WO2024021233A1 - 一种含锂废水综合回收制取磷酸铁锂的方法及应用 - Google Patents

一种含锂废水综合回收制取磷酸铁锂的方法及应用 Download PDF

Info

Publication number
WO2024021233A1
WO2024021233A1 PCT/CN2022/117482 CN2022117482W WO2024021233A1 WO 2024021233 A1 WO2024021233 A1 WO 2024021233A1 CN 2022117482 W CN2022117482 W CN 2022117482W WO 2024021233 A1 WO2024021233 A1 WO 2024021233A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
filtrate
containing wastewater
solid
iron phosphate
Prior art date
Application number
PCT/CN2022/117482
Other languages
English (en)
French (fr)
Inventor
余海军
王涛
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024021233A1 publication Critical patent/WO2024021233A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/20Magnesium hydroxide by precipitation from solutions of magnesium salts with ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/28Fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the invention belongs to the technical field of wastewater treatment, and particularly relates to a method and application for comprehensively recovering lithium-containing wastewater to produce lithium iron phosphate.
  • Lithium-ion batteries have the advantages of high voltage, good cycleability, high energy density, small self-discharge, and no memory effect. They have been widely used in the electronics and wireless communication industries, and are also the first choice for light and high-capacity batteries for electric vehicles in the future. As various types of electronic products have gradually become popular and maintained a rapid replacement rate, the demand for lithium-ion batteries is growing day by day, and the amount of used lithium-ion batteries and lithium-ion battery production waste is also increasing day by day. These wastes containing valuable metals belong to Hazardous waste, resource recycling and reuse is the best way to solve this problem.
  • the raffinate contains a large amount of lithium, which needs to be removed separately, and sodium carbonate is commonly used to precipitate lithium. Since the solubility product constant of lithium carbonate is 8.15 ⁇ 10 -4 , the Li recovery rate is low, and part of the lithium in the wastewater is not recovered. In addition, wastewater also contains some fluoride ions and residual transition metal ions.
  • the method for recovering lithium from wastewater is mainly to recover lithium in the form of lithium carbonate.
  • the solubility of lithium carbonate in water is inversely proportional to temperature.
  • the solubility of lithium carbonate is greater at 20°C. 1.33g of lithium carbonate can be dissolved per 100g of water. Therefore, this method can only be used to heat low-concentration lithium-containing wastewater to Only by precipitating lithium carbonate at 90°C can a higher recovery efficiency be achieved, which usually requires a large amount of energy consumption.
  • related technologies can also recycle lithium, alkali and other resources in lithium-containing wastewater, the overall process is long and the recovery equipment occupies a large area. At the same time, it does not reduce and concentrate the solution before evaporation, which consumes a lot of energy and does not meet the requirements of energy conservation and emission reduction.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a method and application for comprehensive recovery of lithium-containing wastewater to produce lithium iron phosphate. This method can recover lithium in lithium-containing wastewater to the greatest extent and prepare high-value add-ons.
  • a method for comprehensively recycling lithium-containing wastewater to produce lithium iron phosphate including the following steps:
  • step (3) Separate the solid liquid from the solid slag obtained in step (1) after ammonia leaching to obtain filtrate D, mix the filtrate D with the lithium-containing phosphorus iron slag obtained in step (2), and add a lithium source After mixing with the phosphorus source, a mixture is obtained, which is subjected to a hydrothermal reaction, dried, and sintered to obtain a finished lithium iron phosphate product.
  • the lithium content in the lithium-containing wastewater in step (1) is less than 8g/L.
  • the magnesium ion content in the lithium-containing wastewater is 0.03-0.15 mol/L.
  • the magnesium ion content in the lithium-containing wastewater is 0.05-0.10 mol/L.
  • the soluble magnesium salt is at least one of magnesium sulfate, magnesium chloride or magnesium nitrate, more preferably magnesium sulfate.
  • adjusting the pH to alkaline in step (1) means adjusting the pH to 10-13.
  • adjusting the pH to alkaline in step (1) means adjusting the pH to 11.5-12.
  • the phosphorus content in the filtrate B is 0.01-0.50 mol/L.
  • step (2) after adding soluble phosphate to the filtrate B, the phosphorus content in the filtrate B is 0.01-0.20 mol/L.
  • the soluble phosphate is at least one of sodium phosphate or potassium phosphate, more preferably sodium phosphate.
  • adjusting the pH to acidic means adjusting the pH to 3-5.5.
  • adjusting the pH to acidic means adjusting the pH to 3-4.
  • step (2) the molar ratio of Fe 2+ and H 2 O 2 added is (1-3):1.
  • step (2) the molar ratio of Fe 2+ and H 2 O 2 added is (1-1.5):1.
  • the phosphorus content in filtrate B is less than 10 -5 mol/L, and the chemical oxygen demand is less than 200 mg/L.
  • the addition amount of the flocculant is not less than 0.005g/L.
  • the added amount of the flocculant is not less than 0.008g/L.
  • the flocculant is a non-ionic polymer flocculant, more preferably polyacrylamide.
  • the filtrate C can be directly discharged after adjusting the pH, or enter the MVR system for evaporation and crystallization to prepare Yuanming powder and pure water.
  • the solid-liquid ratio of the solid residue to ammonia water is 50-500g/L.
  • step (3) when the solid residue is leached with ammonia, the solid-liquid ratio of the solid residue to ammonia water is 50-300g/L.
  • the concentration of ammonia water used in the ammonia leaching of the solid residue is 4-10 mol/L, and the ammonia leaching time is 1-3 hours.
  • step (3) the concentration of ammonia water used in the ammonia leaching of the solid residue is 4-6 mol/L, and the ammonia leaching time is 1-2 hours.
  • the ratio of lithium, phosphorus and iron elements in the mixture is (1.0-1.1): (0.95-1.0): (0.95-1.0).
  • the ratio of lithium, phosphorus and iron elements in the mixture is (1.0-1.05): (0.98-1.0): (0.98-1.0).
  • the lithium source is at least one of lithium carbonate, lithium hydroxide or lithium oxalate.
  • the phosphorus source is at least one of ammonium monohydrogen phosphate, lithium phosphate, ammonium dihydrogen phosphate or phosphoric acid.
  • the temperature of the hydrothermal reaction is 100-200°C and the time is 1-20 h.
  • step (3) the temperature of the hydrothermal reaction is 150-180°C and the time is 3-15h.
  • step (3) the hydrothermal reaction is carried out in a sealed environment.
  • step (3) the drying is heated at 80-100°C until the liquid phase is completely evaporated, and the ammonia water is recovered and returned to the ammonia leaching process for use.
  • step (3) the sintering is performed in an inert atmosphere, the sintering temperature is 300-1000°C, and the sintering time is 5-15 hours.
  • step (3) the sintering is performed in an inert atmosphere, the sintering temperature is 500-850°C, and the sintering time is 8-12 hours.
  • step (3) after sintering, the obtained material is also subjected to crushing, screening and iron removal treatment.
  • a method for comprehensively recovering lithium-containing wastewater to produce lithium iron phosphate includes the following steps:
  • soluble magnesium salts are first used to remove fluoride ions in the wastewater, and then the pH is adjusted to alkaline to remove magnesium ions and nickel-cobalt-manganese transition metals therein, and then By adding excess phosphate, the lithium in the wastewater is further precipitated, reducing the lithium content. Through the Fenton reaction, the chemical oxygen demand of the wastewater is reduced, and the excess phosphate is removed to form iron phosphate precipitation. Finally, After further flocculation and sedimentation by the flocculant, while purifying the wastewater, lithium phosphate, iron phosphate, etc. are separated from the wastewater, and a carbon source is provided for the next step of preparing lithium iron phosphate;
  • the solid slag is leached with ammonia water to dissolve the nickel, cobalt and manganese in it, and then an ammonia-containing nickel-cobalt-manganese solution is obtained and mixed with the lithium-containing iron phosphorus slag.
  • ammonia water is recovered, using nickel, cobalt and manganese as doping elements, and calcined to prepare transition metal-doped lithium iron phosphate finished products, which not only recovers lithium, transition metals, etc. in wastewater, but also further obtains high-added value of lithium iron phosphate cathode material.
  • the mixture is subjected to hydrothermal reaction, dried and sintered: Li 3 PO 4 +3NH 3 ⁇ H 2 O ⁇ 3LiOH+(NH 4 ) 3 PO 4 [Me(NH 3 ) 6 ] 2+ +PO 4 3- ⁇ Me 3 ( PO 4 ) 2 +6NH 3 4LiOH+4FePO 4 +C ⁇ 4LiFePO 4 +CO 2 +2H 2 O.
  • Figure 1 is a schematic flow chart of Embodiment 1 of the present invention.
  • Figure 2 is an SEM image of lithium iron phosphate obtained in Example 1 of the present invention.
  • the water quality of the lithium-containing wastewater used in Examples 1-3 and Comparative Example 1 is as follows: sodium sulfate 105.6g/L, sodium chloride 2.3g/L, and lithium content 5.9 g/L, total nickel, cobalt and manganese content is 5.2mg/L, fluorine content is 185.5mg/L, COD: 17000mg/L.
  • a method for comprehensively recycling lithium-containing wastewater to produce lithium iron phosphate including the following steps:
  • a method for comprehensively recycling lithium-containing wastewater to produce lithium iron phosphate including the following steps:
  • a method for comprehensively recycling lithium-containing wastewater to produce lithium iron phosphate including the following steps:
  • a method for comprehensively recycling lithium-containing wastewater to produce lithium iron phosphate including the following steps:
  • the Li content in the wastewater discharged during the comprehensive recovery of lithium iron phosphate using the method of the present invention for comprehensive recovery of lithium-containing wastewater to produce lithium iron phosphate does not exceed 10.2 mg/L, which is much less than the comparative example.
  • the nickel, cobalt, manganese and iron in the wastewater discharged during the process of comprehensive recovery of lithium iron phosphate are not found. detected, and F does not exceed 7.8mg/L.
  • lithium iron phosphate cathode material obtained in Examples 1-3 and Comparative Example 1 acetylene black as the conductive agent, and PVDF as the binder, mix them in a mass ratio of 8:1:1, and add a certain amount of organic solvent NMP is stirred and then coated on aluminum foil to make a positive electrode sheet.
  • the negative electrode is a metal lithium sheet;
  • the separator is Celgard2400 polypropylene porous membrane;
  • the solvent in the electrolyte is a solution composed of EC, DMC and EMC in a mass ratio of 1:1:1.
  • the solute is LiPF 6 , and the concentration of LiPF 6 is 1.0 mol/L; a 2023 button battery is assembled in the glove box.
  • the charge and discharge cycle performance of the battery was tested, and the discharge specific capacity of 0.2C and 1C was tested in the cut-off voltage range of 2.2-4.3V; the test electrochemical performance results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

本发明公开了一种含锂废水综合回收制取磷酸铁锂的方法,包括以下步骤:(1)向含锂废水中加入可溶性镁盐,固液分离,得到滤液A,加碱后,固液分离得到固体渣和滤液B;(2)向滤液B中加入可溶性磷酸盐后,加酸,进行芬顿反应,絮凝后,固液分离得到含锂磷铁渣和滤液C;(3)将固体渣氨浸后固液分离,得到滤液D,将滤液D与含锂磷铁渣混合,补加锂源和磷源后得到混合料,将混合料进行水热反应,干燥,烧结得到磷酸铁锂成品。该方法能最大程度的回收含锂废水中的锂,并制备高价值的附加品。

Description

一种含锂废水综合回收制取磷酸铁锂的方法及应用 技术领域
本发明属于废水处理技术领域,特别涉及一种含锂废水综合回收制取磷酸铁锂的方法及应用。
背景技术
锂离子电池具有电压高,循环性好,能量密度大,自放电小,无记忆效应等优点,已广泛应用于电子、无线通讯产业,也是未来电动汽车轻型高能力电池的首选电源。由于各类电子产品已经逐渐普及并保持着较快的更新换代速度,锂离子电池的需求日益增长,废旧锂离子电池以及锂离子电池生产废料的数量也是与日俱增,这些含有有价金属的废弃物属于危险废物,资源化回收再利用才是解决这一问题的最佳途径。
目前,针对废旧锂离子电池中有价金属的回收已经做了很多研究,较为传统的回收办法是采用酸浸工艺,即采用硫酸、硝酸、盐酸等酸将电极材料中的有价金属浸出。现有的浸出液净化工艺中,多采用氧化调节pH去除铁铝,然后采用D 2EHPA(二-(2-已基己基)磷酸)萃取Ni、Co、Mn与杂质离子分离,最后,为了将锂回收,在萃余液中加入碳酸盐沉淀锂。萃余液含有大量锂,需单独去除,且常用碳酸钠沉锂,由于碳酸锂溶度积常数为8.15×10 -4,Li回收率低,废水还有一部分锂没有回收。除此之外,废水中还含有一部分氟离子以及残留的过渡金属离子。
相关技术中,针对废水中锂的回收方法,主要是将锂以碳酸锂的方式进行回收。但是,碳酸锂在水中的溶解度与温度呈反比,碳酸锂在20℃时的溶解度较大,每100g水可以溶解碳酸锂1.33g,因此该方法对于低浓度的含锂废水,只能采取加热至90℃使碳酸锂析出,才能获得较高的回收效率,这通常需要消耗大量的能耗。且相关技术中虽然还可以对含锂废水中的锂、碱等资源进行回收利用,但是其整体工艺较长,回收仪器占地面积大。同时,其在蒸发前未对溶液进行减量浓缩,能量消耗较大,不符合节能减排的要求。
综上,需要针对含锂废水开发一种更加合理的回收方法。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种含锂废水综合回收制取磷酸铁锂的方法及应用,该方法能最大程度的回收含锂废水中的锂,并制备高价值的附加品。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种含锂废水综合回收制取磷酸铁锂的方法,包括以下步骤:
(1)向含锂废水中加入可溶性镁盐,固液分离,得到滤液A和氟化镁渣,调节所述滤液A的pH为碱性,固液分离得到固体渣和滤液B;
(2)向所述滤液B中加入可溶性磷酸盐后,调节所述滤液B的pH为酸性,再加入Fe 2+和H 2O 2进行芬顿反应,再加入絮凝剂,固液分离得到含锂磷铁渣和滤液C;
(3)将步骤(1)得到的所述固体渣氨浸后固液分离,得到滤液D,将所述滤液D与步骤(2)得到的所述含锂磷铁渣混合,补加锂源和磷源后得到混合料,将所述混合料进行水热反应,干燥,烧结得到磷酸铁锂成品。
优选的,步骤(1)中向所述含锂废水中锂含量小于8g/L。
优选的,步骤(1)中向所述含锂废水中加入可溶性镁盐后,所述含锂废水中镁离子含量为0.03-0.15mol/L。
进一步优选的,步骤(1)中向所述含锂废水中加入可溶性镁盐后,所述含锂废水中镁离子含量为0.05-0.10mol/L。
优选的,所述可溶性镁盐为硫酸镁、氯化镁或硝酸镁中的至少一种,更优选硫酸镁。
优选的,步骤(1)中所述调节pH为碱性是指调节pH为10-13。
进一步优选的,步骤(1)中所述调节pH为碱性是指调节pH为11.5-12。
优选的,步骤(2)中,向所述滤液B中加入可溶性磷酸盐后,所述滤液B中的磷含量为0.01-0.50mol/L。
进一步优选的,步骤(2)中,向所述滤液B中加入可溶性磷酸盐后,所述滤液B中的磷含量为0.01-0.20mol/L。
优选的,步骤(2)中,所述可溶性磷酸盐为磷酸钠或磷酸钾中的至少一种,更优选磷酸钠。
优选的,步骤(2)中,所述调节pH为酸性是指调节pH为3-5.5。
进一步优选的,步骤(2)中,所述调节pH为酸性是指调节pH为3-4。
优选的,步骤(2)中,加入Fe 2+和H 2O 2的摩尔比为(1-3):1。
进一步优选的,步骤(2)中,加入Fe 2+和H 2O 2的摩尔比为(1-1.5):1。
优选的,步骤(2)中,进行芬顿反应后,所述滤液B中的磷含量低于10 -5mol/L,化学需氧量低于200mg/L。
优选的,步骤(2)中,所述絮凝剂的加入量不低于0.005g/L。
进一步优选的,步骤(2)中,所述絮凝剂的加入量不低于0.008g/L。
优选的,所述絮凝剂为非离子型高分子絮凝剂,更优选聚丙烯酰胺。
优选的,步骤(2)中,所述滤液C可经调控pH后直接排放,或进入MVR系统蒸发结晶,制备元明粉和纯水。
优选的,步骤(3)中,所述固体渣氨浸时,所述固体渣与氨水的固液比为50-500g/L。
进一步优选的,步骤(3)中,所述固体渣氨浸时,所述固体渣与氨水的固液比为50-300g/L。
优选的,步骤(3)中,所述固体渣氨浸时用到的氨水的浓度为4-10mol/L,氨浸的时间为1-3h。
进一步优选的,步骤(3)中,所述固体渣氨浸时用到的氨水的浓度为4-6mol/L,氨浸的时间为1-2h。
优选的,步骤(3)中,所述混合料中锂、磷及铁元素之比为(1.0-1.1):(0.95-1.0):(0.95-1.0)。
进一步优选的,步骤(3)中,所述混合料中锂、磷及铁元素之比为(1.0-1.05):(0.98-1.0):(0.98-1.0)。
优选的,步骤(3)中,所述锂源为碳酸锂、氢氧化锂或草酸锂中的至少一种。
优选的,步骤(3)中,所述磷源为磷酸一氢铵、磷酸锂、磷酸二氢铵或磷酸中的至少一种。
优选的,步骤(3)中,所述水热反应的温度为100-200℃,时间为1-20h。
进一步优选的,步骤(3)中,所述水热反应的温度为150-180℃,时间为3-15h。
优选的,步骤(3)中,所述水热反应是在密封环境下进行。
优选的,步骤(3)中,所述干燥是在80-100℃加热至液相完全蒸发,并回收氨水返回至氨浸环节使用。
优选的,步骤(3)中,所述烧结是于惰性气氛下进行,烧结温度为300-1000℃,时间为5-15h。
进一步优选的,步骤(3)中,所述烧结是于惰性气氛下进行,烧结温度为500-850℃,时间为8-12h。
优选的,步骤(3)中,烧结后还对得到的物料进行了粉碎、过筛及除铁处理。
优选的,一种含锂废水综合回收制取磷酸铁锂的方法,包括如下步骤:
(1)向含锂废水中加入硫酸镁,使废水中镁离子含量为0.05-0.10mol/L;
(2)固液分离,得到氟化镁渣和滤液A;
(3)使用氢氧化钠调节滤液A的pH为11.5-12,固液分离,得到固体渣和滤液B;
(4)向滤液B中加入磷酸钠,使滤液B中的磷含量为0.01-0.20mol/L;
(5)调节滤液B的pH为3-4,加入Fe 2+和H 2O 2,投加的Fe 2+/H 2O 2摩尔比为(1.0-1.5):1,对滤液B进行芬顿反应处理,直至滤液B中的磷含量低于10-5mol/L,COD低于200mg/L,其中COD是指化学需氧量;
(6)向滤液B中加入PAM,PAM的加入量不低于0.008g/L,其中PAM是指聚丙烯酰胺;
(7)固液分离,得到含锂磷铁渣和滤液C,滤液C经调控pH后可直接排放,或进入MVR系统蒸发结晶,制备元明粉和纯水;
(8)将步骤(3)所得固体渣按照固液比50-300g/L加入到4-6mol/L 的氨水中,浸泡1-2h,固液分离,得到氢氧化镁渣和滤液D;
(9)将滤液D与步骤(7)所得含锂磷铁渣混合后,补加锂源和磷源,使混合料中Li:P:Fe=(1.0-1.05):(0.98-1.0):(0.98-1.0);锂源为碳酸锂、氢氧化锂、草酸锂,磷源为磷酸一氢铵、磷酸锂、磷酸二氢铵、磷酸;
(10)将混合料移至反应釜中密封,于150-180℃下水热反应3-15h;
(11)水热反应结束后,打开反应釜密封,继续在80-100℃加热至液相完全蒸发,并回收氨水;
(12)将蒸发残留的固体物料于惰性气氛500-850℃下烧结8-12h,经粉碎、过筛、除铁,即得磷酸铁锂成品。
上述方法在制备磷酸铁锂或锂电池中的应用。
本发明的有益效果是:
1、本发明含锂废水综合回收制取磷酸铁锂的方法中,首先采用可溶性镁盐去除废水中的氟离子,再经调节pH为碱性去除镁离子以及其中的镍钴锰过渡金属,再通过过量磷酸盐的加入,使废水中的锂得到了进一步沉淀,降低了锂含量,通过芬顿反应,降低废水化学需氧量的同时,将多余的磷酸根去除,形成磷酸铁沉淀,最后,经絮凝剂进一步絮凝沉降,净化废水的同时,使磷酸锂、磷酸铁等从废水中脱离,并为下一步制备磷酸铁锂提供了碳源;
2、本发明含锂废水综合回收制取磷酸铁锂的方法中,通过氨水对固体渣进行浸出,使其中的镍钴锰溶解后,得到含氨镍钴锰溶液与含锂磷铁渣混合,通过原料补充,水热反应并蒸发回收氨水,使镍钴锰作为掺杂元素,并煅烧制备掺杂过渡金属的磷酸铁锂成品,不但回收了废水中的锂、过渡金属等,进一步得到高附加值的磷酸铁锂正极材料。
反应原理如下:
向含锂废水中加入可溶性镁盐:Mg 2++2F -→MgF 2↓。
调节滤液A的pH为碱性:Mg 2++2OH -→Mg(OH) 2↓Me 2++2OH -→Me(OH) 2↓(Me为Ni、Co及Mn中的至少一种)。
向滤液B中加入可溶性磷酸盐:3Li ++PO 4 3-→Li 3PO 4↓。
加入Fe 2+和H 2O 2进行芬顿反应:Fe 3++PO 4 3-→FePO 4↓ Fe 3++3OH -→Fe(OH) 3↓。
将固体渣氨浸:Me(OH) 2+6NH 3→[Me(NH 3) 6](OH) 2
将混合料进行水热反应,干燥烧结:Li 3PO 4+3NH 3·H 2O→3LiOH+(NH 4) 3PO 4[Me(NH 3) 6] 2++PO 4 3-→Me 3(PO 4) 2+6NH 34LiOH+4FePO 4+C→4LiFePO 4+CO 2+2H 2O。
附图说明
图1为本发明实施例1的流程示意图;
图2为本发明实施例1得到的磷酸铁锂的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明,其中实施例1-3和对比例1用到的含锂废水的水质如下:硫酸钠105.6g/L,氯化钠2.3g/L,锂含量5.9g/L,镍钴锰总含量5.2mg/L,氟含量185.5mg/L,COD:17000mg/L。
实施例1:
一种含锂废水综合回收制取磷酸铁锂的方法,如图1所示,包括如下步骤:
(1)向含锂废水中加入硫酸镁,使废水中镁离子含量为0.05mol/L;
(2)固液分离,得到氟化镁渣和滤液A;
(3)使用氢氧化钠调节滤液A的pH为11.5,固液分离,得到固体渣和滤液B;
(4)向滤液B中加入磷酸钠,使滤液B中的磷含量为0.20mol/L;
(5)调节滤液B的pH为3.5,并对滤液B进行芬顿反应处理,加入Fe 2+和H 2O 2,投加的Fe 2+/H 2O 2摩尔比为1.5:1,直至滤液B中的磷含量低于10 -5mol/L,COD低于200mg/L;
(6)向滤液B中加入PAM,PAM的加入量为0.008g/L;
(7)固液分离,得到含锂磷铁渣和滤液C,滤液C经调控pH后可直接排放,或进入MVR系统蒸发结晶,制备元明粉和纯水;
(8)将步骤(3)所得固体渣按照固液比50g/L加入到4mol/L的氨水中,浸泡1h,固液分离,得到氢氧化镁渣和滤液D;
(9)将滤液D与步骤(7)所得含锂磷铁渣混合后,补加碳酸锂和磷酸一氢铵,使混合料中Li:P:Fe=1.05:1.0:1.0;
(10)将混合料移至反应釜中密封,于180℃下水热反应3h;
(11)水热反应结束后,打开反应釜密封,继续在100℃加热至液相完全蒸发,并回收氨水;
(12)将蒸发残留的固体物料于惰性气氛850℃下烧结8h,经粉碎、过筛、除铁,即得磷酸铁锂成品,制得的磷酸铁锂成品的SEM图如图2所示。
实施例2:
一种含锂废水综合回收制取磷酸铁锂的方法,包括如下步骤:
(1)向含锂废水中加入硫酸镁,使废水中镁离子含量为0.08mol/L;
(2)固液分离,得到氟化镁渣和滤液A;
(3)使用氢氧化钠调节滤液A的pH为11.8,固液分离,得到固体渣和滤液B;
(4)向滤液B中加入磷酸钠,使滤液B中的磷含量为0.10mol/L;
(5)调节滤液B的pH为3,并对滤液B进行芬顿反应处理,加入Fe 2+和H 2O 2,投加的Fe 2+/H 2O 2摩尔比为1.3:1,直至滤液B中的磷含量低于10 -5mol/L,COD低于200mg/L;
(6)向滤液B中加入PAM,PAM的加入量为0.009g/L;
(7)固液分离,得到含锂磷铁渣和滤液C,滤液C经调控pH后可直接排放,或进入MVR系统蒸发结晶,制备元明粉和纯水;
(8)将步骤(3)所得固体渣按照固液比150g/L加入到5mol/L的氨水中,浸泡1.5h,固液分离,得到氢氧化镁渣和滤液D;
(9)将滤液D与步骤(7)所得含锂磷铁渣混合后,补加氢氧化锂和磷酸二氢铵,使混合料中Li:P:Fe=1.03:0.99:0.99;
(10)将混合料移至反应釜中密封,于170℃下水热反应9h;
(11)水热反应结束后,打开反应釜密封,继续在90℃加热至液相完全蒸发,并回收氨水;
(12)将蒸发残留的固体物料于惰性气氛700℃下烧结10h,经粉碎、 过筛、除铁,即得磷酸铁锂成品。
实施例3:
一种含锂废水综合回收制取磷酸铁锂的方法,包括如下步骤:
(1)向含锂废水中加入硫酸镁,使废水中镁离子含量为0.10mol/L;
(2)固液分离,得到氟化镁渣和滤液A;
(3)使用氢氧化钠调节滤液A的pH为12,固液分离,得到固体渣和滤液B;
(4)向滤液B中加入磷酸钠,使滤液B中的磷含量为0.01mol/L;
(5)调节滤液B的pH为4,并对滤液B进行芬顿反应处理,加入Fe 2+和H 2O 2,投加的Fe 2+/H 2O 2摩尔比为1.0:1,直至滤液B中的磷含量低于10 -5mol/L,COD低于200mg/L;
(6)向滤液B中加入PAM,PAM的加入量为0.01g/L;
(7)固液分离,得到含锂磷铁渣和滤液C,滤液C经调控pH后可直接排放,或进入MVR系统蒸发结晶,制备元明粉和纯水;
(8)将步骤(3)所得固体渣按照固液比300g/L加入到6mol/L的氨水中,浸泡2h,固液分离,得到氢氧化镁渣和滤液D;
(9)将滤液D与步骤(7)所得含锂磷铁渣混合后,补加草酸锂和磷酸,使混合料中Li:P:Fe=1.0:0.98:0.98;
(10)将混合料移至反应釜中密封,于150℃下水热反应15h;
(11)水热反应结束后,打开反应釜密封,继续在80℃加热至液相完全蒸发,并回收氨水;
(12)将蒸发残留的固体物料于惰性气氛500℃下烧结12h,经粉碎、过筛、除铁,即得磷酸铁锂成品。
对比例1:
一种含锂废水综合回收制取磷酸铁锂的方法,包括如下步骤:
(1)向含锂废水中加入碳酸钠,使废水中的碳酸根含量为0.20mol/L,固液分离,得到碳酸盐;
(2)调节废水pH为4,并对废水进行芬顿反应处理,加入Fe 2+和H 2O 2,投加的Fe 2+/H 2O 2摩尔比为1.5:1,加入量与实施例1相同;
(3)向废水中加入PAM,PAM的加入量为0.008g/L;
(4)固液分离,废水铁含量较高、pH为4.6较低无法达标排放,固体进入下一工序;
(5)将得到的固体与碳酸锂、磷酸一氢铵、氢氧化铁混合,混合料中Li:P:Fe=1.05:1.0:1.0;
(6)将混合料研磨2h后,在150℃下干燥4h;
(7)将干燥后的物料在惰性气氛850℃下烧结9h;
(8)经粉碎、过筛、除铁,即得磷酸铁锂成品。
试验例:
1.对实施例1-3及对比例1在综合回收制取磷酸铁锂的过程中排放的废水(滤液C)的水质进行检测,检测结果如表1所示。
表1:废水水质检测结果:
Figure PCTCN2022117482-appb-000001
由表1可知,利用本发明的含锂废水综合回收制取磷酸铁锂的方法在综合回收制取磷酸铁锂的过程中排放的废水中Li的含量不超过10.2mg/L,远小于对比例1中排放的废水中Li的含量,同时利用本发明的含锂废水综合回收制取磷酸铁锂的方法在综合回收制取磷酸铁锂的过程中排放的废水中的镍钴锰及铁均未检出,且F不超过7.8mg/L。
2.以实施例1-3及对比例1得到的磷酸铁锂正极材料,乙炔黑为导电剂,PVDF为粘结剂,按质量比8:1:1进行混合,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片;隔膜为Celgard2400聚丙烯多孔膜;电解液中溶剂为EC、DMC和EMC按质量比1:1:1组成的溶液,溶质为LiPF 6,LiPF 6的浓度为1.0mol/L;在手套箱内组装2023型扣式电池。对电池进行充放电循环性能测试,在截止电压2.2-4.3V范围内,测试0.2C、1C放 电比容量;测试电化学性能结果如表2所示。
表2:电池的电化学性能测试结果:
  0.2C放电容量mAh/g 1C放电容量mAh/g
实施例1 150.2 141.8
实施例2 147.6 140.1
实施例3 149.7 142.2
对比例1 127.2 109.4
由表2可知,利用本发明的含锂废水综合回收制取磷酸铁锂的方法制备得到的磷酸铁锂在组装成电池后,0.2C放电容量能达到147.6mAh/g以上,1C放电容量能达到140.1mAh/g以上,电化学性能优于对比例1含锂废水综合回收制取磷酸铁锂的方法制备得到的磷酸铁锂。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:包括以下步骤:
    (1)向含锂废水中加入可溶性镁盐,固液分离,得到滤液A和氟化镁渣,调节所述滤液A的pH为碱性,固液分离得到固体渣和滤液B;
    (2)向所述滤液B中加入可溶性磷酸盐后,调节所述滤液B的pH为酸性,再加入Fe 2+和H 2O 2进行芬顿反应,再加入絮凝剂,固液分离得到含锂磷铁渣和滤液C;
    (3)将步骤(1)得到的所述固体渣氨浸后固液分离,得到滤液D,将所述滤液D与步骤(2)得到的所述含锂磷铁渣混合,补加锂源和磷源后得到混合料,将所述混合料进行水热反应,干燥,烧结得到磷酸铁锂成品。
  2. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(1)中向所述含锂废水中加入可溶性镁盐后,所述含锂废水中镁离子含量为0.03-0.15mol/L。
  3. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(1)中所述调节pH为碱性是指调节pH为10-13。
  4. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(2)中,向所述滤液B中加入可溶性磷酸盐后,所述滤液B中的磷含量为0.01-0.50mol/L。
  5. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(2)中,所述调节pH为酸性是指调节pH为3-5.5。
  6. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(2)中,加入Fe 2+和H 2O 2的摩尔比为(1-3):1。
  7. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(2)中,进行芬顿反应后,所述滤液B中的磷含量低于10 -5mol/L,化学需氧量低于200mg/L。
  8. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(2)中,所述絮凝剂的加入量不低于0.005g/L。
  9. 根据权利要求1所述的一种含锂废水综合回收制取磷酸铁锂的方法,其特征在于:步骤(3)中,所述固体渣氨浸时,所述固体渣与氨水的固液比为50-500g/L。
  10. 权利要求1-9任一项所述的方法在制备磷酸铁锂或锂电池中的应用。
PCT/CN2022/117482 2022-07-28 2022-09-07 一种含锂废水综合回收制取磷酸铁锂的方法及应用 WO2024021233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210897000.0A CN115321505B (zh) 2022-07-28 2022-07-28 一种含锂废水综合回收制取磷酸铁锂的方法及应用
CN202210897000.0 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024021233A1 true WO2024021233A1 (zh) 2024-02-01

Family

ID=83920107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117482 WO2024021233A1 (zh) 2022-07-28 2022-09-07 一种含锂废水综合回收制取磷酸铁锂的方法及应用

Country Status (2)

Country Link
CN (1) CN115321505B (zh)
WO (1) WO2024021233A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116553510B (zh) * 2023-05-11 2024-05-03 上饶溢骏鑫环境科技有限公司 一种磷酸铁锂废粉的回收再生方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140071541A (ko) * 2012-11-20 2014-06-12 주식회사 엘지화학 리튬 철 인산화물의 제조 폐액으로부터 수산화 리튬 용액을 회수하는 방법 및 이로부터 제조된 수산화 리튬 용액
CN107768641A (zh) * 2017-10-19 2018-03-06 广东电网有限责任公司电力科学研究院 一种磷酸铁锂复合正极材料及其制备方法
CN108193054A (zh) * 2018-03-12 2018-06-22 中国科学院过程工程研究所 一种从含锂废水中提取锂的方法
CN111137869A (zh) * 2019-12-25 2020-05-12 佛山市德方纳米科技有限公司 磷酸铁锂的制备方法
CN111377558A (zh) * 2020-03-17 2020-07-07 航天凯天环保科技股份有限公司 一种同步处理Fenton铁泥并获得FePO4的资源化利用方法
CN111470685A (zh) * 2020-05-06 2020-07-31 中国药科大学 均相芬顿-铁磷沉淀强化絮凝法去除和回收制药废水的磷
CN111498878A (zh) * 2020-05-08 2020-08-07 蒋达金 一种废旧六氟磷酸锂的资源化利用方法
CN111732089A (zh) * 2020-08-27 2020-10-02 湖南长远锂科股份有限公司 一种磷酸铁锂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140071541A (ko) * 2012-11-20 2014-06-12 주식회사 엘지화학 리튬 철 인산화물의 제조 폐액으로부터 수산화 리튬 용액을 회수하는 방법 및 이로부터 제조된 수산화 리튬 용액
CN107768641A (zh) * 2017-10-19 2018-03-06 广东电网有限责任公司电力科学研究院 一种磷酸铁锂复合正极材料及其制备方法
CN108193054A (zh) * 2018-03-12 2018-06-22 中国科学院过程工程研究所 一种从含锂废水中提取锂的方法
CN111137869A (zh) * 2019-12-25 2020-05-12 佛山市德方纳米科技有限公司 磷酸铁锂的制备方法
CN111377558A (zh) * 2020-03-17 2020-07-07 航天凯天环保科技股份有限公司 一种同步处理Fenton铁泥并获得FePO4的资源化利用方法
CN111470685A (zh) * 2020-05-06 2020-07-31 中国药科大学 均相芬顿-铁磷沉淀强化絮凝法去除和回收制药废水的磷
CN111498878A (zh) * 2020-05-08 2020-08-07 蒋达金 一种废旧六氟磷酸锂的资源化利用方法
CN111732089A (zh) * 2020-08-27 2020-10-02 湖南长远锂科股份有限公司 一种磷酸铁锂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAI-XIA XIAO, XUE LIAN-JI: "Research on the Ammonium Leaching Process of Crude Cobalt Salt at Atmospheric Pressure", NONFERROUS METALLURGICAL EQUIPMENT, vol. 4, 15 August 2019 (2019-08-15), pages 16 - 19, 65, XP093132600 *

Also Published As

Publication number Publication date
CN115321505B (zh) 2024-03-12
CN115321505A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN103199320B (zh) 镍钴锰三元正极材料回收利用的方法
CN110343864B (zh) 微波焙烧辅助回收废旧电极材料中锂和钴的方法
CN109546254B (zh) 一种废旧镍钴锰酸锂离子电池正极材料的处理方法
CN108767354A (zh) 一种从废旧锂离子电池正极材料中回收有价金属的方法
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN108642304B (zh) 一种磷酸铁锂废料的综合回收方法
CN113097591B (zh) 磷酸铁锂电池正极材料的回收方法
CN104609385A (zh) 一种废旧磷酸铁锂电池正极材料回收制备磷酸铁锰锂的方法
WO2023155539A1 (zh) 一种磷酸钒铁钠材料的制备方法及其应用
JP2012121780A (ja) 酸化リチウムの製造方法
KR20170052012A (ko) 리튬 이차전지의 제조공정에 있어서의 폐 리튬 이차전지 전극의 재활용 방법
WO2023155544A1 (zh) 一种聚阴离子型正极材料的制备方法
CN112174106A (zh) 一种电池级磷酸铁及其制备方法
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
CN111807423A (zh) 二氧化硫气体浸取废旧锂电池制备电池正极材料的方法
WO2024021233A1 (zh) 一种含锂废水综合回收制取磷酸铁锂的方法及应用
CN113735196A (zh) 废旧三元前驱体的回收利用方法及回收得到的三元正极材料
JP4274630B2 (ja) スピネル型マンガン酸リチウムの製造方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN115140722B (zh) 一种利用废旧磷酸氧钒锂电池制备正极材料的方法
CN113381089B (zh) 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法
CN114212765B (zh) 一种磷酸铁锂废粉中锂铁磷组分循环再生的方法
CN115472948A (zh) 一种利用废旧锰酸锂再生钠电正极材料的方法
CN115744851A (zh) 回收制备电池级磷酸铁的方法
CN109921121A (zh) 一种废旧匣钵自动回收锂电池正极材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952674

Country of ref document: EP

Kind code of ref document: A1