WO2023155544A1 - 一种聚阴离子型正极材料的制备方法 - Google Patents

一种聚阴离子型正极材料的制备方法 Download PDF

Info

Publication number
WO2023155544A1
WO2023155544A1 PCT/CN2022/135993 CN2022135993W WO2023155544A1 WO 2023155544 A1 WO2023155544 A1 WO 2023155544A1 CN 2022135993 W CN2022135993 W CN 2022135993W WO 2023155544 A1 WO2023155544 A1 WO 2023155544A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
positive electrode
sodium
precipitate
electrode material
Prior art date
Application number
PCT/CN2022/135993
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023155544A1 publication Critical patent/WO2023155544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the embodiments of the present application relate to the technical field of energy storage materials, for example, a method for preparing a polyanion positive electrode material.
  • lithium iron phosphate battery is one of the important power batteries.
  • the amount of decommissioned batteries will also increase, especially after many years will face the decommissioning of a large number of lithium iron phosphate batteries. If a large number of decommissioned power lithium iron phosphate batteries cannot be properly recycled and utilized, it will not only waste resources, but also cause environmental pollution and other problems. Therefore, how to better deal with decommissioned lithium iron phosphate batteries has become an urgent problem for the industry.
  • Lithium resources on the earth are very limited. With the increasing shortage of lithium resources, sodium, which is rich in reserves, has entered people's field of vision. Sodium and lithium belong to the same main group and have similar chemical properties, and the content of sodium in the earth's crust is much higher. So, Na-ion battery is a very promising secondary battery.
  • common cathode materials for sodium-ion batteries mainly include layered transition metal oxides, Prussian blue analogues, polyanionic compounds, and tunnel oxides.
  • Polyanionic compounds mainly include transition metal (pyro)phosphates, fluorophosphates, etc. Among them, polyanionic phosphate materials may become one of the ideal cathode materials for sodium-ion batteries due to their stable structure and high operating voltage. Recycling waste lithium batteries to prepare sodium-ion batteries is a promising direction.
  • the embodiment of the present application proposes a method for preparing a polyanion-type positive electrode material, and the waste lithium iron phosphate battery is recycled to prepare a polyanion-type positive electrode material, which can be applied to a secondary battery, so that the resources in the waste battery can be reused , Conducive to resource conservation and environmental protection.
  • the first aspect of the present application provides a method for preparing a polyanionic positive electrode material.
  • a method for preparing a polyanionic positive electrode material comprising the following steps:
  • step (2) remove the copper in the leaching solution prepared in step (1), then adjust the content of phosphorus, iron and aluminum elements in the leaching solution to obtain the adjusting solution;
  • step (3) After adding an oxidizing agent to the adjustment solution prepared in step (2), then adjust the pH value to 1.8-2.8, and then separate solid-liquid to obtain a precipitate;
  • step (3) (4) calcining the precipitate prepared in step (3), and then soaking it in alkaline solution; then mixing the soaked precipitate with a sodium source and a carbon source, drying, and sintering to obtain the polyanion positive electrode material.
  • the acid solution is selected from at least one of sulfuric acid, hydrochloric acid or phosphoric acid.
  • the mass concentration of the acid solution is 10%-50%; further preferably, the mass concentration of the acid solution is 20%-40%.
  • the solid-to-liquid ratio of the acid solution to the battery powder is 1-10mL: 1g; further preferably, in step (1), the acid solution and the battery powder The solid-to-liquid ratio is 2-5mL: 1g.
  • the soaking temperature is 30-100°C; the soaking time is 1-10 hours; further preferably, in step (1), the soaking temperature is 40 -90°C; the soaking time is 2-8 hours.
  • the method for removing copper in the leaching solution prepared in step (1) is to add a copper removing agent to the leaching solution.
  • the copper removing agent is iron powder and/or aluminum powder.
  • step (2) the contents of phosphorus, iron and aluminum elements in the leaching solution are adjusted by adding aluminum salts, phosphates, and soluble ferric salts.
  • the oxidant is selected from at least one of hydrogen peroxide, oxygen, chlorine, sodium chlorate or hypochlorous acid.
  • the process of adjusting the pH value is to adjust the pH value to 2.0-2.5 at a temperature of 75-95°C. If the pH value is too low, complete precipitation will not occur; and if the pH value is too high, hydroxides will be formed.
  • a separation liquid is also obtained through the solid-liquid separation, and the separation liquid is a lithium-containing solution.
  • the separation liquid can be further purified to prepare lithium salt, so that lithium can be recovered and the problem of shortage of lithium resources can be solved.
  • the calcination temperature is 500-800° C.
  • the calcination time is 3-6 hours.
  • the lye is sodium hydroxide solution or potassium hydroxide solution.
  • the concentration of the sodium hydroxide solution is 0.05-4.0 mol/L; further preferably, the concentration of the sodium hydroxide solution is 0.1-1.0 mol/L.
  • concentration of the sodium hydroxide solution is 0.05-4.0 mol/L; further preferably, the concentration of the sodium hydroxide solution is 0.1-1.0 mol/L.
  • the precipitate is treated with a sodium hydroxide solution in which aluminum phosphate is dissolved to form sodium tetrahydroxyaluminate and sodium phosphate. If the concentration of sodium hydroxide is too low, the reaction will be slow and the efficiency will be low; if the concentration is too high, it will easily cause ferric phosphate to transform into ferric hydroxide.
  • the soaking time is 0.1-3.0h; further preferably, in step (4), the soaking time is 0.1-2.0h.
  • step (4) water is also added during the mixing process.
  • the sodium source is selected from at least one of sodium carbonate, sodium acetate or sodium oxalate.
  • the carbon source is at least one selected from glucose, citric acid, oxalic acid, lactose or galactose.
  • the ratio of the amount of sodium in the sodium source to the amount of phosphorus in the precipitate is (0.1-1.5): 1; further preferably, in step (4) ), the ratio of the amount of sodium in the sodium source to the amount of phosphorus in the precipitate is (0.3-1):1.
  • the amount of the carbon source and the amount of phosphorus in the precipitate is (0.5-3): 1; further preferably, in step (4), the carbon
  • the ratio of the amount of matter of the source to the phosphorus element in the sediment is 1-2:1.
  • the sintering process is sintering at 500-700° C. for 5-10 hours under a protective atmosphere; further preferably, in step (4), the sintering process is Under protective atmosphere, sinter at 550-650°C for 6-10 hours.
  • the polyanion positive electrode material prepared by the preparation method is a polyanionic sodium ion battery positive electrode material.
  • the second aspect of the present application provides an application of a preparation method of a polyanionic positive electrode material.
  • the battery is a sodium ion battery.
  • the embodiment of the present application recycles waste lithium iron phosphate batteries to prepare polyanion positive electrode materials, which can be applied to secondary batteries, so that the resources in waste batteries can be reused, which is conducive to resource conservation and environmental protection .
  • the preparation method of the polyanionic positive electrode material provided by the embodiment of the present application is different from other battery recovery processes and positive electrode material preparation methods.
  • the leachate obtained by acid hydrolysis there is no need to remove aluminum first, but it is valuable use.
  • Fig. 1 is the process flow diagram that embodiment 1 makes polyanionic positive electrode material
  • FIG. 2 is an SEM image of the polyanion positive electrode material prepared in Example 1.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels, or can be obtained by related known methods.
  • a preparation method of a polyanion positive electrode material is prepared from waste lithium batteries, the process flow chart is shown in Figure 1, comprising the following steps:
  • the cathode material is mainly used in sodium-ion batteries.
  • a preparation method of a polyanionic positive electrode material comprising the steps of:
  • a preparation method of a polyanionic positive electrode material comprising the steps of:
  • a preparation method of a polyanionic positive electrode material comprising the steps of:
  • a preparation method of a polyanionic positive electrode material comprising the steps of:
  • Comparative examples 1-5 all adopt conventional solid-phase method to prepare sodium iron phosphate polyanionic positive electrode material, respectively correspond to embodiment 1-5 successively, according to the sodium, iron, vanadium,
  • the molar ratio of phosphorus and carbon source is to take carbon source, sodium source, phosphorus source, and iron source, after mixing, calcining under the same conditions as the corresponding examples, to obtain the sodium iron phosphate polyanion positive electrode material with the same chemical formula.
  • the battery assembled with the polyanionic positive electrode material prepared by the present application has good performance, which is obviously better than the sodium iron phosphate polyanionic positive electrode material prepared by the solid phase method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请属于储能材料技术领域,公开了一种聚阴离子型正极材料的制备方法。该制备方法包括将磷酸铁锂电池破碎,酸液浸泡,分离得到浸出液;然后除去浸出液中的铜和调节磷、铁和铝元素的含量;再经氧化后,调节pH值为1.8-2.8进行共沉淀;最后将沉淀物煅烧和采用碱液浸泡去铝后,与钠源、碳源混合烧结,制得聚阴离子型正极材料。该制备方法通过对废旧磷酸铁锂电池进行回收,制备出聚阴离子型正极材料,其能够应用于二次钠离子电池,使得废旧电池中的资源得到再利用,有利于节约资源和环境保护。该方法有利于钠离子及碳元素的嵌入,提高材料的比容量及导电性。

Description

一种聚阴离子型正极材料的制备方法 技术领域
本申请实施例涉及储能材料技术领域,例如一种聚阴离子型正极材料的制备方法。
背景技术
随着电动汽车的兴起,动力电池的需求越来越大。其中,磷酸铁锂电池是重要的动力电池之一。但是随着电动汽车的使用和消耗,退役电池的量也会日益增加,尤其是在多年后将面临大量磷酸铁锂电池的退役。若大量退役动力磷酸铁锂电池无法得到妥善回收和利用,不仅浪费资源,还将带来环境污染等问题。因此,如何更好地处理退役的磷酸铁锂电池成为行业亟需解决的问题。
地球上锂资源非常有限,随着锂资源愈发紧张,储量丰富的钠进入了人们的视野,钠与锂位于同一主族,具有相似的化学性质,且钠元素在地壳中的含量远远高于锂,所以,钠离子电池是一种非常有前景的二次电池。目前,常见的钠离子电池正极材料主要包括有层状过渡金属氧化物、普鲁士蓝类似物、聚阴离子化合物、隧道型氧化物等。聚阴离子型化合物主要有过渡金属(焦)磷酸盐,氟磷酸盐等,其中,聚阴离子型磷酸盐材料由于其结构稳定和较高的工作电压,可能成为理想的钠离子电池正极材料之一。将废旧锂电池回收后制备钠离子电池,是一个极具发展前景的方向。
因此,亟需提供一种回收方法,能够回收利用磷酸铁锂电池,将其制备成性能优异的钠离子电池正极材料。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提出一种聚阴离子型正极材料的制备方法,对废旧磷酸铁锂电池进行回收,制备出聚阴离子型正极材料,其能够应用于二次电池,使得废旧电池中的资源得到再利用,有利于节约资源和环境保护。
本申请第一方面提供了一种聚阴离子型正极材料的制备方法。
具体的,一种聚阴离子型正极材料的制备方法,包括以下步骤:
(1)将磷酸铁锂电池破碎成电池粉,加入酸液浸泡,然后固液分离得到浸出液;
(2)除去步骤(1)制备的浸出液中的铜,然后调节所述浸出液中磷、铁和铝元素的含量,得到调整液;
(3)向步骤(2)制备的调整液中加入氧化剂后,然后调节pH值为1.8-2.8,再固液分离得到沉淀物;
(4)煅烧步骤(3)制备的沉淀物,然后采用碱液浸泡;再将浸泡后的沉淀物与钠源、碳源混合,干燥,烧结,制得所述聚阴离子型正极材料。
优选的,在步骤(1)中,所述酸液选自硫酸、盐酸或磷酸中的至少一种。
优选的,在步骤(1)中,所述酸液的质量浓度为10%-50%;进一步优选的,所述酸液的质量浓度为20%-40%。
优选的,在步骤(1)中,所述酸液与所述电池粉的固液比为1-10mL:1g;进一步优选的,在步骤(1)中,所述酸液与所述电池粉的固液比为2-5mL:1g。
优选的,在步骤(1)中,所述浸泡的温度为30-100℃;所述浸泡的时间为1-10小时;进一步优选的,在步骤(1)中,所述浸泡的温度为40-90℃;所述浸泡的时间为2-8小时。
优选的,在步骤(2)中,所述除去步骤(1)制备的浸出液中的铜的方法为向所述浸出液中加入除铜剂。
优选的,所述除铜剂为铁粉和/或铝粉。
优选的,在步骤(2)中,通过加入铝盐、磷酸盐、可溶性的三价铁盐调节所述浸出液中磷、铁和铝元素的含量。
优选的,在步骤(2)所述调整液中铁元素、铝元素与磷元素的物质的量的比为x:y:(1.0-1.1),其中x+y=1,x>0,y>0。
优选的,在步骤(3)中,所述氧化剂选自过氧化氢、氧气、氯气、氯酸钠或次氯酸中的至少一种。
优选的,在步骤(3)中,所述调节pH值的过程为在75-95℃的温度下调节pH值为2.0-2.5。若pH值过低,将无法完全沉淀;而pH值过高,则会有氢氧化物生成。
优选的,在步骤(3)中,经过所述固液分离还得到分离液,所述分离液为含锂溶液。所述分离液可进一步提纯,制备锂盐,使锂得到回收,解决锂资源 紧张的问题。
优选的,在步骤(4)中,所述煅烧的温度为500-800℃,所述煅烧的时间为3-6h。
优选的,在步骤(4)中,所述碱液为氢氧化钠溶液或氢氧化钾溶液。
优选的,所述氢氧化钠溶液的浓度为0.05-4.0mol/L;进一步优选的,所述氢氧化钠溶液的浓度为0.1-1.0mol/L。如选择0.05、0.1、0.15、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.5、2.0、2.5、3.0、4.0mol/L。采用氢氧化钠溶液处理沉淀,其中磷酸铝在氢氧化钠溶液中溶解,生成四羟基合铝酸钠和磷酸钠。若氢氧化钠的浓度太低会导致反应慢,效率低;若浓度过高,则容易导致磷酸铁转型为氢氧化铁。
优选的,在步骤(4)中,所述浸泡的时间为0.1-3.0h;进一步优选的,在步骤(4)中,所述浸泡的时间为0.1-2.0h。
优选的,在步骤(4)中,在所述混合的过程中还加入了水。
优选的,在步骤(4)中,所述钠源选自碳酸钠、醋酸钠或草酸钠中的至少一种。
优选的,在步骤(4)中,所述碳源选自葡萄糖、柠檬酸、草酸、乳糖或半乳糖中的至少一种。
优选的,在步骤(4)中,所述钠源中的钠元素与所述沉淀物中的磷元素的物质的量的比为(0.1-1.5):1;进一步优选的,在步骤(4)中,所述钠源中的钠元素与所述沉淀物中的磷元素的物质的量的比为(0.3-1):1。
优选的,在步骤(4)中,所述碳源与所述沉淀物中磷元素的物质的量的为(0.5-3):1;进一步优选的,在步骤(4)中,所述碳源与沉淀物中磷元素的物质的量的比为1-2:1。
优选的,在步骤(4)中,所述烧结的过程为在保护气氛下,于500-700℃下烧结5-10小时;进一步优选的,在步骤(4)中,所述烧结的过程为在保护气氛下,于550-650℃下烧结6-10小时。
优选的,所述制备方法所制备的聚阴离子型正极材料为聚阴离子型钠离子电池正极材料。
本申请第二方面提供了一种聚阴离子型正极材料的制备方法的应用。
具体的,一种聚阴离子型正极材料的制备方法在制备电池中的应用。
优选的,所述电池为钠离子电池。
相对于相关技术,本申请实施例的有益效果如下:
(1)本申请实施例通过对废旧磷酸铁锂电池进行回收,制备出聚阴离子型正极材料,其能够应用于二次电池,使得废旧电池中的资源得到再利用,有利于节约资源和环境保护。
(2)本申请实施例提供的聚阴离子型正极材料的制备方法,通过对废旧磷酸铁锂电池破碎、酸解、去铜、调节元素含量、氧化后;调节pH值至1.8-2.8,在使铁生成磷酸铁的同时,铝以磷酸铝的形式与磷酸铁进行共沉淀,沉淀物的晶体结构中铁铝实现均匀共混;然后将沉淀物煅烧,采用碱液(氢氧化钠)浸泡去铝,使晶体中的铝以四羟基合铝酸钠的形式溶解于溶液中,从而得到原子空位,利于后续与钠源、碳源烧结时,钠离子及碳元素的嵌入,进一步提高材料的比容量及导电性,从而解决了钠离子半径较大,制备正极材料时较难脱嵌的问题。
(3)本申请实施例提供的聚阴离子型正极材料的制备方法不同于其他电池回收工艺和正极材料制备方法,在将酸解得到的浸出液中,无需先除去铝,而是将其进行有价值的利用。先将铝与铁共沉混匀,再除去铝得到原子空位,利于后续钠离子及碳元素的嵌入。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为实施例1制得聚阴离子型正极材料的工艺流程图;
图2为实施例1制得的聚阴离子型正极材料的SEM图。
具体实施方式
为了让本领域技术人员更加清楚明白本申请所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本申请要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途 径得到,或者可以通过相关已知方法得到。
实施例1
一种聚阴离子型正极材料的制备方法,聚阴离子型正极材料由废旧锂电池制备得到,其工艺流程图如图1所示,包括如下步骤:
(1)将磷酸铁锂电池破碎后收集电池粉,然后按照液固比为2mL:1g,向收集的电池粉中加入质量浓度为40%的硫酸溶液,浸泡8小时,浸泡时控制温度为40℃;待电池粉与硫酸溶液反应结束后,过滤,固液分离得到浸出液和浸出渣;
(2)向浸出液中加入铁粉,过滤后得到除铜后液;然后检测除铜后液中磷、铁、铝元素的含量,并加入可溶性的三价铁盐、铝盐、磷酸盐调节至铁、铝和磷的物质的量的比为0.95:0.05:(1.0-1.1),得到调整液;
(3)向调整液中加入过氧化氢,并控制温度75-95℃,缓慢加入氢氧化钠溶液调节pH值至2.3,产生沉淀;然后将沉淀过滤,固液分离后得到沉淀物;
(4)将沉淀物在550℃下煅烧6h,再置于浓度为0.1mol/L的氢氧化钠溶液中浸泡2.0h;然后按照葡萄糖、碳酸钠与沉淀物中的磷元素的物质的量的比为1:0.5:1,将浸泡后的沉淀物与碳酸钠、葡萄糖加入去离子水中,在混合搅拌缸里面充分混合、搅拌,再经喷雾干燥后在氮气气氛、550℃下烧结10小时,粉碎,即得化学式为NaFePO 4/C聚阴离子型正极材料。实施例1制得的聚阴离子型正极材料的SEM图如图2所示。
该正极材料主要用于钠离子电池。
实施例2
一种聚阴离子型正极材料的制备方法,包括如下步骤:
(1)将磷酸铁锂电池破碎后收集电池粉,然后按照液固比为3mL:1g,向收集的电池粉中加入质量浓度为25%的硫酸溶液,浸泡6小时,浸泡时控制温度为50℃;待电池粉与硫酸溶液反应结束后,过滤,固液分离得到浸出液和浸出渣;
(2)向浸出液中加入铁粉,过滤后得到除铜后液;然后检测除铜后液中磷、铁、铝元素的含量,并加入可溶性的三价铁盐、铝盐、磷酸盐调节至铁、铝和磷的物质的量的比为0.90:0.1:1.0,得到调整液;
(3)向调整液中加入氯酸钠,并控制温度75-95℃,缓慢加入氢氧化钠溶 液调节pH值至2.5,产生沉淀;然后将沉淀过滤,固液分离后得到沉淀物;
(4)将沉淀物在680℃下煅烧5h,再置于浓度为0.5mol/L的氢氧化钠溶液中浸泡1.0h;然后按照葡萄糖、醋酸钠与沉淀物中的磷元素的物质的量的比为1:1:1,将浸泡后的沉淀物与醋酸钠、葡萄糖加入去离子水中,在混合搅拌缸里面充分混合、搅拌,再经喷雾干燥后在惰性气氛、580℃下烧结9小时,粉碎,即得化学式为NaFePO 4/C聚阴离子型正极材料。该正极材料主要用于钠离子电池。
实施例3
一种聚阴离子型正极材料的制备方法,包括如下步骤:
(1)将磷酸铁锂电池破碎后收集电池粉,然后按照液固比为5mL:1g,向收集的电池粉中加入质量浓度为20%的硫酸溶液,浸泡2小时,浸泡时控制温度为90℃;待电池粉与硫酸溶液反应结束后,过滤,固液分离得到浸出液和浸出渣;
(2)向浸出液中加入铁粉,过滤后得到除铜后液;然后检测除铜后液中磷、铁、铝元素的含量,并加入可溶性的三价铁盐、铝盐、磷酸盐调节至铁、铝和磷的物质的量的比为0.93:0.07:1.0,得到调整液;
(3)向调整液中加入次氯酸,并控制温度75-95℃,缓慢加入氢氧化钠溶液调节pH值至2.2,产生沉淀;然后将沉淀过滤,固液分离后得到沉淀物;
(4)将沉淀物在800℃下煅烧3h,再置于浓度为1.0mol/L的氢氧化钠溶液中浸泡0.1h;然后按照草酸、草酸钠与沉淀物中的磷元素的物质的量的比为1:0.5:1,将浸泡后的沉淀物与草酸、草酸钠加入去离子水中,在混合搅拌缸里面充分混合、搅拌,再经喷雾干燥后在惰性气氛、650℃下烧结6小时,粉碎,即得化学式为NaFePO 4/C聚阴离子型正极材料。该正极材料主要用于钠离子电池。
实施例4
一种聚阴离子型正极材料的制备方法,包括如下步骤:
(1)将磷酸铁锂电池破碎后收集电池粉,然后按照液固比为3mL:1g,向收集的电池粉中加入质量浓度为30%的硫酸溶液,浸泡2小时,浸泡时控制温度为90℃;待电池粉与硫酸溶液反应结束后,过滤,固液分离得到浸出液和浸出渣;
(2)向浸出液中加入铁粉,过滤后得到除铜后液;然后检测除铜后液中磷、 铁、铝元素的含量,并加入可溶性的三价铁盐、铝盐、磷酸盐调节至铁、铝和磷的物质的量的比为0.96:0.04:1.1,得到调整液;
(3)向调整液中加入氯气,并控制温度75-95℃,缓慢加入氢氧化钠溶液调节pH值至2.3,产生沉淀;然后将沉淀过滤,固液分离后得到沉淀物;
(4)将沉淀物在600℃下煅烧5h,再置于浓度为0.2mol/L的氢氧化钠溶液中浸泡0.1h;然后按照葡萄糖、醋酸钠与沉淀物中的磷元素的物质的量的比为1:0.7:1,将浸泡后的沉淀物与葡萄糖、醋酸钠加入去离子水中,在混合搅拌缸里面充分混合、搅拌,再经喷雾干燥后在惰性气氛、650℃下烧结7小时,粉碎,即得化学式为Na 0.7FePO 4/C聚阴离子型正极材料。该正极材料主要用于钠离子电池。
实施例5
一种聚阴离子型正极材料的制备方法,包括如下步骤:
(1)将磷酸铁锂电池破碎后收集电池粉,然后按照液固比为4mL:1g,向收集的电池粉中加入质量浓度为20%的硫酸溶液,浸泡4小时,浸泡时控制温度为60℃;待电池粉与硫酸溶液反应结束后,过滤,固液分离得到浸出液和浸出渣;
(2)向浸出液中加入铁粉,过滤后得到除铜后液;然后检测除铜后液中磷、铁、铝元素的含量,并加入可溶性的三价铁盐、铝盐、磷酸盐调节至铁、铝和磷的物质的量的比为0.98:0.02:1.1,得到调整液;
(3)向调整液中加入次氯酸,并控制温度75-95℃,缓慢加入氢氧化钠溶液调节pH值至2.5,产生沉淀;然后将沉淀过滤,固液分离后得到沉淀物;
(4)将沉淀物在550℃下煅烧6h,再置于浓度为0.1mol/L的氢氧化钠溶液中浸泡0.1h;然后按照乳酸、碳酸钠与沉淀物中的磷元素的物质的量的比为1:0.33:1,将浸泡后的沉淀物与乳酸、碳酸钠加入去离子水中,在混合搅拌缸里面充分混合、搅拌,再经喷雾干燥后在惰性气氛、650℃下烧结10小时,粉碎,即得化学式为Na 0.66FePO 4/C聚阴离子型正极材料。该正极材料主要用于钠离子电池。
对比例1-5
对比例1-5全部采用常规的固相法制备磷酸铁钠聚阴离子型正极材料,分别依次对应实施例1-5,分别按照实施例1-5中所得磷酸铁钠的钠、铁、钒、磷以 及碳源的摩尔比,取碳源、钠源、磷源、铁源,混合后,在与对应实施例相同条件下煅烧,得到相同化学式的磷酸铁钠聚阴离子型正极材料。
产品效果测试
分别取实施例1-5和对比例1-5制得的磷酸铁钠聚阴离子型正极材料,以N-甲基吡咯烷酮为溶剂,按照质量比8︰1︰1的比例将磷酸铁钠聚阴离子型正极材料与乙炔黑、PVDF混合均匀,涂覆于铝箔上,经60-80℃鼓风干燥8h后,于100-120℃真空干燥12h。制得磷酸铁钠正极极片。在氩气保护的手套箱中,以金属钠片作为对电极负极,1mol/L的NaPF 6为电解液,装配制成CR2032扣式电池。将各CR2032扣式电池在25℃下测试倍率性能,按(1C=155mAh g -1)设置倍率,结果如表1所示。
表1
  1C放电容量mAh g -1 100次循环容量保持率
实施例1 63 96.3%
对比例1 42 85.6%
实施例2 62 96.8%
对比例2 42 85.6%
实施例3 63 96.6%
对比例3 42 85.6%
实施例4 56 97.2%
对比例4 36 88.3%
实施例5 55 97.1%
对比例5 35 88.6%
由表1可知,利用本申请所制备的聚阴离子型正极材料组装电池,得到的电池具有良好的性能,明显优于采用固相法制备的磷酸铁钠聚阴离子型正极材料。

Claims (10)

  1. 一种聚阴离子型正极材料的制备方法,其包括以下步骤:
    (1)将磷酸铁锂电池破碎成电池粉,加入酸液浸泡,然后固液分离得到浸出液;
    (2)除去步骤(1)制备的浸出液中的铜,然后调节所述浸出液中磷、铁和铝元素的含量,得到调整液;
    (3)向步骤(2)制备的调整液中加入氧化剂,然后调节pH值为1.8-2.8,再固液分离得到沉淀物;
    (4)煅烧步骤(3)制备的沉淀物,然后采用碱液浸泡;再将浸泡后的沉淀物与钠源、碳源混合,干燥,烧结,制得所述聚阴离子型正极材料。
  2. 根据权利要求1所述的制备方法,其中,在步骤(2)中,所述除去步骤(1)制备的浸出液中的铜的方法为向所述浸出液中加入除铜剂;优选的,所述除铜剂为铁粉和/或铝粉。
  3. 根据权利要求1所述的制备方法,其中,在步骤(2)所述调整液中铁元素、铝元素与磷元素的物质的量的比为x:y:(1.0-1.1),其中x+y=1,x>0,y>0。
  4. 根据权利要求1所述的制备方法,其中,在步骤(3)中,所述调节pH值的过程为在75-95℃的温度下调节pH值至2.0-2.5。
  5. 根据权利要求1-4中任一项所述的制备方法,其中,在步骤(4)中,所述煅烧的温度为500-800℃,所述煅烧的时间为3-6h。
  6. 根据权利要求1-4中任一项所述的制备方法,其中,在步骤(4)中,所述碱液为氢氧化钠溶液和/氢氧化钾;优选的,所述氢氧化钠溶液的浓度为0.05-4.0mol/L。
  7. 根据权利要求1-4中任一项所述的制备方法,其中,在步骤(4)中,所述浸泡的时间为0.1-3.0h。
  8. 根据权利要求1所述的制备方法,其中,在步骤(4)中,所述钠源中的钠元素与所述沉淀物中的磷元素的物质的量的比为(0.1-1.5):1。
  9. 根据权利要求1所述的制备方法,其中,在步骤(4)中,所述碳源与所述沉淀物中磷元素的物质的量的比为(0.5-3):1。
  10. 根据权利要求8所述的制备方法,其中,在步骤(4)中,所述烧结的过程为在保护气氛下,于500-700℃下烧结5-10小时。
PCT/CN2022/135993 2022-02-18 2022-12-01 一种聚阴离子型正极材料的制备方法 WO2023155544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210154339.1A CN114744165A (zh) 2022-02-18 2022-02-18 一种聚阴离子型正极材料的制备方法
CN202210154339.1 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155544A1 true WO2023155544A1 (zh) 2023-08-24

Family

ID=82274415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135993 WO2023155544A1 (zh) 2022-02-18 2022-12-01 一种聚阴离子型正极材料的制备方法

Country Status (2)

Country Link
CN (1) CN114744165A (zh)
WO (1) WO2023155544A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744165A (zh) * 2022-02-18 2022-07-12 广东邦普循环科技有限公司 一种聚阴离子型正极材料的制备方法
CN116495716A (zh) * 2023-06-26 2023-07-28 南昌大学 利用废旧磷酸铁锂制备钠离子电池正极材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134773A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法
CN113285135A (zh) * 2021-05-07 2021-08-20 宁夏百川新材料有限公司 一种废旧磷酸铁锂电池多组分回收利用的方法
CN113735087A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种废旧磷酸铁锂电池正极物料回收的方法
CN113942987A (zh) * 2021-10-25 2022-01-18 骆驼集团资源循环襄阳有限公司 一种制备磷酸铁前驱体及磷酸铁锂正极材料的方法
CN114744165A (zh) * 2022-02-18 2022-07-12 广东邦普循环科技有限公司 一种聚阴离子型正极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134773A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法
CN113285135A (zh) * 2021-05-07 2021-08-20 宁夏百川新材料有限公司 一种废旧磷酸铁锂电池多组分回收利用的方法
CN113735087A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种废旧磷酸铁锂电池正极物料回收的方法
CN113942987A (zh) * 2021-10-25 2022-01-18 骆驼集团资源循环襄阳有限公司 一种制备磷酸铁前驱体及磷酸铁锂正极材料的方法
CN114744165A (zh) * 2022-02-18 2022-07-12 广东邦普循环科技有限公司 一种聚阴离子型正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUCCIARDI EMANUELE, GALCERAN MONTSERRAT, BUSTINZA AINHOA, BEKAERT EMILIE, CASAS-CABANAS MONTSE: "Sustainable paths to a circular economy: reusing aged Li-ion FePO 4 cathodes within Na-ion cells", JOURNAL OF PHYSICS: MATERIALS, vol. 4, no. 3, 1 July 2021 (2021-07-01), pages 034002, XP093085277, DOI: 10.1088/2515-7639/abf08f *

Also Published As

Publication number Publication date
CN114744165A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN108400399B (zh) 一种废旧锰酸锂电池制备磷酸锰锂/碳正极材料的方法
WO2023155544A1 (zh) 一种聚阴离子型正极材料的制备方法
CN102983326B (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
US20230357050A1 (en) Regeneration Method of Waste Ternary Cathode Material and Application Thereof
CN112490527B (zh) 锂离子电池正极材料再生方法、正极材料和锂离子电池
WO2023155539A1 (zh) 一种磷酸钒铁钠材料的制备方法及其应用
CN107240692A (zh) 一种球形掺杂锰酸锂的制备方法
WO2023087800A1 (zh) 一种从废旧磷酸铁锂电池中回收制备正极材料的方法
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
CN112142030A (zh) 一种低成本低温型磷酸铁锂的制备方法
WO2023236511A1 (zh) 一种磷化渣制备磷酸锰铁锂正极材料的方法
CN103715422B (zh) 电解法制备锂离子电池的高镍系正极材料的方法
CN113764762A (zh) 用废旧锂离子电池合成高性能锂离子电池正极材料的方法
CN115472948A (zh) 一种利用废旧锰酸锂再生钠电正极材料的方法
CN113735196A (zh) 废旧三元前驱体的回收利用方法及回收得到的三元正极材料
CN109037669A (zh) 一种改性镍钴铝酸锂正极材料及其制备方法和应用
CN115744857B (zh) 废旧磷酸铁锂电池定向循环制取磷酸铁锂正极材料的方法
WO2024021233A1 (zh) 一种含锂废水综合回收制取磷酸铁锂的方法及应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN114142010B (zh) 氧化镁、氟化铈复合包覆的锂离子电池正极材料及其制备方法
CN115995539A (zh) 快离子导体包覆磷酸铁锂正极材料及其制备方法和应用
CN108110252A (zh) 一种耐高温的锰酸锂复合正极材料及其合成方法
CN114566728A (zh) 一种无钴正极材料的回收方法
CN113381089B (zh) 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926848

Country of ref document: EP

Kind code of ref document: A1