WO2024055517A1 - 一种磷铁类锂离子电池正极材料及其制备方法和应用 - Google Patents

一种磷铁类锂离子电池正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024055517A1
WO2024055517A1 PCT/CN2023/077683 CN2023077683W WO2024055517A1 WO 2024055517 A1 WO2024055517 A1 WO 2024055517A1 CN 2023077683 W CN2023077683 W CN 2023077683W WO 2024055517 A1 WO2024055517 A1 WO 2024055517A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
phosphorus
lithium
solution
ion battery
Prior art date
Application number
PCT/CN2023/077683
Other languages
English (en)
French (fr)
Inventor
王涛
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024055517A1 publication Critical patent/WO2024055517A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and particularly relates to a phosphorus-iron lithium ion battery cathode material and its preparation method and application.
  • the cathode materials used in lithium-ion batteries mainly include lithium iron phosphate, lithium manganate, lithium cobalt oxide and ternary cathode materials.
  • Lithium iron phosphate material has received widespread attention as a cathode material for lithium-ion batteries because of its high structural stability. It is the safest cathode material discovered so far.
  • the discharge capacity of existing phosphorus-iron lithium-ion battery cathode materials is still low, making it difficult to compete with ternary cathode materials. Therefore, how to prepare high-capacity iron-phosphorus cathode materials for lithium-ion batteries with reliable quality is an urgent problem that needs to be solved.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a phosphorus-iron lithium-ion battery cathode material and its preparation method and application.
  • the phosphorus-iron lithium-ion battery cathode material prepared by the preparation method has high specific capacity and cycle performance.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • step (1) Mix the water-soluble manganese salt solution and the water-soluble pyrophosphate solution, add acid solution to adjust the pH to acidic, and then add the water-soluble iron salt solution to react to obtain a mixed solution; (2) Obtain from step (1) The mixed solution is mixed with an iron source, a lithium source, and a carbon source to form a mixture, and then dried to obtain a dry material; (3) the dry material obtained in step (2) is calcined under an inert gas to obtain the iron phosphorus lithium ion battery Cathode material.
  • the water-soluble manganese salt solution is manganese nitrate solution
  • the water-soluble pyrophosphate solution is tetraammonium pyrophosphate solution
  • the acid solution is nitric acid solution.
  • the concentration of the water-soluble manganese salt solution is 0.5-3.0 mol/L.
  • the concentration of the water-soluble manganese salt solution is 1-2.0 mol/L.
  • the concentration of the water-soluble pyrophosphate solution is 0.5-3.0 mol/L.
  • the concentration of the water-soluble pyrophosphate solution is 1-2.0 mol/L.
  • the concentration of the acid solution is 0.1-1.0 mol/L.
  • the concentration of the acid solution is 0.1-0.5 mol/L.
  • the acid solution is nitric acid solution.
  • step (1) the water-soluble manganese salt solution and the water-soluble pyrophosphate solution are mixed according to a manganese to phosphorus molar ratio of 1: (2-5).
  • step (1) the water-soluble manganese salt solution and the water-soluble pyrophosphate solution are mixed according to a molar ratio of manganese to phosphorus of 1:3.
  • step (1) the acid is added drop by drop under stirring, the adding rate is 10-50 mL/h, and the stirring speed is 10-50 r/min.
  • step (1) the acid is added drop by drop under stirring, the adding rate is 20-40 mL/h, and the stirring speed is 25-50 r/min.
  • adjusting the pH to acidic means adjusting the pH to 1.0-3.0.
  • adjusting the pH to acidic means adjusting the pH to 1.5-1.7.
  • step (1) the water-soluble iron salt solution is added drop by drop under stirring, the adding rate is 30-100 mL/h, and the stirring speed is 20-100 r/min.
  • step (1) the water-soluble iron salt solution is added drop by drop under stirring, the adding rate is 40-80 mL/h, and the stirring speed is 30-60 r/min.
  • the reaction temperature is 80-150°C.
  • reaction temperature is 100-120°C.
  • step (1) the reaction is carried out in a reaction kettle, and during the reaction, the pressure in the reaction kettle is controlled to be no higher than 0.3Mpa.
  • step (1) when the molar ratio of iron to manganese in the mixed solution is 1:1, the reaction is stopped.
  • the drying method is spray drying.
  • the iron source is at least one of iron nitrate and iron acetate.
  • the lithium source is at least one of lithium acetate and lithium nitrate.
  • the carbon source is at least one of glucose and sucrose.
  • the calcination temperature is 500-1000°C, and the calcination time is 10-30h.
  • the calcination temperature is 600-850°C, and the calcination time is 12-24h.
  • a method for preparing an iron-phosphorus lithium-ion battery cathode material includes the following steps:
  • step (1) Add the nitric acid solution prepared in step (1) dropwise into the hydrothermal reaction kettle.
  • the addition rate of the nitric acid solution is 20-40mL/h, and the stirring speed of the reaction kettle is controlled to 25-50r/min;
  • a phosphorus-iron lithium-ion battery cathode material is prepared by the above-mentioned preparation method.
  • the 0.2C discharge capacity of the phosphorus-iron lithium-ion battery cathode material can reach more than 171.7mAh/g.
  • the 1C discharge capacity of the phosphorus-iron lithium-ion battery cathode material can reach more than 150.9 mAh/g.
  • the capacity retention rate of the phosphorus-iron lithium-ion battery cathode material can reach more than 93.93% after 600 1C cycles.
  • divalent manganese ions are oxidized and complexed with pyrophosphate through hydrothermal reaction to generate stable manganese pyrophosphate ions.
  • the water-soluble manganese salt solution is preferably a manganese nitrate solution
  • the water-soluble pyrophosphate is The solution is tetraammonium pyrophosphate solution and the acid solution is nitric acid solution, so that ammonium ions are continuously consumed through nitrate ions during the entire reaction process, so that the final hydrothermal product only contains ferric ions and complex manganese pyrophosphate ions.
  • reaction principle is as follows: 10Mn 2+ +2NO 3 - +30P 2 O 7 4- +72H + ⁇ 10[Mn(H 2 P 2 O 7 ) 3 ] 3- +N 2 ⁇ +6H 2 O; NH 4 + +NO 3 - ⁇ N 2 O ⁇ +2H 2 O;
  • each material is uniformly mixed in the form of a solution. After spray drying, a uniformly mixed material of iron, manganese, lithium, phosphorus and carbon is obtained.
  • a uniformly mixed material of iron, manganese, lithium, phosphorus and carbon is obtained in the cathode material obtained by subsequent sintering.
  • Iron, manganese, lithium and phosphorus have better distribution.
  • the elements are mixed more evenly.
  • the element ratio of iron, manganese and phosphorus is more in line with the theoretical value, and will not lead to the phenomenon of more phosphorus and less phosphorus;
  • the cathode material of the phosphorus-iron lithium ion battery prepared by the present invention is lithium iron manganese pyrophosphate, and its theoretical chemical formula is Li 6 Fe 2 Mn(P 2 O 7 ) 3 /C. Compared with conventional lithium iron phosphate LiFePO 4. With more lithium, it can embed and accommodate more lithium during the charge and discharge process, and the material has a higher charge and discharge capacity.
  • Figure 1 is an SEM image of the phosphorus-iron lithium ion battery cathode material prepared in Example 1 of the present invention.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • step (1) Add the nitric acid solution prepared in step (1) dropwise into the hydrothermal reaction kettle.
  • the addition rate of the nitric acid solution is 40 mL/h, and the stirring speed of the reaction kettle is controlled to 50 r/min;
  • a phosphorus-iron lithium-ion battery cathode material is prepared by the above preparation method, and its SEM picture is shown in Figure 1.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • step (1) Add the nitric acid solution prepared in step (1) dropwise into the hydrothermal reaction kettle.
  • the addition rate of the nitric acid solution is 30 mL/h, and the stirring speed of the reaction kettle is controlled to 40 r/min;
  • a phosphorus-iron lithium ion battery cathode material is prepared by the above preparation method.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • step (1) Add the nitric acid solution prepared in step (1) dropwise into the hydrothermal reaction kettle.
  • the addition rate of the nitric acid solution is 20 mL/h, and the stirring speed of the reaction kettle is controlled to 25 r/min;
  • a phosphorus-iron lithium ion battery cathode material is prepared by the above preparation method.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • a phosphorus-iron lithium ion battery cathode material is prepared by the above preparation method.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • a phosphorus-iron lithium ion battery cathode material is prepared by the above preparation method.
  • a method for preparing a phosphorus-iron lithium-ion battery cathode material including the following steps:
  • a phosphorus-iron lithium ion battery cathode material is prepared by the above preparation method.
  • a phosphorus-iron lithium ion battery cathode material is prepared by the above preparation method.
  • the negative electrode is a metal lithium sheet;
  • the separator is a Celgard2400 polypropylene porous membrane;
  • the solvent in the electrolyte is a solution composed of EC, DMC and EMC in a mass ratio of 1:1:1.
  • the solute is LiPF 6 , and the concentration of LiPF 6 is 1.0 mol/L; a 2023 button battery is assembled in the glove box.
  • the 0.2C discharge capacity of the phosphorus-iron lithium-ion battery cathode material prepared by the preparation method of the present invention can reach more than 171.7mAh/g
  • the 1C discharge capacity can reach more than 150.9mAh/g
  • the 1C cycle capacity can reach 600 times.
  • the retention rate can reach over 93.93%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种磷铁类锂离子电池正极材料及其制备方法和应用,其中制备方法包括以下步骤:(1)将水溶性锰盐溶液与水溶性焦磷酸盐溶液混合,并加酸液调节pH为酸性,然后加入水溶性铁盐溶液进行反应,得到混合液;(2)将步骤(1)得到的混合液与铁源、锂源、碳源混合成混合料后、干燥,得到干燥料;(3)将步骤(2)得到的干燥料在惰性气体下煅烧,得到所述磷铁类锂离子电池正极材料。该制备方法制备得到的磷铁类锂离子电池正极材料具有较高比容量和循环性能。

Description

一种磷铁类锂离子电池正极材料及其制备方法和应用 技术领域
本发明属于锂电池正极材料技术领域,特别涉及一种磷铁类锂离子电池正极材料及其制备方法和应用。
背景技术
目前锂离子电池采用的正极材料主要有磷酸铁锂、锰酸锂、钴酸锂和三元正极材料等。磷酸铁锂材料,因其较高的结构稳定性作为锂离子电池正极材料受到广泛关注,是目前所发现的安全性较好的正极材料。但是现有的磷铁类锂离子电池正极材料的放电容量仍然较低,难以与三元正极材料抗衡。因此,如何制备出质量可靠的高容量的磷铁类锂离子电池正极材料是目前亟待解决的难题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种磷铁类锂离子电池正极材料及其制备方法和应用,该制备方法制备得到的磷铁类锂离子电池正极材料具有较高比容量和循环性能。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种磷铁类锂离子电池正极材料的制备方法,包括以下步骤:
(1)将水溶性锰盐溶液与水溶性焦磷酸盐溶液混合,并加酸液调节pH为酸性,然后加入水溶性铁盐溶液进行反应,得到混合液;(2)将步骤(1)得到的混合液与铁源、锂源、碳源混合成混合料后、干燥,得到干燥料;(3)将步骤(2)得到的干燥料在惰性气体下煅烧得到所述磷铁类锂离子电池正极材料。
优选的,步骤(1)中,所述水溶性锰盐溶液为硝酸锰溶液,所述水溶性焦磷酸盐溶液为焦磷酸四铵溶液,所述酸液为硝酸溶液。
优选的,步骤(1)中,所述水溶性锰盐溶液的浓度为0.5-3.0mol/L。
进一步优选的,步骤(1)中,所述水溶性锰盐溶液的浓度为1-2.0mol/L。
优选的,步骤(1)中,所述水溶性焦磷酸盐溶液的浓度为0.5-3.0mol/L。
进一步优选的,步骤(1)中,所述水溶性焦磷酸盐溶液的浓度为1-2.0mol/L。
优选的,步骤(1)中,所述酸液的浓度为0.1-1.0mol/L。
进一步优选的,步骤(1)中,所述酸液的浓度为0.1-0.5mol/L。
优选的,步骤(1)中,所述酸液为硝酸溶液。
优选的,步骤(1)中,所述水溶性锰盐溶液与所述水溶性焦磷酸盐溶液按照锰磷摩尔比1:(2-5)进行混合。
进一步优选的,步骤(1)中,所述水溶性锰盐溶液与所述水溶性焦磷酸盐溶液按照锰磷摩尔比1:3进行混合。
优选的,步骤(1)中,所述加酸的方式为在搅拌下逐滴加入,加入速率为10-50mL/h,搅拌速度为10-50r/min。
进一步优选的,步骤(1)中,所述加酸的方式为在搅拌下逐滴加入,加入速率为20-40mL/h,搅拌速度为25-50r/min。
优选的,步骤(1)中,所述调节pH为酸性是指将pH调节至1.0-3.0。
进一步优选的,步骤(1)中,所述调节pH为酸性是指将pH调节至1.5-1.7。
优选的,步骤(1)中,所述水溶性铁盐溶液的加入方式为在搅拌下逐滴加入,加入速率为30-100mL/h,搅拌速度为20-100r/min。
进一步优选的,步骤(1)中,所述水溶性铁盐溶液的加入方式为在搅拌下逐滴加入,加入速率为40-80mL/h,搅拌速度为30-60r/min。
优选的,步骤(1)中,所述反应的温度为80-150℃。
进一步优选的,步骤(1)中,所述反应的温度为100-120℃。
优选的,步骤(1)中,所述反应是在反应釜中进行,反应时,控制所述反应釜内压力不高于0.3Mpa。
优选的,步骤(1)中,当所述混合液中铁锰摩尔比为1:1时,停止反应。
优选的,步骤(2)中,所述混合料中Fe:Mn:Li:碳源=2:1:(6.0-6.5):(1.0-2.0)。
进一步优选的,步骤(2)中,所述混合料中Fe:Mn:Li:碳源 =2:1:(6.0-6.2):(1.0-1.5)。
优选的,步骤(2)中,所述干燥的方式为喷雾干燥。
优选的,步骤(2)中,所述铁源为硝酸铁、醋酸铁中的至少一种。
优选的,步骤(2)中,所述锂源为醋酸锂、硝酸锂中的至少一种。
优选的,步骤(2)中,所述碳源为葡萄糖、蔗糖中的至少一种。
优选的,步骤(3)中,所述煅烧的温度为500-1000℃,煅烧时间为10-30h。
进一步优选的,步骤(3)中,所述煅烧的温度为600-850℃,煅烧时间为12-24h。
优选的,一种磷铁类锂离子电池正极材料的制备方法,包括以下步骤:
(1)配制浓度为0.1-0.5mol/L的硝酸溶液;
(2)配制浓度为1-2.0mol/L的焦磷酸四铵溶液;
(3)配制浓度为1-2.0mol/L的硝酸锰溶液;
(4)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至100-120℃,调节反应釜泄压阀压力,控制釜内压力不高于0.3MPa;
(5)向水热反应釜中逐滴加入步骤(1)配制的硝酸溶液,硝酸溶液的加入速率为20-40mL/h,并控制反应釜搅拌转速为25-50r/min;
(6)当反应釜内pH达到1.5-1.7时,停止加入硝酸溶液,向水热反应釜中逐滴加入浓度为0.1-0.5mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为40-80mL/h,并控制反应釜搅拌转速为30-60r/min;
(7)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(8)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:(6.0-6.2):(1.0-1.5)的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为硝酸铁、醋酸铁中的至少一种,锂源为醋酸锂、硝酸锂中的至少一种;碳源为葡萄糖、蔗糖中的一种或两种;
(9)将干燥料在惰性气体的保护下、600-850℃煅烧12-24h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由如上所述的制备方法制备得到。
优选的,所述磷铁类锂离子电池正极材料的0.2C放电容量能达到171.7mAh/g以上。
优选的,所述磷铁类锂离子电池正极材料的1C放电容量能达到150.9mAh/g以上。
优选的,所述磷铁类锂离子电池正极材料的1C循环600次容量保持率能达到93.93%以上。
如上所述的磷铁类锂离子电池正极材料在制备锂离子电池中的应用。
本发明的有益效果是:
(1)本发明通过水热反应将二价锰离子氧化并与焦磷酸根进行络合,生成稳定的焦磷酸络锰离子,同时优选水溶性锰盐溶液为硝酸锰溶液,水溶性焦磷酸盐溶液为焦磷酸四铵溶液及酸液为硝酸溶液,使得在整个反应过程中,通过硝酸根离子不断地消耗铵根离子,使最终的水热产物仅含有三价铁离子、焦磷酸络锰离子、硝酸根离子,在后续与铁源、锂源、碳源烧结时,避免了杂质离子的产生。反应原理如下:
10Mn2++2NO3 -+30P2O7 4-+72H+→10[Mn(H2P2O7)3]3-+N2↑+6H2O;
NH4 ++NO3 -→N2O↑+2H2O;
(2)本发明后续的混料过程中,各物料以溶液的形式达到了均匀混合的目的,经喷雾干燥后,得到铁锰锂磷碳混合均匀的物料,在后续烧结得到的正极材料中,铁锰锂磷具有更好的分布,相比于固相法直接烧结,元素的混合更加均匀。同时,采用此法,铁锰磷的元素比例更满足理论值,不会导致磷多磷少的现象出现;
(3)本发明制备得到的磷铁类锂离子电池正极材料为焦磷酸锰铁锂,理论化学式为Li6Fe2Mn(P2O7)3/C,相比于常规的磷酸铁锂LiFePO4,具备更多的锂,在充放电过程中能够嵌入和容纳更多的锂,材料的充放电容量更高。
附图说明
图1为本发明实施例1制备得到的磷铁类锂离子电池正极材料的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种磷铁类锂离子电池正极材料的制备方法,包括如下步骤:
(1)配制浓度为0.1mol/L的硝酸溶液;
(2)配制浓度为1mol/L的焦磷酸四铵溶液;
(3)配制浓度为1mol/L的硝酸锰溶液;
(4)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至120℃,调节反应釜泄压阀压力,控制釜内压力为0.2MPa;
(5)向水热反应釜中逐滴加入步骤(1)配制的硝酸溶液,硝酸溶液的加入速率为40mL/h,并控制反应釜搅拌转速为50r/min;
(6)当反应釜内pH达到1.7时,停止加入硝酸溶液,向水热反应釜中逐滴加入浓度为0.1mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为80mL/h,并控制反应釜搅拌转速为60r/min;
(7)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(8)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:6.2:1的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为硝酸铁,锂源为醋酸锂;碳源为蔗糖;
(9)将干燥料在惰性气体的保护下、850℃煅烧12h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到,其SEM图如图1所示。
实施例2:
一种磷铁类锂离子电池正极材料的制备方法,包括如下步骤:
(1)配制浓度为0.3mol/L的硝酸溶液;
(2)配制浓度为1.5mol/L的焦磷酸四铵溶液;
(3)配制浓度为1.5mol/L的硝酸锰溶液;
(4)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至110℃,调节反应釜泄压阀压力,控制釜内压力为 0.2MPa;
(5)向水热反应釜中逐滴加入步骤(1)配制的硝酸溶液,硝酸溶液的加入速率为30mL/h,并控制反应釜搅拌转速为40r/min;
(6)当反应釜内pH达到1.6时,停止加入硝酸溶液,向水热反应釜中逐滴加入浓度为0.3mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为60mL/h,并控制反应釜搅拌转速为45r/min;
(7)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(8)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:6.1:1.3的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为醋酸铁,锂源为硝酸锂;碳源为葡萄糖;
(9)将干燥料在惰性气体的保护下、750℃煅烧18h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到。
实施例3:
一种磷铁类锂离子电池正极材料的制备方法,包括如下步骤:
(1)配制浓度为0.5mol/L的硝酸溶液;
(2)配制浓度为2.0mol/L的焦磷酸四铵溶液;
(3)配制浓度为2.0mol/L的硝酸锰溶液;
(4)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至100℃,调节反应釜泄压阀压力,控制釜内压力为0.2MPa;
(5)向水热反应釜中逐滴加入步骤(1)配制的硝酸溶液,硝酸溶液的加入速率为20mL/h,并控制反应釜搅拌转速为25r/min;
(6)当反应釜内pH达到1.5时,停止加入硝酸溶液,向水热反应釜中逐滴加入浓度为0.5mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为40mL/h,并控制反应釜搅拌转速为30r/min;
(7)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(8)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:6.0:1.5的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为醋酸铁,锂源为醋酸锂;碳源为葡萄糖;
(9)将干燥料在惰性气体的保护下、600℃煅烧24h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到。
对比例1:(与实施例1的区别在于未添加硝酸溶液)
一种磷铁类锂离子电池正极材料的制备方法,包括如下步骤:
(1)配制浓度为1mol/L的焦磷酸四铵溶液;
(2)配制浓度为1mol/L的硝酸锰溶液;
(3)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至120℃,调节反应釜泄压阀压力,控制釜内压力为0.2MPa;
(4)向水热反应釜中逐滴加入浓度为0.1mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为80mL/h,并控制反应釜搅拌转速为60r/min;
(5)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(6)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:6.2:1的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为硝酸铁,锂源为醋酸锂;碳源为蔗糖;
(7)将干燥料在惰性气体的保护下、850℃煅烧12h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到。
对比例2:(与实施例2的区别在于未添加硝酸溶液)
一种磷铁类锂离子电池正极材料的制备方法,包括如下步骤:
(1)配制浓度为1.5mol/L的焦磷酸四铵溶液;
(2)配制浓度为1.5mol/L的硝酸锰溶液;
(3)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至110℃,调节反应釜泄压阀压力,控制釜内压力为 0.2MPa;
(4)向水热反应釜中逐滴加入浓度为0.3mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为60mL/h,并控制反应釜搅拌转速为45r/min;
(5)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(6)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:6.1:1.3的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为醋酸铁,锂源为硝酸锂;碳源为葡萄糖;
(7)将干燥料在惰性气体的保护下、750℃煅烧18h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到。
对比例3:(与实施例3的区别在于未添加硝酸溶液)
一种磷铁类锂离子电池正极材料的制备方法,包括如下步骤:
(1)配制浓度为2.0mol/L的焦磷酸四铵溶液;
(2)配制浓度为2.0mol/L的硝酸锰溶液;
(3)将步骤(2)和步骤(3)配制的溶液按照锰磷摩尔比1:3混合后置于水热反应釜中,并升温至100℃,调节反应釜泄压阀压力,控制釜内压力为0.2MPa;
(4)向水热反应釜中逐滴加入浓度为0.5mol/L的硝酸铁溶液,硝酸铁溶液的加入速率为40mL/h,并控制反应釜搅拌转速为30r/min;
(5)当反应釜内铁锰摩尔比为1:1时,停止反应,泄压并冷却至室温,得到锰铁磷混合液;
(6)将混合液与铁源、锂源、碳源混合后制成摩尔比Fe:Mn:Li:碳源=2:1:6.0:1.5的混合料,将混合料进行喷雾干燥,得到干燥料;铁源为醋酸铁,锂源为醋酸锂;碳源为葡萄糖;
(7)将干燥料在惰性气体的保护下、600℃煅烧24h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到。
对比例4:
按照摩尔比Fe:Mn:P:Li:碳源=2:1:6:6.2:1,将醋酸铁、醋酸锰、焦磷酸四铵、醋酸锂、蔗糖混合后,加入总质量20%的去离子水,球磨混合6h,将混合料进行喷雾干燥,再置于惰性气体的保护下、850℃煅烧12h,自然冷却至室温,得到磷铁类锂离子电池正极材料成品。
一种磷铁类锂离子电池正极材料,由上述制备方法制备得到。
试验例:
1.对实施例1-3和对比例1-4所得磷铁类锂离子电池正极材料成品,采用EDS测试任意3点区域(面积:0.5μm*0.5μm)中各元素的原子百分比,结果如表1所示:
表1.原子百分比检测结果:
由表1可知,实施例1-3和对比例1-3的元素分布较为均匀,对比例4元素分布不均匀。
2.以实施例和对比例得到的磷铁类锂离子电池正极材料成品,乙炔黑为导电剂,PVDF为粘结剂,按质量比8:1:1进行混合,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片;隔膜为Celgard2400聚丙烯多孔膜;电解液中溶剂为EC、DMC和EMC按质量比1:1:1组成的溶液,溶质为LiPF6,LiPF6的浓度为1.0mol/L;在手套箱内组装2023型扣式电池。对电池进行充放电循环性能测试,在截止电压2.2-4.3V范围内,测试0.2C、1C放电比容量;测试电化学性能结果如下表2所示。
表2.电化学性能测试结果:
由表2可知,本发明的制备方法制备得到的磷铁类锂离子电池正极材料的0.2C放电容量能达到171.7mAh/g以上,1C放电容量能达到150.9mAh/g以上,1C循环600次容量保持率能达到93.93%以上。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种磷铁类锂离子电池正极材料的制备方法,其特征在于:包括以下步骤:
    (1)将水溶性锰盐溶液与水溶性焦磷酸盐溶液混合,并加酸液调节pH为酸性,然后加入水溶性铁盐溶液进行反应,得到混合液;
    (2)将步骤(1)得到的混合液与铁源、锂源、碳源混合成混合料后,干燥得到干燥料;
    (3)将步骤(2)得到的干燥料在惰性气体下煅烧,得到所述磷铁类锂离子电池正极材料。
  2. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(1)中,所述水溶性锰盐溶液为硝酸锰溶液,所述水溶性焦磷酸盐溶液为焦磷酸四铵溶液,所述酸液为硝酸溶液。
  3. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(1)中,所述水溶性锰盐溶液与所述水溶性焦磷酸盐溶液按照锰磷摩尔比1:(2-5)进行混合。
  4. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(1)中,所述调节pH为酸性是指将pH调节至1.0-3.0。
  5. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(1)中,所述水溶性铁盐溶液的加入方式为在搅拌下逐滴加入,加入速率为30-100mL/h,搅拌速度为20-100r/min。
  6. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(2)中,所述混合料中Fe:Mn:Li:碳源=2:1:(6.0-6.5):(1.0-2.0)。
  7. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(2)中,所述干燥的方式为喷雾干燥。
  8. 根据权利要求1所述的一种磷铁类锂离子电池正极材料的制备方法,其特征在于:步骤(3)中,所述煅烧的温度为500-1000℃,煅烧时间为10-30h。
  9. 一种磷铁类锂离子电池正极材料,其特征在于:由权利要求1-8任一项所述的制备方法制备得到。
  10. 权利要求9所述的磷铁类锂离子电池正极材料在制备锂离子电池中的应用。
PCT/CN2023/077683 2022-09-13 2023-02-22 一种磷铁类锂离子电池正极材料及其制备方法和应用 WO2024055517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211107860.6 2022-09-13
CN202211107860.6A CN115432685B (zh) 2022-09-13 2022-09-13 一种磷铁类锂离子电池正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024055517A1 true WO2024055517A1 (zh) 2024-03-21

Family

ID=84245958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077683 WO2024055517A1 (zh) 2022-09-13 2023-02-22 一种磷铁类锂离子电池正极材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN115432685B (zh)
FR (1) FR3139669A1 (zh)
WO (1) WO2024055517A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432685B (zh) * 2022-09-13 2024-01-05 广东邦普循环科技有限公司 一种磷铁类锂离子电池正极材料及其制备方法和应用
WO2024120363A1 (zh) * 2022-12-08 2024-06-13 北京林立新能源有限公司 一种制备磷酸锰的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779995A (zh) * 2011-05-13 2012-11-14 上海空间电源研究所 一种锂电池磷酸系列正极材料
CN104037413A (zh) * 2014-06-19 2014-09-10 合肥国轩高科动力能源股份公司 锂离子电池正极材料碳包覆磷酸铁锰锂的制备方法
US20160013474A1 (en) * 2013-03-04 2016-01-14 Suzhou Institute Of Nano-Tech And Nano-Bionics Of Chinese Academy Of Sciences Porous Lithium Mangaense Phosphate-Carbon Composite Material, Preparation Method and Application Thereof
CN105702954A (zh) * 2014-11-26 2016-06-22 比亚迪股份有限公司 一种正极材料LiMn1-xFexPO4/C及其制备方法
CN113659134A (zh) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 一种使用共结晶法制备纳米级磷酸铁锰锂材料的方法
CN115432685A (zh) * 2022-09-13 2022-12-06 广东邦普循环科技有限公司 一种磷铁类锂离子电池正极材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220858A1 (en) * 2008-02-29 2009-09-03 Byd Company Limited Composite Compound With Mixed Crystalline Structure
US9979024B2 (en) * 2013-09-04 2018-05-22 Lg Chem, Ltd. Transition metal-pyrophosphate anode active material, method of preparing the same, and lithium secondary battery or hybrid capacitor including the anode active material
CN105355885A (zh) * 2015-11-26 2016-02-24 中南大学 一种锂离子电池复合正极材料LiMn1-xFexPO4/C的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779995A (zh) * 2011-05-13 2012-11-14 上海空间电源研究所 一种锂电池磷酸系列正极材料
US20160013474A1 (en) * 2013-03-04 2016-01-14 Suzhou Institute Of Nano-Tech And Nano-Bionics Of Chinese Academy Of Sciences Porous Lithium Mangaense Phosphate-Carbon Composite Material, Preparation Method and Application Thereof
CN104037413A (zh) * 2014-06-19 2014-09-10 合肥国轩高科动力能源股份公司 锂离子电池正极材料碳包覆磷酸铁锰锂的制备方法
CN105702954A (zh) * 2014-11-26 2016-06-22 比亚迪股份有限公司 一种正极材料LiMn1-xFexPO4/C及其制备方法
CN113659134A (zh) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 一种使用共结晶法制备纳米级磷酸铁锰锂材料的方法
CN115432685A (zh) * 2022-09-13 2022-12-06 广东邦普循环科技有限公司 一种磷铁类锂离子电池正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115432685A (zh) 2022-12-06
FR3139669A1 (fr) 2024-03-15
CN115432685B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN111785960B (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
WO2024055517A1 (zh) 一种磷铁类锂离子电池正极材料及其制备方法和应用
CN104241626A (zh) 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法
WO2020258764A1 (zh) 一种正极活性材料及其制备方法和锂电池
CN107834050A (zh) 一种锂离子电池富锂正极材料及其改进方法
WO2024130851A1 (zh) 一种双包覆型正极材料及其制备方法和应用
CN106486657B (zh) 一种表面原位包覆的富锂材料及其制备方法
WO2024055516A1 (zh) 喷雾燃烧制备磷酸锰铁锂正极材料的方法及其应用
CN111082009B (zh) 一种采用磷酸盐改善的富锂锰基复合正极材料及制备方法
CN111009645A (zh) 一种石墨烯基/AlPO4复合包覆改性高镍三元正极材料的方法
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
CN105576236A (zh) 锂离子电池442型三元正极改性材料及其制备方法
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN101209819B (zh) 一种磷酸亚铁锂的制备方法
CN114094060B (zh) 一种核壳结构的高电压正极材料的制备方法
WO2023226556A1 (zh) 一种磷酸铁锂的制备方法及其应用
WO2023173778A1 (zh) 一种海胆状钴酸锂的制备方法及其应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN114864894B (zh) 一种耐高压包覆层修饰的富锂锰基正极材料及其制备方法和应用
CN114613959B (zh) 一种阴阳离子共修饰富锂锰基复合材料、制备方法和应用
WO2024164440A1 (zh) 一种正极材料及其制备方法与应用
CN112436135B (zh) 一种正极材料及其制备方法和用途
CN113745514B (zh) 一种氟掺杂及硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
CN116315218A (zh) 采用废旧磷酸铁锂极片制备磷掺杂的富锂铁酸锂的方法及所得产品
CN113764671A (zh) 一种锂离子电池正极材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864260

Country of ref document: EP

Kind code of ref document: A1