WO2021114401A1 - 铁基钠离子电池正极材料,其制备方法以及钠离子全电池 - Google Patents
铁基钠离子电池正极材料,其制备方法以及钠离子全电池 Download PDFInfo
- Publication number
- WO2021114401A1 WO2021114401A1 PCT/CN2019/128296 CN2019128296W WO2021114401A1 WO 2021114401 A1 WO2021114401 A1 WO 2021114401A1 CN 2019128296 W CN2019128296 W CN 2019128296W WO 2021114401 A1 WO2021114401 A1 WO 2021114401A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sodium ion
- iron
- carbon
- ion battery
- sodium
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 229910001415 sodium ion Inorganic materials 0.000 title claims abstract description 59
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 239000000463 material Substances 0.000 title claims abstract description 42
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- 239000011734 sodium Substances 0.000 claims abstract description 93
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 33
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 24
- 239000010406 cathode material Substances 0.000 claims description 51
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 239000002904 solvent Substances 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 15
- 238000002360 preparation method Methods 0.000 claims description 15
- 229910021385 hard carbon Inorganic materials 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 238000000498 ball milling Methods 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 9
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 9
- 239000011790 ferrous sulphate Substances 0.000 claims description 9
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 6
- 239000006230 acetylene black Substances 0.000 claims description 6
- 239000004917 carbon fiber Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 239000007774 positive electrode material Substances 0.000 claims description 6
- 239000011775 sodium fluoride Substances 0.000 claims description 6
- 235000013024 sodium fluoride Nutrition 0.000 claims description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 6
- 235000011152 sodium sulphate Nutrition 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000007773 negative electrode material Substances 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims description 4
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 239000012300 argon atmosphere Substances 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 claims description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- OTYYBJNSLLBAGE-UHFFFAOYSA-N CN1C(CCC1)=O.[N] Chemical compound CN1C(CCC1)=O.[N] OTYYBJNSLLBAGE-UHFFFAOYSA-N 0.000 claims 1
- 239000007767 bonding agent Substances 0.000 claims 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 21
- 238000003860 storage Methods 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 description 16
- 239000012071 phase Substances 0.000 description 10
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002134 carbon nanofiber Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- -1 NaVPO 4 F Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910004563 Na2Fe2 (SO4)3 Inorganic materials 0.000 description 1
- 229910001373 Na3V2(PO4)2F3 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- AEDAWHHRIHMZAR-UHFFFAOYSA-N [O-][N+](=O)CN1CCCC1=O Chemical compound [O-][N+](=O)CN1CCCC1=O AEDAWHHRIHMZAR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0468—Compression means for stacks of electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the technical field of electrode materials, in particular to an iron-based sodium ion battery cathode material, a preparation method thereof and a sodium ion full battery.
- the sodium-ion battery has a working principle very similar to that of the lithium-ion battery. It uses the reversible intercalation and deintercalation of sodium ions in the positive and negative electrodes to store and convert electrical energy and chemical energy. Sodium element resources are extremely rich, and the production cost of sodium ion batteries is low. Therefore, sodium ion batteries are considered to be an ideal energy storage device for the development of new energy fields in the future. However, due to the lack of ideal electrode materials, especially in terms of cathode materials, current sodium ion batteries have many problems such as low sodium storage capacity, low working potential, poor cycle stability, and poor high-rate characteristics.
- the existing cathode materials for sodium ion batteries mainly include two types of layered transition metal oxides and polyanionic compounds.
- Polyanionic cathode materials mainly include: vanadium-based phosphates, such as NaVPO 4 F, Na 3 V 2 (PO 4 ) 3 and Na 3 V 2 (PO 4 ) 2 F 3, etc.; iron-based pyrophosphates, such as Na 2 FeP 2 O 7 , Na 7 Fe 4.5 (P 2 O 7 ) 4 and Na 3.32 Fe 2.34 (P 2 O 7 ) 2 etc.; iron-based sulfates, such as Na x Fe y (SO 4 ) z , Na 2 Fe( SO 4 ) 2 , Na 2 Fe 2 (SO 4 ) 3 , Na 4 Fe(SO 4 ) 3 , Na 6 Fe(SO 4 ) 4 and Na 6 Fe 5 (SO 4 ) 8 and other materials.
- vanadium-based phosphates such as NaVPO 4 F, Na 3 V 2 (PO 4 ) 3 and Na 3 V 2 (PO 4 ) 2 F 3, etc.
- iron-based pyrophosphates such as Na 2 FeP 2
- the preparation process of the sodium-poor layered transition metal oxide cathode material is relatively complicated and requires high-temperature heat treatment.
- the calcination temperature is generally higher than 700°C, and the material synthesis energy consumption is large.
- the expensive price of transition metals and certain toxicity affect the The economic and environmental benefits of the use of similar cathode materials.
- the electrochemical performance of sodium storage of this type of cathode material is not outstanding, the specific capacity of sodium storage is lower than 110mAh g -1 , the working potential is not higher than 3.5V vs. Na + /Na, and the cycle performance and rate performance are poor.
- the vanadium-based phosphate cathode material has a higher working potential, about 4.0V vs. Na + /Na, the vanadium element is highly toxic and expensive, which restricts the practical application of this type of cathode material.
- iron-based polyanionic cathode materials Due to the rich iron content in the earth's crust and environmental friendliness, iron-based polyanionic cathode materials have developed rapidly in recent years. However, the working potential of the pyrophosphate cathode material is low, about 3.0V vs. Na + /Na, which represents a low energy density. Therefore, iron-based sulfate material is considered to be the ideal cathode material for sodium ion batteries in the future.
- Pure-phase Na x Fe y (SO 4 ) z materials have disadvantages such as impurity phase, low conductivity, and poor sodium storage electrochemical performance, and exhibit low sodium storage specific capacity, poor cycle stability and rate performance.
- the traditional method is to use organic carbon sources for in-situ carbon layer coating, and chemical compounding or physical mixing of carbon-based materials with high conductivity.
- In-situ carbon layer coating modification using organic carbon sources is a conventional method to improve the conductivity and electrochemical performance of cathode materials.
- a typical case is carbon-coated lithium iron phosphate cathode materials.
- the in-situ carbon layer coating additionally introduces an interface with low electrical conductivity, which is not conducive to The charge transport of Na x Fe y (SO 4 ) z material and the diffusion of sodium ions at the interface; 3.
- the surface carbon layer coating improves the electrical conductivity of the Na x Fe y (SO 4 ) z material and the charge between particles The effect of improving the transmission capacity is very limited.
- the Chinese patent with publication number CN108682827A discloses a carbon composite sodium ion cathode material and a preparation method thereof.
- the carbon-based material is successfully embedded in the Na x Fe y (SO 4 ) z material through two steps of solid phase mixing and sintering.
- the heat treatment temperature is low, the production process is simple, the production of impurity phases is inhibited, and the yield of the target material is significantly improved.
- the surface modification and composite modification of the carbon-based material will not change the characteristics of the atomic arrangement inside the crystal structure of the Na x Fe y (SO 4 ) z cathode material, the electron cloud distribution between elements, and the sodium ion diffusion channel.
- this solution does not significantly improve the electrochemical performance of the polyanionic sodium ferric sulfate cathode material, and fails to obtain ideal sodium storage capacity, cycle stability, and high-rate performance.
- the technical problem to be solved by the present invention is to provide a Na 3 Fe 2 (SO 4 ) 3 F/C composite material, which is used as a positive electrode material for an iron-based sodium ion battery, which can ensure the specific sodium storage capacity and greatly improve the cycle Stability and rate performance, the electrochemical performance of sodium storage is significantly better than the pure phase Na x Fe y (SO 4 ) z material.
- the present invention provides an iron-based sodium ion battery cathode material, including Na 3 Fe 2 (SO 4 ) 3 F and carbon-based carbon embedded in the Na 3 Fe 2 (SO 4 ) 3 F bulk structure. Material; In the iron-based sodium ion battery cathode material, the mass fraction of the carbon-based material is 1-10%.
- the mass fraction of the carbon-based material is 1-10%, for example, it can be 1%, 2%, 5%, 8%, 10%, etc.
- the carbon-based material is selected from at least one of carbon nanotubes, carbon fibers, graphene, reduced graphene oxide, and amorphous carbon.
- Another aspect of the present invention provides a method for preparing the iron-based sodium ion battery cathode material, which includes the following steps:
- the cathode material precursor is sintered at 300-450° C. for 1-24 hours to obtain the iron-based sodium ion battery composite cathode material.
- the ferrous sulfate is obtained by vacuum drying of hydrated ferrous sulfate, the drying temperature is preferably 200° C., and the drying time is 1 to 48 hours.
- step S1 the addition amount of the carbon-based material is 1-10% of the total mass of anhydrous ferrous sulfate, sodium sulfate and sodium fluoride.
- step S1 the ball-to-material ratio during ball milling is 0.1-100
- the ball milling medium is stainless steel balls, ZrO 2 balls or agate balls
- the protective atmosphere is nitrogen or argon.
- a solvent is added during ball milling, and the solvent includes but is not limited to at least one of ethanol, acetone, ethylene glycol, and nitromethylpyrrolidone.
- step S1 the ball milling speed is 100 to 1200 r/min, and the ball milling time is 1 to 72 h.
- step S1 the drying is performed under a vacuum, nitrogen or argon atmosphere, the drying temperature is 80-120° C., and the drying time is 1-24 h.
- step S2 the sintering atmosphere is nitrogen or argon.
- Another aspect of the present invention also provides a sodium ion full battery
- the anode of the sodium ion full battery is prepared from the above-mentioned Na 3 Fe 2 (SO 4 ) 3 F/C cathode material, conductive carbon material and binder Made.
- the preparation method of the sodium ion full battery includes the following steps:
- Na 3 Fe 2 (SO 4 ) 3 F/C cathode material, conductive carbon material, and binder are uniformly mixed in a solvent, coated on an aluminum foil current collector, and dried to obtain a cathode electrode piece;
- the positive pole piece and the negative pole piece are assembled by using a diaphragm, a gasket, a shrapnel, and a positive and negative electrode shell, and electrolyte is added, and the sodium ion full battery is obtained after packaging.
- the conductive carbon material is acetylene black
- the binder is polyvinylidene fluoride
- the solvent is N-methylpyrrolidone
- the Na 3 Fe 2 (SO 4 ) The mass ratio of 3 F/C cathode material, conductive carbon material and binder is 8:1:1.
- the conductive carbon material is acetylene black
- the binder is polyvinylidene fluoride
- the solvent is N-methylpyrrolidone
- the hard carbon negative electrode material is a material that is a compound that is a compound that has a high degree of polyvinylidene fluoride
- the hard carbon negative electrode material is a material that is a compound that has a high degree of polyvinylidene fluoride
- the conductive carbon material is 7:2:1.
- the electrolyte uses sodium perchlorate as a solute, uses ethylene carbonate and dimethyl carbonate in a volume ratio of 1:1 as solvents, and adds 5 wt.% of vinylene carbonate. It is an additive with a solute concentration of 1mol/L.
- the present invention can significantly stabilize the crystal structure of Na 3 Fe 2 (SO 4 ) 3 F material by introducing F negative ions during the preparation process, effectively inhibit the oxidation of Fe element and the formation of impurity phases during the material preparation process, and improve the target material
- the prepared Na 3 Fe 2 (SO 4 ) 3 F is used as a positive electrode material, which can ensure the specific capacity of sodium storage, and greatly improve the cycle stability and rate performance.
- the electrochemical performance of sodium storage is significantly better than that of pure phase Na x Fe y (SO 4 ) z material.
- Cathode materials such as sodium-containing layered transition metal oxides and polyanionic vanadium-based phosphates
- Na 3 Fe 2 (SO 4 ) 3 F cathode materials have obvious advantages in working potential and energy density.
- the carbon-based materials can be embedded in the Na 3 Fe 2 (SO 4 ) 3 F body structure, and the Na 3 Fe 2 (SO 4 ) 3 F particles are connected in series to achieve
- the bridge function of charge transfer significantly improves the electrical conductivity of the Na 3 Fe 2 (SO 4 ) 3 F cathode material.
- the cycle stability and high rate performance of Na 3 Fe 2 (SO 4 ) 3 F/C composite cathode material in the electrochemical sodium storage process have been obtained A further improvement is an ideal sodium ion cathode material.
- the carbon-based material is not affected by the preparation process parameters such as the synthesis calcination temperature and holding time of the Na 3 Fe 2 (SO 4 ) 3 F material, and the mass percentage control is very easy.
- the present invention uses ferrous sulfate, sodium sulfate and sodium fluoride as raw materials, the utilization rate of raw materials in the synthesis process is 100%, no waste gas and no harmful waste liquid are generated, the production cost is low, and it is suitable for high-efficiency large-scale industrial production; Solid phase mixing technology and low-temperature heat treatment under inert atmosphere, the calcination temperature is generally not higher than 400 °C, the production process is very simple.
- Figure 1 is an electron cloud distribution diagram of Na 3 Fe 2 (SO 4 ) 3 F material
- Figure 2 is an SEM image of Na 3 Fe 2 (SO 4 ) 3 F/CNF-5% material
- Figure 3 is an HRTEM image of Na 3 Fe 2 (SO 4 ) 3 F/CNF-5% material
- Example 4 is a charge-discharge curve of the button battery prepared in Example 2 at different cycles at a current density of 0.1C;
- FIG. 6 is a graph showing the cycle capacity retention curve and the coulombic efficiency graph of the button cell prepared in Example 2 at a current density of 2C;
- FIG. 7 is a comparison diagram of the ratio performance of the Na 6 Fe 5 (SO 4 ) 8 material (NFS) prepared by the Chinese patent with the publication number CN108682827A and the Na 3 Fe 2 (SO 4 ) 3 F material (NFSF) prepared by the present invention;
- Example 9 is a charge-discharge curve of the sodium ion full battery prepared in Example 3 at a current density of 0.5C.
- SEM scanning electron microscope
- HRTEM high resolution transmission electron microscope
- CNF carbon nanofibers
- Example 1 Preparation of Na 3 Fe 2 (SO 4 ) 3 F/CNF cathode material for sodium ion battery cathode
- the ferrous sulfate heptahydrate was vacuum dried in an oven at 200° C. for 10 hours to obtain anhydrous ferrous sulfate.
- Figure 1 is the electron cloud distribution diagram of Na 3 Fe 2 (SO 4 ) 3 F material. It can be seen from the figure that the introduction of F ions makes the electron cloud distribution between Fe and Fe, Fe and O atoms more uniform, and at the same time It improves the interaction force between each atom, effectively stabilizes the crystal structure of the material, inhibits the oxidation of Fe element and the formation of impurity phases during the preparation of the material, and helps to improve the sodium storage capacity, cycle stability and High rate performance.
- Figure 2 is the SEM image of the Na 3 Fe 2 (SO 4 ) 3 F/CNF-5% cathode material. It can be seen from the figure that the Na 3 Fe 2 (SO 4 ) 3 F/CNF-5% cathode material is micron Large-scale block particles, in which carbon fibers are clearly entangled in the middle of the particles, forming a micro-nano structure similar to ribbon-wound particles.
- Figure 3 is the HRTEM image of Na 3 Fe 2 (SO 4 ) 3 F/CNF-5% cathode material. It can be seen from the figure that the Na 3 Fe 2 (SO 4 ) 3 F material shows high crystallinity and at the same time The carbon fiber has the characteristics of graphitization and is tightly embedded in the bulk structure of the Na 3 Fe 2 (SO 4 ) 3 F material.
- Figures 4-6 show the electrochemical performance curves of button batteries under the potential window of 2.0-4.5V. Among them, Figure 4 shows the charge and discharge curves of different cycles at a current density of 0.1C. As can be seen from the figure, the assembled battery has a high sodium ion cycling stability, the first lap discharge specific capacity of 109mAh g -1, post-cycle capacity ring 150 remains at 90mAh g -1.
- Figure 5 shows the second cycle charge and discharge curves at different current densities. It can be seen from the figure that the assembled sodium ion battery has a higher working voltage and better rate performance. The capacity is still 65 mAh g -1 at a current density of 20C.
- Fig. 7 is a comparison diagram of the ratio performance of the Na 6 Fe 5 (SO 4 ) 8 material prepared by the Chinese patent with the publication number CN108682827A and the Na 3 Fe 2 (SO 4 ) 3 F material prepared by the present invention. It can be seen from the figure that the introduction of F ions can effectively improve the rate performance of this type of material.
- the discharge specific capacity of Na 3 Fe 2 (SO 4 ) 3 F material still has 50 mAh g -1 , and the charge and discharge capacity is 40. After the lap, the capacity at a current density of 0.1C still remains at 90 mAh g -1 .
- Fig. 8 is an SEM image of the hard carbon negative electrode material. It can be seen from the figure that the hard carbon material is micron-scale spherical particles, which are composed of nano-scale primary particles.
- Figure 9 shows the charge and discharge curves of different cycles of the full battery at a current density of 0.5C. It can be seen from the figure that the assembled full battery has a higher working voltage and better charge-discharge specific capacity, and the first-lap discharge specific capacity of 0.5C reaches 81mAh g -1 .
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
一种铁基钠离子电池正极材料,包括Na 3Fe 2(SO 4) 3F以及嵌入在Na 3Fe 2(SO 4) 3F本体结构中的碳基材料,所述铁基钠离子电池正极材料中,碳基材料的质量分数为1~10%。还涉及所述铁基钠离子电池正极材料的制备方法以及由所述正极材料制备的钠离子全电池。所述Na 3Fe 2(SO 4) 3F正极材料,可保证储钠比容量,同时大大提升了循环稳定性和倍率性能,储钠电化学性能明显优于纯相Na xFe y(SO 4) z材料。所述钠离子全电池,实际工作电位明显高于现有商业化钠离子全电池的输出电位,同时,在电池能量密度的增长上效果也比较显著。
Description
本发明涉及电极材料技术领域,具体涉及一种铁基钠离子电池正极材料,其制备方法以及钠离子全电池。
随着纯电动交通工具和大型储能系统的飞速发展,锂离子电池作为核心组件,其需求量急剧增大。但是,锂元素在地壳中的含量十分有限,且锂离子电池的回收再利用还不能高效实现,导致锂离子电池的销售价格持续升高,影响了新能源电动汽车和储能电站等的推广和应用。
钠离子电池具有与锂离子电池十分类似的工作原理,利用钠离子在正负电极中的可逆嵌脱来进行电能和化学能之间的存储和转化。钠元素资源极其丰富,钠离子电池的生产成本低,因此,钠离子电池被认为是未来新能源领域发展的理想储能器件。但是,由于缺乏理想的电极材料,尤其在正极材料方面,当前的钠离子电池存在的储钠容量不高、工作电位低、循环稳定性能差和高倍率特性不佳等诸多问题。
目前,现有钠离子电池正极材料主要有层状过渡金属氧化物和聚阴离子型化合物两大类。层状过渡金属氧化物正极材料化学式可表述为Na
1-xMO
2,其中,M=Mn,Ni,Co,Ti等,其层状结构中呈现贫钠特征。聚阴离子型正极材料主要包含:钒基磷酸盐,如NaVPO
4F,Na
3V
2(PO
4)
3和Na
3V
2(PO
4)
2F
3等;铁基焦磷酸盐,如Na
2FeP
2O
7,Na
7Fe
4.5(P
2O
7)
4和Na
3.32Fe
2.34(P
2O
7)
2等;铁基硫酸盐,如Na
xFe
y(SO
4)
z,Na
2Fe(SO
4)
2,Na
2Fe
2(SO
4)
3,Na
4Fe(SO
4)
3,Na
6Fe(SO
4)
4和Na
6Fe
5(SO
4)
8等材料。
贫钠层状过渡金属氧化物正极材料的制备工艺相对比较复杂,均需要进行高温热处理,煅烧温度一般高于700℃,材料合成能耗大,加之过渡金属昂贵的价格和一定的毒性,影响该类正极材料使用的经济效益和环境效益。此外,该类型正极材料的储钠电化学性能不突出,储钠比容量低于110mAh g
-1,工作电位不高于3.5V vs.Na
+/Na,循环性能和倍率性能较差。
聚阴离子型化合物中,钒基磷酸盐正极材料虽然工作电位较高,约为4.0V vs.Na
+/Na,但是钒元素的毒性大且价格昂贵,制约了该类型正极材料的实际应用。
由于地壳中铁含量丰富且环境友好,铁基聚阴离子型正极材料近年来得到了飞速的发展。但是,焦磷酸盐正极材料的工作电位偏低,约为3.0V vs.Na
+/Na,表现为低的能量密度。因此,铁基硫酸盐材料被认为是未来理想的钠离子电池正极材料。
纯相Na
xFe
y(SO
4)
z材料存在有杂质相、电导率低、储钠电化学性能差等缺点,表现出低的储钠比容量、较差的循环稳定性和倍率性能等。一般可以通过碳基材料的复合来改善上述问题,传统的方法是利用有机碳源进行原位碳层包覆,以及化学复合或物理混合具有高电导率的碳基材料。利用有机碳源进行原位碳层包覆改性是提高正极材料电导率及其电化学性能的一种常规方法,典型的案例为碳包覆处理的磷酸亚铁锂正极材料。但是,该方法运用到Na
xFe
y(SO
4)
z材料的改性技术中,由于Na
xFe
y(SO
4)
z材料非常低的制备温度,一般低于450℃,导致了以下几个问题:1、有机碳源碳化不充分,使得制备的表面碳包覆层自身电导率低,对提升Na
xFe
y(SO
4)
z材料的电导率作用不大。一般情况下,有机碳的碳化温度需高于750℃,才能获得较高的石墨化程度和优异的电导率;2、原位碳层包覆额外引入了一个具有低电导率的界面,不利于Na
xFe
y(SO
4)
z材料的电荷传输及钠离子在该界面的扩散;3、表面碳层包覆对Na
xFe
y(SO
4)
z材料本体电导率的提升和颗粒间的电荷传输能力的提高作用十分有限。
公开号为CN108682827A的中国专利公开了一种碳复合钠离子正极材料及 其制备方法,通过固相混料、烧结两步成功地将碳基材料嵌入Na
xFe
y(SO
4)
z材料中,并且热处理温度低,生产工艺简单,抑制了杂质相的生产,目标材料产率显著提高。但是该方案中,碳基材料的表面修饰和复合改性不会改变Na
xFe
y(SO
4)
z正极材料晶体结构内部的原子排布、元素间电子云分布及钠离子扩散通道等特征。因此,无法有效抑制其制备过程中Fe元素的不可逆氧化和杂质相的形成,以及电化学储钠过程中因相变或反应应力富集而引起的结构坍塌。因此,该方案对提升聚阴离子型硫酸铁钠正极材料的电化学性能作用不显著,未能获得理想的储钠容量、循环稳定性和高倍率性能等。
因此如何得到一种碳与钠离子正极材料结合更好地复合材料,以解决储钠容量低、工作电位低、循环稳定性能差、高倍率特性不佳、制备成本高等诸多问题是本领域亟需解决的问题。
发明内容
本发明要解决的技术问题是提供一种Na
3Fe
2(SO
4)
3F/C复合材料,该复合材料作为铁基钠离子电池正极材料,可保证储钠比容量,同时大大提升了循环稳定性和倍率性能,储钠电化学性能明显优于纯相Na
xFe
y(SO
4)
z材料。
为了解决上述技术问题,本发明提供了一种铁基钠离子电池正极材料,包括Na
3Fe
2(SO
4)
3F以及嵌入在Na
3Fe
2(SO
4)
3F本体结构中的碳基材料;所述铁基钠离子电池正极材料中,碳基材料的质量分数为1~10%。
本发明中,碳基材料的质量分数为1~10%,例如可以为1%、2%、5%、8%、10%等。
进一步地,所述碳基材料选自碳纳米管、碳纤维、石墨烯、还原氧化石墨烯、无定形碳中的至少一种。
本发明另一方面提供了所述的铁基钠离子电池正极材料的制备方法,包括以下步骤:
S1、按1:2:1的摩尔比将无水硫酸亚铁、硫酸钠、氟化钠和碳基材料混合,在保护气氛下球磨,球磨后的混合物料经干燥后,得正极材料前驱体;
S2、在烧结气氛下,将所述正极材料前驱体于300~450℃的条件下烧结1~24h,得到所述铁基钠离子电池复合正极材料。
进一步地,所述硫酸亚铁由水合硫酸亚铁真空干燥获得,干燥温度优选为200℃,干燥时间为1~48h。
进一步地,步骤S1中,所述碳基材料的添加量为无水硫酸亚铁、硫酸钠和氟化钠总质量的1~10%。
进一步地,步骤S1中,球磨时的球料比为0.1~100,球磨介质为不锈钢球、ZrO
2球或玛瑙球,保护气氛为氮气或氩气。
进一步地,步骤S1中,球磨时加入溶剂,所述溶剂包括但不限于乙醇、丙酮、乙二醇、氮甲基吡咯烷酮中的至少一种。
进一步地,步骤S1中,球磨速度为100~1200r/min,球磨时间为1~72h。
进一步地,步骤S1中,所述干燥在真空、氮气或氩气气氛下进行,干燥温度为80~120℃,干燥时间为1~24h。
进一步地,步骤S2中,所述烧结气氛为氮气或氩气。
本发明另一方面还提供了一种钠离子全电池,所述钠离子全电池的正极是由上述的Na
3Fe
2(SO
4)
3F/C正极材料、导电碳材料和粘结剂制备而成的。
进一步地,该钠离子全电池的制备方法包括以下步骤:
(1)、将Na
3Fe
2(SO
4)
3F/C正极材料、导电碳材料和粘结剂于溶剂中混合均匀,涂布到铝箔集流体上,经过干燥处理,获得正极极片;
(2)、将硬碳负极材料、导电碳材料和粘结剂于溶剂中混合均匀,涂布到铜箔集流体上,经过干燥处理,获得负极极片;
(3)、采用隔膜、垫片、弹片和正负极壳将所述正极极片和负极极片组装起来,并添加电解液,封装后即得所述钠离子全电池。
进一步地,进一步地,步骤(1)中,所述导电碳材料为乙炔黑,所述粘结剂为聚偏氟乙烯,所述溶剂为N-甲基吡咯烷酮;所述Na
3Fe
2(SO
4)
3F/C正极材料、导电碳材料和粘结剂的质量比为8:1:1。
进一步地,步骤(2)中,所述导电碳材料为乙炔黑,所述粘结剂为聚偏氟乙烯,所述溶剂为N-甲基吡咯烷酮;所述硬碳负极材料、导电碳材料和粘结剂的质量比为7:2:1。
进一步地,步骤(3)中,所述电解液以高氯酸钠为溶质,以体积比为1:1的碳酸乙烯酯和碳酸二甲酯为溶剂,并添加5wt.%的碳酸亚乙烯酯为添加剂,溶质浓度为1mol/L。
本发明的有益效果:
1.本发明通过制备过程中引入F负离子,可显著稳定Na
3Fe
2(SO
4)
3F材料的晶体结构,有效抑制材料制备过程中Fe元素的氧化和杂质相的形成,提高了目标材料的产率;制备的Na
3Fe
2(SO
4)
3F作为正极材料,可保证储钠比容量,同时大大提升了循环稳定性和倍率性能,储钠电化学性能明显优于纯相Na
xFe
y(SO
4)
z材料。相比于其它含钠层状过渡金属氧化物和聚阴离子型钒基磷酸盐等正极材料,Na
3Fe
2(SO
4)
3F正极材料在工作电位和能量密度上优势明显。
2.本发明通过反应物中添加碳基材料,碳基材料可嵌入到Na
3Fe
2(SO
4)
3F本体结构中,将Na
3Fe
2(SO
4)
3F颗粒串联起来,起到电荷传递的桥梁作用,显著提高Na
3Fe
2(SO
4)
3F正极材料本体的电导率。相比于纯相Na
3Fe
2(SO
4)
3F正极材料,Na
3Fe
2(SO
4)
3F/C复合正极材料在电化学储钠过程中的循环稳定性和高倍率 性能得到了进一步的提升,属于理想的钠离子正极材料。并且碳基材料不受Na
3Fe
2(SO
4)
3F材料的合成煅烧温度及保温时间等制备工艺参数的影响,质量百分比调控十分容易。
3.本发明以硫酸亚铁、硫酸钠和氟化钠为原料,合成过程中原材料利用率100%,无废气和无有害废液产生,生产成本低,适合高效地大规格工业化生产;利用球磨固相混料技术和惰性气氛下低温热处理,煅烧温度一般不高于400℃,生产工艺十分简单。
4.本发明的钠离子全电池制备过程中不产生废气、废液和固态副产物,不会产生环境污染。使用的原材料为资源极其丰富的硫酸亚铁,硫酸钠和氟化钠,相比现有钠离子全电池中Co、Ti、Cu和V元素的使用,环境兼容性十分好,绿色环保;选用商业化产品硬碳(HC)负极材料,组装成Na
3Fe
2(SO
4)
3F//HC或Na
3Fe
2(SO
4)
3F/C//HC钠离子全电池,可进行大规模生产。经验证,Na
3Fe
2(SO
4)
3F//HC或Na
3Fe
2(SO
4)
3F/C//HC钠离子全电池实际工作电位在3.5V,明显高于现有商业化钠离子全电池的输出电位。同时,在电池能量密度的增长上效果也比较显著,提升幅度高达15%。此外,循环寿命和功率密度也有一定幅度的改进。
图1是Na
3Fe
2(SO
4)
3F材料的电子云分布图;
图2是Na
3Fe
2(SO
4)
3F/CNF-5%材料的SEM图;
图3是Na
3Fe
2(SO
4)
3F/CNF-5%材料的HRTEM图;
图4是实施例2制备的扣式电池在0.1C电流密度下不同循环次数下的充放电曲线;
图5是实施例2制备的扣式电池在不同电流密度下的第二个循环充放电曲线;
图6是实施例2制备的扣式电池在2C电流密度下的循环容量保持曲线和库伦效率图;
图7是公开号为CN108682827A的中国专利制备的Na
6Fe
5(SO
4)
8材料(NFS)和本发明制备的Na
3Fe
2(SO
4)
3F材料(NFSF)的倍率性能对比图;
图8是实施例3中硬碳负极材料的SEM图;
图9是实施例3制备的钠离子全电池在0.5C电流密度下的充放电曲线。
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
以下实施例中,出现的术语SEM、HRTEM、CNF均为本领域专用术语,其中SEM指的是扫描电子显微镜,HRTEM为高分辨透射电子显微镜,CNF为碳纳米纤维。
实施例1:制备钠离子电池正极用Na
3Fe
2(SO
4)
3F/CNF正极材料
1.将七水硫酸亚铁在200℃烘箱中进行真空干燥10h,获得无水硫酸亚铁。
2.称取0.4675g硫酸钠,1.00g无水硫酸亚铁,0.1379g氟化钠和0.0803g(5wt%)碳纤维,加入到50mL的氧化锆球磨罐中,加入34g氧化锆球,设定球料比为20:1,充入氩气保护,进行球磨,球磨自转速率为200r/min,公转速率为500r/min,球磨时间为6h。
3.将球磨后的复合前驱体转移至管式炉,在氩气保护气氛下,进行热处理,于350℃下煅烧5h,将煅烧产物研磨成粉末,即得到含碳纤维5%的复合材料,记为Na
3Fe
2(SO
4)
3F/CNF-5%正极材料。
图1为Na
3Fe
2(SO
4)
3F材料的电子云分布图,从图中可以看出,F离子的引入使得Fe与Fe,Fe与O原子之间的电子云分布更加均匀,同时提高了各个原子之间的相互作用力,有效地稳定了材料的晶体结构,抑制了材料制备过程中 Fe元素的氧化和杂质相的形成,有助于提升电池的储钠容量、循环稳定性和高倍率性能。
图2为Na
3Fe
2(SO
4)
3F/CNF-5%正极材料的SEM图,从图中可以看出,Na
3Fe
2(SO
4)
3F/CNF-5%正极材料为微米尺度的块状颗粒,其中碳纤维清晰地缠绕在颗粒中间,形成类似于丝带缠绕颗粒状的微纳米结构。
图3为Na
3Fe
2(SO
4)
3F/CNF-5%正极材料的HRTEM图,从图中可以看出,Na
3Fe
2(SO
4)
3F材料显示出高的结晶性,同时碳纤维具有石墨化特性,紧密地嵌入在Na
3Fe
2(SO
4)
3F材料的本体结构中。
实施例2:制备钠离子扣式电池
按8:1:1的质量比称取Na
3Fe
2(SO
4)
3F/CNF-5%正极材料0.8g,导电碳材料(乙炔黑)0.1g和粘结剂(聚偏氟乙烯)0.1g,均匀分散在N-甲基吡咯烷酮溶剂中,得到的混合浆料均匀涂布在铝箔上,120℃真空干燥10h后获得正极极片。以金属钠薄片为对电极,按照正极极片,隔膜,对电极,垫片,弹片的依次顺序,放置于CR2032型纽扣电池中,添加以高氯酸钠为溶质,碳酸丙烯酯为溶剂,浓度为1mol/L的电解液,封装后获得钠离子扣式电池。
图4-6分别为扣式电池在2.0-4.5V电位窗口下的电化学性能曲线。其中,图4为0.1C电流密度下不同循环次数的充放电曲线。从图中可以看出,组装的钠离子电池具有较高的循环稳定性,首圈放电比容量达109mAh g
-1,循环150圈后容量仍保持为90mAh g
-1。
图5为不同电流密度下的第二个循环充放电曲线。从图中可以看出,组装的钠离子电池具有较高的工作电压和较好的倍率性能。20C电流密度下容量仍具有65mAh g
-1。
图6为2C电流密度下的循环容量保持曲线和库伦效率图。(1C=120mA g
-1)从图中可以看出,组装的钠离子电池在大倍率下具有较好的循环稳定性,2C电流密度下循环1200圈后的放电比容量仍具有70mAh g
-1。
图7是公开号为CN108682827A的中国专利制备的Na
6Fe
5(SO
4)
8材料和本发明制备的Na
3Fe
2(SO
4)
3F材料的倍率性能对比图。从图中可以看出,F离子的引入可以有效提高该类材料的倍率性能,20C电流密度下Na
3Fe
2(SO
4)
3F材料的放电比容量仍具有50mAh g
-1,充放电40圈后,0.1C电流密度下的容量仍保持为90mAh g
-1。
实施例3:制备钠离子全电池
1.称取Na
3Fe
2(SO
4)
3F/CNF-5%正极材料0.8g,按8:1:1的质量比,分别称取乙炔黑0.1g作为导电碳和聚偏氟乙烯0.1g作为粘结剂,将上述三种材料分散在N-甲基吡咯烷酮溶剂中,混合均匀后涂布到铝箔上,120℃真空条件下干燥12h,获得正极极片。
2.称取硬碳负极材料0.7g,按7:2:1的质量比,分别称取乙炔黑0.2g作为导电碳和聚偏氟乙烯0.1g作为粘结剂,将上述三种材料分散在N-甲基吡咯烷酮溶剂中,混合均匀后涂布到铜箔上,120℃真空条件下干燥12h,获得负极极片。
3.按正极极片、隔膜、负极极片、垫片、弹片的依次顺序,放置于CR2032型纽扣电池中,添加以高氯酸钠为溶质,溶剂为体积比为1:1的碳酸乙烯酯和碳酸二甲酯,添加剂为5wt.%的碳酸亚乙烯酯,溶质浓度为1mol/L的电解液,封装后获得钠离子全电池。
图8为硬碳负极材料的SEM图,从图中可以看出,硬碳材料为微米尺度的球状颗粒,该颗粒是由纳米尺度的一次颗粒聚集组成。
图9为全电池在0.5C电流密度下不同循环圈数的充放电曲线。从图中可以看出,组装的全电池具有较高的工作电压和较好的充放电比容量,0.5C的首圈放电比容达81mAh g
-1。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或 变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
Claims (10)
- 一种铁基钠离子电池正极材料,其特征在于,包括Na 3Fe 2(SO 4) 3F以及嵌入在Na 3Fe 2(SO 4) 3F本体结构中的碳基材料;所述铁基钠离子电池正极材料中,碳基材料的质量分数为1~10%。
- 如权利要求1所述的铁基钠离子电池正极材料,其特征在于,所述碳基材料选自碳纳米管、碳纤维、石墨烯、还原氧化石墨烯、无定形碳中的至少一种。
- 一种如权利要求1或2所述的铁基钠离子电池正极材料的制备方法,其特征在于,包括以下步骤:S1、按1:2:1的摩尔比将无水硫酸亚铁、硫酸钠、氟化钠和碳基材料混合,在保护气氛下球磨,球磨后的混合物料经干燥后,得正极材料前驱体;S2、在烧结气氛下,将所述正极材料前驱体于300~450℃的条件下烧结1~24h,得到所述铁基钠离子电池复合正极材料。
- 如权利要求3所述的铁基钠离子电池正极材料的制备方法,其特征在于,步骤S1中,球磨时的球料比为0.1~100,球磨介质为不锈钢球、ZrO 2球或玛瑙球,保护气氛为氮气或氩气。
- 如权利要求4所述的铁基钠离子电池正极材料的制备方法,其特征在于,步骤S1中,球磨时加入溶剂,所述溶剂选自乙醇、丙酮、乙二醇、氮甲基吡咯烷酮中的至少一种;球磨速度为100~1200r/min,球磨时间为1~72h。
- 如权利要求3所述的铁基钠离子电池正极材料的制备方法,其特征在于,步骤S1中,所述干燥在真空、氮气或氩气气氛下进行,干燥温度为80~120℃,干燥时间为1~24h。
- 如权利要求3所述的铁基钠离子电池正极材料的制备方法,其特征在于,步骤S2中,所述烧结气氛为氮气或氩气。
- 一种钠离子全电池,其特征在于,所述钠离子全电池的正极是由权利要求1或2所述的Na 3Fe 2(SO 4) 3F/C正极材料、导电碳材料和粘结剂制备而成的。
- 根据权利要求8所述的钠离子全电池的制备方法,其特征在于,包括如下步骤:(1)、将Na 3Fe 2(SO 4) 3F/C正极材料、导电碳材料和粘结剂于溶剂中混合均匀,涂布到铝箔集流体上,经过干燥处理,获得正极极片;(2)、将硬碳负极材料、导电碳材料和粘结剂于溶剂中混合均匀,涂布到铜箔集流体上,经过干燥处理,获得负极极片;(3)、采用隔膜、垫片、弹片和正负极壳将所述正极极片和负极极片组装起来,并添加电解液,封装后即得所述钠离子全电池。
- 如权利要求9所述的钠离子全电池的制备方法,其特征在于,所述导电碳材料为乙炔黑,所述粘结剂为聚偏氟乙烯,所述溶剂为N-甲基吡咯烷酮;所述Na 3Fe 2(SO 4) 3F/C正极材料、导电碳材料和粘结剂的质量比为8:1:1,所述硬碳负极材料、导电碳材料和粘结剂的质量比为7:2:1;所述电解液以高氯酸钠为溶质,以体积比为1:1的碳酸乙烯酯和碳酸二甲酯为溶剂,并添加5wt.%的碳酸亚乙烯酯为添加剂,溶质浓度为1mol/L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/251,909 US12080887B2 (en) | 2019-12-09 | 2019-12-25 | Iron-based cathode material for sodium-ion battery, preparation method thereof, and corresponding sodium-ion full battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911252756.4 | 2019-12-09 | ||
CN201911252756.4A CN110931784B (zh) | 2019-12-09 | 2019-12-09 | 铁基钠离子电池正极材料及其制备方法 |
CN201911251387.7A CN111063871B (zh) | 2019-12-09 | 2019-12-09 | 一种钠离子全电池及其制备方法 |
CN201911251387.7 | 2019-12-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/251,909 A-371-Of-International US12080887B2 (en) | 2019-12-09 | 2019-12-25 | Iron-based cathode material for sodium-ion battery, preparation method thereof, and corresponding sodium-ion full battery |
US18/765,241 Division US20240363857A1 (en) | 2019-12-09 | 2024-07-06 | Iron-based cathode material for sodium-ion battery, preparation method thereof, and corresponding sodium-ion full battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021114401A1 true WO2021114401A1 (zh) | 2021-06-17 |
Family
ID=76328824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/128296 WO2021114401A1 (zh) | 2019-12-09 | 2019-12-25 | 铁基钠离子电池正极材料,其制备方法以及钠离子全电池 |
Country Status (2)
Country | Link |
---|---|
US (1) | US12080887B2 (zh) |
WO (1) | WO2021114401A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115064676A (zh) * | 2022-06-29 | 2022-09-16 | 蜂巢能源科技股份有限公司 | 一种钠离子电池正极材料及其制备方法与应用 |
CN115863629A (zh) * | 2022-12-30 | 2023-03-28 | 烯晶碳能电子科技无锡有限公司 | 一种钠离子电池的制造工艺 |
CN116779808A (zh) * | 2023-06-25 | 2023-09-19 | 江苏中兴派能电池有限公司 | 复合硫酸铁钠正极材料及其制备方法、正极和钠离子电池 |
CN117303449A (zh) * | 2023-08-31 | 2023-12-29 | 三峡大学 | 一种利用钛白粉副产物制备钠离子电池正极材料硫酸铁钠的方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113690413B (zh) * | 2021-07-09 | 2023-03-14 | 郑州大学 | 一种高效钠离子电池负极碳复合材料的制备方法 |
CN114005987B (zh) * | 2021-10-26 | 2024-03-22 | 山东玉皇新能源科技有限公司 | 一种钠离子电池正极材料添加剂及钠离子电池正极材料 |
CN114524426A (zh) * | 2022-02-07 | 2022-05-24 | 大连中比动力电池有限公司 | 一种钠离子电池用硬碳负极材料及制备方法和钠离子电池 |
CN114597385B (zh) * | 2022-03-14 | 2023-02-21 | 湖北万润新能源科技股份有限公司 | 铁基复合磷酸盐正极材料及其制备方法、正极片和钠离子电池 |
CN114927356B (zh) * | 2022-05-17 | 2023-01-06 | 华中科技大学 | 一种水系钠离子混合电容器及其制备方法与应用 |
CN115050957B (zh) * | 2022-06-07 | 2024-01-26 | 深圳珈钠能源科技有限公司 | 一种钠离子电池正极材料及其制备方法、钠离子电池 |
CN114975999B (zh) * | 2022-06-28 | 2023-11-28 | 河南工业大学 | 用于钠离子电池的磺化聚苯并噻唑基阴极材料及其制备方法 |
CN115799447A (zh) * | 2022-11-29 | 2023-03-14 | 江苏中兴派能电池有限公司 | 正极片及其制备方法和钠离子电池 |
CN116404144B (zh) * | 2023-06-09 | 2023-08-15 | 华大钠电(北京)科技有限公司 | 一种钠离子电池 |
CN116495716A (zh) * | 2023-06-26 | 2023-07-28 | 南昌大学 | 利用废旧磷酸铁锂制备钠离子电池正极材料的方法 |
CN116553621B (zh) * | 2023-06-27 | 2023-11-28 | 深圳先进技术研究院 | 一种硫酸铁钠及其制备方法和应用 |
CN117326595B (zh) * | 2023-09-15 | 2024-04-19 | 广东钠壹新能源科技有限公司 | 一种硫酸铁钠正极材料及其制备方法和应用 |
CN117239138B (zh) * | 2023-11-15 | 2024-01-23 | 华北电力大学 | 钠离子电池正极材料、其制备方法及钠离子电池 |
CN118472226A (zh) * | 2024-07-08 | 2024-08-09 | 江苏众钠能源科技有限公司 | 一种复合钠离子正极材料、制备方法及钠离子电池 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1723578A (zh) * | 2001-04-06 | 2006-01-18 | 威伦斯技术公司 | 钠离子电池 |
CN103078111A (zh) * | 2011-10-26 | 2013-05-01 | 江苏海四达电源股份有限公司 | 单斜相FeSO4·H2O及三斜相NaFe1-xMxSO4F(M=Co,Ni)制备方法 |
US20150017322A1 (en) * | 2012-02-29 | 2015-01-15 | Centre National De La Recherche Scientifique | Sulphates of use as electrode materials |
CN105355886A (zh) * | 2015-11-27 | 2016-02-24 | 中南大学 | 一种钠离子电池正极Na2+2xFe2-x(SO4)3@碳复合材料及其制备方法 |
CN106848236A (zh) * | 2017-02-20 | 2017-06-13 | 中南大学 | 一种用于钠离子电池的硫酸亚铁钠/石墨烯复合正极材料及其制备方法 |
WO2018011576A1 (en) * | 2016-07-13 | 2018-01-18 | Universitetet I Oslo | Electrode material |
CN108539157A (zh) * | 2018-04-03 | 2018-09-14 | 武汉大学 | 一类高功率钠离子电池正极材料及其制备方法 |
CN108682827A (zh) * | 2018-06-08 | 2018-10-19 | 苏州大学 | 一种碳复合钠离子正极材料及其制备方法 |
CN109192982A (zh) * | 2018-09-05 | 2019-01-11 | 四川大学 | 硫酸铁钠正极材料的合成方法 |
WO2019135827A1 (en) * | 2018-01-02 | 2019-07-11 | Nanotek Instruments, Inc. | Anode particulates or cathode particulates for alkali metal batteries |
CN110336021A (zh) * | 2019-07-24 | 2019-10-15 | 郑州大学 | 石墨烯和/或乙炔黑复合的Na2Fe(SO4)2/C电极材料、制备方法及制备的电池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6964827B2 (en) * | 2000-04-27 | 2005-11-15 | Valence Technology, Inc. | Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials |
US20070160519A1 (en) * | 2005-03-28 | 2007-07-12 | Jeremy Barker | Method Of Making Active Materials For Use In Secondary Electrochemical Cells |
KR101326426B1 (ko) * | 2005-03-28 | 2013-11-07 | 발렌스 테크놀로지, 인코포레이티드 | 이차 전기화학 셀 |
US10090516B2 (en) * | 2012-04-24 | 2018-10-02 | National University Of Singapore | Electrode material and method of synthesizing |
US9673454B2 (en) * | 2013-02-18 | 2017-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Sodium-ion secondary battery |
EP3040115B1 (en) * | 2013-08-27 | 2021-02-24 | Nissan Chemical Corporation | Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material |
CN110268553B (zh) * | 2016-12-20 | 2023-09-12 | 纳米技术仪器公司 | 柔性且形状适形的线缆型碱金属电池 |
CN106744778A (zh) * | 2016-12-28 | 2017-05-31 | 湖北金泉新材料有限责任公司 | 一种熔盐法制备磷酸亚铁锂正极材料的方法 |
CN108321374A (zh) * | 2018-02-05 | 2018-07-24 | 广东工业大学 | 一种铁和氟共掺杂复合材料及其制备方法 |
CN108511751B (zh) * | 2018-04-11 | 2021-02-02 | 中科锂电新能源有限公司 | 改性磷酸铁锂、其制备方法和锂离子电池 |
-
2019
- 2019-12-25 US US17/251,909 patent/US12080887B2/en active Active
- 2019-12-25 WO PCT/CN2019/128296 patent/WO2021114401A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1723578A (zh) * | 2001-04-06 | 2006-01-18 | 威伦斯技术公司 | 钠离子电池 |
CN103078111A (zh) * | 2011-10-26 | 2013-05-01 | 江苏海四达电源股份有限公司 | 单斜相FeSO4·H2O及三斜相NaFe1-xMxSO4F(M=Co,Ni)制备方法 |
US20150017322A1 (en) * | 2012-02-29 | 2015-01-15 | Centre National De La Recherche Scientifique | Sulphates of use as electrode materials |
CN105355886A (zh) * | 2015-11-27 | 2016-02-24 | 中南大学 | 一种钠离子电池正极Na2+2xFe2-x(SO4)3@碳复合材料及其制备方法 |
WO2018011576A1 (en) * | 2016-07-13 | 2018-01-18 | Universitetet I Oslo | Electrode material |
CN106848236A (zh) * | 2017-02-20 | 2017-06-13 | 中南大学 | 一种用于钠离子电池的硫酸亚铁钠/石墨烯复合正极材料及其制备方法 |
WO2019135827A1 (en) * | 2018-01-02 | 2019-07-11 | Nanotek Instruments, Inc. | Anode particulates or cathode particulates for alkali metal batteries |
CN108539157A (zh) * | 2018-04-03 | 2018-09-14 | 武汉大学 | 一类高功率钠离子电池正极材料及其制备方法 |
CN108682827A (zh) * | 2018-06-08 | 2018-10-19 | 苏州大学 | 一种碳复合钠离子正极材料及其制备方法 |
CN109192982A (zh) * | 2018-09-05 | 2019-01-11 | 四川大学 | 硫酸铁钠正极材料的合成方法 |
CN110336021A (zh) * | 2019-07-24 | 2019-10-15 | 郑州大学 | 石墨烯和/或乙炔黑复合的Na2Fe(SO4)2/C电极材料、制备方法及制备的电池 |
Non-Patent Citations (1)
Title |
---|
FANG YONG-JIN, CHEN ZHONG-XUE, AI XIN-PING, YANG HAN-XI, CAO YU-LIANG: "Recent Developments in Cathode Materials for Na Ion Batteries", WULI-HUAXUE-XUEBAO = ACTA PHYSICO-CHIMICA SINICA, BEIJING DAXUE HUAXUE YU FENZI GONGCHENG XUEYUAN, CN, vol. 33, no. 1, 1 January 2017 (2017-01-01), CN, pages 211 - 241, XP055820994, ISSN: 1000-6818, DOI: 10.3866/PKU.WHXB201610111 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115064676A (zh) * | 2022-06-29 | 2022-09-16 | 蜂巢能源科技股份有限公司 | 一种钠离子电池正极材料及其制备方法与应用 |
CN115064676B (zh) * | 2022-06-29 | 2023-11-03 | 蜂巢能源科技股份有限公司 | 一种钠离子电池正极材料及其制备方法与应用 |
CN115863629A (zh) * | 2022-12-30 | 2023-03-28 | 烯晶碳能电子科技无锡有限公司 | 一种钠离子电池的制造工艺 |
CN116779808A (zh) * | 2023-06-25 | 2023-09-19 | 江苏中兴派能电池有限公司 | 复合硫酸铁钠正极材料及其制备方法、正极和钠离子电池 |
CN117303449A (zh) * | 2023-08-31 | 2023-12-29 | 三峡大学 | 一种利用钛白粉副产物制备钠离子电池正极材料硫酸铁钠的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210202946A1 (en) | 2021-07-01 |
US12080887B2 (en) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021114401A1 (zh) | 铁基钠离子电池正极材料,其制备方法以及钠离子全电池 | |
CN110931784B (zh) | 铁基钠离子电池正极材料及其制备方法 | |
CN102569797B (zh) | 一种新型磷酸盐基正极复合材料及其制备方法和用途 | |
CN108155353B (zh) | 一种石墨化碳包覆电极材料及其制备方法和作为储能器件电极材料的应用 | |
CN103165883B (zh) | 锂离子电池磷酸基正极复合材料及其制备方法和用途 | |
CN107482182B (zh) | 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法 | |
CN102437311B (zh) | 一种磷酸铁锂复合材料、其制备方法和应用 | |
CN109449379B (zh) | 一种氮掺杂碳复合的SnFe2O4锂离子电池负极材料及其制备方法与应用 | |
Yuan et al. | Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance | |
CN108933237B (zh) | 一种锂离子电池正极材料的制备方法及应用 | |
WO2024011862A1 (zh) | 全铁基钠离子电池及其制备方法 | |
CN107946564B (zh) | 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用 | |
CN104183832A (zh) | 一种基于碳纳米管-石墨烯复合三维网络的FeF3柔性电极的制备方法与应用 | |
CN114944476B (zh) | 一种MoS2/Fe2O3异质结构@多孔碳纤维复合材料及其制备方法和应用 | |
CN111063871B (zh) | 一种钠离子全电池及其制备方法 | |
CN102130322A (zh) | 一种锂离子电池正负极双层结构极板及其制造方法 | |
CN103928680A (zh) | 一种制备片状磷酸锰锂/石墨烯复合材料的喷雾干燥辅助合成方法 | |
CN114242968A (zh) | 一种碳包覆氟磷酸铁钠材料及其制备方法与应用 | |
Li et al. | Electrochemical performance of LiNi 0.5 Mn 0.5 O 2 with different synthesis methods | |
CN109279663B (zh) | 一种硼酸盐类钠离子电池负极材料及其制备和应用 | |
CN106159237B (zh) | 一种钒基硼酸盐负极材料及其制备方法 | |
CN114050244A (zh) | 一种焦磷酸铁基钠离子电池正极复合材料及制备方法 | |
CN107230779B (zh) | 一种高温稳定的相变型氟硫酸铁锂电池材料的制备方法及电极片与锂离子电池的使用方法 | |
CN104103836A (zh) | 一种钠和锰共掺杂改性硅酸铁锂正极材料及其制备方法 | |
CN103367728A (zh) | 一种活化天然石墨改性硅酸铁锂正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19955676 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19955676 Country of ref document: EP Kind code of ref document: A1 |