WO2023000848A1 - 一种高倍率磷酸铁锂的制备方法 - Google Patents

一种高倍率磷酸铁锂的制备方法 Download PDF

Info

Publication number
WO2023000848A1
WO2023000848A1 PCT/CN2022/097184 CN2022097184W WO2023000848A1 WO 2023000848 A1 WO2023000848 A1 WO 2023000848A1 CN 2022097184 W CN2022097184 W CN 2022097184W WO 2023000848 A1 WO2023000848 A1 WO 2023000848A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
preparation
lithium
iron
grinding
Prior art date
Application number
PCT/CN2022/097184
Other languages
English (en)
French (fr)
Inventor
张世庆
唐盛贺
阮丁山
唐春霞
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023000848A1 publication Critical patent/WO2023000848A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion battery material preparation, and in particular relates to a preparation method of high-rate lithium iron phosphate.
  • Lithium iron phosphate is an important member of the cathode material of lithium-ion batteries. It has been favored by the lithium battery industry for its excellent safety, stable long-term cycle performance, and non-toxic and environmentally friendly green characteristics. Today, with the depletion of oil resources and the improvement of people's awareness of environmental protection, renewable lithium-ion batteries have penetrated into our lives, especially lithium iron phosphate batteries have entered our lives with a flourishant attitude, no matter Whether it is now or in the future, commercial vehicles, energy storage base stations, various electrical equipment, etc. all have lithium iron phosphate.
  • lithium iron phosphate cathode material is one of the best materials for the energy supply of base stations.
  • lithium iron phosphate itself has obvious disadvantages. Its electronic conductivity and ion conductivity are low, especially the poor battery rate performance limits the promotion and application of lithium iron phosphate. Therefore, in order to improve the performance of lithium iron phosphate cathode materials, especially the improvement of its rate performance, it has become one of the key research directions of lithium iron phosphate cathode materials.
  • Scrap iron scraps themselves are a kind of solid waste, and the usual treatment method is to return them to the furnace for recycling and recast them into Corresponding to steel materials, although such a processing method is simple, the added value is low.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a method for preparing high-rate lithium iron phosphate.
  • a kind of preparation method of high rate lithium iron phosphate comprising the following steps:
  • step S1 the preparation process of the mixed solution is as follows: dissolving scrap iron scraps in an acid solution, adding lye to adjust the pH, adding ferric phosphate seed crystals, and then adding a compensator for phosphorus The iron ratio is compensated to obtain the mixed solution. Recycling scrap iron scraps as an iron source can reduce the cost of raw materials by more than 12%.
  • the scrap iron scraps are subjected to water immersion treatment before dissolving to wash away the surface layer residues of scrap iron scraps.
  • the acid solution is one or both of phosphoric acid or nitric acid.
  • the lye is one or more of hydrogen peroxide, ammonia or ammonium carbonate.
  • step S1 the pH is 0.5-3.0.
  • the compensating agent is phosphoric acid, ammonium dihydrogen phosphate, diammonium phosphate, triammonium phosphate, iron phosphate, iron pyrophosphate, iron powder, iron oxide, iron hydroxide or One or more of ferric nitrate nonahydrate.
  • the equipment used for the primary grinding and/or secondary grinding is a sand mill.
  • the grinding cavity structure of the sand mill is pin-pin type, turbine type or pin-turbine compound type; further, the grinding cavity material of the sand mill is high-strength wear-resistant Alumina ceramic material; further, the sanding beads used in the sand mill are zirconia beads to ensure grinding efficiency and not introduce impurities.
  • the grinding chamber of the sand mill has a temperature control indicator, which can well ensure the crystallization temperature and discharge conditions.
  • the particle diameter D50 of the particles in the primary grinding slurry is 100-1000 nm.
  • step S2 the molar ratio of Li, Fe, and P in the mixed solution is (0.98-1.10):(0.95-1.02):1.
  • the added amount of the organic carbon source is 10%-70% of the mass of the lithium salt; the added amount of the metal salt additive is 0.5% of the mass of the lithium salt. -5.0%.
  • the lithium salt is one or more of lithium carbonate, lithium acetate, lithium hydroxide or lithium nitrate
  • the organic carbon source is starch, sucrose, cellulose , anhydrous glucose, monohydrate glucose, anhydrous citric acid, monohydrate citric acid, oxalic acid, chitin, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polyvinylpyrrolidone, Tween 40, Tween 60 or Tween One or more of 80
  • the metal salt additive is ammonium metavanadate, chromium nitrate nonahydrate, titanium oxide, tetraethyl titanate, tetrabutyl titanate, zinc oxide, zinc nitrate, barium nitrate, carbonic acid One or more of barium, aluminum oxide, aluminum nitrate, nickel oxide, magnesium oxide or magnesium carbonate.
  • the particle diameter D50 of the particles in the secondary grinding slurry is 100-1200 nm.
  • the particle size D50 of the dry material is 0.5-50 ⁇ m.
  • the equipment used for the sintering is a rotary kiln; preferably, the temperature of the high temperature section of the rotary kiln is controlled to be 650-850°C, and the residence time in the high temperature section is 4-15h , the pressure in the rotary kiln is 40-300Pa.
  • the rotary kiln has the function of continuous feeding and discharging, which can maintain continuous feeding and cooling for sintering and cooling and discharging.
  • the sintering cycle is short and there are few control points, which facilitates the improvement of sintering efficiency.
  • the equipment occupies a small area, and the capital investment cost for plant equipment is reduced by about 10%. Production and maintenance costs are reduced by more than 13%, and it has strong market competitiveness in terms of profit.
  • step S3 the sintering is performed under an inert atmosphere, preferably a nitrogen atmosphere.
  • the rotary kiln is a rotary kiln with a special material structure
  • the material of the furnace tube of the rotary kiln is a high-temperature and corrosion-resistant high-nickel alloy tube, and the material composition contains 20-35% Cr and 25-55% Ni
  • the lining of the rotary kiln is high-temperature-resistant high-strength ceramic sheets, which can reduce the introduction of magnetic foreign matter and other impurities
  • the rotary kiln is equipped with cross bars or stirring bars to enhance dynamic sintering and make materials sintering more fully
  • there are air inlets inside and outside the rotary kiln tube which can pass inert gas to ensure that the material is not oxidized at high temperature.
  • step S3 the sintered material is also subjected to a jet crushing process, and the particle size D50 of the lithium iron phosphate is controlled to be 0.5-3.0 ⁇ m. Further, the moisture content of the lithium iron phosphate is less than 1000ppm.
  • the present invention uses the heat generated during grinding to carry out crystallization, fully mix the materials, and then carry out dynamic sintering, so that the prepared product has a more rounded shape and a better carbon coating layer, and the product performance is better Excellent, compared with the commercially available power products, its rate performance has been greatly improved, the 0.1C discharge specific capacity can reach 160mAh/g, and the first effect is stable above 98%; under the condition of high rate charge and discharge, the 5.0C discharge ratio The capacity can reach 132mAh/g, and the cycle stability is good. It is a relatively good power lithium iron phosphate cathode material product.
  • Fig. 1 is the SEM picture of embodiment 5 of the present invention.
  • Fig. 2 is a comparison chart of the discharge curves of Example 5 of the present invention and the same type of products on the market at different rates.
  • a high-rate lithium iron phosphate is prepared, and the specific process is as follows:
  • a high-rate lithium iron phosphate is prepared, and the specific process is as follows:
  • a high-rate lithium iron phosphate is prepared, and the specific process is as follows:
  • the waste iron scrap sample 2 is soaked with water to remove the scrap iron surface layer residue, then it is dissolved in the mixed solution of 2mol/L phosphoric acid and 1.2mol/L nitric acid, and ammonia water and ammonium carbonate are added under constant stirring to adjust the pH to 1.6, then add ferric phosphate seed crystals, then add ferric hydroxide and phosphoric acid as compensating agents for proportion compensation, perform a grinding with a sand mill, use the heat generated by the sand mill to carry out crystallization, and control the output particle size D50 at the same time About 725nm;
  • the primary grinding slurry is added to the mixed solution of lithium salt, organic carbon source, and metal salt additive, and the secondary mixing and grinding is performed to control the final mixed solution Li:Fe:P molar ratio 1.05:0.97:1, wherein lithium The salt is lithium carbonate, the organic carbon source is 38% of the quality of the lithium salt and 8.5% of the polyvinylpyrrolidone of the quality of the lithium salt, and the metal salt additive is 1.6% of the quality of the lithium salt of ammonium metavanadate and 1.3% of the quality of the lithium salt. % zinc nitrate, the secondary grinding slurry discharge particle size D50 is 500nm;
  • a high-rate lithium iron phosphate is prepared, and the specific process is as follows:
  • the primary grinding slurry is added to the mixed solution of lithium salt, organic carbon source, and metal salt additive, and the secondary mixing and grinding is carried out, and the final mixed solution Li:Fe:P molar ratio is controlled to be 1.03:0.96:1,
  • the lithium salt is lithium hydroxide
  • the organic carbon source is glucose monohydrate of 37% of the quality of the lithium salt and polyacrylic acid of 15.2% of the quality of the lithium salt
  • the metal salt additive is tetrabutyl titanate and 1.8% of the quality of the lithium salt.
  • the 1.4% zinc nitrate of lithium salt quality, the discharge particle diameter D50 of secondary grinding slurry is 400nm;
  • a high-rate lithium iron phosphate is prepared, and the specific process is as follows:
  • the electrical performance test is carried out according to the following method: Weigh 3-5g of the lithium iron phosphate positive electrode material prepared in Examples 1-5 and the corresponding PVDF (polyvinylidene fluoride), SP carbon in a mass ratio of 92:5:3 and mix them Dispersed and slurried in NMP (N-methylpyrrolidone), then evenly coated on a flat aluminum foil, baked in an oven until dry, rolled and punched into a positive electrode disc with a diameter of 15mm, dried in inert gas gloves
  • a lithium metal sheet is used as the negative electrode material
  • a polypropylene microporous membrane is used as the diaphragm
  • 1 mol/L lithium hexafluorophosphate dissolved in a mixture of ethylene carbonate and diethyl carbonate is used as the electrolyte to assemble a button battery.
  • the control test voltage range is between 2.0-3.8V for button battery testing. The same type of products on the market were assembled and tested with the same battery
  • Table 2 shows the ICP test results of scrap iron scraps after cleaning.
  • Figure 1 is the SEM image of the lithium iron phosphate prepared in Example 5. It can be seen from the figure that the obtained material particles are round and uniform, and the carbon coating layer is good, which plays an important role in stabilizing the electrical properties.
  • Figure 2 is a comparison chart of the discharge curves of the lithium iron phosphate prepared in Example 5 and the same type of products on the market at different rates. It can be seen from the figure that the 0.1C and 5.0C discharge specific capacities of Example 5 are significantly better than those on the market. product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种高倍率磷酸铁锂的制备方法,先将配好的含有铁离子和磷酸根离子的混合溶液进行一次研磨,得到一次研磨浆料,再将一次研磨浆料、锂盐、有机碳源和金属盐添加剂混合,所得混合液进行二次研磨,得到二次研磨浆料,最后将二次研磨浆料进行喷雾干燥,所得干燥物料进行动态烧结,即得磷酸铁锂。本发明用研磨时产生的热量进行结晶析出,进行物料的充分混合,再进行动态烧结,使得所制备出的产品具有更为圆润的形貌和更优良的碳包覆层,产品性能较优;该工艺在一次研磨时巧妙地利用研磨产热结晶析出物料,同时保证粒度得到很好地控制,相比于普通的"先沉淀、干燥制备得到前驱体,再进行颗粒细化处理"的传统工艺更为简单有效。

Description

一种高倍率磷酸铁锂的制备方法 技术领域
本发明属于锂离子电池材料制备技术领域,具体涉及一种高倍率磷酸铁锂的制备方法。
背景技术
磷酸铁锂作为锂离子电池正极材料的重要一员,其以优异的安全性、稳定的长循环性以及无毒环保的绿色特性,一直备受锂电行业的热捧。当今,随着石油资源的枯竭,人们环保意识的提高,可再生的锂离子电池已然深入我们的生活之中,特别是磷酸铁锂电池更是以一种高歌猛进的姿态走进我们的生活,无论是现在还是未来,商用汽车、储能基站、各种电器设备等等都有磷酸铁锂的身影。当今世界炙手可热的5G技术的推广和应用更是要依赖于5G基站的建设,而磷酸铁锂正极材料正是作为基站能源供应的最好材料之一。然而,磷酸铁锂本身也有明显的缺点,其电子电导率和离子传导率低,特别是较差的电池倍率性能表现限制了磷酸铁锂的推广和应用。故为了提升磷酸铁锂正极材料的性能,特别是其倍率性能的提升,已然是磷酸铁锂正极材料重点研究方向之一。
钢铁加工厂在加工生产钢铁材料过程中常常会有很多边角料、废屑(后面统称为废铁屑)产生,废铁屑本身作为一种固体废弃物,通常处理办法是进行回炉再造,重新熔铸成相应钢铁材料,这样的处理方法虽然简单但附加值低。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高倍率磷酸铁锂的制备方法。
根据本发明的一个方面,提出了一种高倍率磷酸铁锂的制备方法,包括以下步骤:
S1:将配好的含有铁离子和磷酸根离子的混合溶液进行一次研磨,得到一次研磨浆料;
S2:将所述一次研磨浆料、锂盐、有机碳源和金属盐添加剂混合,所得混合液进行 二次研磨,得到二次研磨浆料;
S3:将所述二次研磨浆料进行喷雾干燥,所得干燥物料进行动态烧结,即得所述磷酸铁锂。
在本发明的一些实施方式中,步骤S1中,所述混合溶液的配制过程如下:将废铁屑溶解于酸溶液中,加碱液调节pH,加入磷酸铁晶种,再加入补偿剂进行磷铁配比补偿,得到所述混合溶液。以废铁屑作为铁源回收利用,能够降低约12%以上的原料成本。
在本发明的一些优选的实施方式中,所述废铁屑在溶解前经过水浸处理以洗除废铁屑表层残渣。
在本发明的一些实施方式中,步骤S1中,所述酸溶液为磷酸或硝酸中的一种或两种。
在本发明的一些实施方式中,步骤S1中,所述碱液为过氧化氢、氨水或碳酸铵中的一种或几种。
在本发明的一些实施方式中,步骤S1中,所述pH为0.5-3.0。
在本发明的一些实施方式中,步骤S1中,所述补偿剂为磷酸、磷酸二氢铵、磷酸二铵、磷酸三铵、磷酸铁、焦磷酸铁、铁粉、氧化铁、氢氧化铁或九水合硝酸铁中的一种或几种。
在本发明的一些实施方式中,所述一次研磨和/或二次研磨使用的设备为砂磨机。
在本发明的一些优选的实施方式中,所述砂磨机的磨腔结构为棒销式、涡轮式或棒销-涡轮复合式;进一步地,砂磨机的磨腔材质为高强度耐磨氧化铝陶瓷材料;进一步地,砂磨机所用砂磨珠为氧化锆珠,确保研磨效率和不引入杂质。砂磨机的磨腔有温控指示可以很好地保证结晶温度和出料情况。
在本发明的一些实施方式中,步骤S1中,所述一次研磨浆料中颗粒的粒径D50为100-1000nm。
在本发明的一些实施方式中,步骤S2中,所述混合液中Li、Fe、P的摩尔比为(0.98-1.10):(0.95-1.02):1。
在本发明的一些实施方式中,步骤S2中,所述有机碳源的加入量为所述锂盐质量的10%-70%;所述金属盐添加剂的加入量为所述锂盐质量的0.5-5.0%。
在本发明的一些实施方式中,步骤S2中,所述锂盐为碳酸锂、醋酸锂、氢氧化锂或硝酸锂中的一种或几种;所述有机碳源为淀粉、蔗糖、纤维素、无水葡萄糖、一水葡萄糖、无水柠檬酸、一水柠檬酸、草酸、甲壳素、聚乙烯醇、聚乙二醇、聚丙烯酸、聚乙烯吡咯烷酮、吐温40、吐温60或吐温80中的一种或几种;所述金属盐添加剂为偏钒酸铵、九水硝酸铬、氧化钛、钛酸四乙酯、钛酸四丁酯、氧化锌、硝酸锌、硝酸钡、碳酸钡、氧化铝、硝酸铝、氧化镍、氧化镁或碳酸镁中的一种或几种。
在本发明的一些实施方式中,步骤S2中,所述二次研磨浆料中颗粒的粒径D50为100-1200nm。
在本发明的一些实施方式中,步骤S3中,所述干燥物料的粒度D50为0.5-50μm。
在本发明的一些实施方式中,步骤S3中,所述烧结使用的设备为回转窑;优选的,控制所述回转窑高温段的温度为650-850℃,在高温段停留时间为4-15h,回转窑内的压力为40-300Pa。回转窑具有连续进出料功能,可保持连续进料烧结和冷却出料,烧结周期短,控制点少,方便提高烧结效率,设备占地面积小,对厂房设备的资金投入成本降低10%左右,生产及维护成本更是降低13%以上,在利润层面具有较强的市场竞争力。
在本发明的一些实施方式中,步骤S3中,所述烧结在惰性气氛下进行,优选为氮气气氛。
在本发明的一些优选的实施方式中,所述回转窑为特殊材质构造的回转窑,回转窑的炉管材质为耐高温耐腐蚀的高镍合金管,材质成分含有20-35%的Cr和25-55%的Ni,回转窑的内衬为耐高温高强度陶瓷片,能够降低磁异物和其他杂质的引入;回转窑内设横杆或搅拌杆,增强动态烧结,使物料烧结更为充分;回转窑的炉管外设有振动锤,防止物料粘壁;回转窑炉管内外均设有进气口,能够通入惰性气体保证物料在高温下不被氧化。
在本发明的一些实施方式中,步骤S3中,所述烧结后的物料还经过气流粉碎的工序,控制所述磷酸铁锂的粒径D50为0.5-3.0μm。进一步地,磷酸铁锂的水分含量< 1000ppm。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明用研磨时产生的热量进行结晶析出,进行物料的充分混合,再进行动态烧结,使得所制备出的产品具有更为圆润的形貌和更优良的碳包覆层,产品性能较优,相比于市售功率型产品,其倍率性能有了很大的提高,0.1C放电比容量可达160mAh/g,首效稳定在98%以上;高倍率充放电情况下5.0C放电比容量可达132mAh/g,循环稳定性好,属于较优的功率型磷酸铁锂正极材料产品。
2、该工艺方法在一次研磨时巧妙地利用研磨产热结晶析出物料,同时保证粒度得到很好地控制,相比于普通的“先沉淀、干燥制备得到前驱体,再进行颗粒细化处理”的传统工艺更为简单有效,进一步降低了成本。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例5的SEM图片;
图2为本发明实施例5和市面同类型产品在不同倍率下的放电曲线对比图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种高倍率磷酸铁锂,具体过程为:
(1)将废铁屑样品1用水浸洗除掉铁屑表层残渣,再将其溶解于2mol/L磷酸和1.5mol/L硝酸的混合液中,不断搅拌下加入氨水和过氧化氢调节pH为1.0,然后加入磷酸铁晶种,再加入铁粉和磷酸二氢铵作为补偿剂进行配比补偿,用砂磨机进行一次研磨,利用砂磨产生的热量进行结晶析出,同时控制出料粒径D50在425nm左右;
(2)将一次研磨浆料加入到锂盐、有机碳源、金属盐添加剂的混合液中,进行二次混合研磨,控制最终混合液Li:Fe:P摩尔比为1.02:0.98:1,其中锂盐为碳酸锂,有机碳源为锂盐质量的32%的无水葡萄糖和锂盐质量的17%的一水柠檬酸,金属盐添加剂为锂盐质量的1.2%的氧化钛和锂盐质量的2.5%的九水合硝酸铬,二次研磨浆料出料粒径D50为350nm;
(3)将二次研磨浆料进行喷雾干燥,控制出料粒径D50在20μm左右,将喷雾干燥后的物料投入到特殊材质构造的回转窑中,在纯氮气气氛下进行连续动态烧结,控制高温段温度为790℃,高温段停留6h,并维持炉压在150Pa左右,对烧结后的物料进行气流粉碎,粉碎粒度D50为1.62μm,出料水分含量436ppm,所得物料即为高倍率磷酸铁锂正极材料。
实施例2
本实施例制备了一种高倍率磷酸铁锂,具体过程为:
(1)将废铁屑样品1用水浸洗除掉铁屑表层残渣,再将其溶解于1.5mol/L磷酸和1.0mol/L硝酸的混合液中,不断搅拌下加入氨水和碳酸铵调节pH为2.0,然后加入磷酸铁晶种,再加入九水合硝酸铁和磷酸二铵作为补偿剂进行配比补偿,用砂磨机进行一次研磨,利用砂磨产生的热量进行结晶析出,同时控制出料粒径D50在550nm左右;
(2)将一次研磨浆料加入到锂盐、有机碳源、金属盐添加剂的混合液中,进行二次混合研磨,控制最终混合液Li:Fe:P摩尔比为1.0:0.96:1,其中锂盐为氢氧化锂,有机碳源为锂盐质量的37%的蔗糖和锂盐质量的10%的吐温80,金属盐添加剂为锂盐质量的1.8%的钛酸四丁酯和锂盐质量的1.5%的氧化铝,二次研磨浆料出料粒径D50为355nm;
(3)将二次研磨浆料进行喷雾干燥,控制出料粒径D50在25μm左右,将喷雾干燥后的物料投入到特殊材质构造的回转窑中,在纯氮气气氛下进行连续动态烧结,控制高温段温度为750℃,高温段停留9h,并维持炉压在200Pa左右,对烧结后的物料进行气流粉碎,粉碎粒度D50为1.18μm,水分含量338ppm,所得物料即为高倍率磷酸铁锂正极材料。
实施例3
本实施例制备了一种高倍率磷酸铁锂,具体过程为:
(1)将废铁屑样品2用水浸洗除掉铁屑表层残渣,再将其溶解于2mol/L磷酸和1.2mol/L硝酸的混合液中,不断搅拌下加入氨水和碳酸铵调节pH为1.6,然后加入磷酸铁晶种,再加入氢氧化铁和磷酸作为补偿剂进行配比补偿,用砂磨机进行一次研磨,利用砂磨产生的热量进行结晶析出,同时控制出料粒径D50在725nm左右;
(2)将一次研磨浆料加入到锂盐、有机碳源、金属盐添加剂的混合液中,进行二次混合研磨,控制最终混合液Li:Fe:P摩尔比例1.05:0.97:1,其中锂盐为碳酸锂,有机碳源为锂盐质量的38%的蔗糖和锂盐质量的8.5%的聚乙烯吡咯烷酮,金属盐添加剂为锂盐质量的1.6%的偏钒酸铵和锂盐质量的1.3%的硝酸锌,二次研磨浆料出料粒径D50为500nm;
(3)将二次研磨浆料进行喷雾干燥,控制出料粒径D50在30μm左右,将喷雾干燥后的物料投入到特殊材质构造的回转窑中,在纯氮气气氛下进行连续动态烧结,控制高温段温度为760℃,高温段停留8.5h,并维持炉压在200Pa左右,对烧结后的物料进行气流粉碎,粉碎粒度D50为1.56μm,水分含量373ppm,所得物料即为高倍率磷酸铁锂正极材料。
实施例4
本实施例制备了一种高倍率磷酸铁锂,具体过程为:
(1)将废铁屑样品2用水浸洗除掉铁屑表层残渣,再将其溶解于1.8mol/L磷酸和1.5mol/L硝酸的混合液中,不断搅拌下加入氨水和过氧化氢调节pH为1.3,然后加入磷酸铁晶种,再加入铁粉和磷酸作为补偿剂进行配比补偿,用砂磨机进行一次研磨,利用砂磨产生的热量进行结晶析出,同时控制出料粒径D50在720nm左右;
(2)然后将一次研磨浆料加入到锂盐、有机碳源、金属盐添加剂的混合液中,进行二次混合研磨,控制最终混合液Li:Fe:P摩尔比为1.03:0.96:1,其中锂盐为氢氧化锂,有机碳源为锂盐质量的37%的一水葡萄糖和锂盐质量的15.2%的聚丙烯酸,金属盐添加剂为锂盐质量的1.8%的钛酸四丁酯和锂盐质量的1.4%的硝酸锌,二次研磨浆料出 料粒径D50为400nm;
(3)将二次研磨浆料进行喷雾干燥,控制出料粒径D50在25μm左右,将喷雾干燥后的物料投入到特殊材质构造的回转窑中,在纯氮气气氛下进行连续动态烧结,控制高温段温度为780℃,高温段停留10h,并维持炉压在250Pa左右,对烧结后的物料进行气流粉碎,粉碎粒度D50为1.48μm,水分含量375ppm,所得物料即为高倍率磷酸铁锂正极材料。
实施例5
本实施例制备了一种高倍率磷酸铁锂,具体过程为:
(1)将废铁屑样品2用水浸洗除掉铁屑表层残渣,再将其溶解于1.6mol/L磷酸和1.5mol/L硝酸的混合液中,不断搅拌下加入氨水和过氧化氢调节pH为1.1,然后加入磷酸铁晶种,再加入铁粉和磷酸二氢铵作为补偿剂进行配比补偿,用砂磨机进行一次研磨,利用砂磨产生的热量进行结晶析出,同时控制出料粒径D50在950nm左右;
(2)将一次研磨浆料加入到锂盐、有机碳源、金属盐添加剂的混合液中,进行二次混合研磨,控制最终混合液Li:Fe:P摩尔比为1.04:0.98:1,其中锂盐为碳酸锂,有机碳源为锂盐质量的33%的蔗糖和锂盐质量的13.8%的聚乙二醇,金属盐添加剂为锂盐质量的1.2%的氧化钛和锂盐质量的1.7%的碳酸镁,二次研磨浆料出料粒径D50为330nm;
(3)将二次研磨浆料进行喷雾干燥,控制出料粒径D50在20μm左右,将喷雾干燥后的物料投入到特殊材质构造的回转窑中,在纯氮气气氛下进行连续动态烧结,控制高温段温度为770℃,高温段停留9h,并维持炉压在150Pa左右,对烧结后的物料进行气流粉碎,粉碎粒度D50为1.64μm,水分含量406ppm,所得物料即为高倍率磷酸铁锂正极材料。
试验例
电性能测试按照以下方法执行:称取3-5g实施例1-5制得的磷酸铁锂正极材料及相应的PVDF(聚偏氟乙烯)、SP碳以92:5:3的质量比例混合后在NMP(N-甲基吡咯烷酮)中进行分散调浆,再均匀涂布于平整的铝箔上,在烘箱中烘烤至干燥,辊压后冲压成15mm直径的正极圆片,在干燥惰性气体手套箱中,以金属锂片作为负极材料,以 聚丙烯微孔膜作为隔膜,以溶解在碳酸乙烯酯和碳酸二乙酯混合液中的1mol/L六氟磷酸锂作为电解液,组装成扣式电池。控制测试电压范围在2.0-3.8V之间进行扣式电池测试。市面同类型产品进行相同的电池组装和测试,测试结果如表1所示。
表1
Figure PCTCN2022097184-appb-000001
由表1可知,实施例1-5的产品性能较优,相比于市售功率型产品,其倍率性能有了很大的提高,0.1C放电比容量可达160mAh/g,首效稳定在98%以上,高倍率充放电情况下5.0C放电比容量可达132mAh/g,循环稳定性好,属于较优的功率型磷酸铁锂正极材料产品。
表2为清洗后的废铁屑ICP测试结果。
表2
主杂质元素 单位 废铁屑样品1 废铁屑样品2
Fe 96.57 96.61
C 1.63 1.59
Ni ppm 672 685
Cr ppm 223 183
Cu ppm 35 43
Mn ppm 138 121
Ca ppm 142 124
S ppm 346 374
Si ppm 68 65
Na ppm 112 98
K ppm 35 43
由表2可知,所用废铁屑主要是C和Ni含量较为突出,但并不影响最终产品性能发挥。
图1为实施例5制得的磷酸铁锂的SEM图,从图中可以看出所得材料颗粒圆润、均一,碳包覆层良好,对于电性能的稳定发挥具有重要作用。
图2为实施例5制得的磷酸铁锂和市面同类型产品在不同倍率下的放电曲线对比图,从图中可以看到实施例5的0.1C和5.0C放电比容量均明显优于市面产品。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种高倍率磷酸铁锂的制备方法,其特征在于,包括以下步骤:
    S1:将配好的含有铁离子和磷酸根离子的混合溶液进行一次研磨,得到一次研磨浆料;
    S2:将所述一次研磨浆料、锂盐、有机碳源和金属盐添加剂混合,所得混合液进行二次研磨,得到二次研磨浆料;
    S3:将所述二次研磨浆料进行喷雾干燥,所得干燥物料进行动态烧结,即得所述磷酸铁锂。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述混合溶液的配制过程如下:将废铁屑溶解于酸溶液中,加碱液调节pH,加入磷酸铁晶种,再加入补偿剂进行磷铁配比补偿,得到所述混合溶液。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述酸溶液为磷酸或硝酸中的一种或两种。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述pH为0.5-3.0。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述补偿剂为磷酸、磷酸二氢铵、磷酸二铵、磷酸三铵、磷酸铁、焦磷酸铁、铁粉、氧化铁、氢氧化铁或九水合硝酸铁中的一种或几种。
  6. 根据权利要求1所述的制备方法,其特征在于,所述一次研磨和/或二次研磨使用的设备为砂磨机。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述一次研磨浆料中颗粒的粒径D50为100-1000nm。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述二次研磨浆料中颗粒的粒径D50为100-1200nm。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述烧结使用的设备为回转窑;优选的,控制所述回转窑高温段的温度为650-850℃,在高温段停留时间 为4-15h,回转窑内的压力为40-300Pa。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述烧结后的物料还经过气流粉碎的工序,控制所述磷酸铁锂的粒径D50为0.5-3.0μm。
PCT/CN2022/097184 2021-07-20 2022-06-06 一种高倍率磷酸铁锂的制备方法 WO2023000848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110819236.8A CN113683071A (zh) 2021-07-20 2021-07-20 一种高倍率磷酸铁锂的制备方法
CN202110819236.8 2021-07-20

Publications (1)

Publication Number Publication Date
WO2023000848A1 true WO2023000848A1 (zh) 2023-01-26

Family

ID=78577506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097184 WO2023000848A1 (zh) 2021-07-20 2022-06-06 一种高倍率磷酸铁锂的制备方法

Country Status (2)

Country Link
CN (1) CN113683071A (zh)
WO (1) WO2023000848A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116281917A (zh) * 2023-03-01 2023-06-23 湖北宇浩高科新材料有限公司 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法
CN117018989A (zh) * 2023-10-10 2023-11-10 长沙邦盛新能源有限公司 一种复合磷酸铁锂正极材料品混系统及工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683071A (zh) * 2021-07-20 2021-11-23 广东邦普循环科技有限公司 一种高倍率磷酸铁锂的制备方法
CN115367724B (zh) * 2022-08-20 2023-08-04 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127111A1 (en) * 2011-06-17 2014-05-08 Jfe Chemical Corporation Method for producing lithium iron phosphate
CN105692576A (zh) * 2016-03-10 2016-06-22 三峡大学 一种利用工业含铁废弃物制备电池级磷酸铁的方法
CN106450294A (zh) * 2016-08-26 2017-02-22 常开军 一种磷酸铁锰锂正极材料及其制造方法
CN109192953A (zh) * 2018-09-07 2019-01-11 桑顿新能源科技有限公司 一种高倍率球形磷酸铁锂碳复合正极材料及其制备方法
CN110482515A (zh) * 2019-09-19 2019-11-22 李旭意 一种低成本磷酸铁锂的制备方法
CN111554922A (zh) * 2020-04-14 2020-08-18 合肥国轩电池材料有限公司 一种倍率型磷酸铁锂的制备方法
CN112310374A (zh) * 2020-10-30 2021-02-02 合肥融捷能源材料有限公司 一种分段研磨-喷雾干燥制备高压实低比表面积磷酸铁锂的方法
CN113683071A (zh) * 2021-07-20 2021-11-23 广东邦普循环科技有限公司 一种高倍率磷酸铁锂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299358A (zh) * 2016-11-08 2017-01-04 浙江瑞邦科技有限公司 一种正磷酸铁的制备方法
CN108183234B (zh) * 2018-01-05 2020-10-20 乳源东阳光磁性材料有限公司 一种磷酸铁锂/碳复合材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127111A1 (en) * 2011-06-17 2014-05-08 Jfe Chemical Corporation Method for producing lithium iron phosphate
CN105692576A (zh) * 2016-03-10 2016-06-22 三峡大学 一种利用工业含铁废弃物制备电池级磷酸铁的方法
CN106450294A (zh) * 2016-08-26 2017-02-22 常开军 一种磷酸铁锰锂正极材料及其制造方法
CN109192953A (zh) * 2018-09-07 2019-01-11 桑顿新能源科技有限公司 一种高倍率球形磷酸铁锂碳复合正极材料及其制备方法
CN110482515A (zh) * 2019-09-19 2019-11-22 李旭意 一种低成本磷酸铁锂的制备方法
CN111554922A (zh) * 2020-04-14 2020-08-18 合肥国轩电池材料有限公司 一种倍率型磷酸铁锂的制备方法
CN112310374A (zh) * 2020-10-30 2021-02-02 合肥融捷能源材料有限公司 一种分段研磨-喷雾干燥制备高压实低比表面积磷酸铁锂的方法
CN113683071A (zh) * 2021-07-20 2021-11-23 广东邦普循环科技有限公司 一种高倍率磷酸铁锂的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116281917A (zh) * 2023-03-01 2023-06-23 湖北宇浩高科新材料有限公司 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法
CN116281917B (zh) * 2023-03-01 2024-02-09 湖北宇浩高科新材料有限公司 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法
CN117018989A (zh) * 2023-10-10 2023-11-10 长沙邦盛新能源有限公司 一种复合磷酸铁锂正极材料品混系统及工艺
CN117018989B (zh) * 2023-10-10 2023-12-26 长沙邦盛新能源有限公司 一种复合磷酸铁锂正极材料品混系统及工艺

Also Published As

Publication number Publication date
CN113683071A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023000848A1 (zh) 一种高倍率磷酸铁锂的制备方法
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
JP2019108264A (ja) Li−Ni複合酸化物粒子粉末、並びに非水電解質二次電池
WO2024000844A1 (zh) 磷酸锰铁锂的制备方法及其应用
CN110890535A (zh) 一种正极材料、其制备方法和在锂离子电池中的应用
WO2023207281A1 (zh) 镁钛共掺杂碳酸钴的制备方法及其应用
CN106602060A (zh) 一种低成本磷酸铁锂材料、其制备方法及用途
CN111422916B (zh) 高镍三元正极材料及其制备方法和应用
WO2023221625A1 (zh) 大粒径单晶三元正极材料及其制备方法和应用
CN114551835B (zh) 一种超高镍四元正极材料及其制备方法和应用
WO2024125561A1 (zh) 以废弃磷酸铁锂制备碳包覆的氟磷酸铁钠的方法及其应用
JP6568333B1 (ja) 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN115954445B (zh) 一种纳米草酸钠复合的正极活性材料及其应用
WO2023155544A1 (zh) 一种聚阴离子型正极材料的制备方法
CN112670475A (zh) 磷酸铁锂复合材料及制备方法和使用该复合材料的锂电池、电池动力车
WO2023071412A1 (zh) 一种钠离子电池正极材料及其制备方法和应用
JP2024526436A (ja) 表面被覆正極材料、その製造方法、及びリチウムイオン電池
CN114394632A (zh) 一种纳米级llzo包覆高镍正极材料的制备方法
CN114597378B (zh) 一种超高镍多晶正极材料及其制备方法和应用
CN115498171A (zh) 一种高镍三元正极材料及其制备方法和应用
CN117497728B (zh) 一种钠离子电池正极材料及其制备方法
WO2023138221A1 (zh) 镍钴锰三元正极材料纳米棒及其应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN116230879A (zh) 正极材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22845015

Country of ref document: EP

Kind code of ref document: A1