WO2023236511A1 - 一种磷化渣制备磷酸锰铁锂正极材料的方法 - Google Patents

一种磷化渣制备磷酸锰铁锂正极材料的方法 Download PDF

Info

Publication number
WO2023236511A1
WO2023236511A1 PCT/CN2022/141938 CN2022141938W WO2023236511A1 WO 2023236511 A1 WO2023236511 A1 WO 2023236511A1 CN 2022141938 W CN2022141938 W CN 2022141938W WO 2023236511 A1 WO2023236511 A1 WO 2023236511A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
cathode material
manganese
iron phosphate
slurry
Prior art date
Application number
PCT/CN2022/141938
Other languages
English (en)
French (fr)
Inventor
杨娇娇
Original Assignee
湖北万润新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北万润新能源科技股份有限公司 filed Critical 湖北万润新能源科技股份有限公司
Publication of WO2023236511A1 publication Critical patent/WO2023236511A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of new energy material preparation, and in particular to a method for preparing lithium iron manganese phosphate cathode material from phosphating slag.
  • the cathode materials of lithium-ion batteries mainly include lithium cobalt oxide, lithium manganate, lithium nickel oxide, ternary materials, lithium iron phosphate, etc.
  • lithium iron phosphate and ternary materials are the cathode materials currently used in most lithium-ion batteries.
  • Lithium iron phosphate has an olivine crystal structure and has the advantages of high safety and high capacity.
  • Lithium iron manganese phosphate has the same structure as lithium iron phosphate. It is also an olivine crystal structure, and its theoretical capacity is 170mAh/g. Therefore, it also has the advantages of high safety and high capacity.
  • the working voltage of lithium iron manganese phosphate can reach 4.10V (vs Li+/Li), while the working voltage of lithium iron phosphate is only 3.2V (vs Li+/Li).
  • the energy density of lithium iron manganese phosphate is compared to that of lithium iron phosphate. The energy density can be increased by about 20%. Therefore, the development of low-cost and high-performance lithium iron manganese phosphate cathode materials can not only reduce the material cost of electric vehicles, but also effectively increase the cruising range of electric vehicles.
  • olivine-structured LiMn 1-x FexPO 4 As a new cathode material for lithium-ion batteries, olivine-structured LiMn 1-x FexPO 4 has the advantages of wide sources of raw materials, environmental friendliness, high energy density and theoretical specific capacity, and high voltage platform, and has received widespread attention in the field of lithium-ion batteries.
  • the reported methods for preparing lithium iron manganese phosphate mainly include liquid phase method, solid phase method, spray pyrolysis method, etc.
  • the raw materials used in the hydrothermal method are relatively expensive and the production cycle is long, making it difficult to achieve large-scale and batch production.
  • the solid-phase method Compared with the liquid phase method, the solid-phase method has the advantages of wide sources of raw materials, low cost, high output, and simple process.
  • the object of the present invention is to provide a method for preparing lithium iron manganese phosphate cathode material from phosphating slag, which method has simple process and low cost; the prepared lithium iron manganese phosphate cathode material has small particle size, uniform size, high voltage platform, Excellent electrical properties and cycle performance.
  • the invention provides a method for preparing lithium iron manganese phosphate cathode material from phosphating slag, which includes the following steps:
  • step (A) the heating and stirring temperature is 80-150°C, and the heating and stirring time is 3-5 hours.
  • step (A) the mass percentage of NH 3 ⁇ H 2 O in the ammonia water is 25%.
  • step (A) the molar ratio of NH 3 ⁇ H 2 O in the ammonia water to Zn in the zinc-based phosphating slag is 1.4 to 1.6:1.
  • step (B) the reaction temperature is 80-150°C.
  • the reaction time is 10 to 20 hours.
  • step (B) the phosphoric acid solution is added to the crude iron phosphate until the pH of the solution is 0.6-2, and then the cetyltrimethylammonium bromide is added to react to obtain the dihydrate. Iron phosphate.
  • the mass ratio of the cetyltrimethylammonium bromide to the crude iron phosphate is 0.004-0.02:1.
  • step (B) the sintering temperature is 650-700°C.
  • the sintering time is 5 to 10 hours.
  • the dopant includes a vanadium source and/or a titanium source.
  • the vanadium source includes ammonium metavanadate and/or vanadium pentoxide.
  • the titanium source includes at least one of nanometer titanium dioxide, titanium dioxide and titanate coupling agent.
  • the manganese source includes at least one of manganese dioxide, manganese carbonate, manganese acetate, dimanganese trioxide and manganese tetroxide.
  • the phosphorus source includes at least one of diammonium hydrogen phosphate, ammonium dihydrogen phosphate, iron phosphate and phosphoric acid.
  • the lithium source includes at least one of lithium carbonate, lithium hydroxide and lithium phosphate.
  • the carbon source includes at least one of citric acid, glucose, carbon nanotubes, sucrose and polyethylene glycol.
  • step (C) the molar ratio of Fe, Mn, Li and P in the slurry is 0.5 ⁇ 0.9:0.5 ⁇ 0.1:1 ⁇ 1.05:1.
  • the content of C in the slurry is 1.5wt% to 4wt%.
  • the concentration of Ti in the slurry is 1000 to 5000 ppm.
  • the concentration of V in the slurry is 1000 to 5000 ppm.
  • the particle size D50 of the slurry is 400 to 600 nm.
  • step (C) grinding includes ball milling and/or sand grinding.
  • the sintering temperature is 650-750°C.
  • the sintering time is 15 to 20 hours.
  • step (C) the slurry undergoes spray drying granulation and sintering to obtain a sintered material, and the sintered material is pulverized and screened to remove iron to obtain the lithium iron manganese phosphate cathode material.
  • the particle size D50 of the pulverized sintered material is 3 to 10 ⁇ m.
  • the method for preparing lithium iron manganese phosphate cathode material from phosphating slag uses discarded zinc-based phosphating slag as raw material, which greatly reduces the cost of preparing lithium iron manganese phosphate cathode material; it adopts spray pyrolysis and high-temperature solid phase
  • the combined method improves the problems of large particles and uneven sizes of lithium iron manganese phosphate cathode material, and improves the electrochemical performance.
  • high-valent metal ions Ti and V are doped, which effectively enhances the ion transport capability and structural stability of the lithium iron manganese phosphate cathode material.
  • the method for preparing lithium iron manganese phosphate cathode material from phosphating slag not only makes full use of the waste phosphating slag, but also has environmental and economic benefits.
  • the prepared lithium iron manganese phosphate cathode material has the characteristics of high voltage platform and high power. Excellent performance and cycle performance. This method has simple process, low cost, excellent electrical properties of the product, and is easy for industrial large-scale production.
  • Figure 1 is a SEM image of anhydrous ferric phosphate prepared in Example 1 of the present invention.
  • Figure 2 is an XRD pattern of anhydrous ferric phosphate prepared in Example 1 of the present invention.
  • Figure 3 is an SEM image of the lithium iron manganese phosphate cathode material prepared in Example 1 of the present invention.
  • Figure 4 is an XRD pattern of the lithium iron manganese phosphate cathode material obtained in Example 1 of the present invention.
  • Figure 5 is a 0.1C charge and discharge curve of lithium iron manganese phosphate obtained in Example 1 of the present invention.
  • Figure 6 is a 0.1C charge and discharge curve of lithium iron manganese phosphate obtained in Example 2 of the present invention.
  • Figure 7 is a 0.1C charge and discharge curve of lithium iron manganese phosphate obtained in Example 3 of the present invention.
  • Figure 8 is a 0.1C charge and discharge curve of lithium iron manganese phosphate obtained in Example 4 of the present invention.
  • a method for preparing lithium iron manganese phosphate cathode material from phosphate slag includes the following steps:
  • the method for preparing lithium iron manganese phosphate cathode material from phosphating slag uses discarded zinc-based phosphating slag as raw material, which greatly reduces the cost of preparing lithium iron manganese phosphate cathode material; it adopts spray pyrolysis and high-temperature solid phase
  • the combined method improves the problems of large particles and uneven sizes of lithium iron manganese phosphate cathode material, improves the electrochemical performance, and makes it have the characteristics of high voltage platform, excellent electrical performance and cycle performance.
  • Phosphating slag is waste residue produced during the phosphating process on the surface of metal parts.
  • the main components of zinc-based phosphating slag are iron phosphate, zinc phosphate, etc. Because the phosphate slag contains high water content, is highly acidic, highly corrosive, and prone to pollution, the environmentally friendly treatment of phosphate slag is difficult.
  • the mass percentage of iron phosphate is 70% to 75%, the mass percentage of zinc phosphate is 15% to 20%, and the balance is phosphate impurities.
  • step (A) the temperature of heating and stirring is 80-150°C, and the time of heating and stirring is 3-5 hours.
  • step (A) after detecting the contents of P, Fe, Zn and other impurity elements in the zinc-based phosphating slag, a certain amount of ammonia water is added according to the molar ratio.
  • step (A) the mass percentage of NH 3 ⁇ H 2 O in ammonia water is 25%.
  • the molar ratio of NH 3 ⁇ H 2 O in ammonia water to Zn in zinc-based phosphating slag is 1.4 to 1.6:1; preferably, the molar ratio of NH 3 ⁇ H 2 O in ammonia water to Zn in zinc-based phosphating slag The molar ratio of Zn in the zinc-based phosphating slag is 1.5:1.
  • ammonia water is added to the zinc-based phosphating slag.
  • the ammonia water can react with the zinc phosphate in the zinc-based phosphating slag to generate tetraammine zinc phosphate that is easily soluble in water, thereby removing the phosphoric acid in the zinc-based phosphating slag.
  • Zinc separate iron phosphate from zinc-based phosphate residue.
  • step (A) heating and stirring are performed in a closed container; thereby ensuring that the ammonia water can react with the zinc phosphate in the zinc-based phosphating slag.
  • the reaction temperature is 80-150°C; the reaction time is 10-20h; typical but not limiting, for example, the reaction temperature is 80°C, 90°C , 100°C, 110°C, 120°C, 130°C, 140°C or 150°C, etc.; the reaction time is 10h, 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h or 20h, etc.; preferably Preferably, in step (B), the reaction temperature is 80 ⁇ 100°C; the reaction time is 10 ⁇ 15h.
  • step (B) a phosphoric acid solution is added to the crude iron phosphate until the pH of the solution is 0.6-2, and then cetyltrimethylammonium bromide is added to react to obtain iron phosphate dihydrate. .
  • step (B) the mass ratio of cetyltrimethylammonium bromide and crude iron phosphate is 0.004-0.02:1.
  • the sintering temperature is 650-700°C; the sintering time is 5-10h; typical but not limiting, for example, the sintering temperature is 650°C, 660°C , 670°C, 680°C, 690°C or 700°C, etc.; the sintering time is 5h, 6h, 7h, 8h, 9h or 10h, etc.
  • the present invention first uses ammonia water to remove zinc phosphate in zinc-based phosphating slag to obtain crude iron phosphate; then adds phosphoric acid and cetyltrimethylammonium bromide (CTAB) to react to obtain iron phosphate dihydrate, iron phosphate dihydrate Anhydrous iron phosphate is obtained by sintering; thereby achieving the separation and purification of iron phosphide in waste zinc-based phosphating slag, and the obtained iron phosphide can be used to prepare high-energy-density lithium iron manganese phosphate cathode materials.
  • CTAB cetyltrimethylammonium bromide
  • the dopant in step (C), includes a vanadium source and/or a titanium source; preferably, the dopant includes a vanadium source and a titanium source.
  • the vanadium source in step (C), includes ammonium metavanadate and/or vanadium pentoxide.
  • the titanium source in step (C), includes at least one of nanometer titanium dioxide, titanium dioxide and titanate coupling agent.
  • the present invention is doped with high-priced metal ions Ti and V, which effectively enhances the ion transmission capacity and structural stability of the lithium iron manganese phosphate cathode material, and improves the lithium iron manganese phosphate cathode material's performance. Electrochemical properties.
  • the manganese source includes at least one of manganese dioxide, manganese carbonate, manganese acetate, dimanganese trioxide and manganese tetroxide.
  • the phosphorus source in step (C), includes at least one of diammonium hydrogen phosphate, ammonium dihydrogen phosphate, iron phosphate and phosphoric acid.
  • the lithium source in step (C), includes at least one of lithium carbonate, lithium hydroxide and lithium phosphate.
  • the carbon source in step (C), includes at least one of citric acid, glucose, carbon nanotubes, sucrose and polyethylene glycol.
  • the molar ratio of Fe, Mn, Li and P in the slurry is 0.5 ⁇ 0.9:0.5 ⁇ 0.1:1 ⁇ 1.05:1; preferably, in the slurry , the molar ratio of Fe, Mn, Li and P is 0.5 ⁇ 0.9:0.5 ⁇ 0.1:1.03:1.
  • step (C) the content of C in the slurry is 1.5wt% to 4wt%;
  • the concentration of Ti in the slurry is 1000 to 5000 ppm.
  • the concentration of V in the slurry is 1000 to 5000 ppm.
  • the particle size D50 of the slurry is 400 to 600 nm.
  • step (C) grinding includes ball milling and/or sand grinding.
  • the sintering temperature is 650-750°C.
  • step (C) the sintering time is 15 to 20 hours.
  • step (C) the slurry is spray-dried, granulated and sintered to obtain a sintered material, and the sintered material is pulverized and screened to remove iron to obtain a lithium iron manganese phosphate cathode material.
  • the particle size D50 of the pulverized sintered material is 3 to 10 ⁇ m.
  • the discharge capacity of the lithium iron manganese phosphate cathode material under 0.1C conditions is >1584 mAh/g, and the first Coulombic efficiency is >96%.
  • This embodiment provides a method for preparing lithium iron manganese phosphate cathode material from phosphating slag, including the following steps:
  • step (B) Take 50g of crude iron phosphate in step (A) and add phosphoric acid solution (concentration: 85wt%) until the pH of the solution is 0.9, then add 0.2g of cetyltrimethylammonium bromide (CTAB). React at 80°C for 10 hours to obtain a reaction solution; the above reaction solution is sequentially filtered, washed, dried, and ground to obtain ferric phosphate dihydrate; the ferric phosphate dihydrate is sintered at 650°C for 8 hours to obtain anhydrous ferric phosphate.
  • CTAB cetyltrimethylammonium bromide
  • step (B) 10g glucose, 90.1g polyethylene glycol, 1.58g titanium dioxide, 0.1g ammonium metavanadate, 150.4g manganese tetroxide and 3.01g titanate coupling agent , ball milled for 1 hour, and then sand milled for 3 hours to obtain a slurry with a particle size D50 of 476nm; the above slurry was spray-dried and granulated to obtain brown precursor powder; the precursor was placed in a graphite sagger and in a nitrogen atmosphere Under protection, the sintered material was obtained after sintering at 680°C for 15 hours.
  • the particle size D50 of the sintered material after pulverization by the airflow mill was 4.23 ⁇ m. Then, the lithium iron manganese phosphate cathode material was obtained after pulverization and iron removal.
  • This embodiment provides a method for preparing lithium iron manganese phosphate cathode material from phosphating slag, including the following steps:
  • step (B) Take 50g of the crude iron phosphate in step (A), add phosphoric acid solution (concentration: 85%) until the pH of the solution is 0.6, then add 0.5g cetyltrimethylammonium bromide (CTAB) in The reaction solution was obtained by reacting at 100°C for 14 hours; the above reaction solution was filtered, washed, dried, and ground in order to obtain ferric phosphate dihydrate; the ferric phosphate dihydrate was sintered at 680°C for 5 hours to obtain anhydrous ferric phosphate.
  • CTAB cetyltrimethylammonium bromide
  • step (B) After the reaction is complete and no bubbles are generated before adding 131.1g anhydrous ferric phosphate, 10g glucose, 100g sucrose, 1.58g titanium dioxide, 150.4g trimanganese tetroxide and 3.01g titanate coupling agent in step (B), ball mill for 1 hour, then sand mill for 3 hours to obtain a slurry , the particle size D50 of the slurry is 442nm; the above slurry is spray-dried and granulated to obtain a brown precursor powder; the precursor is placed in a graphite sagger, under the protection of a nitrogen atmosphere, sintered at 730°C for 20 hours, and then cooled naturally Afterwards, it is pulverized by an airflow mill.
  • the particle size D50 of the sintered material after being pulverized by the airflow mill is 5.37 ⁇ m. Then, the lithium iron manganese phosphate cathode material and the lithium iron manganese phosphate cathode material are obtained by pulverizing and removing iron.
  • This embodiment provides a method for preparing lithium iron manganese phosphate cathode material from phosphating slag, including the following steps:
  • step (B) Add phosphoric acid solution (concentration: 85%) to the crude iron phosphate in step (A) until the pH of the solution is 1.5, then add 1g cetyltrimethylammonium bromide (CTAB) at 150°C React for 15 hours to obtain a reaction solution; the above reaction solution is sequentially filtered, washed, dried, and ground to obtain ferric phosphate dihydrate; the ferric phosphate dihydrate is sintered at 680°C for 10 hours to obtain anhydrous ferric phosphate.
  • CAB cetyltrimethylammonium bromide
  • step (B) 10g glucose, 100g carbon nanotubes, 0.1g ammonium metavanadate, 173.46g manganese dioxide, ball mill for 1 hour, then sand mill for 3 hours to obtain slurry, slurry
  • the particle size D50 is 478nm; the above slurry is spray-dried and granulated to obtain brown precursor powder; the precursor is placed in a graphite sagger, and is sintered at 750°C for 20 hours under the protection of a nitrogen atmosphere.
  • the particle size D50 of the sintered material is 6.97 ⁇ m, and then pulverized to remove iron to obtain lithium iron manganese phosphate cathode material and lithium iron manganese phosphate cathode material.
  • This comparative example provides a method for preparing lithium iron manganese phosphate cathode material from phosphating slag, including the following steps:
  • step (B) Add phosphoric acid solution (concentration 85%) to 50g of crude iron phosphate in step (A) until the pH of the solution is 0.9, then add 0.2g cetyltrimethylammonium bromide (CTAB) in React at 80°C for 10 hours to obtain a reaction solution; the above reaction solution is sequentially filtered, washed, dried, and ground to obtain ferric phosphate dihydrate; the ferric phosphate dihydrate is sintered at 680°C for 8 hours to obtain anhydrous ferric phosphate.
  • CTAB cetyltrimethylammonium bromide
  • step (C) Add 2500g water and 264.9g ammonium dihydrogen phosphate to the ball mill, then slowly add 108.3g lithium carbonate. The reaction between ammonium dihydrogen phosphate and lithium carbonate will produce a large number of bubbles. Wait until the reaction is complete and no bubbles are generated before adding 131.1g anhydrous ferric phosphate, 10g glucose, 90.1g polyethylene glycol and 533.2g manganese acetate tetrahydrate in step (B) were ball milled for 1 hour and then sand milled for 3 hours to obtain a slurry.
  • the particle size D50 of the slurry was 462nm; above The slurry is spray-dried and granulated to obtain brown precursor powder; the precursor is placed in a graphite sagger, and is sintered at 700°C for 20 hours under the protection of a nitrogen atmosphere. After natural cooling, the precursor is pulverized by an airflow mill.
  • the particle size D50 of the sintered material is 8.77 ⁇ m, and then pulverized to remove iron to obtain lithium iron manganese phosphate cathode material and lithium iron manganese phosphate cathode material.
  • Example 1 The anhydrous iron phosphate prepared in Example 1 and the lithium iron manganese phosphate material in Example 1 were characterized using a Japanese Rigaku type X-ray powder diffractometer (XRD). The results are shown in Figures 2 and 4, XRD spectra. The characteristic peaks shown in are the anhydrous iron phosphate and lithium iron manganese phosphate respectively, and there are no impurity peaks.
  • XRD Japanese Rigaku type X-ray powder diffractometer
  • the lithium iron manganese phosphate cathode material prepared in Examples 1 to 3 and Comparative Example 1 was mixed with conductive carbon powder and PVDF binder in a mass ratio of 90:5:5, homogenized, and then coated on aluminum foil and dried at 110°C. Then use a roller machine to roll it, and then use a punching machine to make a pole piece with a diameter of 14mm, then weigh it, and deduct the mass of the aluminum foil to get the mass of the active material. After drying, CR2032 button half cells were assembled in a UNlab inert gas glove box from Braun Company in Germany.
  • Figure 6 shows that the lithium iron manganese phosphate cathode material prepared in Example 2 has a first charge specific capacity of 157.4mAh/g, a first discharge specific capacity of 153.2mAh/g, and an efficiency of 97.3% under a current of 0.1C at room temperature.
  • Figure 7 shows that the lithium iron manganese phosphate cathode material prepared in Example 3 has a first charge specific capacity of 158 mAh/g, a first discharge specific capacity of 152.2 mAh/g, and an efficiency of 96.3% under a current of 0.1 C at room temperature.
  • Figure 8 shows that the lithium iron manganese phosphate cathode material prepared in Comparative Example 1 has a first charge specific capacity of 153.5mAh/g, a first discharge specific capacity of 150.8mAh/g, and an efficiency of 98.2% under a chamber current of 0.1C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及新能源材料制备技术领域,尤其是涉及一种磷化渣制备磷酸锰铁锂正极材料的方法。一种磷化渣制备磷酸锰铁锂正极材料的方法,其特征在于,包括如下步骤:(A)氨水和锌系磷化渣的混合液加热搅拌后,过滤得到磷酸铁粗品;(B)所述磷酸铁粗品、磷酸溶液和十六烷基三甲基溴化铵反应得到二水磷酸铁;所述二水磷酸铁烧结后得到无水磷酸铁;(C)所述无水磷酸铁、锰源、锂源、磷源、碳源、掺杂剂和水混合后研磨得到浆料,所述浆料经过喷雾造粒和烧结得到磷酸锰铁锂正极材料。该方法工艺简单、成本低廉;制得的磷酸锰铁锂正极材料粒径较小、尺寸均匀、电压平台高、电性能和循环性能优异。

Description

一种磷化渣制备磷酸锰铁锂正极材料的方法
本申请要求2022年6月9日提交的,申请号为202210649184.9,发明名称为“一种磷化渣制备磷酸锰铁锂正极材料的方法”的中国发明专利申请的优先权,该申请的公开内容以引用的方式并入本文。
技术领域
本发明涉及新能源材料制备技术领域,尤其是涉及一种磷化渣制备磷酸锰铁锂正极材料的方法。
背景技术
锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中磷酸铁锂和三元材料是目前绝大多数锂离子电池使用的正极材料,磷酸铁锂属于橄榄石晶体结构、具有高安全性和高容量的优势。磷酸锰铁锂与磷酸铁锂的结构相同,也是橄榄石型晶体结构,且理论容量均为170mAh/g,因此,同样拥有高安全性和高容量的优势。但磷酸锰铁锂的工作电压可以达到4.10V(vs Li+/Li),而磷酸铁锂的工作电压仅为3.2V(vs Li+/Li),磷酸锰铁锂的能量密度相较于磷酸铁锂的能量密度可以提高20%左右。因此,开发出低成本和高性能的磷酸锰铁锂正极材料,不仅可以降低电动汽车的材料成本,还能够实现电动汽车续航里程的有效提升。
橄榄石结构的LiMn 1-xFexPO 4作为锂离子电池的一种新型正极材料,具有原料来源广泛、环境友好、能量密度和理论比容量高、电压平台高等优点,在锂离子电池领域受到广泛关注。目前,已报道的制备磷酸锰铁锂的方法主要有液相法、固相法、喷雾热解法等。常用方法中,水热法所用原 料价格较高且生产周期长、难以实现大规模大批次生产;固相法相较于液相法,具有原料来源广泛、成本低廉、产量高、工艺简单等优点,其对磷酸锰铁锂材料的实际商业化至关重要,但是高温固相法制备的材料的颗粒粒径分布不均匀、颗粒粒度过大、会增长锂离子的扩散路径,降低锂离子的迁移速率,使得材料性能变差。因此,如何在降低成本的基础上,减小粒径是改善磷酸锰铁锂电化学性能的关键。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种磷化渣制备磷酸锰铁锂正极材料的方法,该方法工艺简单、成本低廉;制得的磷酸锰铁锂正极材料粒径较小、尺寸均匀、电压平台高、电性能和循环性能优异。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种磷化渣制备磷酸锰铁锂正极材料的方法,包括如下步骤:
(A)氨水和锌系磷化渣的混合液加热搅拌后,过滤得到磷酸铁粗品;
(B)所述磷酸铁粗品、磷酸溶液和十六烷基三甲基溴化铵反应得到二水磷酸铁;所述二水磷酸铁烧结后得到无水磷酸铁;
(C)所述无水磷酸铁、锰源、锂源、磷源、碳源、掺杂剂和水混合后研磨得到浆料,所述浆料经过喷雾干燥造粒和烧结得到磷酸锰铁锂正极材料。
进一步地,步骤(A)中,所述加热搅拌的温度为80~150℃,所述加热搅拌的时间为3~5h。
进一步地,步骤(A)中,所述氨水中,NH 3·H 2O的质量百分数为25%。
优选地,步骤(A)中,所述氨水中的NH 3·H 2O与所述锌系磷化渣中的Zn的摩尔比为1.4~1.6:1。
进一步地,步骤(B)中,所述反应的温度为80~150℃。
优选地,步骤(B)中,所述反应的时间为10~20h。
进一步地,步骤(B)中,向所述磷酸铁粗品中加入所述磷酸溶液直至溶液的pH为0.6~2,再加入所述十六烷基三甲基溴化铵反应得到所述二水磷酸铁。
优选地,步骤(B)中,所述十六烷基三甲基溴化铵与所述磷酸铁粗品的质量比为0.004~0.02:1。
进一步地,步骤(B)中,所述烧结的温度为650~700℃。
优选地,步骤(B)中,所述烧结的时间为5~10h。
进一步地,步骤(C)中,所述掺杂剂包括钒源和/或钛源。
优选地,步骤(C)中,所述钒源包括偏钒酸铵和/或五氧化二钒。
优选地,步骤(C)中,所述钛源包括纳米二氧化钛、钛白粉和钛酸酯偶联剂中的至少一种。
进一步地,步骤(C)中,所述锰源包括二氧化锰、碳酸锰、醋酸锰、三氧化二锰和四氧化三锰中的至少一种。
优选地,步骤(C)中,所述磷源包括磷酸氢二铵、磷酸二氢铵、磷酸铁和磷酸中的至少一种。
优选地,步骤(C)中,所述锂源包括碳酸锂、氢氧化锂和磷酸锂中的至少一种。
优选地,步骤(C)中,所述碳源包括柠檬酸、葡萄糖、碳纳米管、蔗糖和聚乙二醇中的至少一种。
进一步地,步骤(C)中,所述浆料中,Fe、Mn、Li和P的摩尔比为 0.5~0.9:0.5~0.1:1~1.05:1。
优选地,所述浆料中,C的含量为1.5wt%~4wt%。
优选地,所述浆料中,Ti的浓度为1000~5000ppm。
优选地,所述浆料中,V的浓度为1000~5000ppm。
优选地,所述浆料的粒径D50为400~600nm。
进一步地,步骤(C)中,研磨包括球磨和/或砂磨。
优选地,步骤(C)中,所述烧结的温度为650~750℃。
优选地,步骤(C)中,所述烧结的时间为15~20h。
优选地,步骤(C)中,所述浆料经过所述喷雾干燥造粒和所述烧结得到烧结物料,所述烧结物料经粉粹和筛分除铁得到所述磷酸锰铁锂正极材料。
优选地,步骤(C)中,所述粉粹后的烧结物料的粒径D50为3~10μm。
与现有技术相比,本发明的有益效果为:
本发明提供的磷化渣制备磷酸锰铁锂正极材料的方法,以废弃的锌系磷化渣为原料,大幅度降低了制备磷酸锰铁锂正极材料的成本;采用喷雾热解和高温固相结合的方法,改善了磷酸锰铁锂正极材料颗粒较大、尺寸不均等问题,提高了电化学性能。同时制备磷酸锰铁锂正极材料的过程中进行了高价金属离子Ti和V的的掺杂,有效的增强了磷酸锰铁锂正极材料的离子传输能力以及结构稳定性。
本发明提供的磷化渣制备磷酸锰铁锂正极材料的方法,不仅充分利用了废弃物磷化渣,具有环保效益和经济效益,而且制备出的磷酸锰铁锂正极材料具有电压平台高、电性能和循环性能优异等特点。该方法工艺简单、成本低廉、产品电性能优异,易于产业化大规模生产。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1制得的无水磷酸铁的SEM图。
图2为本发明实施例1制得的无水磷酸铁的XRD图。
图3为本发明实施例1制得的磷酸锰铁锂正极材料的SEM图。
图4为本发明实施例1得到的磷酸锰铁锂正极材料的XRD图。
图5为本发明实施例1得到的磷酸锰铁锂的0.1C充放电曲线图。
图6为本发明实施例2得到的磷酸锰铁锂的0.1C充放电曲线图。
图7为本发明实施例3得到的磷酸锰铁锂的0.1C充放电曲线图。
图8为本发明实施例4得到的磷酸锰铁锂的0.1C充放电曲线图。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的磷化渣制备磷酸锰铁锂正极材料的方法进行具 体说明。
在本发明的一些实施方式中提供了一种磷化渣制备磷酸锰铁锂正极材料的方法,包括如下步骤:
(A)氨水和锌系磷化渣的混合液加热搅拌后,过滤得到磷酸铁粗品;
(B)上述磷酸铁粗品、磷酸溶液和十六烷基三甲基溴化铵反应得到二水磷酸铁;二水磷酸铁烧结后得到无水磷酸铁;
(C)无水磷酸铁、锰源、锂源、磷源、碳源、掺杂剂和水混合后研磨得到浆料,浆料经过喷雾干燥造粒和烧结得到磷酸锰铁锂正极材料。
本发明提供的磷化渣制备磷酸锰铁锂正极材料的方法,以废弃的锌系磷化渣为原料,大幅度降低了制备磷酸锰铁锂正极材料的成本;采用喷雾热解和高温固相结合的方法,改善了磷酸锰铁锂正极材料颗粒较大、尺寸不均等问题,提高了电化学性能,使其具有电压平台高、电性能和循环性能优异等特点。
磷化渣是金属部件表面磷化过程中产生的废渣,其中锌系磷化渣的成分主要是磷酸铁、磷酸锌等。由于磷化渣含水量高、酸性大、腐蚀性强、容易产生污染等、使得磷化渣的环保处理比较困难。
本发明的锌系磷化渣中,磷酸铁的质量百分数为70%~75%,磷酸锌的质量百分数为15~20%,余量为磷酸盐杂质。
在本发明的一些实施方式中,步骤(A)中,加热搅拌的温度为80~150℃,加热搅拌的时间为3~5h。
在本发明的一些具体的实施方式中,步骤(A)中,检测锌系磷化渣中P、Fe、Zn和其他杂质元素的含量之后,按照摩尔比加入一定量的氨水。
在本发明的一些实施方式中,步骤(A)中,氨水中NH 3·H 2O的质量百分数为25%。
在本发明的一些实施方式中,氨水中的NH 3·H 2O与锌系磷化渣中的Zn的摩尔比为1.4~1.6:1;优选地,氨水中的NH 3·H 2O与锌系磷化渣中的Zn的摩尔比为1.5:1。
本发明通过向锌系磷化渣中加入氨水,氨水可与锌系磷化渣中的磷酸锌发生反应,生成易溶于水的磷酸四氨合锌,从而除去锌系磷化渣中的磷酸锌,将磷酸铁从锌系磷酸渣中分离出来。
在本发明的一些实施方式中,步骤(A)中,加热搅拌在密闭容器内进行;从而保证氨水可与锌系磷化渣中的磷酸锌发生反应。
在本发明的一些实施方式中,步骤(B)中,反应的温度为80~150℃;反应的时间为10~20h;典型但非限制性的,例如,反应的温度为80℃、90℃、100℃、110℃、120℃、130℃、140℃或者150℃等等;反应的时间为10h、11h、12h、13h、14h、15h、16h、17h、18h、19h或者20h等等;优选地,步骤(B)中,反应的温度为80~100℃;反应的时间为10~15h。
在本发明的一些实施方式中,步骤(B)中,向磷酸铁粗品中加入磷酸溶液直至溶液的pH为0.6~2,再加入十六烷基三甲基溴化铵反应得到二水磷酸铁。
在本发明的一些实施方式中,步骤(B)中,十六烷基三甲基溴化铵与磷酸铁粗品的质量比为0.004~0.02:1。
在本发明的一些实施方式中,步骤(B)中,烧结的温度为650~700℃;烧结的时间为5~10h;典型但非限制性的,例如,烧结的温度为650℃、660℃、670℃、680℃、690℃或者700℃等等;烧结的时间为5h、6h、7h、8h、9h或者10h等等。
本发明先用氨水去除锌系磷化渣中的磷酸锌,得到磷酸铁粗品;然后加入磷酸和十六烷基三甲基溴化铵(CTAB)反应后得到二水磷酸铁,二水 磷酸铁烧结得到无水磷酸铁;从而实现了废弃锌系磷化渣中磷化铁的分离和提纯,得到的磷化铁可用于制备高能量密度的磷酸锰铁锂正极材料。
在本发明的一些实施方式中,步骤(C)中,掺杂剂包括钒源和/或钛源;优选地,掺杂剂包括钒源和钛源。
在本发明的一些实施方式中,步骤(C)中,钒源包括偏钒酸铵和/或五氧化二钒。
在本发明的一些实施方式中,步骤(C)中,钛源包括纳米二氧化钛、钛白粉和钛酸酯偶联剂中的至少一种。
本发明在制备磷酸锰铁锂正极材料的过程中掺杂了高价金属离子Ti和V,有效增强了磷酸锰铁锂正极材料的离子传输能力以及结构稳定性,提高了磷酸锰铁锂正极材料的电化学性能。
在本发明的一些实施方式中,步骤(C)中,锰源包括二氧化锰、碳酸锰、醋酸锰、三氧化二锰和四氧化三锰中的至少一种。
在本发明的一些实施方式中,步骤(C)中,磷源包括磷酸氢二铵、磷酸二氢铵、磷酸铁和磷酸中的至少一种。
在本发明的一些实施方式中,步骤(C)中,锂源包括碳酸锂、氢氧化锂和磷酸锂中的至少一种。
在本发明的一些实施方式中,步骤(C)中,碳源包括柠檬酸、葡萄糖、碳纳米管、蔗糖和聚乙二醇中的至少一种。
在本发明的一些实施方式中,步骤(C)中,浆料中,Fe、Mn、Li和P的摩尔比为0.5~0.9:0.5~0.1:1~1.05:1;优选地,浆料中,Fe、Mn、Li和P的摩尔比为0.5~0.9:0.5~0.1:1.03:1。
在本发明的一些实施方式中,步骤(C)中,浆料中,C的含量为1.5wt%~4wt%;
在本发明的一些实施方式中,步骤(C)中,浆料中,Ti的浓度为1000~5000ppm。
在本发明的一些实施方式中,步骤(C)中,浆料中,V的浓度为1000~5000ppm。
在本发明的一些实施方式中,步骤(C)中,浆料的粒径D50为400~600nm。
在本发明的一些实施方式中,步骤(C)中,研磨包括球磨和/或砂磨。
在本发明的一些实施方式中,步骤(C)中,烧结的温度为650~750℃。
在本发明的一些实施方式中,步骤(C)中,烧结的时间为15~20h。
在本发明的一些实施方式中,步骤(C)中,浆料经过喷雾干燥造粒和烧结得到烧结物料,烧结物料经粉粹和筛分除铁得到磷酸锰铁锂正极材料。
在本发明的一些实施方式中,步骤(C)中,粉粹后的烧结物料的粒径D50为3~10μm。
在本发明的一些实施方式中,磷酸锰铁锂正极材料在0.1C条件下的放电容量>1584mAh/g,首次库伦效率>96%。
实施例1
本实施例提供了磷化渣制备磷酸锰铁锂正极材料的方法,包括如下步骤:
(A)检测锌系磷化渣中P、Fe、Zn和其他杂质元素的含量后,根据锌含量的检测结果,按照NH 3·H 2O和锌的摩尔比为1.5:1,加入一定量的氨水(浓度为25wt%)得到混合液,混合液在80℃下搅拌4h后,经过滤、无水乙醇洗涤后得到磷酸铁粗品。
(B)取步骤(A)中的磷酸铁粗品50g中加入磷酸溶液(浓度为85wt%), 直至溶液的pH为0.9,然后加入0.2g十六烷基三甲基溴化铵(CTAB)在80℃反应10h得到反应液;上述反应液依次经过抽滤、洗涤、烘干、研磨得到二水磷酸铁;二水磷酸铁在650℃烧结8h,得到无水磷酸铁。
(C)在球磨机中加入2500g水和233.1g磷酸二氢铵,然后缓慢加入108.3g碳酸锂,磷酸二氢铵和碳酸锂反应会产生大量的气泡,等反应完全,无气泡产生之后,再加入131.1g步骤(B)中的无水磷酸铁、10g葡萄糖、90.1g聚乙二醇、1.58g二氧化钛、0.1g偏钒酸铵、150.4g的四氧化三锰和3.01g钛酸酯偶联剂,球磨1h,然后砂磨3h,得到浆料,浆料的粒径D50为476nm;上述浆料喷雾干燥造粒,得到棕色的前驱体粉末;将前驱体装在石墨匣钵里,在氮气气氛保护下,在680℃烧结15h后得到烧结物料,自然冷却后进行气流磨粉碎,气流磨粉粹后烧结物料的粒径D50为4.23μm,然后经过粉碎、除铁得到磷酸锰铁锂正极材料。
实施例2
本实施例提供了磷化渣制备磷酸锰铁锂正极材料的方法,包括如下步骤:
(A)检测锌系磷化渣中P、Fe、Zn和其他杂质元素的含量后,根据锌含量的检测结果,按照NH 3·H 2O和锌的摩尔比为1.5:1,加入一定量的氨水(浓度为25wt%)得到混合液,混合液在100℃下搅拌4h后,经过滤、无水乙醇洗涤后得到磷酸铁粗品。
(B)取步骤(A)中的磷酸铁粗品50g,加入磷酸溶液(浓度为85%),直至溶液的pH为0.6,然后加入0.5g十六烷基三甲基溴化铵(CTAB)在100℃反应14h得到反应液;上述反应液依次经过抽滤、洗涤、烘干、研磨得到二水磷酸铁;二水磷酸铁在680℃烧结5h,得到无水磷酸铁。
(C)在球磨机中加入2500g水和233.1g磷酸二氢铵,然后缓慢加入108.3g碳酸锂,磷酸二氢铵和碳酸锂反应会产生大量的气泡,等反应完全,无气泡产生之后,再加入131.1g步骤(B)中的无水磷酸铁、10g葡萄糖、100g蔗糖、1.58g二氧化钛、150.4g的四氧化三锰和3.01g钛酸酯偶联剂,球磨1h,然后砂磨3h得到浆料,浆料的粒径D50为442nm;上述浆料喷雾干燥造粒,得到棕色的前驱体粉末;将前驱体装在石墨匣钵里,在氮气气氛保护下,在730℃烧结20h后,自然冷却后进行气流磨粉碎,气流磨粉粹后烧结物料的粒径D50为5.37μm,然后经过粉碎除铁得到磷酸锰铁锂正极材料,磷酸锰铁锂正极材料。
实施例3
本实施例提供了磷化渣制备磷酸锰铁锂正极材料的方法,包括如下步骤:
(A)检测锌系磷化渣中P、Fe、Zn和其他杂质元素的含量后,根据锌含量的检测结果,按照NH 3·H 2O和锌的摩尔比为1.5:1,加入一定量的氨水(浓度为25wt%)得到混合液,混合液在150℃下搅拌4h后,经过滤、无水乙醇洗涤后得到磷酸铁粗品。
(B)向步骤(A)中的磷酸铁粗品中加入磷酸溶液(浓度为85%),直至溶液的pH为1.5,然后加入1g十六烷基三甲基溴化铵(CTAB)在150℃反应15h得到反应液;上述反应液依次经过抽滤、洗涤、烘干、研磨得到二水磷酸铁;二水磷酸铁在680℃烧结10h,得到无水磷酸铁。
(C)在球磨机中加入2500g水和233.1g磷酸二氢铵,然后缓慢加入108.3g碳酸锂,磷酸二氢铵和碳酸锂反应会产生大量的气泡,等反应完全,无气泡产生之后,再加入131.1g步骤(B)中的无水磷酸铁、10g葡萄糖、 100g的碳纳米管,0.1g的偏钒酸铵,173.46g的二氧化锰,球磨1h,然后砂磨3h得到浆料,浆料的粒径D50为478nm;上述浆料喷雾干燥造粒,得到棕色的前驱体粉末;将前驱体装在石墨匣钵里,在氮气气氛保护下,在750℃烧结20h后,自然冷却后进行气流磨粉碎,气流磨粉粹后烧结物料的粒径D50为6.97μm,然后经过粉碎除铁得到磷酸锰铁锂正极材料,磷酸锰铁锂正极材料。
对比例1
本对比例提供了磷化渣制备磷酸锰铁锂正极材料的方法,包括如下步骤:
(A)检测锌系磷化渣中P、Fe、Zn和其他杂质元素的含量后,根据锌含量的检测结果,按照NH 3·H 2O和锌的摩尔比为1.5:1,加入一定量的氨水(浓度为25wt%)得到混合液,混合液在80℃下搅拌4h后,经过滤、无水乙醇洗涤后得到磷酸铁粗品。
(B)向步骤(A)中的磷酸铁粗品50g中加入磷酸溶液(浓度为85%),直至溶液的pH为0.9,然后加入0.2g十六烷基三甲基溴化铵(CTAB)在80℃反应10h得到反应液;上述反应液依次经过抽滤、洗涤、烘干、研磨得到二水磷酸铁;二水磷酸铁在680℃烧结8h,得到无水磷酸铁。
(C)在球磨机中加入2500g水和264.9g磷酸二氢铵,然后缓慢加入108.3g碳酸锂,磷酸二氢铵和碳酸锂反应会产生大量的气泡,等反应完全,无气泡产生之后,再加入131.1g步骤(B)中的无水磷酸铁、10g葡萄糖、90.1g聚乙二醇和533.2g四水醋酸锰,球磨1h,然后砂磨3h得到浆料,浆料的粒径D50为462nm;上述浆料喷雾干燥造粒,得到棕色的前驱体粉末;将前驱体装在石墨匣钵里,在氮气气氛保护下,在700℃烧结20h后,自然 冷却后进行气流磨粉碎,气流磨粉粹后烧结物料的粒径D50为8.77μm,然后经过粉碎除铁得到磷酸锰铁锂正极材料,磷酸锰铁锂正极材料。
试验例1
采用蔡司Sigma 500型场发射扫描电镜(SEM)对实施例1所制备的无水磷酸铁和磷酸锰铁锂材料进行表征,结果如图1和图3所示,表明所制备的无水磷酸铁是纳米级的片状形貌,所制备的磷酸锰铁锂是颗粒形貌,其一次粒径约为90nm。
采用日本理学型X射线粉末衍射仪(XRD)对实施例1所制备的无水磷酸铁和实施例1中的磷酸锰铁锂材料进行表征,结果如图2和图4所示,XRD谱图中表现出来的分别是无水磷酸铁和磷酸锰铁锂的特征峰,并且没有杂质峰。
实施例1~3和对比例1所制备的磷酸锰铁锂正极材料与导电碳粉和PVDF粘结剂按90:5:5质量比混合,匀浆之后涂布于铝箔片上,110℃烘干后用对辊机滚压,然后用冲片机制得直径为14mm的极片,然后称重,扣除铝箔的质量,得到活性物质的质量。烘干之后,在德国布劳恩公司UNlab型惰性气体手套箱内组装成CR2032扣式半电池。按照负极壳、锂片、电解液、隔膜、电解液、极片、垫片、弹片、正极壳的顺序组装。采用武汉蓝电CT 2001A型电池测试系统对CR2032扣式半电池进行电化学性能测试,电压范围为2.0~4.6V,测试结果见图5、图6、图7和图8。图5表明实施例1所制备的磷酸锰铁锂正极材料在室温0.1C电流下,首次充电比容量达到160.7mAh/g,首次放电比容量达到154.9mAh/g,效率达到96.4%,具有优良的倍率性能和循环性能。图6表明实施例2所制备的磷酸锰铁锂正极材料在室温0.1C电流下,首次充电比容量达到157.4mAh/g,首次放电比容 量达153.2mAh/g,效率达到97.3%。图7表明实施例3所制备的磷酸锰铁锂正极材料在室温0.1C电流下,首次充电比容量达到158mAh/g,首次放电比容量达到152.2mAh/g,效率达到96.3%。图8表明对比例1所制备的磷酸锰铁锂正极材料在室0.1C电流下,首次充电比容量达到153.5mAh/g,首次放电比容量达到150.8mAh/g,效率达到98.2%。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种磷化渣制备磷酸锰铁锂正极材料的方法,其特征在于,包括如下步骤:
    (A)氨水和锌系磷化渣的混合液加热搅拌后,过滤得到磷酸铁粗品;
    (B)所述磷酸铁粗品、磷酸溶液和十六烷基三甲基溴化铵反应得到二水磷酸铁;所述二水磷酸铁烧结后得到无水磷酸铁;
    (C)所述无水磷酸铁、锰源、锂源、磷源、碳源、掺杂剂和水混合后研磨得到浆料,所述浆料经过喷雾干燥造粒和烧结得到磷酸锰铁锂正极材料。
  2. 根据权利要求1所述的磷化渣制备磷酸锰铁锂正极材料的方法,其特征在于,步骤(A)中,所述加热搅拌的温度为80~150℃,所述加热搅拌的时间为3~5h。
  3. 根据权利要求1所述的磷化渣制备磷酸锰铁锂正极材料的方法,其特征在于,步骤(A)中,所述氨水中,NH 3·H 2O的质量百分数为25%;
    优选地,所述氨水中的NH 3·H 2O与所述锌系磷化渣中的Zn的摩尔比为1.4~1.6:1。
  4. 根据权利要求1所述的磷化渣制备磷酸锰铁锂正极材料的方法,其特征在于,步骤(B)中,所述反应的温度为80~150℃;
    优选地,所述反应的时间为10~20h。
  5. 根据权利要求1所述的磷化渣制备磷酸锰铁锂正极材料的方法,其特征在于,步骤(B)中,向所述磷酸铁粗品中加入所述磷酸溶液直至溶液的pH为0.6~2,再加入所述十六烷基三甲基溴化铵反应得到所述二水磷酸铁;
    优选地,所述十六烷基三甲基溴化铵与所述磷酸铁粗品的质量比为0.004~0.02:1。
  6. 根据权利要求1所述的磷化渣制备磷酸铁锂正极材料的方法,其特征在于,步骤(B)中,所述烧结的温度为650~700℃;
    优选地,所述烧结的时间为5~10h。
  7. 根据权利要求1所述的磷化渣制备磷酸铁锂正极材料的方法,其特征在于,步骤(C)中,所述掺杂剂包括钒源和/或钛源;
    优选地,所述钒源包括偏钒酸铵和/或五氧化二钒;
    优选地,所述钛源包括纳米二氧化钛、钛白粉和钛酸酯偶联剂中的至少一种。
  8. 根据权利要求1所述的磷化渣制备磷酸铁锂正极材料的方法,其特征在于,步骤(C)中,所述锰源包括二氧化锰、碳酸锰、醋酸锰、三氧化二锰和四氧化三锰中的至少一种;
    优选地,所述磷源包括磷酸氢二铵、磷酸二氢铵、磷酸铁和磷酸中的至少一种;
    优选地,所述锂源包括碳酸锂、氢氧化锂和磷酸锂中的至少一种;
    优选地,所述碳源包括柠檬酸、葡萄糖、碳纳米管、蔗糖和聚乙二醇中的至少一种。
  9. 根据权利要求1所述的磷化渣制备磷酸铁锂正极材料的方法,其特征在于,步骤(C)中,所述浆料中,Fe、Mn、Li和P的摩尔比为0.5~0.9:0.5~0.1:1~1.05:1;
    优选地,所述浆料中,C的含量为1.5wt%~4wt%;
    优选地,所述浆料中,Ti的浓度为1000~5000ppm;
    优选地,所述浆料中,V的浓度为1000~5000ppm;
    优选地,所述浆料的粒径D50为400~600nm。
  10. 根据权利要求1所述的磷化渣制备磷酸铁锂正极材料的方法,其特征在于,步骤(C)中,研磨包括球磨和/或砂磨;
    优选地,所述烧结的温度为650~750℃;
    优选地,所述烧结的时间为15~20h;
    优选地,所述浆料经过所述喷雾干燥造粒和所述烧结得到烧结物料,所述烧结物料经粉粹和筛分除铁得到所述磷酸锰铁锂正极材料;
    优选地,所述粉粹后的烧结物料的粒径D50为3~10μm。
PCT/CN2022/141938 2022-06-09 2022-12-26 一种磷化渣制备磷酸锰铁锂正极材料的方法 WO2023236511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210649184.9A CN115010107A (zh) 2022-06-09 2022-06-09 一种磷化渣制备磷酸锰铁锂正极材料的方法
CN202210649184.9 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023236511A1 true WO2023236511A1 (zh) 2023-12-14

Family

ID=83073615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141938 WO2023236511A1 (zh) 2022-06-09 2022-12-26 一种磷化渣制备磷酸锰铁锂正极材料的方法

Country Status (2)

Country Link
CN (1) CN115010107A (zh)
WO (1) WO2023236511A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010107A (zh) * 2022-06-09 2022-09-06 湖北万润新能源科技股份有限公司 一种磷化渣制备磷酸锰铁锂正极材料的方法
CN115535992B (zh) * 2022-12-01 2023-03-28 深圳中芯能科技有限公司 磷酸锰铁前驱体、磷酸锰铁锂正极材料及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118853A (zh) * 2014-06-20 2014-10-29 马鞍山市华清环保工程有限公司 一种金属表面处理磷化渣综合利用方法
CN105810943A (zh) * 2016-05-16 2016-07-27 上海第二工业大学 一种利用磷化渣制备锌掺杂磷酸铁锂的方法
CN106315535A (zh) * 2016-08-09 2017-01-11 湘潭大学 一种从含铁锌废磷化渣制备纯磷酸铁的方法
US20180097228A1 (en) * 2015-03-10 2018-04-05 Institute Of Process Engineering, Chinese Academy Og Sciences Composite-coated lithium iron phosphate and preparation method therefor, and lithium ion battery
CN110911680A (zh) * 2019-11-22 2020-03-24 贵州唯特高新能源科技有限公司 Ti、V元素复合掺杂的磷酸铁锂制备方法
CN111807342A (zh) * 2020-08-10 2020-10-23 上海第二工业大学 一种从磷化渣中提纯制备亚微米级磷酸铁的方法
CN113929073A (zh) * 2021-10-14 2022-01-14 湖北万润新能源科技股份有限公司 一种磷酸锰铁锂正极材料的制备方法
CN115010107A (zh) * 2022-06-09 2022-09-06 湖北万润新能源科技股份有限公司 一种磷化渣制备磷酸锰铁锂正极材料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413943B (zh) * 2013-08-14 2015-06-17 湖北万润新能源科技发展有限公司 一种磷酸锰锂正极材料及其制备方法
CN113753873B (zh) * 2021-10-19 2022-10-04 湖北虹润高科新材料有限公司 一种废弃铁磷渣制备低铝杂质花瓣状磷酸铁的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118853A (zh) * 2014-06-20 2014-10-29 马鞍山市华清环保工程有限公司 一种金属表面处理磷化渣综合利用方法
US20180097228A1 (en) * 2015-03-10 2018-04-05 Institute Of Process Engineering, Chinese Academy Og Sciences Composite-coated lithium iron phosphate and preparation method therefor, and lithium ion battery
CN105810943A (zh) * 2016-05-16 2016-07-27 上海第二工业大学 一种利用磷化渣制备锌掺杂磷酸铁锂的方法
CN106315535A (zh) * 2016-08-09 2017-01-11 湘潭大学 一种从含铁锌废磷化渣制备纯磷酸铁的方法
CN110911680A (zh) * 2019-11-22 2020-03-24 贵州唯特高新能源科技有限公司 Ti、V元素复合掺杂的磷酸铁锂制备方法
CN111807342A (zh) * 2020-08-10 2020-10-23 上海第二工业大学 一种从磷化渣中提纯制备亚微米级磷酸铁的方法
CN113929073A (zh) * 2021-10-14 2022-01-14 湖北万润新能源科技股份有限公司 一种磷酸锰铁锂正极材料的制备方法
CN115010107A (zh) * 2022-06-09 2022-09-06 湖北万润新能源科技股份有限公司 一种磷化渣制备磷酸锰铁锂正极材料的方法

Also Published As

Publication number Publication date
CN115010107A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
US11967708B2 (en) Lithium ion battery negative electrode material and preparation method therefor
WO2021114401A1 (zh) 铁基钠离子电池正极材料,其制备方法以及钠离子全电池
CN103904311B (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
WO2023236511A1 (zh) 一种磷化渣制备磷酸锰铁锂正极材料的方法
CN102623708A (zh) 锂离子电池正极用磷酸钒锂/石墨烯复合材料的制备方法
CN102745663B (zh) 制备磷酸铁锂材料的方法
CN101339992B (zh) 锂离子电池正极材料硅酸钒锂的制备方法
CN108448113B (zh) 一种掺杂改性的磷酸铁锂正级材料的制备方法
CN110931781A (zh) 生物质碳/聚氟磷酸铁钠复合材料的制备方法及其应用
CN101941685A (zh) 一种球形磷酸铁锂材料制备和采用该材料的锂离子电池
US20240336493A1 (en) Prelithiation reagent for lithium-ion battery (lib), and preparation method therefor and use thereof
US20240274797A1 (en) High-compaction lithium iron phosphate positive electrode material, preparation method thereof, positive electrode and battery including the same
CN112142030A (zh) 一种低成本低温型磷酸铁锂的制备方法
CN105720254A (zh) 一种锂离子电池负极材料碳包覆钒酸锂的制备方法
CN112670475A (zh) 磷酸铁锂复合材料及制备方法和使用该复合材料的锂电池、电池动力车
CN114426265A (zh) 多元结晶型磷酸铁锂正极材料及其制备方法、锂离子电池和涉电设备
CN112038609A (zh) 一种用磷酸铁锂表面修饰尖晶石型镍锰酸锂正极材料及其制备方法
CN107919473B (zh) 锂离子电池电极活性材料的制备方法
CN114105117B (zh) 一种前驱体及磷酸镍铁锂正极材料的制备方法
CN101154728A (zh) 一种锂离子电池正极材料超细LiFePO4/C的制备方法
CN102295280A (zh) 一种改善锂离子电池正极材料磷酸铁锂的电化学性能的方法
CN115043430B (zh) 一种镨元素掺杂的多孔球形铌酸钛材料的制备方法及应用
CN116741987A (zh) 一种掺杂型磷酸锰铁锂正极材料及其制备方法和包含其的正极极片、锂离子电池
CN115377413A (zh) 一种改性的锰基聚阴离子型钠离子电池正极材料及制备方法和应用
CN114212764A (zh) 一种磷酸盐正极材料前驱体、其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945639

Country of ref document: EP

Kind code of ref document: A1