WO2024055519A1 - 一种磷酸锰铁锂的制备方法及其应用 - Google Patents

一种磷酸锰铁锂的制备方法及其应用 Download PDF

Info

Publication number
WO2024055519A1
WO2024055519A1 PCT/CN2023/077687 CN2023077687W WO2024055519A1 WO 2024055519 A1 WO2024055519 A1 WO 2024055519A1 CN 2023077687 W CN2023077687 W CN 2023077687W WO 2024055519 A1 WO2024055519 A1 WO 2024055519A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
manganese
iron
phosphorus
phosphate
Prior art date
Application number
PCT/CN2023/077687
Other languages
English (en)
French (fr)
Inventor
余海军
王涛
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024055519A1 publication Critical patent/WO2024055519A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and specifically relates to a preparation method of lithium manganese iron phosphate and its application.
  • cathode materials for lithium-ion batteries There are many types of cathode materials for lithium-ion batteries.
  • the main varieties include lithium cobalt oxide, lithium manganate, nickel manganese cobalt ternary materials, and lithium iron phosphate.
  • lithium cobalt oxide is the most industrialized, most technologically mature and largest among the existing cathode materials. It is mainly used in small battery fields such as mobile phones and digital products.
  • the pollution is heavy.
  • the battery is enlarged, there is a risk of overheating, catching fire or exploding. Therefore, relatively speaking, lithium-ion batteries whose positive electrode materials are lithium manganate, ternary materials and lithium iron phosphate have better safety performance and lower costs.
  • lithium iron phosphate is generally favored by the industry because it has potential advantages in cycle life and material cost that the other two materials do not have. It represents the future development direction of power battery cathode materials.
  • Lithium iron phosphate has a relatively regular olivine structure, which allows it to have the advantages of large discharge capacity, low price, non-toxicity, and low environmental pollution. Therefore, research on lithium iron phosphate has been a hot topic in recent years.
  • lithium iron phosphate Although lithium iron phosphate has many advantages, due to its structural limitations, when used in batteries, lithium iron phosphate has the disadvantages of low electronic conductivity, small lithium ion diffusion coefficient, and low material tap density. This greatly limits the application of lithium iron phosphate.
  • manganese compounds are currently introduced into lithium iron phosphate to form a solid solution of lithium iron manganese phosphate. Since manganese compounds have higher electrochemical reaction voltage and better electrolyte compatibility, phosphoric acid Lithium iron manganese solid solution achieves better capacitance and cycle effects.
  • the patent with publication number CN102769131A discloses a method for preparing lithium iron manganese phosphate/carbon composite materials. This method uses ammonium dihydrogen phosphate, lithium source, manganese source, iron source, carbon source and metal doping elements as raw materials. After mixing and drying, the temperature is raised to 450-700°C under atmospheric conditions and dried at a constant temperature for 1-12 hours. After cooling, a lithium iron manganese phosphate/carbon composite material is obtained.
  • This method has the following disadvantages: 1. It is difficult to coat the carbon source uniformly on the surface of the cathode material with the solid-phase method; 2.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the material has high specific capacity and cycle performance.
  • a preparation method of lithium iron manganese phosphate including the following steps:
  • S2 Use part of the acidic ferric phosphorus solution as the bottom solution, add alkali to adjust the pH of the bottom solution, and then add the remaining acidic ferric phosphorus solution, phosphorus and manganese premix and alkali solution in parallel flow for reaction, wherein the phosphorus and manganese premix
  • the mixed liquid is composed of disodium dihydrogen pyrophosphate solution and manganese salt solution that are mixed in advance through a pipeline mixer before entering the reaction system;
  • step S3 After the reaction in step S2, solid-liquid separation is performed, and the obtained solid is washed and dehydrated to obtain the first solid material;
  • the second solid material is calcined in an inert atmosphere to obtain the lithium iron manganese phosphate.
  • the ferric iron salt is at least one of ferric sulfate, ferric chloride or ferric nitrate.
  • the phosphate is sodium phosphate, ammonium phosphate or potassium phosphate. at least one of them.
  • the acid is at least one of sulfuric acid, hydrochloric acid or nitric acid.
  • step S1 the molar ratio of iron to phosphorus in the acidic iron phosphorus solution is 1: (1.02-1.05).
  • step S1 the pH of the acidic ferric phosphate solution is -1.0-0.5.
  • step S2 the pH of the bottom liquid is 1.8-2.0; during the reaction process, the pH of the reaction system is controlled to be 1.8-2.0.
  • the manganese salt is at least one of manganese sulfate, manganese chloride or manganese nitrate.
  • the alkali solution is sodium hydroxide solution. Further, the concentration of the alkali solution is 1.0-2.0 mol/L.
  • step S2 the concentration of the disodium dihydrogen pyrophosphate solution is 0.5-1.0 mol/L; the concentration of the manganese salt solution is 0.5-1.0 mol/L.
  • step S2 the feed flow rate of the acidic ferric phosphate solution is 100-200 mL/h, the concentration of iron ions in the acidic ferric phosphorus solution is 0.1-2.0 mol/L, and the acidic ferric phosphate solution
  • the solution and phosphorus-manganese premix are fed according to the iron-manganese ratio (0.25-4):1.
  • step S2 the reaction is carried out at a rotation speed of 200-350 r/min.
  • the dehydration temperature is 550-700°C.
  • the dehydration time is 2-4 hours. The dehydration process is conducive to the transformation of the crystal form into a hexagonal crystal system, allowing lithium ions to be better embedded.
  • step S4 after the first solid material is mixed with a lithium source and water, acid is added to adjust the pH to 2.5-4.0, and then the hydrothermal reaction is performed.
  • the amount of water used is the amount of the first solid material and the lithium source. 100%-200% of total solid mass.
  • step S4 the temperature of the hydrothermal reaction is 100-120°C. Further, the hydrothermal reaction time is 2-4h.
  • the lithium source is at least one of lithium nitrate, lithium acetate, lithium hydroxide or lithium carbonate.
  • step S4 the amount of carbon source used is 0.3-0.5 times the molar amount of iron element in the first solid material.
  • the carbon source is at least one of glucose, sucrose or fructose.
  • step S5 the calcination temperature is 600-850°C. Further, the calcination time is 6-20h.
  • the invention also provides the application of the method in preparing lithium-ion batteries.
  • the invention first pre-synthesizes iron phosphate seed crystals in the bottom liquid, and first mixes pyrophosphate and manganese salt in a pipeline mixer for pre-crystallization when feeding, to avoid ferric iron and manganese from robbing coke. Phosphate radicals and the generated manganese pyrophosphate crystal grains enter the reaction system of iron phosphate and aggregate with iron phosphate. Under the induction of iron phosphate seed crystals, iron and manganese co-precipitate. The final precipitate is iron phosphate and pyrophosphate.
  • Figure 1 is an SEM image of the ferromanganese precipitate prepared in Example 1 of the present invention.
  • Figure 2 is an SEM image of lithium iron manganese phosphate prepared in Example 1 of the present invention.
  • This example prepares lithium iron manganese phosphate.
  • the specific process is:
  • Step 1 Mix iron sulfate and sodium phosphate according to the molar ratio of iron to phosphorus to be 1:1.02, and add sulfuric acid to prepare an acidic iron phosphate solution with an iron ion concentration of 0.1 mol/L and a pH of 0.5;
  • Step 2 prepare a disodium dihydrogen pyrophosphate solution with a concentration of 0.5 mol/L;
  • Step 3 Prepare a manganese sulfate solution with a concentration of 0.5 mol/L;
  • Step 4 Prepare a sodium hydroxide solution with a concentration of 1.0 mol/L
  • Step 5 Use the acidic ferric phosphate solution as the bottom liquid, add it to the reaction kettle until it covers the bottom stirring paddle, add the sodium hydroxide solution prepared in step 4 into the reaction kettle, adjust the pH in the kettle to 1.8-2.0, and control the stirring in the kettle Rotation speed 200r/min;
  • Step 6 Add the acidic ferric phosphate solution, the phosphorus manganese premix prepared in step 1, and the sodium hydroxide solution prepared in step 4 into the reaction kettle in parallel flow, wherein the phosphorus manganese premix is dihydrogen pyrophosphate prepared in step 2.
  • the sodium solution and the manganese salt solution prepared in step 3 are mixed with a manganese to phosphorus ratio of 1:1 through a pipe mixer and flow into the reaction kettle; the flow rate of the acidic iron phosphate solution in the reaction kettle is controlled to 100 mL/h. , the ratio of iron and manganese fed into the reaction kettle is 1:1, and the pH in the kettle is controlled to 1.8-2.0, and the stirring speed in the kettle is 200r/min;
  • Step 7 When the reaction kettle is full, stop feeding and perform solid-liquid separation. After the solid material is washed with pure water, it is dehydrated at a temperature of 550°C for 4 hours to obtain iron and manganese precipitates;
  • Step 9 After the hydrothermal reaction is completed, add glucose with 0.3 times the molar amount of iron element into the reaction kettle, mix evenly and spray-dry to obtain a solid material;
  • Step 10 The solid material obtained in Step 9 is calcined at 750°C for 14 hours under the protection of inert gas, and then naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
  • This example prepares lithium iron manganese phosphate.
  • the specific process is:
  • Step 1 According to the molar ratio of iron to phosphorus being 1:1.04, mix ferric nitrate and ammonium phosphate, add nitric acid, and prepare an acidic ferric phosphate solution with an iron ion concentration of 1.0 mol/L and a pH of 0;
  • Step 2 prepare a disodium dihydrogen pyrophosphate solution with a concentration of 0.8mol/L;
  • Step 3 prepare a manganese nitrate solution with a concentration of 0.8mol/L;
  • Step 4 Prepare a sodium hydroxide solution with a concentration of 1.5 mol/L
  • Step 5 Use the acidic ferric phosphate solution as the bottom liquid, add it to the reaction kettle until it covers the bottom stirring paddle, add the sodium hydroxide solution prepared in step 4 into the reaction kettle, adjust the pH in the kettle to 1.8-2.0, and control the stirring in the kettle Rotation speed 300r/min;
  • Step 6 Add the acidic ferric phosphate solution, the phosphorus manganese premix prepared in step 1, and the sodium hydroxide solution prepared in step 4 into the reaction kettle in parallel flow, wherein the phosphorus manganese premix is dihydrogen pyrophosphate prepared in step 2.
  • Sodium solution and steps 3 Before entering the reaction kettle, the prepared manganese salt solution is mixed with a manganese-phosphorus ratio of 1:1 through a pipeline mixer and then flows into the reaction kettle; the flow rate of the acidic iron phosphate solution in the reaction kettle is controlled to 150 mL/h, and the reaction kettle enters The ratio of iron to manganese in the material is 2:1, and the pH in the kettle is controlled to 1.8-2.0, and the stirring speed in the kettle is 300r/min;
  • Step 7 When the reaction kettle is full, stop feeding and perform solid-liquid separation. After the solid material is washed with pure water, it is dehydrated at a temperature of 600°C for 3 hours to obtain iron and manganese precipitates;
  • Step 9 After the hydrothermal reaction is completed, add 0.4 times the molar amount of sucrose of iron element into the reaction kettle, mix evenly and spray-dry to obtain a solid material;
  • Step 10 The solid material obtained in Step 9 is calcined at 600°C for 20 hours under the protection of inert gas, and then naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
  • This example prepares lithium iron manganese phosphate.
  • the specific process is:
  • Step 1 According to the molar ratio of iron to phosphorus being 1:1.05, mix ferric chloride and potassium phosphate, add hydrochloric acid, and prepare an acidic ferric phosphate solution with an iron ion concentration of 2.0 mol/L and a pH of -1.0;
  • Step 2 prepare a disodium dihydrogen pyrophosphate solution with a concentration of 1.0 mol/L;
  • Step 3 Prepare a manganese chloride solution with a concentration of 1.0mol/L
  • Step 4 Prepare a sodium hydroxide solution with a concentration of 2.0 mol/L
  • Step 5 Use the acidic ferric phosphate solution as the bottom liquid, add it to the reaction kettle until it covers the bottom stirring paddle, add the sodium hydroxide solution prepared in step 4 into the reaction kettle, adjust the pH in the kettle to 1.8-2.0, and control the stirring in the kettle Rotation speed 350r/min;
  • Step 6 Add the acidic ferric phosphate solution, the phosphorus manganese premix prepared in step 1, and the sodium hydroxide solution prepared in step 4 into the reaction kettle in parallel flow, wherein the phosphorus manganese premix is dihydrogen pyrophosphate prepared in step 2.
  • the sodium solution and the manganese salt solution prepared in step 3 are mixed with a manganese-phosphorus ratio of 1:1 through a pipe mixer and flow into the reaction kettle; the flow rate of the acidic iron phosphate solution in the reaction kettle is controlled to 200 mL/h. , the reaction kettle feed iron-manganese ratio is 4:1, And control the pH in the kettle to 1.8-2.0, and the stirring speed in the kettle to 350r/min;
  • Step 7 When the reaction kettle is full, stop feeding and perform solid-liquid separation. After the solid material is washed with pure water, it is dehydrated at a temperature of 700°C for 2 hours to obtain iron and manganese precipitates;
  • Step 9 After the hydrothermal reaction is completed, add fructose with 0.5 times the molar amount of iron into the reaction kettle, mix evenly and spray-dry to obtain a solid material;
  • Step 10 The solid material obtained in Step 9 is calcined at 850°C for 6 hours under the protection of inert gas, and then naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
  • a kind of lithium iron manganese phosphate was prepared in this comparative example.
  • the main difference from Example 1 is that the phosphorus source is sodium dihydrogen phosphate, and the phosphorus source, manganese source and iron source are co-precipitated directly in parallel flow.
  • the specific process is:
  • Step 1 Mix iron sulfate and sodium phosphate according to the molar ratio of iron to phosphorus to be 1:1.02, and add sulfuric acid to prepare an acidic iron phosphate solution with an iron ion concentration of 0.1 mol/L and a pH of 0.5;
  • Step 2 prepare a sodium dihydrogen phosphate solution with a concentration of 0.5mol/L;
  • Step 3 Prepare a manganese sulfate solution with a concentration of 0.5mol/L
  • Step 4 Prepare a sodium hydroxide solution with a concentration of 1.0 mol/L
  • Step 5 Use the acidic ferric phosphate solution as the bottom liquid, add it to the reaction kettle until it covers the bottom stirring paddle, add the sodium hydroxide solution prepared in step 4 into the reaction kettle, adjust the pH in the kettle to 1.8-2.0, and control the stirring in the kettle Rotation speed 200r/min;
  • Step 6 Add the acidic ferric phosphate solution prepared in step 1, the sodium dihydrogen phosphate solution prepared in step 2, the manganese sulfate solution prepared in step 3, and the sodium hydroxide solution prepared in step 4 into the reaction kettle in parallel flow; control the inside of the reaction kettle
  • the flow rate of the acidic ferric phosphate solution is 100mL/h
  • the iron-manganese feed ratio to the reaction kettle is 1:1
  • the feed molar ratio of sodium dihydrogen phosphate and manganese sulfate is 1:1
  • the pH in the kettle is controlled to be 1.8-2.0
  • the stirring speed in the kettle is 200r/min;
  • Step 7 When the reaction kettle is full, stop feeding and perform solid-liquid separation. After the solid material is washed with pure water, Dehydrate at a temperature of 550°C for 4 hours;
  • Step 9 The solid material obtained in Step 8 is calcined at 750°C for 14 hours under the protection of inert gas, and then naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
  • This comparative example prepared a kind of lithium iron manganese phosphate.
  • the difference from Example 2 is that the phosphorus source is sodium dihydrogen phosphate, and the phosphorus source, manganese source and iron source are directly co-precipitated in parallel flow.
  • the specific process is:
  • Step 1 According to the molar ratio of iron to phosphorus being 1:1.05, mix ferric chloride and potassium phosphate, add hydrochloric acid, and prepare an acidic ferric phosphate solution with an iron ion concentration of 2.0 mol/L and a pH of -1.0;
  • Step 2 prepare a sodium dihydrogen phosphate solution with a concentration of 1.0 mol/L;
  • Step 3 Prepare a manganese nitrate solution with a concentration of 1.0 mol/L
  • Step 4 Prepare a sodium hydroxide solution with a concentration of 2.0 mol/L
  • Step 5 Use the acidic ferric phosphate solution as the bottom liquid, add it to the reaction kettle until it covers the bottom stirring paddle, add the sodium hydroxide solution prepared in step 4 into the reaction kettle, adjust the pH in the kettle to 1.8-2.0, and control the stirring in the kettle Rotation speed 350r/min;
  • Step 6 Add the acidic ferric phosphate solution prepared in step 1, the sodium dihydrogen phosphate solution prepared in step 2, the manganese nitrate solution prepared in step 3, and the sodium hydroxide solution prepared in step 4 into the reaction kettle in parallel flow; control the inside of the reaction kettle
  • the flow rate of the acidic ferric phosphate solution is 200mL/h
  • the iron-manganese feed ratio to the reaction kettle is 4:1
  • the feed molar ratio of sodium dihydrogen phosphate and manganese nitrate is 1:1
  • the pH in the kettle is controlled to be 1.8-2.0.
  • the stirring speed in the kettle is 350r/min;
  • Step 7 When the reaction kettle is full, stop feeding and perform solid-liquid separation. After the solid material is washed with pure water, it is dehydrated at a temperature of 700°C for 2 hours;
  • Step 9 The solid material obtained in Step 8 is calcined at 850°C for 6 hours under the protection of inert gas, and then naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
  • a kind of lithium iron manganese phosphate was prepared in this comparative example.
  • the difference from Example 3 is that the phosphorus source is sodium dihydrogen phosphate, and the phosphorus source, manganese source and iron source are directly co-precipitated in parallel flow.
  • the specific process is:
  • Step 1 According to the molar ratio of iron to phosphorus being 1:1.05, mix ferric chloride and potassium phosphate, add hydrochloric acid, and prepare an acidic ferric phosphate solution with an iron ion concentration of 2.0 mol/L and a pH of -1.0;
  • Step 2 prepare a sodium dihydrogen phosphate solution with a concentration of 1.0 mol/L;
  • Step 3 Prepare a manganese chloride solution with a concentration of 1.0mol/L
  • Step 4 Prepare a sodium hydroxide solution with a concentration of 2.0 mol/L
  • Step 5 Use the acidic ferric phosphate solution as the bottom liquid, add it to the reaction kettle until it covers the bottom stirring paddle, add the sodium hydroxide solution prepared in step 4 into the reaction kettle, adjust the pH in the kettle to 1.8-2.0, and control the stirring in the kettle Rotation speed 350r/min;
  • Step 6 Add the acidic ferric phosphate solution prepared in step 1, the sodium dihydrogen phosphate solution prepared in step 2, the manganese chloride solution prepared in step 3, and the sodium hydroxide solution prepared in step 4 into the reaction kettle in parallel flow; control the reaction kettle
  • the flow rate of the acidic ferric phosphate solution in the reactor is 200mL/h
  • the iron-manganese feed ratio to the reactor is 4:1
  • the feed molar ratio of sodium dihydrogen phosphate and manganese chloride is 1:1
  • the pH in the reactor is controlled to be 1.8- 2.0.
  • the stirring speed in the kettle is 350r/min;
  • Step 7 When the reaction kettle is full, stop feeding and perform solid-liquid separation. After the solid material is washed with pure water, it is dehydrated at a temperature of 700°C for 2 hours;
  • Step 9 The solid material obtained in Step 8 is calcined at 850°C for 6 hours under the protection of inert gas, and then naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
  • the lithium iron manganese phosphate obtained in the Examples and Comparative Examples was used as the cathode material, acetylene black was used as the conductive agent, and PVDF was used as the binder.
  • the mixture was mixed at a mass ratio of 8:1:1, and a certain amount of organic solvent NMP was added.
  • the positive electrode sheet is coated on aluminum foil, and the negative electrode is made of metallic lithium sheet; the separator is Celgard2400 polypropylene porous membrane;
  • the solvent in the electrolyte is a solution composed of EC, DMC and EMC in a mass ratio of 1:1:1, and the solute is LiPF 6 , the concentration of LiPF 6 is 1.0mol/L; assemble the 2023 button cell in the glove box.
  • the charge and discharge cycle performance of the battery was tested, and the discharge specific capacity of 0.1C and 1C was tested in the cut-off voltage range of 2.2-4.3V; the electrochemical performance results of the test are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种磷酸锰铁锂的制备方法及其应用,以酸性磷铁溶液为底液,并流酸性磷铁溶液、磷锰预混液和碱溶液进行反应,其中磷锰预混液是由焦磷酸二氢二钠溶液和锰盐溶液预先经管道混合器混合后再进入反应体系,所得固体经洗涤和脱水,得到第一固体料,将第一固体料与锂源、水混合进行水热反应,加入碳源进行喷雾干燥,煅烧后即得磷酸锰铁锂。本发明可制备得到磷:(铁+锰)=1:1,且铁锰均匀混合的磷酸锰铁锂正极材料,该材料具有较高的比容量和循环性能。

Description

一种磷酸锰铁锂的制备方法及其应用 技术领域
本发明属于锂电池正极材料技术领域,具体涉及一种磷酸锰铁锂的制备方法及其应用。
背景技术
锂离子电池的正极材料种类较多,主要品种有钴酸锂、锰酸锂、镍锰钴三元材料及磷酸铁锂等。其中钴酸锂是现有正极材料中工业化程度最高、技术最成熟、产量最大的品种,主要用于手机、数码产品等小型电池领域,但由于原材料钴和镍金属的价格高昂,污染较重,且电池在大型化后,会有过热着火或爆炸的危险。故相对而言,正极材料为锰酸锂、三元材料和磷酸铁锂的锂离子电池安全性能更好,成本更为低廉,所以目前产业的投入主要集中于这几种材料之上。其中,磷酸铁锂由于具有另外两种材料所不具备的循环寿命和材料成本方面的潜在优势,而被业界普遍看好,代表着动力电池正极材料的未来发展方向。
磷酸铁锂具有较为规则的橄榄石型结构,使得磷酸铁锂获得放电容量大、价格低廉、无毒性且不易对环境造成污染的优点,因此近年来对于磷酸铁锂的研究一直为热门研究。
虽然磷酸铁锂具有较多的优点,但由于其结构的限制,在应用于电池中时,磷酸铁锂存在电子导电率较低,锂离子扩散系数较小,材料振实密度较低的缺点,极大地限制了磷酸铁锂的应用。为了拓宽磷酸铁锂的应用,目前采用在磷酸铁锂中引入锰系化合物,形成磷酸锰铁锂固溶体,由于锰系化合物具有较高的电化学反应电压和较佳的电解质相容性,使得磷酸锰铁锂固溶体获得较佳的电容量以及循环效果。
现有合成LiMnxFe1-xPO4固溶体材料的方法一般包括高温固相反应法、液相共沉淀法、水热法、溶胶-凝胶法、氧化还原法、固相微波法和机械球磨法等。目前常用的是高温固相反应法和水热法。
公开号为CN102769131A的专利公开了一种制备磷酸锰铁锂/碳复合材料的方法, 该方法以磷酸二氢铵、锂源、锰源、铁源、碳源和金属掺杂元素为原料,混合、干燥后,在气氛条件下升温至450-700℃恒温干燥1-12小时后,冷却得到磷酸锰铁锂/碳复合材料。该方法存在以下几个缺点:1、固相法难以将碳源均匀包覆在正极材料的表面;2、由于磷酸锰铁锂中存在锰和铁两种过渡金属元素,在制备该材料的过程中需要充分考虑如何将这两种元素均匀混合的问题,如果达不到均匀混合,则制备的材料的这种电化学性能都无法满足商业化应用的要求,而该专利采用固相法也是无法达到均匀混合这两种元素的目的。
因此,需要寻求一种能够使铁锰达到原子层面的均匀混合,从而制备得到高容量、高循环性能的磷酸锰铁锂正极材料的方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种磷酸锰铁锂的制备方法及其应用,该方法可制备得到磷:(铁+锰)=1:1,且铁锰均匀混合的磷酸锰铁锂正极材料,该材料具有较高的比容量和循环性能。
根据本发明的一个方面,提出了一种磷酸锰铁锂的制备方法,包括以下步骤:
S1:将三价铁盐、磷酸盐和酸混合配制成酸性磷铁溶液;
S2:以部分所述酸性磷铁溶液为底液,并加碱调节底液pH,再并流加入剩余所述酸性磷铁溶液、磷锰预混液和碱溶液进行反应,其中所述磷锰预混液是由焦磷酸二氢二钠溶液和锰盐溶液预先经管道混合器混合后再进入反应体系;
S3:步骤S2反应结束后进行固液分离,所得固体经洗涤和脱水,得到第一固体料;
S4:将所述第一固体料与锂源、水混合,在酸性条件下进行水热反应,反应结束后加入碳源混合,进行喷雾干燥,得到第二固体料;
S5:所述第二固体料在惰性气氛下煅烧,即得所述磷酸锰铁锂。
在本发明的一些实施方式中,步骤S1中,所述三价铁盐为硫酸铁、氯化铁或硝酸铁中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述磷酸盐为磷酸钠、磷酸铵或磷酸钾 中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述酸为硫酸、盐酸或硝酸中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述酸性磷铁溶液中铁磷元素的摩尔比为1:(1.02-1.05)。
在本发明的一些实施方式中,步骤S1中,所述酸性磷铁溶液的pH为-1.0-0.5。
在本发明的一些实施方式中,步骤S2中,所述底液的pH为1.8-2.0;所述反应过程中,控制反应体系的pH为1.8-2.0。
在本发明的一些实施方式中,步骤S2中,所述锰盐为硫酸锰、氯化锰或硝酸锰中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述碱溶液为氢氧化钠溶液。进一步地,所述碱溶液的浓度为1.0-2.0mol/L。
在本发明的一些实施方式中,步骤S2中,所述焦磷酸二氢二钠溶液的浓度为0.5-1.0mol/L;所述锰盐溶液的浓度为0.5-1.0mol/L。
在本发明的一些实施方式中,步骤S2中,所述酸性磷铁溶液的进料流量为100-200mL/h,酸性磷铁溶液中铁离子浓度为0.1-2.0mol/L,所述酸性磷铁溶液和磷锰预混液按照铁锰比为(0.25-4):1进料。
在本发明的一些实施方式中,步骤S2中,所述反应在200-350r/min的转速下进行。
在本发明的一些实施方式中,步骤S3中,所述脱水的温度为550-700℃。进一步地,所述脱水的时间为2-4h。脱水过程有利于晶型转变成六方晶系,使锂离子更好嵌入。
在本发明的一些实施方式中,步骤S4中,所述第一固体料与锂源、水混合后,加酸调节pH为2.5-4.0,再进行所述水热反应。
在本发明的一些实施方式中,步骤S4中,所述第一固体料与锂源的配比按照摩尔比(Fe+Mn):Li=1:(1.0-1.2)。
在本发明的一些实施方式中,步骤S4中,所述水的用量为所述第一固体料与锂源 固体总质量的100%-200%。
在本发明的一些实施方式中,步骤S4中,所述水热反应的温度为100-120℃。进一步地,所述水热反应的时间为2-4h。
在本发明的一些实施方式中,步骤S4中,所述锂源为硝酸锂、醋酸锂、氢氧化锂或碳酸锂中的至少一种。
在本发明的一些实施方式中,步骤S4中,所述碳源的用量为第一固体料中铁元素摩尔量的0.3-0.5倍。
在本发明的一些实施方式中,步骤S4中,所述碳源为葡萄糖、蔗糖或果糖中的至少一种。
在本发明的一些实施方式中,步骤S5中,所述煅烧的温度为600-850℃。进一步地,所述煅烧的时间为6-20h。
本发明还提供所述的方法在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明通过在共沉淀过程中,控制pH使铁锰与不同沉淀剂的作用下,产生不同的沉淀物,得到磷酸铁与焦磷酸锰的混合沉淀物,并通过酸性条件下水热反应,使其中的焦磷酸锰进一步水热水解,预先使沉淀物中的焦磷酸锰形成磷酸锰锂,再添加碳源,经喷雾干燥后,烧结制备得到磷酸锰铁锂。其反应方程式如下:
共沉淀反应:
2Mn2++P2O7 4-→Mn2P2O7
Fe3++PO4 3-→FePO4
水热反应:
H2O+2Li++Mn2P2O7→2LiMnPO4+2H+
烧结反应:
C+Li2O+2FePO4→2LiFePO4+CO。
2、由于三价铁离子不但与磷酸根能够结合形成沉淀,与焦磷酸根也能结合,故本 发明在共沉淀过程中,首先在底液中预合成磷酸铁晶种,并在进料时先将焦磷酸盐与锰盐在管道混合器内混合进行预结晶,避免三价铁与锰抢夺焦磷酸根,生成的焦磷酸锰晶粒进入到磷酸铁的反应体系中,与磷酸铁进行团聚,在磷酸铁晶种诱导下,进行铁锰的共沉淀,最终的沉淀物为磷酸铁与焦磷酸锰的混合物,二者通过共沉淀法,使铁锰混合更均匀,利于后续制备磷酸锰铁锂提高材料的比容量和循环性能。且整个过程中保证了沉淀物中(Fe+Mn):P=1:1,为下一步合成磷酸锰铁锂保证了充足的磷含量,避免了补加磷源的问题。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的锰铁沉淀物的SEM图;
图2为本发明实施例1制备的磷酸锰铁锂的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种磷酸锰铁锂,具体过程为:
步骤1,按照铁磷元素摩尔比为1:1.02,将硫酸铁与磷酸钠混合,并加入硫酸,配制成铁离子浓度为0.1mol/L、pH为0.5的酸性磷酸铁溶液;
步骤2,配制浓度为0.5mol/L的焦磷酸二氢二钠溶液;
步骤3,配制浓度为0.5mol/L的硫酸锰溶液;
步骤4,配制浓度为1.0mol/L的氢氧化钠溶液;
步骤5,以酸性磷酸铁溶液作为底液,加入反应釜中至漫过底层搅拌桨,向反应釜内加入步骤4配制的氢氧化钠溶液,调节釜内pH为1.8-2.0,控制釜内搅拌转速200r/min;
步骤6,向反应釜内并流加入步骤1配制的酸性磷酸铁溶液、磷锰预混液、步骤4配制的氢氧化钠溶液,其中,磷锰预混液是由步骤2配制的焦磷酸二氢二钠溶液与步骤3配制的锰盐溶液在进入反应釜之前先以锰磷比1:1的比例经管道混合器混合后流入反应釜内;控制反应釜内酸性磷酸铁溶液的流量为100mL/h,反应釜进料铁锰比为1:1,并控制釜内pH为1.8-2.0、釜内搅拌转速200r/min;
步骤7,当反应釜满釜后,停止进料,并进行固液分离,所得固体料用纯水洗涤后,在温度为550℃下脱水4h,得到铁锰沉淀物;
步骤8,按照摩尔比(Fe+Mn):Li=1:(1.0-1.2),将步骤7所得铁锰沉淀物与硝酸锂混合后,加入固体总质量100%的去离子水,并使用硝酸调节pH为2.5,在密闭反应釜中水热反应4h,反应温度为120℃;
步骤9,水热反应结束后,向反应釜内加入铁元素摩尔量0.3倍的葡萄糖,混合均匀后进行喷雾干燥,得到固体料;
步骤10,步骤9所得固体料在惰性气体的保护下、750℃煅烧14h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
实施例2
本实施例制备了一种磷酸锰铁锂,具体过程为:
步骤1,按照铁磷元素摩尔比为1:1.04,将硝酸铁与磷酸铵混合,并加入硝酸,配制成铁离子浓度为1.0mol/L、pH为0的酸性磷酸铁溶液;
步骤2,配制浓度为0.8mol/L的焦磷酸二氢二钠溶液;
步骤3,配制浓度为0.8mol/L的硝酸锰溶液;
步骤4,配制浓度为1.5mol/L的氢氧化钠溶液;
步骤5,以酸性磷酸铁溶液作为底液,加入反应釜中至漫过底层搅拌桨,向反应釜内加入步骤4配制的氢氧化钠溶液,调节釜内pH为1.8-2.0,控制釜内搅拌转速300r/min;
步骤6,向反应釜内并流加入步骤1配制的酸性磷酸铁溶液、磷锰预混液、步骤4配制的氢氧化钠溶液,其中,磷锰预混液是由步骤2配制的焦磷酸二氢二钠溶液与步骤 3配制的锰盐溶液在进入反应釜之前先以锰磷比1:1的比例经管道混合器混合后流入反应釜内;控制反应釜内酸性磷酸铁溶液的流量为150mL/h,反应釜进料铁锰比为2:1,并控制釜内pH为1.8-2.0、釜内搅拌转速300r/min;
步骤7,当反应釜满釜后,停止进料,并进行固液分离,所得固体料用纯水洗涤后,在温度为600℃下脱水3h,得到铁锰沉淀物;
步骤8,按照摩尔比(Fe+Mn):Li=1:(1.0-1.2),将步骤7所得铁锰沉淀物与醋酸锂混合后,加入固体总质量150%的去离子水,并使用硝酸调节pH为3.0,在密闭反应釜中水热反应3h,反应温度为110℃;
步骤9,水热反应结束后,向反应釜内加入铁元素摩尔量0.4倍的蔗糖,混合均匀后进行喷雾干燥,得到固体料;
步骤10,步骤9所得固体料在惰性气体的保护下、600℃煅烧20h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
实施例3
本实施例制备了一种磷酸锰铁锂,具体过程为:
步骤1,按照铁磷元素摩尔比为1:1.05,将氯化铁与磷酸钾混合,并加入盐酸,配制成铁离子浓度为2.0mol/L、pH为-1.0的酸性磷酸铁溶液;
步骤2,配制浓度为1.0mol/L的焦磷酸二氢二钠溶液;
步骤3,配制浓度为1.0mol/L的氯化锰溶液;
步骤4,配制浓度为2.0mol/L的氢氧化钠溶液;
步骤5,以酸性磷酸铁溶液作为底液,加入反应釜中至漫过底层搅拌桨,向反应釜内加入步骤4配制的氢氧化钠溶液,调节釜内pH为1.8-2.0,控制釜内搅拌转速350r/min;
步骤6,向反应釜内并流加入步骤1配制的酸性磷酸铁溶液、磷锰预混液、步骤4配制的氢氧化钠溶液,其中,磷锰预混液是由步骤2配制的焦磷酸二氢二钠溶液与步骤3配制的锰盐溶液在进入反应釜之前先以锰磷比1:1的比例经管道混合器混合后流入反应釜内;控制反应釜内酸性磷酸铁溶液的流量为200mL/h,反应釜进料铁锰比为4:1, 并控制釜内pH为1.8-2.0、釜内搅拌转速350r/min;
步骤7,当反应釜满釜后,停止进料,并进行固液分离,所得固体料用纯水洗涤后,在温度为700℃下脱水2h,得到铁锰沉淀物;
步骤8,按照摩尔比(Fe+Mn):Li=1:(1.0-1.2),将步骤7所得铁锰沉淀物与氢氧化锂混合后,加入固体总质量200%的去离子水,并使用硝酸调节pH为4.0,在密闭反应釜中水热反应2h,反应温度为120℃;
步骤9,水热反应结束后,向反应釜内加入铁元素摩尔量0.5倍的果糖,混合均匀后进行喷雾干燥,得到固体料;
步骤10,步骤9所得固体料在惰性气体的保护下、850℃煅烧6h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
对比例1
本对比例制备了一种磷酸锰铁锂,与实施例1的主要区别在于,磷源为磷酸二氢钠,磷源、锰源和铁源直接并流共沉淀,具体过程为:
步骤1,按照铁磷元素摩尔比为1:1.02,将硫酸铁与磷酸钠混合,并加入硫酸,配制成铁离子浓度为0.1mol/L、pH为0.5的酸性磷酸铁溶液;
步骤2,配制浓度为0.5mol/L的磷酸二氢钠溶液;
步骤3,配制浓度为0.5mol/L的硫酸锰溶液;
步骤4,配制浓度为1.0mol/L的氢氧化钠溶液;
步骤5,以酸性磷酸铁溶液作为底液,加入反应釜中至漫过底层搅拌桨,向反应釜内加入步骤4配制的氢氧化钠溶液,调节釜内pH为1.8-2.0,控制釜内搅拌转速200r/min;
步骤6,向反应釜内并流加入步骤1配制的酸性磷酸铁溶液、步骤2配制的磷酸二氢钠溶液、步骤3配制的硫酸锰溶液、步骤4配制的氢氧化钠溶液;控制反应釜内酸性磷酸铁溶液的流量为100mL/h,反应釜进料铁锰比为1:1,磷酸二氢钠和硫酸锰的进料摩尔比为1:1,并控制釜内pH为1.8-2.0、釜内搅拌转速200r/min;
步骤7,当反应釜满釜后,停止进料,并进行固液分离,所得固体料用纯水洗涤后, 在温度为550℃下脱水4h;
步骤8,按照摩尔比(Fe+Mn):Li=1:(1.0-1.2),将步骤7所得固体料与硝酸锂混合后,加入固体总质量100%的去离子水,向反应釜内加入铁元素摩尔量0.3倍的葡萄糖,混合均匀后进行喷雾干燥,得到固体料;
步骤9,步骤8所得固体料在惰性气体的保护下、750℃煅烧14h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
对比例2
本对比例制备了一种磷酸锰铁锂,与实施例2的区别在于,磷源为磷酸二氢钠,磷源、锰源和铁源直接并流共沉淀,具体过程为:
步骤1,按照铁磷元素摩尔比为1:1.05,将氯化铁与磷酸钾混合,并加入盐酸,配制成铁离子浓度为2.0mol/L、pH为-1.0的酸性磷酸铁溶液;
步骤2,配制浓度为1.0mol/L的磷酸二氢钠溶液;
步骤3,配制浓度为1.0mol/L的硝酸锰溶液;
步骤4,配制浓度为2.0mol/L的氢氧化钠溶液;
步骤5,以酸性磷酸铁溶液作为底液,加入反应釜中至漫过底层搅拌桨,向反应釜内加入步骤4配制的氢氧化钠溶液,调节釜内pH为1.8-2.0,控制釜内搅拌转速350r/min;
步骤6,向反应釜内并流加入步骤1配制的酸性磷酸铁溶液、步骤2配制的磷酸二氢钠溶液、步骤3配制的硝酸锰溶液、步骤4配制的氢氧化钠溶液;控制反应釜内酸性磷酸铁溶液的流量为200mL/h,反应釜进料铁锰比为4:1,磷酸二氢钠和硝酸锰的进料摩尔比为1:1,并控制釜内pH为1.8-2.0、釜内搅拌转速350r/min;
步骤7,当反应釜满釜后,停止进料,并进行固液分离,所得固体料用纯水洗涤后,在温度为700℃下脱水2h;
步骤8,按照摩尔比(Fe+Mn):Li=1:(1.0-1.2),将步骤7所得固体料与氢氧化锂混合后,加入固体总质量150%的去离子水,向反应釜内加入铁元素摩尔量0.5倍的果糖,混合均匀后进行喷雾干燥,得到固体料;
步骤9,步骤8所得固体料在惰性气体的保护下、850℃煅烧6h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
对比例3
本对比例制备了一种磷酸锰铁锂,与实施例3的区别在于,磷源为磷酸二氢钠,磷源、锰源和铁源直接并流共沉淀,具体过程为:
步骤1,按照铁磷元素摩尔比为1:1.05,将氯化铁与磷酸钾混合,并加入盐酸,配制成铁离子浓度为2.0mol/L、pH为-1.0的酸性磷酸铁溶液;
步骤2,配制浓度为1.0mol/L的磷酸二氢钠溶液;
步骤3,配制浓度为1.0mol/L的氯化锰溶液;
步骤4,配制浓度为2.0mol/L的氢氧化钠溶液;
步骤5,以酸性磷酸铁溶液作为底液,加入反应釜中至漫过底层搅拌桨,向反应釜内加入步骤4配制的氢氧化钠溶液,调节釜内pH为1.8-2.0,控制釜内搅拌转速350r/min;
步骤6,向反应釜内并流加入步骤1配制的酸性磷酸铁溶液、步骤2配制的磷酸二氢钠溶液、步骤3配制的氯化锰溶液、步骤4配制的氢氧化钠溶液;控制反应釜内酸性磷酸铁溶液的流量为200mL/h,反应釜进料铁锰比为4:1,磷酸二氢钠和氯化锰的进料摩尔比为1:1,并控制釜内pH为1.8-2.0、釜内搅拌转速350r/min;
步骤7,当反应釜满釜后,停止进料,并进行固液分离,所得固体料用纯水洗涤后,在温度为700℃下脱水2h;
步骤8,按照摩尔比(Fe+Mn):Li=1:(1.0-1.2),将步骤7所得固体料与氢氧化锂混合后,加入固体总质量200%的去离子水,向反应釜内加入铁元素摩尔量0.5倍的果糖,混合均匀后进行喷雾干燥,得到固体料;
步骤9,步骤8所得固体料在惰性气体的保护下、850℃煅烧6h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
对实施例1-3和对比例1-3所得磷酸锰铁锂产品进行ICP检测主含量元素百分比,结果如表1所示。
表1
由表1的检测结果可知,对比例中锰含量极低,无法得到理想中的磷酸锰铁锂。表明常规的共沉淀方法难以使铁锰同时沉淀。
试验例
以实施例和对比例得到的磷酸锰铁锂为正极材料,乙炔黑为导电剂,PVDF为粘结剂,按质量比8:1:1进行混合,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片;隔膜为Celgard2400聚丙烯多孔膜;电解液中溶剂为EC、DMC和EMC按质量比1:1:1组成的溶液,溶质为LiPF6,LiPF6的浓度为1.0mol/L;在手套箱内组装2023型扣式电池。对电池进行充放电循环性能测试,在截止电压2.2-4.3V范围内,测试0.1C、1C放电比容量;测试电化学性能结果如表2所示。
表2
由表2可见实施例的电化学性能明显优于对比例,表明本发明制备的磷酸锰铁烧结得到的磷酸锰铁锂具有更高的比容量和循环性能。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种磷酸锰铁锂的制备方法,其特征在于,包括以下步骤:
    S1:将三价铁盐、磷酸盐和酸混合配制成酸性磷铁溶液;
    S2:以部分所述酸性磷铁溶液为底液,并加碱调节底液pH,再并流加入剩余所述酸性磷铁溶液、磷锰预混液和碱溶液进行反应,其中所述磷锰预混液是由焦磷酸二氢二钠溶液和锰盐溶液预先经管道混合器混合后再进入反应体系;
    S3:步骤S2反应结束后进行固液分离,所得固体经洗涤和脱水,得到第一固体料;
    S4:将所述第一固体料与锂源、水混合,在酸性条件下进行水热反应,反应结束后加入碳源混合,进行喷雾干燥,得到第二固体料;
    S5:所述第二固体料在惰性气氛下煅烧,即得所述磷酸锰铁锂。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述酸性磷铁溶液中铁磷元素的摩尔比为1:(1.02-1.05)。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述酸性磷铁溶液的pH为-1.0-0.5。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述底液的pH为1.8-2.0;所述反应过程中,控制反应体系的pH为1.8-2.0。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述焦磷酸二氢二钠溶液的浓度为0.5-1.0mol/L;所述锰盐溶液的浓度为0.5-1.0mol/L。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤S2中,所述酸性磷铁溶液的进料流量为100-200mL/h,酸性磷铁溶液中铁离子浓度为0.1-2.0mol/L,所述酸性磷铁溶液和磷锰预混液按照铁锰比为(0.25-4):1进料。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述脱水的温度为550-700℃。
  8. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述第一固体料与锂源、水混合后,加酸调节pH为2.5-4.0,再进行所述水热反应。
  9. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述水热反应的温度为100-120℃。
  10. 如权利要求1-9任一项所述的方法在制备锂离子电池中的应用。
PCT/CN2023/077687 2022-09-16 2023-02-22 一种磷酸锰铁锂的制备方法及其应用 WO2024055519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211127102.0A CN115520846B (zh) 2022-09-16 2022-09-16 一种磷酸锰铁锂的制备方法及其应用
CN202211127102.0 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055519A1 true WO2024055519A1 (zh) 2024-03-21

Family

ID=84697831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077687 WO2024055519A1 (zh) 2022-09-16 2023-02-22 一种磷酸锰铁锂的制备方法及其应用

Country Status (3)

Country Link
CN (1) CN115520846B (zh)
FR (1) FR3139952A1 (zh)
WO (1) WO2024055519A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115520846B (zh) * 2022-09-16 2023-11-03 广东邦普循环科技有限公司 一种磷酸锰铁锂的制备方法及其应用
CN115676794B (zh) * 2022-10-24 2024-01-09 广东邦普循环科技有限公司 共沉淀制备磷酸锰铁锂正极材料的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
CN105702954A (zh) * 2014-11-26 2016-06-22 比亚迪股份有限公司 一种正极材料LiMn1-xFexPO4/C及其制备方法
CN112125292A (zh) * 2020-08-14 2020-12-25 中国科学院金属研究所 一种磷酸锰铁锂的水热合成方法
CN113659134A (zh) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 一种使用共结晶法制备纳米级磷酸铁锰锂材料的方法
CN114940485A (zh) * 2022-07-25 2022-08-26 蜂巢能源科技股份有限公司 一种磷酸锰铁锂前驱体及其制备方法和应用
CN115520846A (zh) * 2022-09-16 2022-12-27 广东邦普循环科技有限公司 一种磷酸锰铁锂的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
CN105702954A (zh) * 2014-11-26 2016-06-22 比亚迪股份有限公司 一种正极材料LiMn1-xFexPO4/C及其制备方法
CN112125292A (zh) * 2020-08-14 2020-12-25 中国科学院金属研究所 一种磷酸锰铁锂的水热合成方法
CN113659134A (zh) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 一种使用共结晶法制备纳米级磷酸铁锰锂材料的方法
CN114940485A (zh) * 2022-07-25 2022-08-26 蜂巢能源科技股份有限公司 一种磷酸锰铁锂前驱体及其制备方法和应用
CN115520846A (zh) * 2022-09-16 2022-12-27 广东邦普循环科技有限公司 一种磷酸锰铁锂的制备方法及其应用

Also Published As

Publication number Publication date
FR3139952A1 (fr) 2024-03-22
CN115520846B (zh) 2023-11-03
CN115520846A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN103715424B (zh) 一种核壳结构正极材料及其制备方法
CN104241626B (zh) 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法
CN112820861B (zh) 一种正极材料及其制备方法和锂离子电池
CN102694166B (zh) 一种锂镍钴铝复合金属氧化物的制备方法
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
CN102983326B (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
CN110540254A (zh) 一种硼镁共掺杂梯度镍钴锰酸锂正极材料及其制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN111403729A (zh) 钠离子电池正极材料及其制备方法、钠离子电池
WO2015027826A1 (zh) 锂离子电池正极材料及其制备方法
CN115043387B (zh) 磷酸锰铁铵的制备方法、磷酸锰铁锂及其应用
CN106169566A (zh) 一种层状富锂正极材料的制备方法
WO2024055517A1 (zh) 一种磷铁类锂离子电池正极材料及其制备方法和应用
CN103715422B (zh) 电解法制备锂离子电池的高镍系正极材料的方法
WO2024055516A1 (zh) 喷雾燃烧制备磷酸锰铁锂正极材料的方法及其应用
CN112510200A (zh) 一种双导电层包覆富锂锰基材料的制备方法
CN111682174A (zh) 一种锑包覆的锂电池正极材料及其制备方法和应用
CN114094089A (zh) 一种正极补锂添加剂及其制备和在锂离子电池正极补锂中的应用
TWI550938B (zh) 鋰離子電池正極材料及其製備方法
CN104009221B (zh) 溶胶凝胶自蔓延燃烧法制备富锂正极材料的方法
WO2023226556A1 (zh) 一种磷酸铁锂的制备方法及其应用
WO2023060992A1 (zh) 正极边角料回收合成高安全性正极材料的方法和应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN113823790B (zh) 钴铁硒化物/石墨烯纳米带复合负极材料及其制备方法
CN102306764A (zh) 一种层状锂镍锰钴氧复合氧化物正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864262

Country of ref document: EP

Kind code of ref document: A1