組織を得るために必要な最低窒素量を確保するためである。N含有量の上限は5.00%である。これは、結晶粒内にCrNやCrNのような窒化物の生成を抑制するためである。N含有量の下限は、0.02%、0.04%、0.06%、0.08%、0.10%、0.12%、0.14%、0.16%、0.18%、0.20%、0.25%、0.30%、0.35%、または0.40%とすることができる。N含有量の上限は、4.75%、4.50%、4.25%、4.00%、3.75%、3.50%、3.25%、3.00%、2.80%、2.60%、2.40%、2.20%、2.00%、1.80%、1.60%、1.50%、1.40%、1.30%、または1.20%とすることができる。
 第2領域のN:0.10%以下
 第2領域の窒素(N)は0.10%以下とするとよい。後述する本発明の製造方法の一実施形態のように、第2領域と同等の成分組成を有する母材を所定の板厚になるよう圧延し、その後表面窒化処理により、第1領域を形成する場合、母材中のN含有量が0.10%を超えると、変形抵抗が高くなり、圧延によって鋼板にすることが困難になるためである。第2領域のN含有量は、母材と同じであるので、第2領域のN含有量は0.10%以下とする。母材(即ち第2領域)中のN含有量の上限は、好ましくは0.09%、0.08%、0.07%、0.06%、または0.05%であるとよい。
 Si:2.00%以下
 シリコン(Si)は、含有されなくてもよい。Siは、ステンレス鋼の加工性を劣化させる元素であることから、通常は積極的に添加する元素ではない。一方、Siは、ステンレス鋼が過不動態腐食環境に曝されると表面でSiOを生成し、Cr不動態皮膜を被覆して保護する作用を発揮する。Siを含有させる場合、Si含有量の上限は2.0%とする。Si含有量が2.00%を超えると、加工性の劣化や、製造中に脆いσ相が析出しやすくなり、鋼板への加工工程で割れが発生する場合や、平坦性が悪くプレス加工に適さない形状になる場合がある。Si含有量の上限は、好ましくは1.90%、1.80%、1.70%、1.60%、または1.50%である。Siを含有させる場合、好ましくは0.10%以上にするとよい。
 C:0.040%以下
 炭素(C)は、含有されなくてもよい。Cは、固溶強化元素であり、ステンレス鋼の強度向上に寄与する。しかし、本実施形態のステンレス鋼板ではNを一定量以上含有させるため、Nによる固溶強化が十分であり、Cを添加しなくてもよい。C含有量が多すぎると、製造過程で炭化物が多数生成され、これら炭化物が破壊の起点となって、鋼の成形性が低下する。そのため、C含有量は0.040%以下とする。C含有量の上限は、好ましくは0.038%、0.036%、0.034%、0.032%、または0.030%である。Cを含有させる場合、好ましくは0.001%以上にするとよい。
 P:0.030%以下
 リン(P)は、不純物である。Pは凝固時に粒界に偏析し、凝固割れ感受性を高める。したがって、P含有量はできるだけ低い方が好ましい。そのため、P含有量は0.030%以下とする。
 S:0.030%以下
 硫黄(S)は、不純物である。Sは凝固時に粒界に偏析し、凝固割れ感受性を高める。したがって、S含有量はできるだけ低い方が好ましい。そのため、S含有量は0.030%以下とする。
 Mn:1.50%以下
 マンガン(Mn)は、含有されなくてもよい。Mnは、Sによる熱間加工性の低下を抑制する。Mnはさらに、ステンレス鋼を脱酸する。しかし、Mn含有量が多くなると、σ相等の金属間化合物相の析出が促進される。σ相の析出によって組織安定性が低下するとともに、ステンレス鋼の靱性及び延性が低下する。そのため、Mn含有量は1.50%以下とする。Mn含有量の上限は、好ましくは1.40%、1.30%、1.20%、1.10%、1.00%、0.90%、0.80%、0.70%0.60%、または0.50%である。Mnを含有させる場合、好ましくは0.10%以上にするとよい。
 Cu:0.50%以下
 銅(Cu)は、含有されなくてもよい。Cuは粒界に偏析しやすく、また、オーステナイト安定化元素である。Cuは固溶強化元素として作用し、構造材として必要な高温強度の上昇に寄与するため、必要に応じて含有してもよい。Cu含有量が多くなると、鋳造時の凝固中にフェライト生成が抑制され、凝固割れ感受性が高まる。また、Cu含有量が多いと、熱間加工性が低下する恐れがある。そのため、Cu含有量は0.50%以下とする。Cu含有量の上限は、好ましくは0.47%、0.43%、0.40%、0.37%、0.33%、0.30%、0.27%、0.23%、0.20%にするとよい。Cuを含有させる場合、好ましくは0.01%以上にするとよい。
 Mo:3.00%以下
 モリブデン(Mo)は、含有されなくてもよい。しかし、特に耐食性を高めたいときは、Moはステンレス鋼の耐食性を高める効果を有するため、3.00%までの範囲で添加してもよい。しかし、Moはレアメタルに分類される高価な元素であり、経済性に優れた材料を提供するという観点では好ましくない。また、Mo含有量が多すぎると、熱間加工性が低下するとともに、表層にオーステナイト相を主体とする組織が得られない場合がある。そのため、Mo含有量は3.00%以下とする。Mo含有量の上限は、好ましくは2.75%、2.50%、2.25%、2.00%、1.80%、1.60%、1.50%、1.30%、1.10%、1.00%、0.90%、0.80%、0.70%、0.60%、または0.50%である。Moを含有させる場合、0.01%以上、0.05%以上、0.10%以上、0.20%以上または0.30%以上にするとよい。
 Ni:5.00%以下
 ニッケル(Ni)は、含有されなくてもよい。しかし、Niは、ステンレス鋼のオーステナイト化を促進する元素であり、また耐食性の向上にも寄与するため、特に耐食性を高めたい場合や加工性を向上させたい場合には、5.00%を限度に含有させてもよい。しかし、Niはレアメタルに属する元素であり、経済性に優れた材料を提供するという観点で好ましくない。また、Niイオンが溶出することによって、白金触媒と高分子電解質膜との界面での酸素還元反応速度を低下させる恐れがある。そのため、Ni含有量は5.0%以下とする。Ni含有量の上限は、好ましくは4.50%。4.00%、3.50%、3.00%、2.50%、2.00%、1.50%、1.00%、0.80%、0.70%、0.6%、0.5%、0.4%、0.3%、または0.2%にするとよい。Niを含有させる場合、好ましくは0.10%以上にするとよい。
 Ca:50ppm未満
 カルシウム(Ca)は、不純物である。ステンレス鋼の腐食の起点になりうる非金属介在物としては、一般にCaSやMnSが知られている。腐食起点となるCaSを多量に生成させないために、Ca含有量は50ppm未満とする。
 sol.Al:300ppm未満
 アルミニウム(Al)は、含有されなくてもよい。Alは、ステンレス鋼を脱酸する。しかし、Al含有量が高すぎれば、鋼の清浄度が低下し、ステンレス鋼の加工性及び延性が低下する。したがって、Al含有量は、300ppm未満である。Alを含有させる場合、好ましくは100ppm以上にするとよい。なお、本明細書において、Al含有量は酸可溶Al(sol.Al)の含有量を意味する。
 本実施形態によるステンレス鋼板の化学組成の残部はFe及び不純物である。ここでいう不純物は、意図せず、鋼の原料として利用される鉱石やスクラップから混入される元素、あるいは製造過程の環境等から混入される元素をいう。
 [板厚]
 本実施形態によるステンレス鋼板は、5~200μmの厚みを有する。厚みは、平均厚みとする。
 板厚の下限を5μmとするのは、板厚が5μm未満であると、形状を良好に保ったまま経済的に圧延によって製造することが困難になることに加えて、介在物等により貫通ピット等の欠陥の生じる恐れが高くなるためである。セパレータは隔壁でもあるので、貫通ピットは許されない。セパレータ用途以外に使用される場合はこの限りではない。板厚の下限は、好ましくは6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、または50μmである。
 板厚の上限を200μmとするのは、ステンレス鋼板の上に導電層を設けた場合に総厚が厚くなりすぎないようにするためである。板厚の上限は、好ましくは180μm、160μm、140μm、120μm、110μm、または100μmにするとよい。
 [組織]
 本実施形態によるステンレス鋼板は、その一方または両方の面(表裏の面またはどちらか一方の面)の表層(表面直下の層)に形成されたオーステナイト相を主体とする層状の第1領域と、第1領域以外の層であってフェライト相を主体とする層状の第2領域とを有する。本実施形態によるステンレス鋼板は、圧延方向に垂直な断面において、第2領域の断面面積率が20%以上である。本実施形態によるステンレス鋼板は、第1領域と第2領域のみから構成されていてもよい。例えば、鋼鈑の両表面側の表層に第1領域がある場合、第2領域は両表層の第1領域の間に形成される。
 (1)第1領域
 本実施形態によるステンレス鋼板は、その表裏の表面、またはどちらか一方の表面の表層に形成されたオーステナイト相を主体とする層状の第1領域を有する。本実施形態によるステンレス鋼板は、これによって、優れた耐食性を有する。
 第1領域は、X線回折(XRD:X-Ray Diffraction)で検出可能なすべての相(フェライト相、オーステナイト相、マルテンサイト相等の鉄の相、CrNやCrN等の化合物相、不動態皮膜等を含む。)の中で、オーステナイト相を主体とする領域である。オーステナイト相を主体とする領域とは、表面からのXRDにおいて、オーステナイト相の上位2つまでの最強ピークのピーク強度の合計(IA)が、他の相の上位2つまでの最強ピークのピーク強度の合計(IB)の2倍以上である領域を指す。第1領域でのIAは、より好ましくはIBの3倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、または10倍以上である。
 ステンレス鋼板の表裏の面がオーステナイト相を主体とする層によって覆われていれば、当該層の厚みによらず、耐食性を確保することができる。そのため、第1領域の厚みは任意である。もっとも、耐食性をより確実に得るためには、第1領域の厚み(片側の厚み。以下同じ。)は、最も薄い部分で2μm以上であることが好ましい。第1領域の厚みは、さらに好ましくは、最も薄い部分で3μm以上であるとよい。
 一方、第1領域の厚みが厚すぎると、第2領域のフェライト相が分断される場所が生じる場合がある。この場合、磁石で保持した際、吸着の仕方に場所によるムラが生じ、材料を変形させてしまう恐れがある。そのため、第1領域の厚みは、最も厚い部分でステンレス鋼板の厚みの40%以下であることが好ましい。第1領域の厚みは、さらに好ましくは、最も厚い部分でステンレス鋼板の厚みの30%以下である。
 (2)第2領域
 本実施形態によるステンレス鋼板は、第1領域以外の層であってフェライト相を主体とする層状の第2領域を有する。本実施形態によるステンレス鋼板は、これによって、磁力による保持、振り回しを行うための十分な磁性を備えることができる。
 第2領域は、XRDで検出可能なすべての相(フェライト相、オーステナイト相、マルテンサイト相等の鉄の相、CrNやCrN等の化合物相等を含む。)の中でフェライト相を主体とする領域である。ステンレス鋼板は、好ましくは、板厚の半分(断面方向で板厚の中央)まで片面から研削したサンプルを用いて板厚半分位置を測定面としたXRDにおいて、フェライト相の上位2つまでの最強ピークのピーク強度の合計(IF)が、他の相の上位2つまでの最強ピークのピーク強度の合計(IB)の倍以上である領域を指す。第2領域でのIFは、より好ましくはIBの3倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、または10倍以上である。
 ただし、フェライト相とマルテンサイト相とはXRDでは区別が難しいので、光学顕微鏡による組織観察により、マルテンサイト相の混入を判断する。ラス状あるいは針状組織を示すマルテンサイト組織は粒状のフェライト組織とは簡単に区別することができる。もっとも、フェライト系ステンレス鋼に窒素吸収によりオーステナイト相を表面から導入する方法で製造する場合は、第2領域は高温処理時でもオーステナイト相ではない部分なので、オーステナイト相から降温時に生成するマルテンサイト相は通常存在しない。
 後述する断面面積率の規定を満たしていれば、第2領域の厚みは任意である。ただし、表面に達するほどに第2領域が厚い場所があると、周囲のオーステナイト相に比較して耐食性の劣るフェライト相が表面に露出しやすくなるため、選択的に腐食が進む恐れがある。そのため、第2領域の厚みは、最も厚い部分で、(ステンレス鋼板の厚み-4μm)以下であることが好ましい。第2領域の厚みは、より好ましくは、最も厚い部分で、(ステンレス鋼板の厚み-6μm)以下である。
 一方、第2領域の厚みが薄すぎてフェライト相が分断されている箇所があると、磁石で保持した際、吸着の仕方に場所によるムラが生じ、材料を変形させてしまう恐れがある。そのため、第2領域の厚みは、最も薄い部分で、ステンレス鋼板の厚みの20%以上であることが好ましい。第2領域の厚みは、より好ましくは、最も薄い部分で、ステンレス鋼板の厚みの40%以上である。
 (3)第2領域の断面面積率
 本実施形態によるステンレス鋼板は、上述した第2領域の圧延方向に垂直な断面における面積率(断面面積率とも呼ぶ場合がある。)が20%以上である。本実施形態によるステンレス鋼板は、これによって、磁力による保持、振り回しを行うための十分な磁性を備えることができる。第2領域の断面面積率の下限は、好ましくは30%である。一方、第2領域の断面面積率が高すぎると、フェライト相が表面に露出する恐れがある。第2領域の断面面積率の上限は、好ましくは80%、70%、または60%である。
 第2領域の断面面積率は、次のように測定する。
 ステンレス鋼板から、圧延方向と垂直な断面が観察面となるように試験片を採取する。観察面を研磨し、エッチングする。本実施形態の化学組成の範囲では、王水とグリセリンとを体積比で4:1としたエッチング液を好適に用いることができる。
 図1は、第1領域A1と第2領域A2とを有するステンレス鋼板の断面写真の一例である。図2は、第2領域を有さないステンレス鋼板の断面写真の一例である。なお、図1は後述する実施例のTP番号4の断面写真である。図1に示すように、ステンレス鋼板が第1領域A1と第2領域A2とを有する場合、その境界はエッチングによって明確に判別することができる。
 第1領域と第2領域との境界は、境界を挟む結晶粒を走査電子顕微鏡のエネルギー分散型X線分光法(SEM-EDS:Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy)によって解析することで確認することもできる。具体的には、Cr、Fe、Nに元素を限定してSEM-EDSによる半定量解析を行うと、第1領域ではN≧1.0原子%となり、第2領域ではN<1.0原子%となる。
 上述した光学顕微鏡観察やN濃度の解析によって第1領域と判定される領域の中には、厳密には、オーステナイト相になった後、γ→CrN+αの共析反応によってCrNとαとの微細なラメラ組織を形成しているものが存在している可能性がある。しかし、断面面積率の算出に当たっては、当該部分も第1領域に含めるものとする。同様に、第1領域及び第2領域の中には、厳密には介在物や析出物が含まれる場合があるが、断面面積率の算出に当たっては、当該部分も周囲の領域(第1領域または第2領域)に含まれるものとする。
 上述した方法によって第1領域と第2領域との境界を定めた後、それぞれの面積を画像解析ソフトで求める。第2領域の面積をA、第2領域以外の領域の面積をBとし、第2領域の断面面積率をA/(A+B)から求める。
 なお、ステンレス鋼板が長尺である場合、ステンレス鋼板を均等に切断した複数の断面(例えば10断面)で断面面積率を測定し、その平均を求めることが望ましい。
 (4)その他
 本実施形態によるステンレス鋼板は、ステンレス鋼板の厚み全体の平均として、オーステナイト相及びフェライト相以外の相の割合が小さいことが好ましい。より具体的には、ステンレス鋼板の厚み全体の平均として、XRDで検出可能なすべての相(フェライト相、オーステナイト相、マルテンサイト相等の鉄の相、CrNやCrN等の化合物相等を含む。)に対して、オーステナイト相及びフェライト相以外の相の割合が小さいことが好ましい。
 本実施形態によるステンレス鋼板は、厚みが5~200μmと薄いものであるが、XRDによって全厚を評価するには厚すぎる。ステンレス鋼板の組織の評価は、ステンレス鋼板を複数毎重ねて、これを傾斜研磨したものをXRDで測定することによって求めることができる。例えば、幅20mm幅に切断した厚み30μmのステンレス鋼板を10枚重ねて樹脂に埋め込み、6°の傾斜研磨で10倍に拡大することで、3mm×20mmの評価面を有する試料を得ることができる。
 このような試料の評価面がすべてX線の照射面積に入るようにXRDを測定する。このとき、フェライト相の上位2つまでの最強ピーク及びオーステナイト相の上位2つまでの最強ピークの合計4本のピーク強度の合計(IAF)と、フェライト相及びオーステナイト相以外の全ての相のそれぞれの上位2つまでの最強ピークのピーク強度の合計(IBS)とが、IBS/IAF≦0.1の関係を満たすことが好ましい。より好ましくは、IBS/IAF≦0.05である。
 ただし、マルテンサイト相が存在する場合、XRDではフェライト相とマルテンサイト相との判別が困難である。そのため、上述したIAF及びIBSの計算に当たっては、光学顕微鏡による断面組織観察によりフェライト相及びマルテンサイト相の面積率を求め、α相のピーク強度を面積率で按分するものとする。
 [導電性の炭素質材を含む導電層]
 本実施形態によるステンレス鋼板は、少なくとも一方の面に、導電性の炭素質材を含む導電層を有することができる。これにより、ガス拡散層との接触抵抗がより低くなる。
 導電性の炭素質材は、黒鉛(グラファイト)、並びにアセチレンブラック及びケッチェンブラック等のカーボンブラック等が挙げられる。ケッチェンブラックとしては、例えば、ライオン株式会社製ケッチェンブラックEC、ケッチェンブラックEC600JD、カーボンECP、カーボンECP600JD等の市販品を使用することができる。アセチレンブラックとしては電気化学工業社製デンカブラック(登録商標)が挙げられる。
 導電層が黒鉛を含むことは、例えば、導電層のラマンスペクトルが黒鉛のピークを示すことにより確認できる。具体的には、導電層についてラマン分光法によって、Dバンド及びGバンドのピークが得られ、かつGバンドの半価幅が100cm-1以下である場合に、導電層は黒鉛を十分に含むと判断することができる。Gバンドの半価幅が100cm-1を超える場合には、導電層は黒鉛を十分に含まないと判断することができる。
 導電層は、マトリックス樹脂中に炭素質材を分散して有する炭素-樹脂複合層であってもよい。
 炭素-樹脂複合層は、炭素質材と熱可塑性樹脂または熱硬化性樹脂からなるマトリックス樹脂とを含む。炭素-樹脂複合層は、炭素質材(C)とマトリックス樹脂(R)との体積比(C/R)が、6/4~9/1であることが好ましい。体積比(C/R)が6/4よりも小さいと導電性が低下する場合があり、9/1よりも大きいと柔軟性、可撓性及び耐食性に劣る場合がある。
 炭素-樹脂複合層の厚みは、好ましくは0.02~5.0mmである。厚みが0.02mmよりも薄いと、炭素-樹脂複合層の僅かなクラックから腐食が始まる場合があり、5.0mmよいも厚いと可撓性に悪影響を及ぼす場合がある。炭素-樹脂複合層の厚みは、より好ましくは0.05~2.0mmである。
 炭素-樹脂複合層を形成する炭素質材は、これに限定されないが、天然黒鉛、人造黒鉛、膨張黒鉛、膨張化黒鉛、鱗片状黒鉛、及び球状黒鉛等の粉末の1種または2種以上の混合物を用いることができる。可撓性及び導電性の観点から、膨張黒鉛または膨張化黒鉛の粉末を含むことが好ましい。
 炭素-樹脂複合層を形成するマトリックス樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。
 熱可塑性樹脂としては、これに限定されないが、ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリアミド樹脂(PA)、ポリフェニレンスルフィド樹脂(PPS)、ポリメチルペンテン樹脂(PMP)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリフェニレンエーテル樹脂(PPE)、液晶ポリマー樹脂(LCP)、ポリアミドイミド樹脂(PAI)、ポリスルホン樹脂(PSU)、ポリエチレンテレフタレート樹脂(PET)及びポリブチレンテレフタレート樹脂(PBT)の1種または2種以上の混合物を用いることができる。
 PP、PE、PMP等のポリオレフィン樹脂については、当該ポリオレフィン樹脂の一部または全部が不飽和カルボン酸またはその誘導体によってグラフト変性された変性ポリオレフィン樹脂を使用することが好ましい。このような変性ポリオレフィン樹脂を使用することにより、可撓性の向上や、ステンレス鋼板との密着性の向上が期待でき、それによって接触抵抗の低下も期待できる。
 熱硬化性樹脂としては、これに限定されないが、フェノール樹脂及びエポキシ樹脂の1種または2種の混合物を用いることができる。
 [接着剤層]
 本実施形態によるステンレス鋼板は、ステンレス鋼板の表面と導電層との間に、接着剤層をさらに備えていてもよい。
 接着剤層を形成する接着剤組成物は、これに限定されないが、接着性ポリオレフィン樹脂を含む接着剤組成物(例えば、三井化学株式会社製アドマー(商品名))、不飽和カルボン酸によりグラフト変性された変性ポリオレフィン樹脂を含む接着剤組成物(例えば、三井化学株式会社製ユニストール(商品名))、ハロゲンによりグラフト変性された変性ポリオレフィン樹脂を含む接着剤組成物(例えば、東洋紡株式会社製トーヨータック(商品名))、フェノール樹脂接着剤組成物(例えば、リグナイト株式会社製AH-1148(商品名))、エポキシ樹脂接着剤組成物(例えば、日鉄ケミカル&マテリアル株式会社製YSLV-80XY(商品名))を使用することができる。接着剤組成物は、ポリオレフィン樹脂の一部または全部が不飽和カルボン酸またはその誘導体によってグラフト変性された変性ポリオレフィン樹脂を含むもの(例えば、特開2005-146178号公報を参照)が好ましい。
 接着剤層の厚みは、好ましくは0.1~10μmである。接着剤層の厚みが0.1μm未満であると、接着強度が不足する場合がある。接着剤層の厚みが10μmを超えると、導電性が不足する場合がある。
 [ステンレス鋼板の製造方法]
 図3は、本実施形態によるステンレス鋼板の製造方法の一例を示すフロー図である。この製造方法はあくまでも例示であり、本実施形態によるステンレス鋼板の製造方法は、この方法に限定されない。
 この製造方法は、スラブを準備する工程(ステップS1)と、スラブを熱間圧延及び冷間圧延することによって、厚み5~200μmの圧延鋼板を得る工程(ステップS2)と、圧延鋼板を窒素を含むガス雰囲気下で焼鈍して冷却する工程(ステップS3)とを備えている。以下、各工程を詳述する。
 [スラブ準備工程]
 化学組成が、質量%で、Cr:20~26%、N:0.1%以下、Si:2.0%以下、C:0.040%以下、P:0.030%以下、S:0.030%以下、Mn:1.5%以下、Cu:0.50%以下、Mo:3.00%以下、Ni:5.00%以下、Ca:50ppm未満、sol.Al:300ppm未満、残部:Fe及び不純物であるスラブを準備する(ステップS1)。
 このスラブの化学組成は、N含有量を除き、上述したステンレス鋼板の化学組成と同じである。スラブのN含有量を0.1%以下とするのは、N含有量が0.1%を超えると、変形抵抗が高くなり、圧延によって鋼板にすることが困難になるためである。スラブのN含有量の上限は、好ましくは0.05%である。
 スラブを準備する工程は、これに限定されないが、例えば以下のようにすることができる。
 原料を溶解する。原料としては、ステンレス鋼製造用のフェロクロム及びフェロシリコン、鋳鉄、並びにフェライト系ステンレス鋼のスクラップ等を用いることができる。溶解は、主に電気炉で行う。実験室レベルでは、真空誘導加熱炉で行うこともできる。炭素量、ガス成分、金属介在物を低減するために精錬を行う。精錬は、AOD(Argon-Oxygen-Decarburization)法、VOD(Vacuum-Oxygen-Decarburization)法、V-AOD法等が適用可能である。その後、連続鋳造装置やケースへの鋳込みにより、圧延に適した形状のスラブにする。スラブの化学組成は、原料の配合や、精錬の条件によって調整することができる。
 [圧延工程]
 スラブを熱間圧延及び冷間圧延することによって、厚み5~200μmの圧延鋼板を得る(ステップS2)。熱間圧延及び冷間圧延はそれぞれ繰り返し行ってもよく、必要に応じて焼鈍等の中間熱処理や、酸洗を行ってもよい。また、熱間圧延及び冷間圧延に加えて、必要に応じて熱間鍛造や切削加工をさらに行ってもよい。
 圧延工程は、これに限定されないが、例えば以下のようにすることができる。
 タンデムミルやステッケルミルによって熱間圧延してスラブを熱間コイルにする。この熱間コイルを焼鈍・酸洗する。さらに多段ロール冷間圧延機によって冷間圧延して、厚み5~200μmの圧延鋼板にする。
 [焼鈍工程]
 圧延鋼板を、窒素を含むガス雰囲気下で焼鈍して冷却する(ステップS3)。この工程によって、鋼板の表裏の面から窒素を吸収させて、鋼板の表裏の面の表層の組織を、オーステナイト相を主体とする組織にする。
 処理ガス全圧に対する窒素の分圧の比は、好ましくは0.2~0.9である。全圧に対する窒素の分圧の比が0.2未満では、表面から十分に窒素が供給されず、鋼板の厚みが厚い場合に、鋼板の表裏の面の全体を覆うように第1領域を形成することが困難になる。一方、処理ガス全圧に対する窒素の分圧の比が0.9よりも高いと、表面にCr窒化物が過剰に生成し、加工時割れ発生の起点となる可能性がある。処理ガス全圧に対する窒素の分圧の比の上限は、好ましくは0.75である。窒素と混合するガスは、鋼板を酸化させないために水素を用いるのが好ましい。水素に代えて、あるいは水素に加えて、アルゴンを用いてもよい。
 焼鈍の温度は、好ましくは950~1200℃である。焼鈍の温度が950℃未満では、平衡状態でオーステナイト相のみならずCrN相が存在するため、第1領域のγ相分率を高くできない可能性がある。一方、焼鈍の温度が1200℃を超えると、特にSiを含有する場合、粒界近傍で液相が発生し、溶融して脆化が生じる可能性がある。焼鈍の温度は、Cr含有量によって異なるが、1050~1150℃がより好ましい。
 焼鈍の保持時間は、鋼板の厚み及び窒素分圧に依存して狭い範囲で管理する必要がある。窒素吸収によるオーステナイト化が表面から時間と共に板厚内部へ進むが、本実施形態によるステンレス鋼板の製造には、オーステナイト化の進行を途中で止める必要があるためである。保持時間が短すぎると、板厚が薄い場合でも、表面にフェライト相が残存する恐れがある。一方、保持時間が長すぎると、第2領域の断面面積率が低くなりすぎ、磁石への吸着力が不足する。
 焼鈍した鋼板を冷却する。焼鈍後の鋼板は、速やかに冷却することが好ましい。焼鈍後の鋼板を徐冷すると、中間の温度域で窒化物が過剰に析出する可能性がある。ただし、本実施形態の鋼板は厚みが5~200μmであり、放熱面積に対する熱容量が小さいため、炉外で放冷すれば十分速やかに冷却される。水冷等をすると、急冷歪によって変形するため好ましくない。
 焼鈍工程は、例えば、鋼板を連続光輝焼鈍ラインと呼ばれる焼鈍ラインに通すことで実施することができる。
 この焼鈍工程によって、鋼板の表裏の面の表層にオーステナイト相を主体とする第1領域が形成される。焼鈍工程後の鋼板の表層は、N含有量が0.01~5.0質量%であり、第2領域の断面面積率が20%以上になるように調整される。一方の面の表層だけオーステナイト相にする場合は、その反対の面(オーステナイト相にしない面)をマスキングすればよい。
 焼鈍工程後の鋼板のN含有量は、スラブのN含有量、焼鈍の条件によって調整することができる。具体的には、スラブのN含有量を高くする、焼鈍の際の窒素分圧を高くする、焼鈍の温度を高くする、または焼鈍の保持時間を長くすることによって、焼鈍工程後の鋼板のN含有量を高くすることができる。
 [酸洗工程]
 焼鈍工程後の鋼板を、非酸化性酸を含む溶液で酸洗してもよい(ステップS4)。この酸洗工程は任意の工程であり、実施しなくてもよい。酸洗工程を行えば、鋼板の表面接触抵抗を低くすることができる。酸洗を行う場合、鋼板の表面を酸化させないため、非酸化性の酸を使用する。使用できる酸は例えば、(1)フッ化水素酸、(2)硫酸、(3)塩酸、及びこれらの酸の混酸である。
 (1)フッ化水素酸
 フッ化水素酸の濃度は、好ましくは1~5質量%である。処理温度は、好ましくは35~75℃である。35℃未満では、処理が長時間になる可能性がある。また、夏季は酸洗時発熱による昇温を制御しきれず、外気温に左右されて安定な処理ができない可能性がある。一方、75℃よりも高くすると、処理液から腐食性のヒュームが発生する場合がある。処理温度は、より好ましくは40~55℃である。処理時間は、好ましくは2~10分である。
 (2)硫酸
 硫酸の濃度は、好ましくは10~40質量%である。処理温度は、好ましくは35~75℃である。35℃未満では、処理が長時間になる可能性がある。また、夏季は酸洗時発熱による昇温を制御しきれず、外気温に左右されて安定な処理ができない可能性がある。一方、75℃よりも高くすると、処理液から有害なSOガスが発生する場合がある。濃度は、より好ましくは、15~30質量%である。処理温度は、より好ましくは50~60℃である。処理時間は、好ましくは0.5~5分である。
 (3)塩酸
 塩酸の濃度は、好ましくは4~15質量%である。処理温度は、好ましくは35~75℃である。35℃未満では処理が長時間になる可能性がある。また、夏季は酸洗時発熱による昇温を制御しきれず、外気温に左右されて安定な処理ができない可能性がある。一方、75℃よりも高くすると、処理液から腐食性のヒュームが発生する場合がある。濃度は、より好ましくは、4~12質量%である。処理温度は、より好ましくは40~55℃である。処理時間は、好ましくは2~15分である。
 以上、本実施形態によるステンレス鋼板の製造方法の一例を説明した。この例では、Fe-Cr系ステンレス鋼を鋼板にした後、窒素を吸収させ、ステンレス鋼板の表裏の面の表層にオーステナイト相を主体とする層状の第1領域を形成する。これによって、ステンレス鋼板の耐食性を向上させることができる。また、ステンレス鋼板が第1領域の間にフェライト相を主体とする層状の第2領域を有することによって、磁力による保持、振り回しを行うための十分な磁性を備えることができる。
 本実施形態によるステンレス鋼板の製造方法はこれに限定されない。例えば、オーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を重ね合わせ、クラッド圧延により本発明に係るステンレス鋼板を製造することもできる。両面に第1領域を形成したい場合は、フェライト系ステンレス鋼板の両面にオーステナイト系のステンレス鋼板をクラッドすればよい。片面だけに第1領域を形成したい場合は、フェライト系ステンレス鋼板の片面にオーステナイト系のステンレス鋼板をクラッドすればよい。
 [導電層の形成]
 ステンレス鋼板に導電性の炭素質材を有する導電層を形成する場合は、以下の方法を用いることができる。
 塊状(ブロック状等)の導電性炭素質材を、ステンレス鋼板表面のCr窒化物皮膜に対して摺動させる。導電性炭素質材は、黒鉛であることが好ましい。黒鉛は、炭素原子からなる六員環の面間の結合が弱い。このため、黒鉛をCr窒化物皮膜に対して摺動させると、黒鉛は鱗状の粒子となってCr窒化物皮膜の表面にほぼ平行に配向する。これによって、Cr窒化物皮膜の表面を黒鉛で効率的に覆うことができる。
 導電層として、マトリックス樹脂中に炭素質材を分散させた炭素-樹脂複合層を形成する場合は、以下の方法を用いることができる。
 炭素質材とマトリックス樹脂とを含む混合物を直接ステンレス鋼板の表面にホットプレスする。あるいは、炭素質材とマトリックス樹脂とを溶剤中に分散させたスラリーを、ドクターブレード等を用いてステンレス鋼板の表面に塗布し、乾燥後にホットプレスしてもよい。
 炭素-樹脂複合層を形成する場合、炭素質材の粉末とマトリクス樹脂の粉末とを含む粉末混合物をホットプレスして予め炭素-樹脂複合層を形成しておき、得られた炭素-樹脂複合層をステンレス鋼板の表面にホットプレスで積層させる方法が特に好ましい。この積層工程に先駆けて、ステンレス鋼板の表面した接着剤組成物を塗布してもよい。この場合、ステンレス鋼板と炭素-樹脂複合層とは、接着剤層を介して積層される。
 [燃料電池用セパレータ]
 本発明の一実施形態に係るステンレス鋼板の用途として燃料電池用セパレータが挙げられる。本発明の一実施形態による燃料電池用セパレータは、本実施形態によるステンレス鋼板を有する。本実施形態による燃料電池用セパレータは、より具体的には、本実施形態によるステンレス鋼板に、流路として機能する凹凸等が形成されたものである。本実施形態による燃料電池用セパレータは、本実施形態によるステンレス鋼板をプレス加工して製造することができる。即ち、言い換えれば、本実施形態によるステンレス鋼板を加工した部品を有する燃料電池用セパレータである。
 [燃料電池セル及び燃料電池スタック]
 さらに、本発明の一実施形態による燃料電池セルは、本実施形態による燃料電池用セパレータを有する。本発明の一実施形態による燃料電池スタックは、本実施形態による燃料電池セルを複数有する。
 図4は、固体高分子形燃料電池セルの一例であるセル10の構成を示す分解斜視図である。図5は、複数のセル10の集合体(スタック)である固体高分子形燃料電池1の斜視図である。図4のセル10、及び図5の固体高分子形燃料電池1は、いずれも例示であり、本実施形態による燃料電池セル及び燃料電池スタックの構成は、これらに限定されない。
 セル10は、図4に示すように、固体高分子電解質膜2の一面にアノード(アノード側ガス拡散電極層または燃料電極膜)3が、他面にはカソード(カソード側ガス拡散電極層または酸化剤電極膜)4がそれぞれ積層され、その積層体の両面にセパレータ5a、5bが重ねられた構造になっている。
 なお、本実施形態による燃料電池用セパレータには、冷却水の流路を有するセパレータ(水セパレータ)であってもよい。本実施形態による燃料電池スタックは、セルとセルとの間、または数個のセルごとに水セパレータを配置した水冷型の燃料電池であってもよい。
 固体高分子電解質膜2としては、水素イオン交換基を有するフッ素系プロトン伝導膜を用いることができる。アノード3及びカソード4には、粒子状の白金触媒と黒鉛粉、及び必要に応じて水素イオン交換基を有するフッ素樹脂からなる触媒層が設けられている場合もある。この場合には、燃料ガスまたは酸化性ガスとこの触媒層とが接触して反応が促進される。
 セパレータ5aには、流路6aが設けられている。流路6aには、燃料ガス(水素または水素含有ガス)Aが流されてアノード3に水素が供給される。セパレータ5bには、流路6bが設けられている。流路6bには、空気等の酸化性ガスBが流され、カソード4に酸素が供給される。こうして供給された水素及び酸素により電気化学反応が生じて直流電力が発生する。
 以上、本発明の実施形態に係るステンレス鋼板の用途として燃料電池用セパレータを説明したが、それ以外にも本発明の特徴を利用して、自動車用レーダーやセンサ、またスマートフォン用に使用される電磁波シールド材として、また磁性粒子や金属ナノ粒子やカーボンブラックナノ粒子などと複合化することで幅広い帯域に対応した電磁波吸収材料として適用も可能である。その他、耐食性と磁性を有するステンレス鋼板の用途は多様であり、本願に明示したもの以外にも広がることは言うまでもない。
 以下、実施例によって本発明をより具体的に説明する。実施例は、ステンレス鋼板の両方の表層に第1領域を有する場合である。本発明は、これらの実施例に限定されない。例えば、一方の表面にだけに第1領域を形成する場合は、例えば他方の表面側をマスキングして焼鈍するなどで対応することができる。
 [実施例1](導電層なし)
 [圧延鋼板の製造]
 表1に示す17種の化学組成の鋼を、高周波誘導加熱方式の30kg真空溶融炉で溶解し、直径125~115mm、高さが320mmの略円錐台形状の鋳造インゴットを製造した。
Figure JPOXMLDOC01-appb-T000001
 これらの鋳造インゴットを、円錐台形状の側面の表面黒皮をグラインダーにより研削した。研削後、1250℃で3時間加熱し、仕上厚25mmになるまで熱間鍛造した。鍛造後の黒皮を、鋼板の厚みが20mmになるまで研削した。研削後、1200℃で2時間加熱し、厚み4mmになるまで熱間圧延した。圧延後の黒皮を、鋼板の厚みが3mmになるまで研削した。研削後、厚み0.5mmまで冷間圧延した。冷間圧延後、800℃で10分間、アルゴン雰囲気で中間焼鈍を実施した。その後、後掲の表3に示す厚みまで冷間圧延した。
 ただし、材料7、8、及び17については、厚み0.5mmの段階で耳割れが大きかったため、以降の工程を実施しなかった。材料7、8、及び17の加工性が低かったのは、それぞれ、Cr含有量、Si含有量、及びMo含有量が高すぎたためと考えられる。
 [焼鈍処理]
 各圧延鋼板から幅70mm×長さ200mmの素材を切り出し、連続焼鈍シミュレータ装置によって、光輝焼鈍処理を施すとともに固相状態での窒素吸収処理(以下「焼鈍処理」という。)を実施した。
 焼鈍処理は、表2に示す分圧比のガスを使用した。なお、全圧は1気圧とした。
Figure JPOXMLDOC01-appb-T000002
 焼鈍処理の条件は、後掲の表3に示すとおりとした。表3の「保持温度」欄に記載の温度で「保持時間」欄に記載の時間保持した後、急冷する熱処理を行った。冷却速度は500℃までの平均冷却速度で8~10℃/秒とした。
 [酸洗処理]
 焼鈍処理後の圧延鋼板を、60℃に保持した濃度25質量%の硫酸に1分間浸漬することにより酸洗し、ステンレス鋼板とした。
 [組織等の調査]
 (1)ステンレス鋼板のN含有量の測定
 窒素吸収後の鋼中のN含有量は、各ステンレス鋼板の全厚から分析サンプルを採取して、不活性ガス搬送融解熱伝導度法にて測定した。
 (2)第1領域と第2領域とを有することの確認
 各ステンレス鋼板から、圧延方向と垂直な断面が観察面となるように試験片を採取し、樹脂に埋め込んで鏡面研磨した後、王水とグリセリンとを体積比で4:1としたエッチング液を用いて金属組織が現れるまでエッチングした。図1に、後掲の表3のTP番号4のステンレス鋼板の断面写真を示す。図1に示すように、ステンレス鋼板が第1領域A1と第2領域A2とを有する場合、その境界はエッチングによって明確に判別することができた。
 フェライト相を主体とする領域は、オーステナイト相を主体とする領域よりも深くエッチングされた。フェライト相を主体とする領域内では、結晶粒ごとのエッチングの差が小さく、粒界のエッチングも薄く、粒内も比較的平滑にエッチングされた。これは、窒素侵入が起こっておらず、もとのフェライト相のまま、高温の焼鈍による熱履歴だけを受けているためと考えられる。
 これに対し、オーステナイト相を主体とする領域は、フェライト相を主体とする領域よりも浅くエッチングされた。オーステナイト相を主体とする領域内では、結晶粒ごとのエッチングの差が大きく、粒界が比較的明確にエッチングされ、粒内も比較的粗くエッチングされた。これは、固相状態で周囲が拘束されたまま窒素侵入による窒素濃化によってフェライト相からオーステナイト相に変態したため、粒内でひずみが蓄積されたことによるものと考えられる。
 多くのステンレス鋼板では、断面写真から第1領域と第2領域との境界を明瞭に決定することができた。一部のステンレス鋼板に対しては、SEM-EDSによる半定量解析によって第1領域と第2領域との境界を確認した。
 第1領域がオーステナイト相を主体とする組織からなり、第2領域がフェライト相を主体とする組織からなることを、XRDによって確認した。XRDは、リガク社製X線回折測定装置RINT2500を用い、Co線源を励起条件30kV、100mAで使用し、10°~110°の2θ範囲をθ-2θ法で測定した。
 具体的には、断面を観察してステンレス鋼板が2種類の領域を有することを確認した後、鋼板の表面に対して、及び、板厚を片面から半分まで研削した鋼板の研削された面に対して、それぞれXRDを行った。表面に対するXRDにおいて、オーステナイト相の上位2つまでの最強ピークのピーク強度の合計が、他の相の上位2つまでの最強ピークのピーク強度の合計の倍以上であれば、表層の領域がオーステナイト相を主体とする組織からなると判断した。同様に、板厚を半分まで研削した鋼板に対するXRDにおいて、フェライト相の上位2つまでの最強ピークのピーク強度の合計が、他の相の上位2つまでの最強ピークのピーク強度の合計の倍以上であれば、表層の領域がフェライト相を主体とする組織からなると判断した。
 (3)第2領域の断面面積率の測定
 第1領域と第2領域との境界を定めた後、それぞれの面積を画像解析ソフトで求めた。第2領域の面積をA、第2領域以外の領域の面積をBとし、第2領域の断面面積率をA/(A+B)から求めた。
 [磁石吸着(磁着)試験]
 磁石で搬送するに足る磁石への吸着力の有無を評価するために、市販の磁石を用いた簡易試験を行った。
 各ステンレス鋼板から、100mm×100mmの試験片を切り出し、100mm×100mm×5mmのポリプロピレン(PP)板を重ねた上から、評価用の磁石で試験片を持ち上げられるか否かを評価した。評価用の磁石として、ネオマグ社製の円柱型ネオジム磁石(Φ10×10mm、材質記号N40)を用いた。
 より詳細には、木製の水平で平滑な台上に試験片を置き、その上にPP板を完全に重ねるように配置し、PP板の中央に評価用の磁石を置き、磁石のみを持って静かに持ち上げた。このとき、試験片がPP板を介した状態で磁石に付着し一緒に持ち上げられた場合を「合格」、試験片が持ち上がらずに磁石のみが持ち上げられた場合を「不合格」とした。
 [耐食性試験]
 耐食性の評価として、耐過不動態腐食性を評価した。耐過不動態腐食性の評価は、電池環境を模擬した80℃、pH3のHSO溶液にステンレス鋼板を浸漬し、Arガスを吹き込み脱気状態にして、自然電位状態に10分間保持後、20mV/分の掃引速度で、自然電位から1.4V vs SHEまでアノード分極を行った。ステンレス鋼板では、約0.9V vs SHEから過不動態腐食による電流密度増加が観察される。過不動態域に入ったと考えられる0.9V以上での最大電流密度を、耐過不動態腐食性の指標とした。0.9V以上での最大電流密度が100μA/cm未満であれば、耐過不動態腐食性に優れ、耐食性が「良好」と評価した。最大電流密度が100μA/cm以上であれば耐過不動態腐食性に劣り、耐食性が「不十分」と評価した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 TP番号2~24及び27~33のステンレス鋼板は、磁着試験及び耐食性試験で良好な結果を示した。
 TP番号1のステンレス鋼板は、耐食性が不十分であった。これは、材料1のCr含有量が低すぎたためと考えられる。
 TP番号25のステンレス鋼板は、磁石への吸着力が不十分であった。これは、第2領域の断面面積率が低かったためと考えられる。TP番号25のステンレス鋼板の第2領域の断面面積率が低かったのは、板材の厚み及び焼鈍雰囲気との関係において、焼鈍処理の時間が長すぎたためと考えられる。
 TP番号26のステンレス鋼板は、耐食性が不十分であった。これは、ステンレス鋼板の表面の一部にフェライト相が露出していたためと考えられる。表面の一部にフェライト相が露出していたのは、板材の厚み及び焼鈍雰囲気との関係において、焼鈍処理の時間が短すぎたためと考えられる。
 TP番号34のステンレス鋼板は、磁石への吸着力が不十分であった。これは、第2領域の断面面積率が低かったためと考えられる。TP番号34のステンレス鋼板の第2領域の断面面積率が低かったのは、材料16のNi含有量が高すぎ、焼鈍工程でオーステナイ化が進みすぎたためと考えられる。
 [実施例2](導電層あり)
 実施例1のステンレス鋼板に対して、酸洗処理後に下記の方法で導電層を両面に形成した。片面あたりの導電層厚みは、50μmとした。
 [接着剤層形成工程]
 接着剤層を形成するための接着剤組成物として、変性ポリオレフィン樹脂接着剤(三井化学株式会社製、ユニストール(商品名))を用いた。酸洗後のステンレス鋼板の表面に、卓上コーターを用いて塗布厚5μmとなるように変性ポリオレフィン樹脂接着剤を塗布し、室温で10分乾燥させ、接着剤層を形成した。裏面にも同様にして接着剤層を形成した。
 [導電層の形成]
 導電性の炭素質材として、球状黒鉛粉末(伊藤黒鉛工業株式会社製SG―BH(商品名)、平均粒子径:20μm)及び膨張黒鉛粉末(伊藤黒鉛工業株式会社製、EC100(商品名)、平均粒子径:160μm)を使用した。マトリックス樹脂として、ポリプロピレン樹脂(PP)粉末(住友精化株式会社製、フローブレンHP-8522(商品名))を使用した。球状黒鉛粉末を60体積%、膨張黒鉛粉末を10体積%、及びポリプロピレン樹脂粉末を30体積%となるように混合して粉末混合物とした。粉末混合物0.2gまたは0.06gを、プレス装置(東洋精機製作所製卓上ホットプレスMP-SCL)の100×100×20mmの容積を持つ雌型金型に均等に投入し、前プレスとしてのホットプレス(圧力:2MPa、温度:180℃)を行い、シート状(厚み:50μm)とした。得られたシートを、前記で準備した接着剤層付きの基材の両面に重ね、加熱温度180℃及び圧力5MPaで押圧した(本プレス、成型時間10分)。
 [各種評価]
 導電層形成後のステンレス鋼板についても、上記の磁石吸着試験及び腐食試験を実施した。結果を前掲の表3に示す。
 表3に示すように、導電層を形成した場合であっても、TP番号2~24及び27~33のステンレス鋼板は、磁着試験及び耐食性試験で良好な結果を示した。
 以上、本発明の実施の形態を説明した。上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
符合の説明
1 固体高分子形燃料電池
2 固体高分子電解質膜
3 アノード
4 カソード
5a,5b セパレータ
6a,6b 流路
10 セル

Claims (7)

  1.  ステンレス鋼板であって、
    前記ステンレス鋼板は、5~200μmの厚みを有し、
    圧延方向に垂直な断面において、一方または両方の表面の表層に形成されたオーステナイト相を主体とする第1領域と、前記第1領域以外の領域であってフェライト相を主体とする第2領域とを有し、前記第2領域の面積率が20%以上であることを特徴とするステンレス鋼板。
  2.  前記第2領域の化学組成が、質量%で、
     Cr:20.00~26.00%、
     N :0.10%以下、
     Si:2.00%以下、
     C :0.040%以下、
     P :0.030%以下、
     S :0.030%以下、
     Mn:1.50%以下、
     Cu:0.50%以下、
     Mo:3.00%以下、
     Ni:5.00%以下、
     Ca:50ppm以下、
     sol.Al:300ppm以下、
     残部:Fe及び不純物である、請求項1に記載のステンレス鋼板。
  3.  前記第1領域の化学組成が、質量%で、
     N:0.01~5.0%であり、
     N以外は前記第2領域と同じである、請求項2に記載のステンレス鋼板。
  4.  少なくとも一方の表面に導電性の炭素質材を有する導電層をさらに有する、請求項1~3の何れか一項に記載のステンレス鋼板。
  5.  請求項1~4の何れか一項に記載のステンレス鋼板を有する、燃料電池用セパレータ。
  6.  請求項5に記載の燃料電池用セパレータを有する、燃料電池セル。
  7.  請求項6に記載の燃料電池セルを複数有する、燃料電池スタック。
PCT/JP2021/028664 2021-08-02 2021-08-02 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック WO2023012881A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21952711.6A EP4382627A4 (en) 2021-08-02 2021-08-02 STAINLESS STEEL SHEET, SEPARATOR FOR A FUEL BATTERY, FUEL BATTERY CELL AND FUEL BATTERY STACK
CN202180100825.9A CN117716058A (zh) 2021-08-02 2021-08-02 不锈钢板、燃料电池用间隔件、燃料电池单元、及燃料电池组
PCT/JP2021/028664 WO2023012881A1 (ja) 2021-08-02 2021-08-02 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
KR1020247003626A KR20240028470A (ko) 2021-08-02 2021-08-02 스테인리스 강판, 연료 전지용 세퍼레이터, 연료 전지 셀, 및 연료 전지 스택

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028664 WO2023012881A1 (ja) 2021-08-02 2021-08-02 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック

Publications (1)

Publication Number Publication Date
WO2023012881A1 true WO2023012881A1 (ja) 2023-02-09

Family

ID=85154386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028664 WO2023012881A1 (ja) 2021-08-02 2021-08-02 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック

Country Status (4)

Country Link
EP (1) EP4382627A4 (ja)
KR (1) KR20240028470A (ja)
CN (1) CN117716058A (ja)
WO (1) WO2023012881A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068115A (ja) 2002-08-08 2004-03-04 National Institute For Materials Science 窒素吸収処理によるステンレス鋼製製品の製造方法とこれにより得られるステンレス鋼製製品
JP2005146178A (ja) 2003-11-18 2005-06-09 Mitsui Chemicals Inc 接着剤組成物
US20050238873A1 (en) * 2004-04-21 2005-10-27 Brady Michael P Surface modified stainless steels for PEM fuel cell bipolar plates
JP2006070313A (ja) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd 耐遅れ破壊性に優れる表面窒化高強度ステンレス鋼帯及びその製造方法
JP2006316338A (ja) 2005-05-16 2006-11-24 National Institute For Materials Science ステンレス鋼製製品の製造方法とそのステンレス鋼製製品
JP2012092413A (ja) 2010-10-28 2012-05-17 Nakatsuyama Netsushori:Kk ニッケルフリーオーステナイトステンレス鋼及びその製造方法
JP2015084281A (ja) * 2013-10-25 2015-04-30 日本特殊陶業株式会社 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック並びに固体酸化物形燃料電池単セルの製造方法
US20160114423A1 (en) * 2013-05-15 2016-04-28 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product
JP2018131643A (ja) * 2017-02-13 2018-08-23 新日鐵住金ステンレス株式会社 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池
WO2019058409A1 (ja) 2017-09-19 2019-03-28 新日鐵住金株式会社 ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池
JP2020111806A (ja) * 2019-01-15 2020-07-27 日本製鉄株式会社 ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック
JP2021123747A (ja) * 2020-02-04 2021-08-30 日本製鉄株式会社 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333917C2 (de) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Randaufsticken zur Erzeugung einer hochfesten austenitischen Randschicht in nichtrostenden Stählen
KR101747094B1 (ko) * 2015-12-23 2017-06-15 주식회사 포스코 삼상 스테인리스강 및 그 제조방법
JP7257793B2 (ja) * 2019-01-15 2023-04-14 日鉄ステンレス株式会社 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
JP7272233B2 (ja) * 2019-10-30 2023-05-12 セイコーエプソン株式会社 時計用部品および時計
JP7342675B2 (ja) * 2019-12-13 2023-09-12 セイコーエプソン株式会社 時計用部品の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068115A (ja) 2002-08-08 2004-03-04 National Institute For Materials Science 窒素吸収処理によるステンレス鋼製製品の製造方法とこれにより得られるステンレス鋼製製品
JP2005146178A (ja) 2003-11-18 2005-06-09 Mitsui Chemicals Inc 接着剤組成物
US20050238873A1 (en) * 2004-04-21 2005-10-27 Brady Michael P Surface modified stainless steels for PEM fuel cell bipolar plates
JP2006070313A (ja) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd 耐遅れ破壊性に優れる表面窒化高強度ステンレス鋼帯及びその製造方法
JP2006316338A (ja) 2005-05-16 2006-11-24 National Institute For Materials Science ステンレス鋼製製品の製造方法とそのステンレス鋼製製品
JP2012092413A (ja) 2010-10-28 2012-05-17 Nakatsuyama Netsushori:Kk ニッケルフリーオーステナイトステンレス鋼及びその製造方法
US20160114423A1 (en) * 2013-05-15 2016-04-28 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product
JP2015084281A (ja) * 2013-10-25 2015-04-30 日本特殊陶業株式会社 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック並びに固体酸化物形燃料電池単セルの製造方法
JP2018131643A (ja) * 2017-02-13 2018-08-23 新日鐵住金ステンレス株式会社 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池
WO2019058409A1 (ja) 2017-09-19 2019-03-28 新日鐵住金株式会社 ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池
JP2020111806A (ja) * 2019-01-15 2020-07-27 日本製鉄株式会社 ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック
JP2021123747A (ja) * 2020-02-04 2021-08-30 日本製鉄株式会社 ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4382627A4

Also Published As

Publication number Publication date
EP4382627A1 (en) 2024-06-12
KR20240028470A (ko) 2024-03-05
CN117716058A (zh) 2024-03-15
EP4382627A4 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
TWI437104B (zh) 耐蝕性及導電性優異之肥粒鐵系不鏽鋼與其製造方法,固體高分子型燃料電池分隔板及固體高分子型燃料電池
JP4886885B2 (ja) チタン製燃料電池セパレータ
JP6315158B1 (ja) ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池
KR101548064B1 (ko) 연료 전지 세퍼레이터
JP4078966B2 (ja) 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池
JP6122589B2 (ja) 燃料電池セパレータ
KR101597721B1 (ko) 고체 고분자형 연료 전지 세퍼레이터용 티탄재 및 그 제조 방법 및 이를 이용한 고체 고분자형 연료 전지
WO2016052622A1 (ja) フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池
TWI427849B (zh) 固體高分子形燃料電池隔離片用金屬板
JP2001032056A (ja) 通電部品用ステンレス鋼および固体高分子型燃料電池
US20170298488A1 (en) Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same
WO2013018320A1 (ja) 燃料電池セパレータ用ステンレス鋼
JP7453800B2 (ja) ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
JP5637813B2 (ja) リチウムイオン二次電池ラミネートケース用オーステナイト系ステンレス鋼箔および製造法
JP5637812B2 (ja) リチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔および製造法
JP2006233282A (ja) 電気伝導性および耐食性に優れた通電電気部品用ステンレス鋼及びその製造方法
JP2000328200A (ja) 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP5152193B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼材および固体高分子型燃料電池
CA2535055A1 (en) Oxidation resistant ferritic stainless steels
WO2023012881A1 (ja) ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
JP7257793B2 (ja) ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
JP7257794B2 (ja) ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック
JP2004002960A (ja) 燃料電池セパレータ用オーステナイト系ステンレス鋼及びその製造方法
JP2000309854A (ja) 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
KR101356954B1 (ko) 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100825.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247003626

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003626

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952711

Country of ref document: EP

Effective date: 20240304

NENP Non-entry into the national phase

Ref country code: JP