WO2023012881A1 - ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック - Google Patents
ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック Download PDFInfo
- Publication number
- WO2023012881A1 WO2023012881A1 PCT/JP2021/028664 JP2021028664W WO2023012881A1 WO 2023012881 A1 WO2023012881 A1 WO 2023012881A1 JP 2021028664 W JP2021028664 W JP 2021028664W WO 2023012881 A1 WO2023012881 A1 WO 2023012881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- region
- steel plate
- less
- thickness
- Prior art date
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 141
- 239000010935 stainless steel Substances 0.000 title claims abstract description 135
- 239000000446 fuel Substances 0.000 title claims description 45
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 40
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 38
- 239000002344 surface layer Substances 0.000 claims abstract description 18
- 238000005096 rolling process Methods 0.000 claims abstract description 13
- 239000010410 layer Substances 0.000 claims description 47
- 239000000203 mixture Substances 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 18
- 239000003575 carbonaceous material Substances 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 abstract description 41
- 238000005260 corrosion Methods 0.000 abstract description 41
- 239000012071 phase Substances 0.000 description 104
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 49
- 229910000831 Steel Inorganic materials 0.000 description 41
- 239000010959 steel Substances 0.000 description 41
- 238000000137 annealing Methods 0.000 description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 32
- 239000011651 chromium Substances 0.000 description 29
- 229910052757 nitrogen Inorganic materials 0.000 description 26
- 229920005989 resin Polymers 0.000 description 26
- 239000011347 resin Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 20
- 229910002804 graphite Inorganic materials 0.000 description 17
- 239000010439 graphite Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000002441 X-ray diffraction Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 13
- 239000000805 composite resin Substances 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000012790 adhesive layer Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 229910000734 martensite Inorganic materials 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 11
- 239000011572 manganese Substances 0.000 description 11
- 229920005672 polyolefin resin Polymers 0.000 description 11
- 229920001155 polypropylene Polymers 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000005554 pickling Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 230000005389 magnetism Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 8
- 239000005518 polymer electrolyte Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- -1 polypropylene Polymers 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920013716 polyethylene resin Polymers 0.000 description 3
- 229920000306 polymethylpentene Polymers 0.000 description 3
- 239000011116 polymethylpentene Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 241000316887 Saissetia oleae Species 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical group [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000012764 semi-quantitative analysis Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/06—Compressing powdered coating material, e.g. by milling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to stainless steel plates.
- a separator in a polymer electrolyte fuel cell has the following functions. ⁇ Function as a conductive component that contacts with a gas diffusion layer (GDL) to obtain electrical continuity, ⁇ The function as a battery cell container that creates an aqueous solution corrosive environment in which corrosive components such as those originating from the electrolyte membrane are contained in internally generated water or condensed water, and ⁇ Oxidizing gases such as oxygen and air, and fuels such as hydrogen Function as a flow path for circulating gas and supplying gas to a membrane electrode assembly (MEA) via a GDL.
- GDL gas diffusion layer
- materials for separators are required to have (1) low contact resistance with carbon paper, (2) high corrosion resistance that does not dissolve in the internal environment of the fuel cell, and (3) high workability for shaping. .
- Patent Documents 1 to 4 describe treating stainless steel in a high-temperature nitrogen atmosphere to absorb nitrogen and convert the structure to austenite.
- a metal separator for PEFC is manufactured by using a metal foil with a thickness of about 100 ⁇ m and molding it into a shape with fine grooves.
- a fuel cell is assembled by combining this with carbon paper, a gasket, a sealing material, etc., which will be the MEA or GDL, and the fuel cell is further combined to form a fuel cell stack.
- the object of the present invention is to provide a stainless steel plate with good corrosion resistance that is sufficiently magnetic to be held and swung around by magnetic force, and to provide such a stainless steel plate with good corrosion resistance.
- the surface layer has a region (first region) mainly composed of an austenite phase with high corrosion resistance, and the structure having a region (second region) mainly composed of a ferrite phase with magnetism inside. It was conceived that a stainless steel sheet that is compatible with magnetism and magnetism can be obtained.
- the surface layer consists of a region mainly composed of austenite phase, and the inside consists of a region mainly composed of ferrite phase. It has been found that structures can be formed.
- the present invention was completed based on the above findings.
- the gist of the present invention is as follows.
- a stainless steel plate has a thickness of 5 to 200 ⁇ m, and in a cross section perpendicular to the rolling direction, a first region mainly composed of an austenite phase formed in a surface layer of one or both surfaces, and a A stainless steel sheet comprising a second region which is a region and is mainly composed of a ferrite phase, wherein the area ratio of the second region is 20% or more.
- the chemical composition of the second region is, in mass %, Cr: 20.00 to 26.00%, N: 0.10% or less, Si: 2.00% or less, C: 0.040% or less, P: 0.030% or less, S: 0.030% or less, Mn: 1.50% or less, Cu: 0.50% or less, Mo: 3.00% or less, Ni: 5.00% or less, Ca: 50 ppm or less, sol. Al: 300 ppm or less, Balance: The stainless steel plate according to [1] above, which is Fe and impurities. [3] The chemical composition of the first region is, in mass %, N: 0.01 to 5.0%, The stainless steel plate according to [2] above, which is the same as the second region except for N.
- a fuel cell separator comprising the stainless steel plate according to any one of [1] to [4].
- a fuel cell comprising the fuel cell separator according to [5] above.
- a fuel cell stack comprising a plurality of fuel cells according to [6].
- FIG. 1 is an example of a cross-sectional photograph of a stainless steel plate having a first region mainly composed of austenite phase and a second region mainly composed of ferrite phase.
- FIG. 2 is an example of a cross-sectional photograph of a stainless steel plate that does not have the second region.
- FIG. 3 is a flow diagram showing an example of a method for manufacturing a stainless steel plate according to one embodiment of the present invention.
- FIG. 4 is an exploded perspective view showing an example of a fuel cell.
- FIG. 5 is a perspective view of a fuel cell that is an assembly of multiple cells.
- a stainless steel plate according to one embodiment of the present invention will be described in detail below.
- a stainless steel plate according to one embodiment of the present invention has the chemical composition described below.
- “%” and “ppm” of element contents mean mass % and mass ppm, respectively, unless otherwise specified.
- Chromium (Cr) has the effect of forming a Cr 2 O 3 passive film on the surface of stainless steel to improve corrosion resistance.
- the lower limit of Cr content is 20%. If it is less than 20.00%, the structure austenitized by nitrogen absorption may contain a large amount of martensite phase. In addition, when Cr is small, there is a possibility that deformation-induced martensite phase is generated when severe deformation is performed. On the other hand, as the Cr content increases, the deformation resistance increases.
- the reason why the upper limit of the Cr content is 26.00% is to ensure more stable manufacturability (especially the flatness of thin steel sheets).
- the lower limit of the Cr content is preferably 21.00%, 22.00% and 23.00%.
- the upper limit of Cr content is preferably 25.00% and 24.00%.
- N in the first region 0.01 to 5.00%
- Nitrogen (N) in the first region has the effect of improving corrosion resistance by being contained within a range that does not form nitrides in the stainless steel. It is also an element that promotes austenitization of stainless steel.
- the lower limit of the N content is 0.01%. This is to ensure the minimum amount of nitrogen required to obtain a structure mainly composed of an austenite phase in the surface layer of the Fe--Cr--N stainless steel.
- the upper limit of the N content is 5.00%. This is to suppress the formation of nitrides such as Cr 2 N and CrN in crystal grains.
- the lower limit of N content is 0.02%, 0.04%, 0.06%, 0.08%, 0.10%, 0.12%, 0.14%, 0.16%, 0.18 %, 0.20%, 0.25%, 0.30%, 0.35%, or 0.40%.
- the upper limit of N content is 4.75%, 4.50%, 4.25%, 4.00%, 3.75%, 3.50%, 3.25%, 3.00%, 2.80 %, 2.60%, 2.40%, 2.20%, 2.00%, 1.80%, 1.60%, 1.50%, 1.40%, 1.30%, or 1. It can be 20%.
- N in Second Region 0.10% or Less Nitrogen (N) in the second region is preferably 0.10% or less.
- a base material having the same chemical composition as that of the second region is rolled to a predetermined plate thickness, and then the surface is nitrided to form the first region.
- the N content in the base material exceeds 0.10%, the deformation resistance increases, making it difficult to roll into a steel sheet.
- the N content of the second region is the same as that of the base material, the N content of the second region should be 0.10% or less.
- the upper limit of the N content in the base material (that is, the second region) is preferably 0.09%, 0.08%, 0.07%, 0.06% or 0.05%.
- Si 2.00% or less Silicon (Si) does not have to be contained. Since Si is an element that deteriorates the workability of stainless steel, it is usually not an element that is positively added. On the other hand, Si forms SiO 2 on the surface of stainless steel when it is exposed to a perpassive corrosion environment, and exhibits the action of covering and protecting the Cr 2 O 3 passive film.
- the upper limit of the Si content is 2.0%. If the Si content exceeds 2.00%, workability deteriorates, and a brittle ⁇ phase tends to precipitate during manufacturing, which may cause cracks in the steel plate processing process, or may cause poor flatness and press working. The shape may not be suitable.
- the upper limit of Si content is preferably 1.90%, 1.80%, 1.70%, 1.60% or 1.50%. When Si is contained, it is preferably 0.10% or more.
- C 0.040% or less Carbon (C) may not be contained.
- C is a solid-solution strengthening element and contributes to strength improvement of stainless steel.
- the stainless steel sheet of the present embodiment contains a certain amount or more of N, solid solution strengthening by N is sufficient, and C does not need to be added. If the C content is too high, a large number of carbides are formed during the manufacturing process, and these carbides act as starting points for fracture, deteriorating the formability of the steel. Therefore, the C content is set to 0.040% or less.
- the upper limit of the C content is preferably 0.038%, 0.036%, 0.034%, 0.032% or 0.030%. When C is contained, it is preferably 0.001% or more.
- Phosphorus (P) is an impurity. P segregates at grain boundaries during solidification and increases the susceptibility to solidification cracking. Therefore, it is preferable that the P content be as low as possible. Therefore, the P content is set to 0.030% or less.
- S 0.030% or less Sulfur (S) is an impurity. S segregates at grain boundaries during solidification and increases the susceptibility to solidification cracking. Therefore, it is preferable that the S content be as low as possible. Therefore, the S content should be 0.030% or less.
- Mn 1.50% or less Manganese (Mn) may not be contained. Mn suppresses deterioration of hot workability due to S. Mn also deoxidizes stainless steel. However, when the Mn content increases, precipitation of an intermetallic compound phase such as a ⁇ phase is promoted. Precipitation of the ⁇ phase reduces the structural stability and reduces the toughness and ductility of the stainless steel. Therefore, the Mn content is set to 1.50% or less.
- the upper limit of the Mn content is preferably 1.40%, 1.30%, 1.20%, 1.10%, 1.00%, 0.90%, 0.80%, 0.70%0. 60%, or 0.50%. When Mn is contained, it is preferably 0.10% or more.
- Cu 0.50% or less Copper (Cu) does not have to be contained.
- Cu tends to segregate at grain boundaries and is an austenite stabilizing element.
- Cu acts as a solid-solution strengthening element and contributes to an increase in high-temperature strength required as a structural material, so it may be contained as necessary.
- a high Cu content suppresses ferrite formation during solidification during casting and increases the susceptibility to solidification cracking.
- the Cu content is set to 0.50% or less.
- the upper limit of the Cu content is preferably 0.47%, 0.43%, 0.40%, 0.37%, 0.33%, 0.30%, 0.27%, 0.23%, 0 .20%.
- Mo Molybdenum
- Mo Molybdenum
- Mo Molybdenum
- Mo Molybdenum
- Mo when it is desired to enhance the corrosion resistance in particular, Mo has the effect of enhancing the corrosion resistance of stainless steel, so it may be added in the range up to 3.00%.
- Mo is an expensive element classified as a rare metal, and is not preferable from the viewpoint of providing economical materials.
- Mo content if the Mo content is too high, the hot workability is lowered, and a structure mainly composed of an austenite phase may not be obtained in the surface layer. Therefore, Mo content shall be 3.00% or less.
- the upper limit of the Mo content is preferably 2.75%, 2.50%, 2.25%, 2.00%, 1.80%, 1.60%, 1.50%, 1.30%, 1 .10%, 1.00%, 0.90%, 0.80%, 0.70%, 0.60%, or 0.50%.
- Mo is contained, it is preferably 0.01% or more, 0.05% or more, 0.10% or more, 0.20% or more, or 0.30% or more.
- Nickel (Ni) does not have to be contained.
- Ni is an element that promotes the austenitization of stainless steel and also contributes to the improvement of corrosion resistance. may be contained in
- Ni is an element belonging to rare metals, and is not preferable from the viewpoint of providing an economically efficient material.
- the elution of Ni ions may reduce the oxygen reduction reaction rate at the interface between the platinum catalyst and the polymer electrolyte membrane. Therefore, the Ni content is set to 5.0% or less.
- the upper limit of Ni content is preferably 4.50%. 4.00%, 3.50%, 3.00%, 2.50%, 2.00%, 1.50%, 1.00%, 0.80%, 0.70%, 0.6%, It may be 0.5%, 0.4%, 0.3% or 0.2%.
- Ni is contained, it is preferably 0.10% or more.
- Ca less than 50 ppm Calcium (Ca) is an impurity.
- CaS and MnS are known as non-metallic inclusions that can cause corrosion of stainless steel.
- the Ca content is set to less than 50 ppm in order not to generate a large amount of CaS, which is a starting point for corrosion.
- sol. Al less than 300 ppm
- Aluminum (Al) may not be contained. Al deoxidizes stainless steel. However, if the Al content is too high, the cleanliness of the steel will be reduced and the workability and ductility of the stainless steel will be reduced. Therefore, the Al content is less than 300 ppm. When Al is contained, it is preferably 100 ppm or more. In this specification, the Al content means the content of acid-soluble Al (sol. Al).
- the rest of the chemical composition of the stainless steel sheet according to this embodiment is Fe and impurities.
- impurities refers to elements that are unintentionally mixed in from ores and scraps used as raw materials for steel, or elements that are mixed in from the environment during the manufacturing process.
- the stainless steel plate according to this embodiment has a thickness of 5-200 ⁇ m. Let thickness be average thickness.
- the reason why the lower limit of the plate thickness is set to 5 ⁇ m is that if the plate thickness is less than 5 ⁇ m, it becomes difficult to economically manufacture by rolling while maintaining a good shape. This is because the risk of defects such as the occurrence of defects increases. Since the separator is also a partition, no through pits are allowed. This is not the case when used for purposes other than separators.
- the lower limit of the plate thickness is preferably 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, or 50 ⁇ m.
- the upper limit of the plate thickness is preferably 180 ⁇ m, 160 ⁇ m, 140 ⁇ m, 120 ⁇ m, 110 ⁇ m, or 100 ⁇ m.
- the stainless steel sheet according to the present embodiment includes a layered first region mainly composed of an austenite phase formed in the surface layer (layer immediately below the surface) of one or both surfaces (front and back surfaces or either one surface), It has a layered second region which is a layer other than the first region and is mainly composed of a ferrite phase.
- the second region has a cross-sectional area ratio of 20% or more in a cross section perpendicular to the rolling direction.
- the stainless steel plate according to this embodiment may be composed only of the first region and the second region. For example, when the surface layers on both surface sides of the steel sheet have the first regions, the second regions are formed between the first regions on both surface layers.
- the stainless steel plate according to the present embodiment has a layered first region mainly composed of an austenite phase formed on the front and back surfaces or on the surface layer of either one of the surfaces.
- the stainless steel plate according to this embodiment thereby has excellent corrosion resistance.
- the first region includes all phases detectable by X-ray diffraction (XRD) (ferrite phase, austenite phase, iron phases such as martensite phases, compound phases such as Cr 2 N and CrN, passive This is the region mainly composed of austenite phase.
- the region mainly composed of the austenite phase is the sum of the peak intensities of the top two strongest peaks of the austenite phase (IA) in XRD from the surface, and the peak intensity of the top two strongest peaks of the other phases (IB) is greater than or equal to twice the sum of (IB).
- IA in the first region is more preferably 3-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, 9-fold or more, or 10-fold or more than IB.
- the thickness of the first region is arbitrary.
- the thickness of the first region is preferably 2 ⁇ m or more at the thinnest portion. More preferably, the thickness of the first region is 3 ⁇ m or more at the thinnest portion.
- the thickness of the first region is preferably 40% or less of the thickness of the stainless steel plate at the thickest portion. More preferably, the thickness of the first region is 30% or less of the thickness of the stainless steel plate at the thickest portion.
- the stainless steel sheet according to the present embodiment has a layered second region, which is a layer other than the first region and mainly composed of ferrite phase.
- the stainless steel plate according to the present embodiment can thereby have sufficient magnetism for holding and swinging by magnetic force.
- the second region is mainly composed of ferrite phase among all phases detectable by XRD (including iron phases such as ferrite phase, austenite phase, martensite phase, and compound phases such as Cr 2 N and CrN). area.
- the stainless steel plate is preferably a sample ground from one side to half the plate thickness (the center of the plate thickness in the cross-sectional direction), and XRD with the half plate thickness position as the measurement surface is the strongest of the ferrite phases up to the two highest Refers to the region where the sum of the peak intensities (IF) of the peaks is more than double the sum of the peak intensities (IB) of the top two strongest peaks of the other phases.
- the IF in the second region is more preferably 3-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, 9-fold or more, or 10-fold or more that of IB.
- the inclusion of the martensite phase is judged by observing the structure with an optical microscope.
- a martensitic structure exhibiting a lath-like or needle-like structure can be easily distinguished from a granular ferrite structure.
- the ferritic stainless steel is manufactured by a method in which the austenite phase is introduced from the surface by nitrogen absorption, the second region is not the austenite phase even during high-temperature treatment, so the martensite phase generated from the austenite phase when the temperature is lowered is usually not present.
- the thickness of the second region is arbitrary as long as it satisfies the regulation of the cross-sectional area ratio described later. However, if there is a place where the second region is thick enough to reach the surface, the ferrite phase, which is inferior in corrosion resistance to the surrounding austenite phase, is likely to be exposed on the surface, and corrosion may proceed selectively. Therefore, the thickness of the second region is preferably (thickness of stainless steel plate - 4 ⁇ m) or less at the thickest portion. More preferably, the thickness of the second region is (thickness of stainless steel plate - 6 ⁇ m) or less at the thickest portion.
- the thickness of the second region is preferably 20% or more of the thickness of the stainless steel plate at the thinnest portion. More preferably, the thickness of the second region is 40% or more of the thickness of the stainless steel plate at the thinnest portion.
- the area ratio of the above-described second region in the cross section perpendicular to the rolling direction (also referred to as the cross-sectional area ratio) is 20% or more. .
- the stainless steel plate according to the present embodiment can thereby have sufficient magnetism for holding and swinging by magnetic force.
- the lower limit of the cross-sectional area ratio of the second region is preferably 30%.
- the cross-sectional area ratio of the second region is too high, the ferrite phase may be exposed on the surface.
- the upper limit of the cross-sectional area ratio of the second region is preferably 80%, 70%, or 60%.
- the cross-sectional area ratio of the second region is measured as follows.
- a test piece is taken from a stainless steel plate so that the cross section perpendicular to the rolling direction is the observation surface. Polish and etch the viewing surface.
- an etchant containing aqua regia and glycerin in a volume ratio of 4:1 can be suitably used.
- FIG. 1 is an example of a cross-sectional photograph of a stainless steel plate having a first region A1 and a second region A2.
- FIG. 2 is an example of a cross-sectional photograph of a stainless steel plate that does not have the second region.
- FIG. 1 is a cross-sectional photograph of TP No. 4 of an example described later. As shown in FIG. 1, when the stainless steel plate has a first region A1 and a second region A2, the boundary between them can be clearly distinguished by etching.
- the boundary between the first region and the second region is determined by analyzing the crystal grains sandwiching the boundary by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). You can also check. Specifically, when the elements are limited to Cr, Fe, and N and semi-quantitative analysis is performed by SEM-EDS, N ⁇ 1.0 atomic % in the first region, and N ⁇ 1.0 atomic percent in the second region. %.
- each area is determined using image analysis software. Let A be the area of the second region, B be the area of the region other than the second region, and obtain the cross-sectional area ratio of the second region from A/(A+B).
- the stainless steel plate is long, it is desirable to measure the cross-sectional area ratios of a plurality of evenly cut stainless steel plates (for example, 10 cross-sections) and calculate the average.
- the stainless steel sheet according to the present embodiment has a small percentage of phases other than the austenite phase and the ferrite phase as an average of the entire thickness of the stainless steel sheet. More specifically, all phases detectable by XRD (ferrite phase, austenite phase, martensite phase, and other iron phases, Cr 2 N, CrN, and other compound phases) are included as an average of the entire thickness of the stainless steel plate. ), the ratio of phases other than the austenite phase and the ferrite phase is preferably small.
- the stainless steel plate according to this embodiment has a thickness of 5 to 200 ⁇ m, which is too thin to evaluate the total thickness by XRD.
- the structure of a stainless steel plate can be evaluated by stacking a plurality of stainless steel plates, obliquely polishing the stacked stainless steel plates, and then measuring the result by XRD. For example, 10 stainless steel plates with a thickness of 30 ⁇ m cut to a width of 20 mm are piled up, embedded in resin, and magnified 10 times by polishing at an angle of 6° to obtain a sample having an evaluation surface of 3 mm ⁇ 20 mm. .
- the XRD is measured so that the evaluation surface of such a sample is all within the X-ray irradiation area.
- the sum of the total four peak intensities (IAF) of the top two strongest peaks of the ferrite phase and the top two strongest peaks of the austenite phase, and all phases other than the ferrite phase and the austenite phase It is preferable that the sum of the peak intensities (IBS) of the two strongest peaks in the top satisfies the relationship of IBS/IAF ⁇ 0.1. More preferably, IBS/IAF ⁇ 0.05.
- the area ratios of the ferrite phase and the martensite phase are obtained by observing the cross-sectional structure with an optical microscope, and the peak intensity of the ⁇ phase is proportionally divided by the area ratio.
- the stainless steel plate according to this embodiment can have a conductive layer containing a conductive carbonaceous material on at least one surface. This lowers the contact resistance with the gas diffusion layer.
- Examples of conductive carbonaceous materials include graphite and carbon black such as acetylene black and ketjen black.
- Ketjenblack commercially available products such as Ketjenblack EC, Ketjenblack EC600JD, carbon ECP, and carbon ECP600JD manufactured by Lion Corporation can be used.
- Acetylene black includes Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo.
- the conductive layer contains graphite can be confirmed, for example, by showing a graphite peak in the Raman spectrum of the conductive layer. Specifically, by Raman spectroscopy of the conductive layer, when the peaks of the D band and the G band are obtained and the half width of the G band is 100 cm ⁇ 1 or less, the conductive layer is considered to contain sufficient graphite. can judge. If the half width of the G band exceeds 100 cm ⁇ 1 , it can be determined that the conductive layer does not contain graphite sufficiently.
- the conductive layer may be a carbon-resin composite layer having a carbonaceous material dispersed in a matrix resin.
- a carbon-resin composite layer includes a carbonaceous material and a matrix resin made of a thermoplastic resin or a thermosetting resin.
- the carbon-resin composite layer preferably has a volume ratio (C/R) between the carbonaceous material (C) and the matrix resin (R) of 6/4 to 9/1. If the volume ratio (C/R) is less than 6/4, the electrical conductivity may be lowered, and if it is greater than 9/1, the softness, flexibility and corrosion resistance may be inferior.
- the thickness of the carbon-resin composite layer is preferably 0.02-5.0 mm. If the thickness is less than 0.02 mm, corrosion may start from a slight crack in the carbon-resin composite layer, and if it is more than 5.0 mm, flexibility may be adversely affected.
- the thickness of the carbon-resin composite layer is more preferably 0.05 to 2.0 mm.
- the carbonaceous material forming the carbon-resin composite layer is not limited to this, but one or more of powders such as natural graphite, artificial graphite, expanded graphite, expanded graphite, flake graphite, and spherical graphite. Mixtures can be used. From the viewpoint of flexibility and conductivity, it is preferable to contain expanded graphite or expanded graphite powder.
- the matrix resin forming the carbon-resin composite layer may be a thermoplastic resin or a thermosetting resin.
- Thermoplastic resins include, but are not limited to, polypropylene resin (PP), polyethylene resin (PE), polyamide resin (PA), polyphenylene sulfide resin (PPS), polymethylpentene resin (PMP), polyetheretherketone resin. (PEEK), polyphenylene ether resin (PPE), liquid crystal polymer resin (LCP), polyamideimide resin (PAI), polysulfone resin (PSU), polyethylene terephthalate resin (PET), and polybutylene terephthalate resin (PBT). Mixtures of more than one species can be used.
- PP polypropylene resin
- PE polyethylene resin
- PA polyamide resin
- PPS polyphenylene sulfide resin
- PMP polymethylpentene resin
- PEEK polyphenylene ether resin
- LCP liquid crystal polymer resin
- PAI polyamideimide resin
- PSU polysulfone resin
- PET polyethylene terephthalate resin
- PBT polybutylene ter
- polyolefin resins such as PP, PE, and PMP
- a modified polyolefin resin in which part or all of the polyolefin resin is graft-modified with an unsaturated carboxylic acid or a derivative thereof.
- the use of such a modified polyolefin resin can be expected to improve flexibility and adhesion to stainless steel plates, thereby reducing contact resistance.
- thermosetting resin is not limited to this, but one or a mixture of two of phenolic resin and epoxy resin can be used.
- the stainless steel plate according to this embodiment may further include an adhesive layer between the surface of the stainless steel plate and the conductive layer.
- the adhesive composition forming the adhesive layer is not limited to this, but an adhesive composition containing an adhesive polyolefin resin (for example, Admer (trade name) manufactured by Mitsui Chemicals, Inc.), graft-modified with an unsaturated carboxylic acid.
- Adhesive composition containing modified polyolefin resin e.g., Unistol (trade name) manufactured by Mitsui Chemicals, Inc.
- adhesive composition containing modified polyolefin resin graft-modified with halogen e.g., Toyo manufactured by Toyobo Co., Ltd.
- Tack (trade name)
- phenolic resin adhesive composition for example, AH-1148 (trade name) manufactured by Lignite Co., Ltd.
- epoxy resin adhesive composition for example, YSLV-80XY manufactured by Nippon Steel Chemical & Materials Co., Ltd. ( trade name)
- the adhesive composition preferably contains a modified polyolefin resin in which part or all of the polyolefin resin is graft-modified with an unsaturated carboxylic acid or derivative thereof (see, for example, JP-A-2005-146178).
- the thickness of the adhesive layer is preferably 0.1-10 ⁇ m. If the thickness of the adhesive layer is less than 0.1 ⁇ m, the adhesive strength may be insufficient. If the thickness of the adhesive layer exceeds 10 ⁇ m, the conductivity may be insufficient.
- FIG. 3 is a flowchart showing an example of a method for manufacturing a stainless steel plate according to this embodiment. This manufacturing method is merely an example, and the manufacturing method of the stainless steel plate according to this embodiment is not limited to this method.
- This manufacturing method includes a step of preparing a slab (step S1), a step of hot rolling and cold rolling the slab to obtain a rolled steel plate with a thickness of 5 to 200 ⁇ m (step S2), and nitrogen gas in the rolled steel plate. and a step of annealing and cooling in a gas atmosphere (step S3).
- step S1 a step of preparing a slab
- step S2 a step of hot rolling and cold rolling the slab to obtain a rolled steel plate with a thickness of 5 to 200 ⁇ m
- nitrogen gas in the rolled steel plate step S2
- step S3 a step of annealing and cooling in a gas atmosphere
- the chemical composition of this slab is the same as the chemical composition of the stainless steel plate described above, except for the N content.
- the reason why the N content of the slab is set to 0.1% or less is that if the N content exceeds 0.1%, the deformation resistance becomes high and it becomes difficult to form a steel plate by rolling.
- the upper limit of the N content of the slab is preferably 0.05%.
- the process of preparing the slab is not limited to this, but can be, for example, as follows.
- Dissolve the ingredients As raw materials, ferrochromium and ferrosilicon for stainless steel production, cast iron, ferritic stainless steel scraps, and the like can be used. Melting is mainly done in an electric furnace. At the laboratory level, it can also be done in a vacuum induction furnace. Refining is performed to reduce carbon content, gas components, and metal inclusions. For refining, an AOD (Argon-Oxygen-Decarburization) method, a VOD (Vacuum-Oxygen-Decarburization) method, a V-AOD method, or the like can be applied. After that, the slab is made into a shape suitable for rolling by casting into a continuous casting machine or a case. The chemical composition of the slab can be adjusted by mixing raw materials and refining conditions.
- Hot rolling and cold rolling may be performed repeatedly, and if necessary, intermediate heat treatment such as annealing and pickling may be performed. Moreover, in addition to hot rolling and cold rolling, hot forging and cutting may be further performed as necessary.
- the rolling process is not limited to this, but can be performed as follows, for example.
- the slab is hot rolled into a hot coil by a tandem mill or Steckel mill.
- This hot coil is annealed and pickled. Furthermore, it is cold-rolled by a multi-roll cold rolling mill to obtain a rolled steel sheet having a thickness of 5 to 200 ⁇ m.
- the ratio of the partial pressure of nitrogen to the total pressure of the processing gas is preferably 0.2-0.9.
- the ratio of the partial pressure of nitrogen to the total pressure is less than 0.2, nitrogen is not sufficiently supplied from the surface, and when the steel plate is thick, the first region is formed so as to cover the entire front and back surfaces of the steel plate. become difficult to do.
- the ratio of the partial pressure of nitrogen to the total pressure of the processing gas is higher than 0.9, Cr nitrides are excessively formed on the surface, which may cause cracks during processing.
- the upper limit of the ratio of nitrogen partial pressure to total process gas pressure is preferably 0.75.
- Hydrogen is preferably used as the gas mixed with nitrogen so as not to oxidize the steel sheet. Argon may be used in place of or in addition to hydrogen.
- the annealing temperature is preferably 950-1200°C. If the annealing temperature is less than 950° C., not only the austenite phase but also the Cr 2 N phase exist in the equilibrium state, so there is a possibility that the ⁇ phase fraction in the first region cannot be increased. On the other hand, if the annealing temperature exceeds 1200° C., especially when Si is contained, a liquid phase may be generated near the grain boundary and melted to cause embrittlement.
- the annealing temperature varies depending on the Cr content, but is preferably 1050 to 1150°C.
- the annealing holding time must be controlled within a narrow range depending on the thickness and nitrogen partial pressure of the steel sheet. This is because austenitization due to nitrogen absorption progresses from the surface to the inside of the sheet thickness over time, and it is necessary to stop the progress of austenitization in the course of manufacturing the stainless steel sheet according to the present embodiment. If the holding time is too short, the ferrite phase may remain on the surface even if the sheet thickness is thin. On the other hand, if the retention time is too long, the cross-sectional area ratio of the second region will be too low, and the attractive force to the magnet will be insufficient.
- the annealed steel plate is cooled.
- the steel sheet after annealing is preferably cooled quickly. Slow cooling of the steel sheet after annealing may result in excessive precipitation of nitrides in the intermediate temperature range.
- the steel plate of the present embodiment has a thickness of 5 to 200 ⁇ m and a small heat capacity relative to the heat radiation area, it can be cooled sufficiently quickly by allowing it to cool outside the furnace. Water cooling is not preferable because it deforms due to quenching strain.
- the annealing process can be performed, for example, by passing the steel sheet through an annealing line called a continuous bright annealing line.
- a first region mainly composed of an austenite phase is formed in the surface layers of the front and back surfaces of the steel sheet.
- the surface layer of the steel sheet after the annealing process has an N content of 0.01 to 5.0% by mass, and is adjusted so that the cross-sectional area ratio of the second region is 20% or more. If the surface layer of only one surface is to be austenite phase, the opposite surface (the surface not to be austenite phase) should be masked.
- the N content of the steel sheet after the annealing process can be adjusted by the N content of the slab and the annealing conditions. Specifically, by increasing the N content of the slab, increasing the nitrogen partial pressure during annealing, increasing the annealing temperature, or extending the annealing holding time, the N content of the steel sheet after the annealing process is increased. Content can be higher.
- the steel sheet after the annealing process may be pickled with a solution containing a non-oxidizing acid (step S4).
- This pickling step is an optional step and may not be carried out.
- the surface contact resistance of the steel sheet can be lowered.
- a non-oxidizing acid is used so as not to oxidize the surface of the steel sheet.
- Acids that can be used are, for example, (1) hydrofluoric acid, (2) sulfuric acid, (3) hydrochloric acid, and mixed acids of these acids.
- the concentration of hydrofluoric acid is preferably 1 to 5% by mass.
- the treatment temperature is preferably 35-75°C. Below 35°C, processing may take a long time. Also, in summer, the temperature rise due to heat generated during pickling cannot be fully controlled, and there is a possibility that stable treatment cannot be performed depending on the outside temperature. On the other hand, if the temperature is higher than 75° C., corrosive fumes may be generated from the processing liquid.
- the treatment temperature is more preferably 40-55°C.
- the treatment time is preferably 2-10 minutes.
- the concentration of sulfuric acid is preferably 10 to 40% by mass.
- the treatment temperature is preferably 35-75°C. Below 35°C, processing may take a long time. Also, in summer, the temperature rise due to heat generated during pickling cannot be fully controlled, and there is a possibility that stable treatment cannot be performed depending on the outside temperature. On the other hand, if the temperature is higher than 75° C., harmful SOx gas may be generated from the processing liquid.
- the concentration is more preferably 15-30 mass %.
- the treatment temperature is more preferably 50-60°C.
- the treatment time is preferably 0.5 to 5 minutes.
- the concentration of hydrochloric acid is preferably 4 to 15% by mass.
- the treatment temperature is preferably 35-75°C. If the temperature is less than 35°C, the treatment may take a long time. Also, in summer, the temperature rise due to heat generated during pickling cannot be fully controlled, and there is a possibility that stable treatment cannot be performed depending on the outside temperature. On the other hand, if the temperature is higher than 75° C., corrosive fumes may be generated from the processing liquid.
- the concentration is more preferably 4-12 mass %.
- the treatment temperature is more preferably 40-55°C.
- the treatment time is preferably 2-15 minutes.
- an austenitic stainless steel sheet and a ferritic stainless steel sheet may be superimposed and clad-rolled to produce the stainless steel sheet according to the present invention. If it is desired to form the first regions on both sides, both sides of the ferritic stainless steel plate should be clad with an austenitic stainless steel plate. If it is desired to form the first region only on one side, one side of the ferritic stainless steel plate may be clad with an austenitic stainless steel plate.
- a massive (block-shaped, etc.) conductive carbonaceous material is slid against the Cr nitride film on the surface of the stainless steel plate.
- the conductive carbonaceous material is preferably graphite.
- Graphite has weak bonds between planes of six-membered rings of carbon atoms. Therefore, when the graphite is slid on the Cr nitride film, the graphite turns into scaly particles and is oriented substantially parallel to the surface of the Cr nitride film. As a result, the surface of the Cr nitride film can be efficiently covered with graphite.
- a mixture containing a carbonaceous material and a matrix resin is hot-pressed directly onto the surface of a stainless steel plate.
- a slurry obtained by dispersing a carbonaceous material and a matrix resin in a solvent may be applied to the surface of a stainless steel plate using a doctor blade or the like, dried and then hot-pressed.
- a powder mixture containing the powder of the carbonaceous material and the powder of the matrix resin is hot-pressed to form the carbon-resin composite layer in advance, and the obtained carbon-resin composite layer is is particularly preferably laminated on the surface of a stainless steel plate by hot pressing.
- the surface of the stainless steel plate may be coated with an adhesive composition.
- the stainless steel plate and the carbon-resin composite layer are laminated via an adhesive layer.
- the use of the stainless steel plate according to one embodiment of the present invention includes fuel cell separators.
- a fuel cell separator according to one embodiment of the present invention has the stainless steel plate according to this embodiment. More specifically, the fuel cell separator according to this embodiment is a stainless steel plate according to this embodiment on which irregularities or the like that function as flow paths are formed.
- the fuel cell separator according to this embodiment can be manufactured by pressing the stainless steel plate according to this embodiment. That is, in other words, it is a fuel cell separator having a part formed by processing the stainless steel plate according to the present embodiment.
- a fuel cell according to one embodiment of the present invention has the fuel cell separator according to this embodiment.
- a fuel cell stack according to one embodiment of the present invention has a plurality of fuel cells according to this embodiment.
- FIG. 4 is an exploded perspective view showing the configuration of a cell 10, which is an example of a polymer electrolyte fuel cell.
- FIG. 5 is a perspective view of a polymer electrolyte fuel cell 1 that is an assembly (stack) of a plurality of cells 10.
- FIG. The cell 10 in FIG. 4 and the polymer electrolyte fuel cell 1 in FIG. 5 are both examples, and the configurations of the fuel cell and the fuel cell stack according to this embodiment are not limited to these.
- the cell 10 has an anode (anode-side gas diffusion electrode layer or fuel electrode film) 3 on one side of a solid polymer electrolyte membrane 2 and a cathode (cathode-side gas diffusion electrode layer or oxidation layer) on the other side.
- the electrode film) 4 is laminated, and separators 5a and 5b are laminated on both sides of the laminate.
- the fuel cell separator according to the present embodiment may be a separator (water separator) having a flow path for cooling water.
- the fuel cell stack according to this embodiment may be a water-cooled fuel cell in which a water separator is arranged between cells or every few cells.
- a fluorine-based proton conductive membrane having a hydrogen ion exchange group can be used as the solid polymer electrolyte membrane 2.
- the anode 3 and the cathode 4 may be provided with catalyst layers made of particulate platinum catalyst, graphite powder, and, if necessary, fluororesin having hydrogen ion exchange groups. In this case, the reaction between the fuel gas or the oxidizing gas and the catalyst layer is accelerated.
- a flow path 6a is provided in the separator 5a.
- a fuel gas (hydrogen or hydrogen-containing gas) A flows through the flow path 6 a to supply hydrogen to the anode 3 .
- a flow path 6b is provided in the separator 5b.
- An oxidizing gas B such as air is flowed through the flow path 6 b to supply oxygen to the cathode 4 . The hydrogen and oxygen thus supplied cause an electrochemical reaction to generate DC power.
- the stainless steel plate according to the embodiment of the present invention is used for fuel cell separators. It can be applied as a shielding material, or as an electromagnetic wave absorbing material that supports a wide band by compounding with magnetic particles, metal nanoparticles, carbon black nanoparticles, or the like.
- the stainless steel sheet having corrosion resistance and magnetism has various uses, and it goes without saying that the uses will extend beyond those specified in the present application.
- the present invention will be described in more detail below with reference to examples.
- An example is the case of having the first regions on both surface layers of the stainless steel plate.
- the invention is not limited to these examples.
- the first region is formed only on one surface, the other surface can be masked and annealed.
- Example 1 (no conductive layer)
- Table 1 (no conductive layer)
- Steels of 17 chemical compositions shown in Table 1 were melted in a high-frequency induction heating 30 kg vacuum melting furnace to produce cast ingots having a substantially truncated cone shape with a diameter of 125 to 115 mm and a height of 320 mm.
- Annealing treatment A material having a width of 70 mm and a length of 200 mm was cut from each rolled steel sheet, and subjected to bright annealing treatment and nitrogen absorption treatment in a solid state (hereinafter referred to as "annealing treatment") by a continuous annealing simulator.
- the conditions for the annealing treatment were as shown in Table 3 below. After holding at the temperature described in the "holding temperature” column of Table 3 for the time described in the "holding time” column, a heat treatment was performed by quenching. The average cooling rate up to 500°C was 8 to 10°C/sec.
- FIG. 1 shows a cross-sectional photograph of the stainless steel plate of TP No. 4 in Table 3 below. As shown in FIG. 1, when the stainless steel plate had the first area A1 and the second area A2, the boundary between them could be clearly distinguished by etching.
- the region mainly composed of ferrite phase was etched deeper than the region mainly composed of austenite phase.
- the difference in etching for each crystal grain was small, the grain boundaries were etched thinly, and the grains were etched relatively smoothly. It is considered that this is because nitrogen penetration does not occur and only the heat history due to the high-temperature annealing remains as it is in the original ferrite phase.
- the region mainly composed of the austenite phase was etched shallower than the region mainly composed of the ferrite phase.
- the difference in etching for each crystal grain was large, the grain boundary was etched relatively clearly, and the grain interior was also etched relatively roughly. This is considered to be due to the fact that strain was accumulated in the grains because the ferrite phase was transformed into the austenite phase due to nitrogen enrichment due to nitrogen penetration while the surroundings were constrained in the solid phase state.
- the first region consisted of a structure mainly composed of an austenite phase and the second region consisted of a structure mainly composed of a ferrite phase.
- XRD was measured by the ⁇ -2 ⁇ method in the 2 ⁇ range of 10° to 110° using a Co ray source under excitation conditions of 30 kV and 100 mA using an X-ray diffraction measurement apparatus RINT2500 manufactured by Rigaku.
- XRD X-ray diffraction analysis was performed on each of them.
- the surface region is austenite It was judged that it consisted of an organization mainly composed of phases.
- the sum of the peak intensities of the top two strongest peaks of the ferrite phase is double the sum of the peak intensities of the top two strongest peaks of the other phases.
- the surface layer region consisted of a structure mainly composed of a ferrite phase.
- Magnetic Attraction (Magnetic Attraction) Test A simple test using a commercially available magnet was conducted in order to evaluate the presence or absence of an attractive force to the magnet sufficient for transportation by the magnet.
- a 100 mm x 100 mm test piece was cut from each stainless steel plate, and a 100 mm x 100 mm x 5 mm polypropylene (PP) plate was stacked on top of it to evaluate whether the test piece could be lifted with an evaluation magnet.
- a magnet for evaluation a cylindrical neodymium magnet ( ⁇ 10 ⁇ 10 mm, material symbol N40) manufactured by Neomag was used.
- a test piece is placed on a wooden horizontal and smooth table, a PP plate is placed on it so as to completely overlap, a magnet for evaluation is placed in the center of the PP plate, and only the magnet is held. I picked it up quietly. At this time, when the test piece adhered to the magnet through the PP plate and was lifted together, it was evaluated as "Pass”, and when only the magnet was lifted without the test piece being lifted, it was evaluated as "Fail”.
- the maximum current density at 0.9 V or higher which is thought to have entered the transpassive region, was used as an index of transpassive corrosion resistance. If the maximum current density at 0.9 V or higher was less than 100 ⁇ A/cm 2 , the resistance to transpassivation corrosion was excellent, and the corrosion resistance was evaluated as “good”. If the maximum current density was 100 ⁇ A/cm 2 or more, the resistance to transpassive corrosion was poor, and the corrosion resistance was evaluated as "insufficient”.
- the stainless steel plates with TP numbers 2 to 24 and 27 to 33 showed good results in the magnetic adhesion test and corrosion resistance test.
- the TP No. 1 stainless steel plate had insufficient corrosion resistance. This is believed to be due to the Cr content of material 1 being too low.
- the TP number 25 stainless steel plate had insufficient magnetic attraction. This is probably because the cross-sectional area ratio of the second region was low. The reason why the cross-sectional area ratio of the second region of the stainless steel plate of TP number 25 was low is considered to be that the annealing time was too long in relation to the thickness of the plate material and the annealing atmosphere.
- the stainless steel plate of TP No. 26 had insufficient corrosion resistance. This is probably because the ferrite phase was partially exposed on the surface of the stainless steel plate. The reason why the ferrite phase was partially exposed on the surface is considered to be that the annealing time was too short in relation to the thickness of the plate material and the annealing atmosphere.
- the TP number 34 stainless steel plate had insufficient magnetic attraction. This is probably because the cross-sectional area ratio of the second region was low. The reason why the cross-sectional area ratio of the second region of the stainless steel plate of TP number 34 was low is considered to be that the Ni content of the material 16 was too high and the austenization progressed too much in the annealing process.
- Example 2 (with conductive layer) A conductive layer was formed on both sides of the stainless steel plate of Example 1 by the following method after the pickling treatment. The thickness of the conductive layer per side was set to 50 ⁇ m.
- a modified polyolefin resin adhesive (manufactured by Mitsui Chemicals, Inc., UNISTOL (trade name)) was used as the adhesive composition for forming the adhesive layer.
- a modified polyolefin resin adhesive was applied to the surface of the pickled stainless steel plate using a desktop coater so as to have a coating thickness of 5 ⁇ m, and dried at room temperature for 10 minutes to form an adhesive layer.
- An adhesive layer was also formed on the back surface in the same manner.
- 0.2 g or 0.06 g of the powder mixture was evenly put into a female mold with a volume of 100 ⁇ 100 ⁇ 20 mm of a pressing device (desktop hot press MP-SCL manufactured by Toyo Seiki Seisakusho), and hot as a pre-press. Pressing (pressure: 2 MPa, temperature: 180° C.) was performed to form a sheet (thickness: 50 ⁇ m). The obtained sheet was placed on both sides of the base material with the adhesive layer prepared above, and pressed at a heating temperature of 180° C. and a pressure of 5 MPa (main pressing, molding time: 10 minutes).
- solid polymer fuel cell solid polymer electrolyte membrane 3 anode 4 cathode 5a, 5b separators 6a, 6b flow path 10 cell
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
・ガス拡散層(GDL:Gas Diffusion Layer)と接触して電気的な導通を取る導通部品としての機能、
・内部で生成した水、あるいは結露した水に電解質膜起因等の腐食成分が含まれた水溶液腐食環境となる電池セルの容器としての機能、及び
・酸素や空気等の酸化ガス、水素等の燃料ガスを流通させGDLを介して膜/電極接合体(MEA:Membrane Electrode Assembly)にガスを供給する流路としての機能。
ステンレス鋼板であって、
前記ステンレス鋼板は、5~200μmの厚みを有し、圧延方向に垂直な断面において、一方または両方の表面の表層に形成されたオーステナイト相を主体とする第1領域と、前記第1領域以外の領域であってフェライト相を主体とする第2領域とを有し、前記第2領域の面積率が20%以上であることを特徴とするステンレス鋼板。
[2]
前記第2領域の化学組成が、質量%で、
Cr:20.00~26.00%、
N :0.10%以下、
Si:2.00%以下、
C :0.040%以下、
P :0.030%以下、
S :0.030%以下、
Mn:1.50%以下、
Cu:0.50%以下、
Mo:3.00%以下、
Ni:5.00%以下、
Ca:50ppm以下、
sol.Al:300ppm以下、
残部:Fe及び不純物である、前記[1]に記載のステンレス鋼板。
[3]
前記第1領域の化学組成が、質量%で、
N:0.01~5.0%であり、
N以外は前記第2領域と同じである、前記[2]に記載のステンレス鋼板。
[4]
少なくとも一方の表面に導電性の炭素質材を有する導電層をさらに有する、前記[1]~[3]の何れか一項に記載のステンレス鋼板。
[5]
前記[1]~[4]の何れか一項に記載のステンレス鋼板を有する、燃料電池用セパレータ。
[6]
前記[5]に記載の燃料電池用セパレータを有する、燃料電池セル。
[7]
前記[6]に記載の燃料電池セルを複数有する、燃料電池スタック。
[化学組成]
本発明の一実施形態によるステンレス鋼板は、以下に説明する化学組成を有する。以下の説明において、元素の含有量の「%」及び「ppm」は、特に断りの無い限り、それぞれ質量%及び質量ppmを意味する。
クロム(Cr)は、ステンレス鋼の表面でCr2O3不動態皮膜を形成して耐食性を向上させる作用を有する。Cr含有量の下限は20%とする。20.00%未満では、窒素吸収によりオーステナイト化させた組織にマルテンサイト相が多く含まれる可能性がある。また、Crが少ないと強加工を行うと加工誘起マルテンサイト相が生成する可能性がある。一方、Cr含有量の増加にしたがって、変形抵抗は高くなる。Cr含有量の上限を26.00%とするのは、より安定した製造性(特に板厚の薄い鋼板の平坦性)を担保するためである。Cr含有量の下限は、好ましくは21.00%、22.00%、23.00%にするとよい。Cr含有量の上限は、好ましくは25.00%、24.00%にするとよい。
第1領域の窒素(N)は、ステンレス鋼中で窒化物を生成しない範囲で含有することにより、耐食性を向上させる作用を有する。また、ステンレス鋼のオーステナイト化を促進する元素でもある。N含有量の下限は、0.01%である。これは、Fe-Cr-N系ステンレス鋼において、表層にオーステナイト相を主体とする組織を得るために必要な最低窒素量を確保するためである。N含有量の上限は5.00%である。これは、結晶粒内にCr2NやCrNのような窒化物の生成を抑制するためである。N含有量の下限は、0.02%、0.04%、0.06%、0.08%、0.10%、0.12%、0.14%、0.16%、0.18%、0.20%、0.25%、0.30%、0.35%、または0.40%とすることができる。N含有量の上限は、4.75%、4.50%、4.25%、4.00%、3.75%、3.50%、3.25%、3.00%、2.80%、2.60%、2.40%、2.20%、2.00%、1.80%、1.60%、1.50%、1.40%、1.30%、または1.20%とすることができる。
第2領域の窒素(N)は0.10%以下とするとよい。後述する本発明の製造方法の一実施形態のように、第2領域と同等の成分組成を有する母材を所定の板厚になるよう圧延し、その後表面窒化処理により、第1領域を形成する場合、母材中のN含有量が0.10%を超えると、変形抵抗が高くなり、圧延によって鋼板にすることが困難になるためである。第2領域のN含有量は、母材と同じであるので、第2領域のN含有量は0.10%以下とする。母材(即ち第2領域)中のN含有量の上限は、好ましくは0.09%、0.08%、0.07%、0.06%、または0.05%であるとよい。
シリコン(Si)は、含有されなくてもよい。Siは、ステンレス鋼の加工性を劣化させる元素であることから、通常は積極的に添加する元素ではない。一方、Siは、ステンレス鋼が過不動態腐食環境に曝されると表面でSiO2を生成し、Cr2O3不動態皮膜を被覆して保護する作用を発揮する。Siを含有させる場合、Si含有量の上限は2.0%とする。Si含有量が2.00%を超えると、加工性の劣化や、製造中に脆いσ相が析出しやすくなり、鋼板への加工工程で割れが発生する場合や、平坦性が悪くプレス加工に適さない形状になる場合がある。Si含有量の上限は、好ましくは1.90%、1.80%、1.70%、1.60%、または1.50%である。Siを含有させる場合、好ましくは0.10%以上にするとよい。
炭素(C)は、含有されなくてもよい。Cは、固溶強化元素であり、ステンレス鋼の強度向上に寄与する。しかし、本実施形態のステンレス鋼板ではNを一定量以上含有させるため、Nによる固溶強化が十分であり、Cを添加しなくてもよい。C含有量が多すぎると、製造過程で炭化物が多数生成され、これら炭化物が破壊の起点となって、鋼の成形性が低下する。そのため、C含有量は0.040%以下とする。C含有量の上限は、好ましくは0.038%、0.036%、0.034%、0.032%、または0.030%である。Cを含有させる場合、好ましくは0.001%以上にするとよい。
リン(P)は、不純物である。Pは凝固時に粒界に偏析し、凝固割れ感受性を高める。したがって、P含有量はできるだけ低い方が好ましい。そのため、P含有量は0.030%以下とする。
硫黄(S)は、不純物である。Sは凝固時に粒界に偏析し、凝固割れ感受性を高める。したがって、S含有量はできるだけ低い方が好ましい。そのため、S含有量は0.030%以下とする。
マンガン(Mn)は、含有されなくてもよい。Mnは、Sによる熱間加工性の低下を抑制する。Mnはさらに、ステンレス鋼を脱酸する。しかし、Mn含有量が多くなると、σ相等の金属間化合物相の析出が促進される。σ相の析出によって組織安定性が低下するとともに、ステンレス鋼の靱性及び延性が低下する。そのため、Mn含有量は1.50%以下とする。Mn含有量の上限は、好ましくは1.40%、1.30%、1.20%、1.10%、1.00%、0.90%、0.80%、0.70%0.60%、または0.50%である。Mnを含有させる場合、好ましくは0.10%以上にするとよい。
銅(Cu)は、含有されなくてもよい。Cuは粒界に偏析しやすく、また、オーステナイト安定化元素である。Cuは固溶強化元素として作用し、構造材として必要な高温強度の上昇に寄与するため、必要に応じて含有してもよい。Cu含有量が多くなると、鋳造時の凝固中にフェライト生成が抑制され、凝固割れ感受性が高まる。また、Cu含有量が多いと、熱間加工性が低下する恐れがある。そのため、Cu含有量は0.50%以下とする。Cu含有量の上限は、好ましくは0.47%、0.43%、0.40%、0.37%、0.33%、0.30%、0.27%、0.23%、0.20%にするとよい。Cuを含有させる場合、好ましくは0.01%以上にするとよい。
モリブデン(Mo)は、含有されなくてもよい。しかし、特に耐食性を高めたいときは、Moはステンレス鋼の耐食性を高める効果を有するため、3.00%までの範囲で添加してもよい。しかし、Moはレアメタルに分類される高価な元素であり、経済性に優れた材料を提供するという観点では好ましくない。また、Mo含有量が多すぎると、熱間加工性が低下するとともに、表層にオーステナイト相を主体とする組織が得られない場合がある。そのため、Mo含有量は3.00%以下とする。Mo含有量の上限は、好ましくは2.75%、2.50%、2.25%、2.00%、1.80%、1.60%、1.50%、1.30%、1.10%、1.00%、0.90%、0.80%、0.70%、0.60%、または0.50%である。Moを含有させる場合、0.01%以上、0.05%以上、0.10%以上、0.20%以上または0.30%以上にするとよい。
ニッケル(Ni)は、含有されなくてもよい。しかし、Niは、ステンレス鋼のオーステナイト化を促進する元素であり、また耐食性の向上にも寄与するため、特に耐食性を高めたい場合や加工性を向上させたい場合には、5.00%を限度に含有させてもよい。しかし、Niはレアメタルに属する元素であり、経済性に優れた材料を提供するという観点で好ましくない。また、Niイオンが溶出することによって、白金触媒と高分子電解質膜との界面での酸素還元反応速度を低下させる恐れがある。そのため、Ni含有量は5.0%以下とする。Ni含有量の上限は、好ましくは4.50%。4.00%、3.50%、3.00%、2.50%、2.00%、1.50%、1.00%、0.80%、0.70%、0.6%、0.5%、0.4%、0.3%、または0.2%にするとよい。Niを含有させる場合、好ましくは0.10%以上にするとよい。
カルシウム(Ca)は、不純物である。ステンレス鋼の腐食の起点になりうる非金属介在物としては、一般にCaSやMnSが知られている。腐食起点となるCaSを多量に生成させないために、Ca含有量は50ppm未満とする。
アルミニウム(Al)は、含有されなくてもよい。Alは、ステンレス鋼を脱酸する。しかし、Al含有量が高すぎれば、鋼の清浄度が低下し、ステンレス鋼の加工性及び延性が低下する。したがって、Al含有量は、300ppm未満である。Alを含有させる場合、好ましくは100ppm以上にするとよい。なお、本明細書において、Al含有量は酸可溶Al(sol.Al)の含有量を意味する。
本実施形態によるステンレス鋼板は、5~200μmの厚みを有する。厚みは、平均厚みとする。
本実施形態によるステンレス鋼板は、その一方または両方の面(表裏の面またはどちらか一方の面)の表層(表面直下の層)に形成されたオーステナイト相を主体とする層状の第1領域と、第1領域以外の層であってフェライト相を主体とする層状の第2領域とを有する。本実施形態によるステンレス鋼板は、圧延方向に垂直な断面において、第2領域の断面面積率が20%以上である。本実施形態によるステンレス鋼板は、第1領域と第2領域のみから構成されていてもよい。例えば、鋼鈑の両表面側の表層に第1領域がある場合、第2領域は両表層の第1領域の間に形成される。
本実施形態によるステンレス鋼板は、その表裏の表面、またはどちらか一方の表面の表層に形成されたオーステナイト相を主体とする層状の第1領域を有する。本実施形態によるステンレス鋼板は、これによって、優れた耐食性を有する。
本実施形態によるステンレス鋼板は、第1領域以外の層であってフェライト相を主体とする層状の第2領域を有する。本実施形態によるステンレス鋼板は、これによって、磁力による保持、振り回しを行うための十分な磁性を備えることができる。
本実施形態によるステンレス鋼板は、上述した第2領域の圧延方向に垂直な断面における面積率(断面面積率とも呼ぶ場合がある。)が20%以上である。本実施形態によるステンレス鋼板は、これによって、磁力による保持、振り回しを行うための十分な磁性を備えることができる。第2領域の断面面積率の下限は、好ましくは30%である。一方、第2領域の断面面積率が高すぎると、フェライト相が表面に露出する恐れがある。第2領域の断面面積率の上限は、好ましくは80%、70%、または60%である。
本実施形態によるステンレス鋼板は、ステンレス鋼板の厚み全体の平均として、オーステナイト相及びフェライト相以外の相の割合が小さいことが好ましい。より具体的には、ステンレス鋼板の厚み全体の平均として、XRDで検出可能なすべての相(フェライト相、オーステナイト相、マルテンサイト相等の鉄の相、Cr2NやCrN等の化合物相等を含む。)に対して、オーステナイト相及びフェライト相以外の相の割合が小さいことが好ましい。
本実施形態によるステンレス鋼板は、少なくとも一方の面に、導電性の炭素質材を含む導電層を有することができる。これにより、ガス拡散層との接触抵抗がより低くなる。
本実施形態によるステンレス鋼板は、ステンレス鋼板の表面と導電層との間に、接着剤層をさらに備えていてもよい。
図3は、本実施形態によるステンレス鋼板の製造方法の一例を示すフロー図である。この製造方法はあくまでも例示であり、本実施形態によるステンレス鋼板の製造方法は、この方法に限定されない。
化学組成が、質量%で、Cr:20~26%、N:0.1%以下、Si:2.0%以下、C:0.040%以下、P:0.030%以下、S:0.030%以下、Mn:1.5%以下、Cu:0.50%以下、Mo:3.00%以下、Ni:5.00%以下、Ca:50ppm未満、sol.Al:300ppm未満、残部:Fe及び不純物であるスラブを準備する(ステップS1)。
スラブを熱間圧延及び冷間圧延することによって、厚み5~200μmの圧延鋼板を得る(ステップS2)。熱間圧延及び冷間圧延はそれぞれ繰り返し行ってもよく、必要に応じて焼鈍等の中間熱処理や、酸洗を行ってもよい。また、熱間圧延及び冷間圧延に加えて、必要に応じて熱間鍛造や切削加工をさらに行ってもよい。
圧延鋼板を、窒素を含むガス雰囲気下で焼鈍して冷却する(ステップS3)。この工程によって、鋼板の表裏の面から窒素を吸収させて、鋼板の表裏の面の表層の組織を、オーステナイト相を主体とする組織にする。
焼鈍工程後の鋼板を、非酸化性酸を含む溶液で酸洗してもよい(ステップS4)。この酸洗工程は任意の工程であり、実施しなくてもよい。酸洗工程を行えば、鋼板の表面接触抵抗を低くすることができる。酸洗を行う場合、鋼板の表面を酸化させないため、非酸化性の酸を使用する。使用できる酸は例えば、(1)フッ化水素酸、(2)硫酸、(3)塩酸、及びこれらの酸の混酸である。
フッ化水素酸の濃度は、好ましくは1~5質量%である。処理温度は、好ましくは35~75℃である。35℃未満では、処理が長時間になる可能性がある。また、夏季は酸洗時発熱による昇温を制御しきれず、外気温に左右されて安定な処理ができない可能性がある。一方、75℃よりも高くすると、処理液から腐食性のヒュームが発生する場合がある。処理温度は、より好ましくは40~55℃である。処理時間は、好ましくは2~10分である。
硫酸の濃度は、好ましくは10~40質量%である。処理温度は、好ましくは35~75℃である。35℃未満では、処理が長時間になる可能性がある。また、夏季は酸洗時発熱による昇温を制御しきれず、外気温に左右されて安定な処理ができない可能性がある。一方、75℃よりも高くすると、処理液から有害なSOxガスが発生する場合がある。濃度は、より好ましくは、15~30質量%である。処理温度は、より好ましくは50~60℃である。処理時間は、好ましくは0.5~5分である。
塩酸の濃度は、好ましくは4~15質量%である。処理温度は、好ましくは35~75℃である。35℃未満では処理が長時間になる可能性がある。また、夏季は酸洗時発熱による昇温を制御しきれず、外気温に左右されて安定な処理ができない可能性がある。一方、75℃よりも高くすると、処理液から腐食性のヒュームが発生する場合がある。濃度は、より好ましくは、4~12質量%である。処理温度は、より好ましくは40~55℃である。処理時間は、好ましくは2~15分である。
本実施形態によるステンレス鋼板の製造方法はこれに限定されない。例えば、オーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を重ね合わせ、クラッド圧延により本発明に係るステンレス鋼板を製造することもできる。両面に第1領域を形成したい場合は、フェライト系ステンレス鋼板の両面にオーステナイト系のステンレス鋼板をクラッドすればよい。片面だけに第1領域を形成したい場合は、フェライト系ステンレス鋼板の片面にオーステナイト系のステンレス鋼板をクラッドすればよい。
ステンレス鋼板に導電性の炭素質材を有する導電層を形成する場合は、以下の方法を用いることができる。
本発明の一実施形態に係るステンレス鋼板の用途として燃料電池用セパレータが挙げられる。本発明の一実施形態による燃料電池用セパレータは、本実施形態によるステンレス鋼板を有する。本実施形態による燃料電池用セパレータは、より具体的には、本実施形態によるステンレス鋼板に、流路として機能する凹凸等が形成されたものである。本実施形態による燃料電池用セパレータは、本実施形態によるステンレス鋼板をプレス加工して製造することができる。即ち、言い換えれば、本実施形態によるステンレス鋼板を加工した部品を有する燃料電池用セパレータである。
さらに、本発明の一実施形態による燃料電池セルは、本実施形態による燃料電池用セパレータを有する。本発明の一実施形態による燃料電池スタックは、本実施形態による燃料電池セルを複数有する。
[圧延鋼板の製造]
表1に示す17種の化学組成の鋼を、高周波誘導加熱方式の30kg真空溶融炉で溶解し、直径125~115mm、高さが320mmの略円錐台形状の鋳造インゴットを製造した。
各圧延鋼板から幅70mm×長さ200mmの素材を切り出し、連続焼鈍シミュレータ装置によって、光輝焼鈍処理を施すとともに固相状態での窒素吸収処理(以下「焼鈍処理」という。)を実施した。
焼鈍処理後の圧延鋼板を、60℃に保持した濃度25質量%の硫酸に1分間浸漬することにより酸洗し、ステンレス鋼板とした。
(1)ステンレス鋼板のN含有量の測定
窒素吸収後の鋼中のN含有量は、各ステンレス鋼板の全厚から分析サンプルを採取して、不活性ガス搬送融解熱伝導度法にて測定した。
各ステンレス鋼板から、圧延方向と垂直な断面が観察面となるように試験片を採取し、樹脂に埋め込んで鏡面研磨した後、王水とグリセリンとを体積比で4:1としたエッチング液を用いて金属組織が現れるまでエッチングした。図1に、後掲の表3のTP番号4のステンレス鋼板の断面写真を示す。図1に示すように、ステンレス鋼板が第1領域A1と第2領域A2とを有する場合、その境界はエッチングによって明確に判別することができた。
(3)第2領域の断面面積率の測定
第1領域と第2領域との境界を定めた後、それぞれの面積を画像解析ソフトで求めた。第2領域の面積をA、第2領域以外の領域の面積をBとし、第2領域の断面面積率をA/(A+B)から求めた。
磁石で搬送するに足る磁石への吸着力の有無を評価するために、市販の磁石を用いた簡易試験を行った。
耐食性の評価として、耐過不動態腐食性を評価した。耐過不動態腐食性の評価は、電池環境を模擬した80℃、pH3のH2SO4溶液にステンレス鋼板を浸漬し、Arガスを吹き込み脱気状態にして、自然電位状態に10分間保持後、20mV/分の掃引速度で、自然電位から1.4V vs SHEまでアノード分極を行った。ステンレス鋼板では、約0.9V vs SHEから過不動態腐食による電流密度増加が観察される。過不動態域に入ったと考えられる0.9V以上での最大電流密度を、耐過不動態腐食性の指標とした。0.9V以上での最大電流密度が100μA/cm2未満であれば、耐過不動態腐食性に優れ、耐食性が「良好」と評価した。最大電流密度が100μA/cm2以上であれば耐過不動態腐食性に劣り、耐食性が「不十分」と評価した。
実施例1のステンレス鋼板に対して、酸洗処理後に下記の方法で導電層を両面に形成した。片面あたりの導電層厚みは、50μmとした。
接着剤層を形成するための接着剤組成物として、変性ポリオレフィン樹脂接着剤(三井化学株式会社製、ユニストール(商品名))を用いた。酸洗後のステンレス鋼板の表面に、卓上コーターを用いて塗布厚5μmとなるように変性ポリオレフィン樹脂接着剤を塗布し、室温で10分乾燥させ、接着剤層を形成した。裏面にも同様にして接着剤層を形成した。
導電性の炭素質材として、球状黒鉛粉末(伊藤黒鉛工業株式会社製SG―BH(商品名)、平均粒子径:20μm)及び膨張黒鉛粉末(伊藤黒鉛工業株式会社製、EC100(商品名)、平均粒子径:160μm)を使用した。マトリックス樹脂として、ポリプロピレン樹脂(PP)粉末(住友精化株式会社製、フローブレンHP-8522(商品名))を使用した。球状黒鉛粉末を60体積%、膨張黒鉛粉末を10体積%、及びポリプロピレン樹脂粉末を30体積%となるように混合して粉末混合物とした。粉末混合物0.2gまたは0.06gを、プレス装置(東洋精機製作所製卓上ホットプレスMP-SCL)の100×100×20mmの容積を持つ雌型金型に均等に投入し、前プレスとしてのホットプレス(圧力:2MPa、温度:180℃)を行い、シート状(厚み:50μm)とした。得られたシートを、前記で準備した接着剤層付きの基材の両面に重ね、加熱温度180℃及び圧力5MPaで押圧した(本プレス、成型時間10分)。
導電層形成後のステンレス鋼板についても、上記の磁石吸着試験及び腐食試験を実施した。結果を前掲の表3に示す。
2 固体高分子電解質膜
3 アノード
4 カソード
5a,5b セパレータ
6a,6b 流路
10 セル
Claims (7)
- ステンレス鋼板であって、
前記ステンレス鋼板は、5~200μmの厚みを有し、
圧延方向に垂直な断面において、一方または両方の表面の表層に形成されたオーステナイト相を主体とする第1領域と、前記第1領域以外の領域であってフェライト相を主体とする第2領域とを有し、前記第2領域の面積率が20%以上であることを特徴とするステンレス鋼板。
- 前記第2領域の化学組成が、質量%で、
Cr:20.00~26.00%、
N :0.10%以下、
Si:2.00%以下、
C :0.040%以下、
P :0.030%以下、
S :0.030%以下、
Mn:1.50%以下、
Cu:0.50%以下、
Mo:3.00%以下、
Ni:5.00%以下、
Ca:50ppm以下、
sol.Al:300ppm以下、
残部:Fe及び不純物である、請求項1に記載のステンレス鋼板。
- 前記第1領域の化学組成が、質量%で、
N:0.01~5.0%であり、
N以外は前記第2領域と同じである、請求項2に記載のステンレス鋼板。
- 少なくとも一方の表面に導電性の炭素質材を有する導電層をさらに有する、請求項1~3の何れか一項に記載のステンレス鋼板。
- 請求項1~4の何れか一項に記載のステンレス鋼板を有する、燃料電池用セパレータ。
- 請求項5に記載の燃料電池用セパレータを有する、燃料電池セル。
- 請求項6に記載の燃料電池セルを複数有する、燃料電池スタック。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21952711.6A EP4382627A4 (en) | 2021-08-02 | 2021-08-02 | STAINLESS STEEL SHEET, SEPARATOR FOR A FUEL BATTERY, FUEL BATTERY CELL AND FUEL BATTERY STACK |
CN202180100825.9A CN117716058A (zh) | 2021-08-02 | 2021-08-02 | 不锈钢板、燃料电池用间隔件、燃料电池单元、及燃料电池组 |
PCT/JP2021/028664 WO2023012881A1 (ja) | 2021-08-02 | 2021-08-02 | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック |
KR1020247003626A KR20240028470A (ko) | 2021-08-02 | 2021-08-02 | 스테인리스 강판, 연료 전지용 세퍼레이터, 연료 전지 셀, 및 연료 전지 스택 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/028664 WO2023012881A1 (ja) | 2021-08-02 | 2021-08-02 | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023012881A1 true WO2023012881A1 (ja) | 2023-02-09 |
Family
ID=85154386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028664 WO2023012881A1 (ja) | 2021-08-02 | 2021-08-02 | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4382627A4 (ja) |
KR (1) | KR20240028470A (ja) |
CN (1) | CN117716058A (ja) |
WO (1) | WO2023012881A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004068115A (ja) | 2002-08-08 | 2004-03-04 | National Institute For Materials Science | 窒素吸収処理によるステンレス鋼製製品の製造方法とこれにより得られるステンレス鋼製製品 |
JP2005146178A (ja) | 2003-11-18 | 2005-06-09 | Mitsui Chemicals Inc | 接着剤組成物 |
US20050238873A1 (en) * | 2004-04-21 | 2005-10-27 | Brady Michael P | Surface modified stainless steels for PEM fuel cell bipolar plates |
JP2006070313A (ja) * | 2004-09-01 | 2006-03-16 | Nisshin Steel Co Ltd | 耐遅れ破壊性に優れる表面窒化高強度ステンレス鋼帯及びその製造方法 |
JP2006316338A (ja) | 2005-05-16 | 2006-11-24 | National Institute For Materials Science | ステンレス鋼製製品の製造方法とそのステンレス鋼製製品 |
JP2012092413A (ja) | 2010-10-28 | 2012-05-17 | Nakatsuyama Netsushori:Kk | ニッケルフリーオーステナイトステンレス鋼及びその製造方法 |
JP2015084281A (ja) * | 2013-10-25 | 2015-04-30 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック並びに固体酸化物形燃料電池単セルの製造方法 |
US20160114423A1 (en) * | 2013-05-15 | 2016-04-28 | Nisshin Steel Co., Ltd. | Method for producing a stainless steel diffusion-bonded product |
JP2018131643A (ja) * | 2017-02-13 | 2018-08-23 | 新日鐵住金ステンレス株式会社 | 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池 |
WO2019058409A1 (ja) | 2017-09-19 | 2019-03-28 | 新日鐵住金株式会社 | ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池 |
JP2020111806A (ja) * | 2019-01-15 | 2020-07-27 | 日本製鉄株式会社 | ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック |
JP2021123747A (ja) * | 2020-02-04 | 2021-08-30 | 日本製鉄株式会社 | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4333917C2 (de) * | 1993-10-05 | 1994-06-23 | Hans Prof Dr Ing Berns | Randaufsticken zur Erzeugung einer hochfesten austenitischen Randschicht in nichtrostenden Stählen |
KR101747094B1 (ko) * | 2015-12-23 | 2017-06-15 | 주식회사 포스코 | 삼상 스테인리스강 및 그 제조방법 |
JP7257793B2 (ja) * | 2019-01-15 | 2023-04-14 | 日鉄ステンレス株式会社 | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック |
JP7272233B2 (ja) * | 2019-10-30 | 2023-05-12 | セイコーエプソン株式会社 | 時計用部品および時計 |
JP7342675B2 (ja) * | 2019-12-13 | 2023-09-12 | セイコーエプソン株式会社 | 時計用部品の製造方法 |
-
2021
- 2021-08-02 EP EP21952711.6A patent/EP4382627A4/en active Pending
- 2021-08-02 KR KR1020247003626A patent/KR20240028470A/ko active Search and Examination
- 2021-08-02 WO PCT/JP2021/028664 patent/WO2023012881A1/ja active Application Filing
- 2021-08-02 CN CN202180100825.9A patent/CN117716058A/zh active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004068115A (ja) | 2002-08-08 | 2004-03-04 | National Institute For Materials Science | 窒素吸収処理によるステンレス鋼製製品の製造方法とこれにより得られるステンレス鋼製製品 |
JP2005146178A (ja) | 2003-11-18 | 2005-06-09 | Mitsui Chemicals Inc | 接着剤組成物 |
US20050238873A1 (en) * | 2004-04-21 | 2005-10-27 | Brady Michael P | Surface modified stainless steels for PEM fuel cell bipolar plates |
JP2006070313A (ja) * | 2004-09-01 | 2006-03-16 | Nisshin Steel Co Ltd | 耐遅れ破壊性に優れる表面窒化高強度ステンレス鋼帯及びその製造方法 |
JP2006316338A (ja) | 2005-05-16 | 2006-11-24 | National Institute For Materials Science | ステンレス鋼製製品の製造方法とそのステンレス鋼製製品 |
JP2012092413A (ja) | 2010-10-28 | 2012-05-17 | Nakatsuyama Netsushori:Kk | ニッケルフリーオーステナイトステンレス鋼及びその製造方法 |
US20160114423A1 (en) * | 2013-05-15 | 2016-04-28 | Nisshin Steel Co., Ltd. | Method for producing a stainless steel diffusion-bonded product |
JP2015084281A (ja) * | 2013-10-25 | 2015-04-30 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック並びに固体酸化物形燃料電池単セルの製造方法 |
JP2018131643A (ja) * | 2017-02-13 | 2018-08-23 | 新日鐵住金ステンレス株式会社 | 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池 |
WO2019058409A1 (ja) | 2017-09-19 | 2019-03-28 | 新日鐵住金株式会社 | ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池 |
JP2020111806A (ja) * | 2019-01-15 | 2020-07-27 | 日本製鉄株式会社 | ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック |
JP2021123747A (ja) * | 2020-02-04 | 2021-08-30 | 日本製鉄株式会社 | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック |
Non-Patent Citations (1)
Title |
---|
See also references of EP4382627A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4382627A1 (en) | 2024-06-12 |
KR20240028470A (ko) | 2024-03-05 |
CN117716058A (zh) | 2024-03-15 |
EP4382627A4 (en) | 2024-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI437104B (zh) | 耐蝕性及導電性優異之肥粒鐵系不鏽鋼與其製造方法,固體高分子型燃料電池分隔板及固體高分子型燃料電池 | |
JP4886885B2 (ja) | チタン製燃料電池セパレータ | |
JP6315158B1 (ja) | ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池 | |
KR101548064B1 (ko) | 연료 전지 세퍼레이터 | |
JP4078966B2 (ja) | 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池 | |
JP6122589B2 (ja) | 燃料電池セパレータ | |
KR101597721B1 (ko) | 고체 고분자형 연료 전지 세퍼레이터용 티탄재 및 그 제조 방법 및 이를 이용한 고체 고분자형 연료 전지 | |
WO2016052622A1 (ja) | フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池 | |
TWI427849B (zh) | 固體高分子形燃料電池隔離片用金屬板 | |
JP2001032056A (ja) | 通電部品用ステンレス鋼および固体高分子型燃料電池 | |
US20170298488A1 (en) | Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same | |
WO2013018320A1 (ja) | 燃料電池セパレータ用ステンレス鋼 | |
JP7453800B2 (ja) | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック | |
JP5637813B2 (ja) | リチウムイオン二次電池ラミネートケース用オーステナイト系ステンレス鋼箔および製造法 | |
JP5637812B2 (ja) | リチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔および製造法 | |
JP2006233282A (ja) | 電気伝導性および耐食性に優れた通電電気部品用ステンレス鋼及びその製造方法 | |
JP2000328200A (ja) | 通電電気部品用オーステナイト系ステンレス鋼および燃料電池 | |
JP5152193B2 (ja) | 固体高分子型燃料電池セパレータ用ステンレス鋼材および固体高分子型燃料電池 | |
CA2535055A1 (en) | Oxidation resistant ferritic stainless steels | |
WO2023012881A1 (ja) | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック | |
JP7257793B2 (ja) | ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック | |
JP7257794B2 (ja) | ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック | |
JP2004002960A (ja) | 燃料電池セパレータ用オーステナイト系ステンレス鋼及びその製造方法 | |
JP2000309854A (ja) | 通電電気部品用オーステナイト系ステンレス鋼および燃料電池 | |
KR101356954B1 (ko) | 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21952711 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180100825.9 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247003626 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247003626 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021952711 Country of ref document: EP Effective date: 20240304 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |