WO2024011862A1 - 全铁基钠离子电池及其制备方法 - Google Patents

全铁基钠离子电池及其制备方法 Download PDF

Info

Publication number
WO2024011862A1
WO2024011862A1 PCT/CN2022/141939 CN2022141939W WO2024011862A1 WO 2024011862 A1 WO2024011862 A1 WO 2024011862A1 CN 2022141939 W CN2022141939 W CN 2022141939W WO 2024011862 A1 WO2024011862 A1 WO 2024011862A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
sodium
electrode material
negative electrode
positive electrode
Prior art date
Application number
PCT/CN2022/141939
Other languages
English (en)
French (fr)
Inventor
刘世琦
杨娇娇
Original Assignee
湖北万润新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北万润新能源科技股份有限公司 filed Critical 湖北万润新能源科技股份有限公司
Publication of WO2024011862A1 publication Critical patent/WO2024011862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of sodium-ion batteries and relates to an all-iron-based sodium-ion battery, in particular to an all-iron-based sodium-ion battery assembled with two iron-based materials and a preparation method thereof.
  • iron-based polyanionic cathode materials are rich in resources, have an open framework structure and good thermal stability, and are a key technology for building high-performance, low-cost sodium-ion batteries.
  • anode materials materials such as transition metal oxides and transition metal sulfides have become a research hotspot for Na + storage anode materials due to their unique morphology and high capacity.
  • Iron-based sodium ion positive and negative electrode materials are considered to be battery materials with commercial application prospects due to their abundant reserves on the earth, easy availability, low cost, and environmental friendliness.
  • Chinese Patent No. 201911252756.4 discloses an iron-based sodium ion battery cathode material and its preparation method.
  • the cathode material includes Na 3 Fe 2 (SO 4 ) 3 F and Na 3 Fe 2 (SO 4 ) 3 embedded in it.
  • F carbon-based material in the main structure; in the iron-based sodium ion battery cathode material, the mass fraction of carbon-based material is 1 to 10%.
  • the Na 3 Fe 2 (SO 4 ) 3 F cathode material can ensure the sodium storage specific capacity, while greatly improving the cycle stability and rate performance.
  • the sodium storage electrochemical performance is significantly better than that of the pure phase NaxFey(SO4)z material;
  • the Na3Fe2(SO4)3F cathode material has obvious advantages in operating potential and energy density; however, the sintering temperature of this technical solution is too low, resulting in Insufficient carbonization of the carbon source results in low conductivity of the surface carbon coating layer and poor graphitization, which is not conducive to charge transmission and diffusion of sodium ions.
  • Chinese Patent No. 202111350999.9 discloses a ferric pyrophosphate-based sodium ion battery cathode composite material and a preparation method.
  • the cathode composite material includes Na 3.16 Fe 2.42 (P 2 O 7 ) 2 and modified Na 3.16 Fe 2.42 ( Carbon-based materials on the surface of P 2 O 7 ) 2 bulk particles and embedded in Na 3.16 Fe 2.42 (P 2 O 7 ) 2 bulk particles; the mass fraction of carbon-based materials is 1-10%; different types of carbon are added to the reactants Based material, part of the carbon-based material is evenly coated on the surface of the Na 3.16 Fe 2.42 (P 2 O 7 ) 2 material particles, and the other part can be embedded in the bulk structure to connect the Na 3.16 Fe 2.42 (P 2 O 7 ) 2 particles in series.
  • the present invention proposes an all-iron-based sodium-ion battery in which both the positive and negative electrode materials have a stable frame structure and good thermal stability and the raw materials are cheap and easily available, and a manufacturing method thereof.
  • the above-mentioned all-iron-based sodium ion battery includes a positive electrode material, a negative electrode material and an electrolyte, and is characterized in that: the positive electrode material and the negative electrode material are both iron-based materials; the positive electrode material is an iron-based mixed anionic compound ferric pyrophosphate phosphate. Sodium; the negative electrode material includes one or more of iron oxide, iron phosphide, and ferrous sulfide.
  • the all-iron-based sodium ion battery wherein: the electrolyte is one of sodium perchlorate, sodium hexafluorophosphate, sodium bisfluorosulfonyl imide, sodium bistrifluoromethanesulfonyl imide, or Various.
  • the preparation method of the above-mentioned all-iron-based sodium ion battery is to prepare the iron-based mixed anionic compound positive electrode material sodium ferric pyrophosphate, and mix the positive electrode material, conductive agent Super P, and binder PVDF in a mass ratio of 8:1:1 , the current collector is aluminum foil to form the positive electrode; mix the negative active material, conductive agent Super P, and binder PVDF in a mass ratio of 8:1:1, and the current collector is aluminum foil to form the negative electrode; mix the positive and negative electrodes with the electrolyte,
  • the Celgard separator is assembled in an argon atmosphere with an oxygen partial pressure of less than 0.1 ppm to obtain an all-iron-based sodium ion battery in which both the positive and negative electrode materials are iron-based materials.
  • the cathode material sodium ferric pyrophosphate is prepared, using hydrated iron nitrate as the iron source, hydrated sodium phosphate and anhydrous sodium acetate as the sodium source, citric acid as the carbon source, desalted water and deionized water as the solvent, where Na:Fe :P ratio is 1.02:0.75:1, C content is 1.5-2.5%, solid content is 30-45%, and then the air inlet rate is 75-85%, the air inlet temperature is 130-180°C, 0.3-0.7 Feed the material at a feeding rate of % for spray drying to obtain the precursor; then place the precursor in an argon atmosphere and calcine at a temperature of 500-600°C for 8-15 hours to obtain the cathode material Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 ;
  • the chemical formula of the positive electrode material is Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 and the negative electrode is Fe 2 O 3 /GO. All-iron sodium-ion battery.
  • the negative electrode material is prepared by using iron salt and graphene oxide hydrosol as raw materials, dissolving them in 40-70 ml of deionized water, stirring evenly and then ultrasonic dispersion. 50-70 minutes, remove the moisture in a rotary evaporator, collect it, dry it again, and collect the iron-based negative electrode material powder.
  • the Na 3 Fe 2 (PO 4 )P 2 O 7 proposed by the present invention cleverly adopts the structure of the composite anions of phosphate and pyrophosphate, which stabilizes the structure of the product and simultaneously performs composite ion doping and composite carbon source packaging.
  • Cover improve ionic conductivity and electronic conductivity, greatly increase capacity, provide high-performance cathode materials for sodium batteries; and iron-based sodium ion cathode and anode materials have a stable framework structure and good thermal stability, and the structure is stable during cycling , and the raw materials are cheap and easily available, all-iron-based sodium-ion batteries have good potential for commercial application.
  • the method of the present invention combines two kinds of iron-based sodium ion battery positive and negative electrode materials into an all-iron-based sodium ion full battery, and selects electrolytes for matching, providing a feasible channel for sodium ion full batteries.
  • both the positive and negative electrode materials are iron-based materials. Since iron is a common element in nature, the cheap and easy availability of iron-based materials further increases the cost advantage of the present invention and has the potential for industrial application.
  • Figure 1 is an XRD pattern of the cathode active material Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 prepared in Example 1 of the present invention
  • Figure 2 is an XRD pattern of the negative active material Fe 2 O 3 prepared in Example 1 of the present invention.
  • Figure 3 is the charge and discharge curve of the iron-based sodium ion full battery prepared in Example 1 of the present invention.
  • the all-iron-based sodium ion battery of the present invention includes a positive electrode material, a negative electrode material and an electrolyte. Both the positive electrode and the negative electrode are iron-based materials.
  • the cathode material is iron-based mixed anionic compound sodium iron pyrophosphate
  • the negative electrode material includes one or more of iron oxide, iron phosphide, and ferrous sulfide, preferably one or more of ferric oxide, ferric tetroxide, iron phosphide, and ferrous sulfide;
  • the electrolyte includes one or more of sodium perchlorate, sodium hexafluorophosphate, sodium bisfluorosulfonimide, and sodium bistrifluoromethanesulfonimide.
  • the preparation method of the all-iron-based sodium ion battery of the present invention is to first prepare the iron-based mixed anionic compound positive electrode material sodium ferric pyrophosphate, and combine the positive electrode material, conductive agent Super P, and binder PVDF in a mass ratio of 8:1: 1.
  • the current collector is aluminum foil, to form the positive electrode; mix the negative active material, conductive agent Super P, and binder P VDF in a mass ratio of 8:1:1, and the current collector is aluminum foil to form the negative electrode; combine the positive and negative electrodes with the electrolytic liquid and Celgard separator, and assembled in an argon atmosphere with an oxygen partial pressure less than 0.1ppm to obtain an all-iron-based sodium ion battery in which both the positive and negative electrode materials are iron-based materials; the specific preparation steps are as follows:
  • the cathode material sodium ferric pyrophosphate is prepared, using hydrated iron nitrate as the iron source, hydrated sodium phosphate and anhydrous sodium acetate as the sodium source, citric acid as the carbon source, desalted water and deionized water as the solvent, where Na:Fe :
  • the molar ratio of P is 1-1.04:0.75:1, the C content is 1.5-2.5%, the solid content is 30-45%, and then the air inlet rate is 75-85%, the air inlet temperature is 130-180°C, Feed the material at a feed rate of 0.3-0.7% for spray drying to obtain a precursor; then place the precursor in an argon atmosphere and calcine at a temperature of 500-600°C for 8-15 hours to obtain the cathode material Na 4 Fe 3 ( PO 4 ) 2 P 2 O 7 ;
  • the negative electrode material use iron salt and graphene oxide hydrosol as raw materials, dissolve it in 40-70ml deionized water, stir evenly and disperse it ultrasonically for 50-70 minutes, remove the water in a rotary evaporator, collect it, and dry it again , collecting iron-based negative electrode material powder;
  • the chemical formula of the positive electrode material is Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 and the negative electrode is Fe 2 O 3 /GO. All-iron sodium-ion battery.
  • the invention combines iron-based positive electrode and iron-based negative electrode materials into an all-iron-based sodium ion full battery.
  • the iron-based sodium ion positive and negative electrode materials have a stable frame structure and good thermal stability, are structurally stable during the cycle, and have cheap raw materials. Easy to obtain, all-iron-based sodium-ion batteries have good potential for commercial application.
  • cathode materials Fe(NO 3 ) 3 ⁇ 9H 2 O, NaH 2 PO 4 ⁇ 2H 2 O, citric acid as raw materials, and deionized water as solvent; among them, NaH 2 PO 4 ⁇ 2H 2 O sodium source and phosphorus Source, Fe(NO 3 ) 3 ⁇ 9H 2 O is the iron source, citric acid is the carbon source; mix 6.06gFe(NO 3 ) 3 ⁇ 9H 2 O, 3.12g NaH 2 PO 4 ⁇ 2H 2 O, and 0.8gTiO 2 Add 100 ml of demineralized water, add 2.10 g of citric acid monohydrate, stir evenly, and then spray-dry at an air inlet rate of 80%, an air inlet temperature of 180°C, and a feed rate of 0.5% to obtain the precursor; then The precursor is placed in an argon atmosphere and calcined at 550°C for 10 hours to obtain the positive electrode material Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 ; the prepared
  • Preparation of negative electrode material Using nanoscale Fe 2 O 3 and graphene oxide hydrosol as raw materials, dissolve 0.9g nanoscale Fe 2 O 3 and 10ml graphene oxide hydrosol (11mg/ml) in 70ml deionized water, and stir evenly After ultrasonic dispersion for 50 minutes, remove the water in a rotary evaporator, collect it, dry it again, and collect the negative electrode material Fe 2 O 3 /GO powder; the XRD pattern of the prepared negative electrode active material Fe 2 O 3 is shown in Figure 2;
  • the electrolyte is sodium perchlorate
  • the chemical formula of the positive electrode material is Na 4 Fe 3 (PO 4 ) 2 P 2 O 7.
  • the charge and discharge curve of the all-iron-based sodium ion battery prepared in Example 1 is shown in Figure 3, and its performance indicators are as follows: in the voltage range of 2.0-4.3V, the 0.2C charge specific capacity is 107mAh/g, the reversible ratio The capacity is 104.8mAh/g and the first time efficiency is 97.9%.
  • cathode materials Fe(NO 3 ) 3 ⁇ 9H 2 O, NaH 2 PO 4 ⁇ 2H 2 O, citric acid as raw materials, and deionized water as solvent; among them, NaH 2 PO 4 ⁇ 2H 2 O sodium source, Fe (NO 3 ) 3 ⁇ 9H 2 O is the iron source, and citric acid is the carbon source; mix 6.06gFe(NO 3 ) 3 ⁇ 9H 2 O, 3.24g NaH 2 PO 4 ⁇ 2H 2 O, and 0.8gTiO 2 into 100 ml.
  • the negative electrode material can directly use commercially available FeS
  • the positive electrode material prepared above and the commercially available FeS negative electrode material were assembled into a button battery in a glove box with water and oxygen lower than 0.01ppm.
  • the electrolyte was sodium bistrifluoromethanesulfonate, and the chemical formula of the positive electrode material was Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 , an all-iron-based sodium-ion battery with FeS as the negative electrode.
  • the performance indicators of the all-iron-based sodium ion battery prepared in this example are as follows: in the voltage range of 2.0-4.3V, the 0.2C charging specific capacity is 101mAh/g, the reversible specific capacity is 78.2mAh/g, and the first efficiency is 77.4% .
  • sodium pyrophosphate Na 4 P 2 O 7 ⁇ 10H 2 O, FePO 4 and citric acid are used as raw materials; among them, sodium pyrophosphate Na 4 P 2 O 7 ⁇ 10H 2 O is both a sodium source and a phosphorus source.
  • FePO 4 is both an iron source and a phosphorus source, and citric acid is a carbon source; add 30.52g Na 4 P 2 O 7 ⁇ 10H 2 O, 3.44g FePO 4 , and 5.6g citric acid monohydrate into 150 mL of water, and ball mill at 20 rpm.
  • Preparation of negative electrode material Using nanoscale Fe 2 O 3 and graphene oxide hydrosol as raw materials, dissolve 0.9g nanoscale Fe 2 O 3 and 10ml graphene oxide hydrosol (11mg/ml) in 50ml deionized water, and stir evenly After ultrasonic dispersion for 60 minutes, remove the water in a rotary evaporator, collect it, and dry it again to collect the negative electrode material Fe 2 O 3 /GO powder;
  • the electrolyte is sodium hexafluorophosphate
  • the chemical formula of the positive electrode material is Na 4 Fe 3 (PO 4 ) 2 P 2 O 7.
  • the performance indicators of the all-iron-based sodium ion battery prepared in this example are as follows: in the voltage range of 2.0-4.3V, the 0.2C charging specific capacity is 103mAh/g, the reversible specific capacity is 100.2mAh/g, and the first efficiency is 97.3% .
  • sodium pyrophosphate Na 4 P 2 O 7 ⁇ 10H 2 O, FePO 4 and citric acid are used as raw materials; among them, sodium pyrophosphate Na 4 P 2 O 7 ⁇ 10H 2 O is both a sodium source and a phosphorus source.
  • FePO 4 is the iron source and citric acid is the carbon source; add 31.43g Na 4 P 2 O 7 ⁇ 10H 2 O, 3.44g FePO 4 and 5.6g citric acid monohydrate into 150mL water, ball mill at 20rpm for 3h, and then Sand grind at 2000 rpm for 3 hours, then spray-dry the material at an air inlet rate of 85%, an air inlet temperature of 130°C, and a feed rate of 0.5% to obtain the precursor; then place the precursor in an argon atmosphere and dry it at 600°C. Calcined at high temperature for 8 hours, Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 is obtained;
  • Preparation of negative electrode material Using FeP and graphene oxide hydrosol as raw materials, dissolve 0.9g FeP and 10ml graphene oxide hydrosol (11mg/ml) in 40ml deionized water, stir evenly and disperse ultrasonically for 70 minutes, and remove in a rotary evaporator The moisture is collected and dried again to collect the negative electrode material FeP/GO powder;
  • the electrolyte is sodium bisfluorosulfonyl imide and sodium bistrifluoromethanesulfonyl imide to obtain the positive electrode material. It is an all-iron-based sodium-ion battery with a chemical formula of Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 and a negative electrode of FeP/GO.
  • the performance indicators of the all-iron-based sodium ion battery prepared in this example are as follows: in the voltage range of 2.0-4.3V, the 0.2C charging specific capacity is 99.4mAh/g, the reversible specific capacity is 85.3mAh/g, and the first efficiency is 85.8 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

全铁基钠离子电池及其制备方法,电池的正极材料与负极材料均为铁基材料;正极材料为焦磷酸磷酸铁钠,负极材料包括氧化铁、磷化铁、硫化亚铁中的一种或多种。全电池的正极与负极均采用铁基材料,铁基正、负极材料具有稳固的框架结构和良好的热稳定性,循环过程中结构稳定,并且原材料廉价易得。

Description

全铁基钠离子电池及其制备方法
本申请要求2022年7月15日提交的,申请号为202210831253.8,发明名称为“全铁基钠离子电池及其制备方法”的中国发明专利申请的优先权,该申请的公开内容以引用的方式并入本文。
技术领域
本发明属于钠离子电池技术领域,涉及一种全铁基钠离子电池,特别是涉及以两种铁基材料组装的全铁基钠离子电池及其制备方法。
背景技术
随着碳达峰、碳中和具体时间节点的提出,我国将在接下来的几十年中进一步重视新能源领域的发展,而由于锂资源的日益稀缺和价格高涨,为了弥合新能源例如风电、太阳能等发电不稳定的特点,发展大规模储能钠离子电池代替锂离子电池作为可再生能源储存和转换以及智能电网削峰填谷的枢纽,已经成为迫在眉睫的战略性课题。
在钠离子电池正极材料中,铁基聚阴离子型正极材料资源丰富,具有开放的框架结构和良好的热稳定性,是构建高性能、低成本钠离子电池的关键技术。而在负极材料中,过渡金属氧化物和过渡金属硫化物等材料因其独特的形貌和高容量而成为Na +存储负极材料的研究热点。铁基钠离子正、负极材料由于其在地球上储量丰富、易获得、成本低、环境友好等特点被认为是有商业化应用前景的电池材料。
例如在第201911252756.4号中国专利中公开了一种铁基钠离子电池正极材料及其制备方法,该正极材料包括Na 3Fe 2(SO 4) 3F以及嵌入在Na 3Fe 2(SO 4) 3F本体结构中的碳基材料;所述铁基钠离子电池正极材料中,碳基材料的质量分数为1~10%。该Na 3Fe 2(SO 4) 3F正极材料,可保证储钠比容量,同时大大提升了循环稳定性和倍率性能,储钠电化学性能明显优于纯相NaxFey(SO4)z材料;相比于其它含钠层状过渡金属氧化物和聚阴离子型钒基磷酸盐等正极材 料,Na3Fe2(SO4)3F正极材料在工作电位和能量密度上优势明显;然而该技术方案烧结温度过低,导致碳源碳化不充分,使得表面碳包覆层自身电导率低,石墨化程度差,不利于电荷传输及钠离子的扩散。
另外在第202111350999.9号中国专利中公开了一种焦磷酸铁基钠离子电池正极复合材料及制备方法,该正极复合材料包括Na 3.16Fe 2.42(P 2O 7) 2以及修饰在Na 3.16Fe 2.42(P 2O 7) 2本体颗粒表面和嵌入Na 3.16Fe 2.42(P 2O 7) 2本体颗粒中的碳基材料;碳基材料的质量分数为1-10%;反应物中添加不同种类的碳基材料,碳基材料一部分均匀包覆在Na 3.16Fe 2.42(P 2O 7) 2材料颗粒表面,另一部分可嵌入到本体结构,将Na 3.16Fe 2.42(P 2O 7) 2颗粒串联起来,起到电荷传递的桥梁作用,显著提高Na 3.16Fe 2.42(P 2O 7) 2正极材料本体的电导率,合成过程中无有害废液产生,生产成本低,适合大规格工业化生产;然而该技术方案虽然可以在一定程度上增强Na 3.16Fe 2.42(P 2O 7) 2的导电性,但是不能充分提高其倍率性能和结构稳定性。
鉴于上述,铁基钠离子电池还具有进一步研发的空间,
发明内容
本发明为了解决上述现有技术存在的问题,而提出一种正、负极材料均具有稳固的框架结构和良好的热稳定性并且原材料廉价易得的全铁基钠离子电池及其制造方法。
本发明是通过以下技术方案实现的:
上述的全铁基钠离子电池,包括正极材料、负极材料与电解液,其特征在于:所述正极材料与负极材料均为铁基材料;所述正极材料为铁基混合阴离子化合物焦磷酸磷酸铁钠;所述负极材料包括氧化铁、磷化铁、硫化亚铁中的一种或多种。
所述的全铁基钠离子电池,其中:所述电解液为高氯酸钠、六氟磷酸钠、双氟磺酰亚胺钠、双三氟甲基磺酸亚酰胺钠中的一种或多种。
上述的全铁基钠离子电池的制备方法,是制备铁基混合阴离子化合物正极材料焦磷酸磷酸铁钠,将该正极材料、导电剂Super P、粘结剂PVDF按质量比8:1:1混合,集流体为铝箔,组成正极;将负极活性材料、导电剂Super P、粘结剂P VDF按质量比8:1:1混合,集流体为铝箔,组成负极;将正负极与电 解液、Celgard隔膜,在氧分压小于0.1ppm的氩气气氛中组装,得到正极材料与负极材料均为铁基材料的全铁基钠离子电池。
所述的全铁基钠离子电池的制备方法,具体制备步骤如下:
首先制备正极材料焦磷酸磷酸铁钠,以含水硝酸铁为铁源,以含水磷酸钠和无水乙酸钠为钠源、柠檬酸为碳源,除盐水和去离子水为溶剂,其中Na:Fe:P的比为1.02:0.75:1,C含量为1.5-2.5%,固含量为30-45%,然后以75-85%的进风速率、130-180℃的进风温度、0.3-0.7%的进料速率进料进行喷雾干燥得到前驱体;然后将前驱体置于氩气气氛中,于500-600℃温度下煅烧8-15小时,即得正极材料Na 4Fe 3(PO 4) 2P 2O 7
然后制备负极材料或者直接选择成品铁基负极材料;
将上述正极材料和负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为Fe 2O 3/GO的全铁基钠离子电池。
所述的全铁基钠离子电池的制备方法,其中:所述负极材料的制备是以铁盐、氧化石墨烯水溶胶为原料,将其溶解在40-70ml去离子水中,搅拌均匀后超声分散50-70min,于旋转蒸发器中除去水分后收集,再次烘干,收集到铁基负极材料粉末。
有益效果:
本发明提出的Na 3Fe 2(PO 4)P 2O 7巧妙的采用了磷酸根和焦磷酸根复合阴离子的结构,即稳定了产品的结构,同时进行了复合离子掺杂和复合碳源包覆,提高离子导电性和电子导电性,大大提升了容量,提供钠电池高性能正极材料;且铁基钠离子正、负极材料具有稳固的框架结构和良好的热稳定性,循环过程中结构稳定,并且原材料廉价易得,全铁基钠离子电池具备良好的商业化应用的潜力。
相对现有技术,本发明的技术方案带来的有益技术效果:
1、本发明的方法将两种铁基钠离子电池正极、负极材料组合为全铁基钠离子全电池,并选取电解液进行匹配,提供了一种钠离子全电池的可行渠道。
2、本发明中,正、负极材料均为铁基材料,由于铁为自然界中的常见元素,铁基材料的廉价易得更加加大了本发明的成本优势,有工业化应用的潜 力。
附图说明
图1为本发明实施例1中制备得到的正极活性材料Na 4Fe 3(PO 4) 2P 2O 7的XRD图;
图2为本发明实施例1中制备得到的负极活性材料Fe 2O 3的XRD图;
图3为本发明实施例1中制备得到的铁基钠离子全电池的充放电曲线。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本发明的全铁基钠离子电池,包括正极材料、负极材料与电解液,正极与负极均为铁基材料。其中,
正极材料为铁基混合阴离子化合物焦磷酸磷酸铁钠;
负极材料包括氧化铁、磷化铁、硫化亚铁中的一种或多种,优选三氧化二铁、四氧化三铁、磷化铁、硫化亚铁中的一种或多种;
电解液包括高氯酸钠、六氟磷酸钠、双氟磺酰亚胺钠、双三氟甲基磺酸亚酰胺钠中的一种或多种。
本发明的全铁基钠离子电池的制备方法,是首先制备铁基混合阴离子化合物正极材料焦磷酸磷酸铁钠,将该正极材料、导电剂Super P、粘结剂PVDF按质量比8:1:1混合,集流体为铝箔,组成正极;将负极活性材料、导电剂Super P、粘结剂P VDF按质量比8:1:1混合,集流体为铝箔,组成负极;将正负极与电解液、Celgard隔膜,在氧分压小于0.1ppm的氩气气氛中组装,得到正极材料与负极材料均为铁基材料的全铁基钠离子电池;具体制备步骤如下:
首先制备正极材料焦磷酸磷酸铁钠,以含水硝酸铁为铁源,以含水磷酸钠和无水乙酸钠为钠源、柠檬酸为碳源,除盐水和去离子水为溶剂,其中Na:Fe:P的摩尔比为1-1.04:0.75:1,C含量为1.5-2.5%,固含量为30-45%,然后 以75-85%的进风速率、130-180℃的进风温度、0.3-0.7%的进料速率进料进行喷雾干燥得到前驱体;然后将前驱体置于氩气气氛中,于500-600℃温度下煅烧8-15小时,即得正极材料Na 4Fe 3(PO 4) 2P 2O 7
然后制备负极材料:以铁盐、氧化石墨烯水溶胶为原料,将其溶解在40-70ml去离子水中,搅拌均匀后超声分散50-70min,于旋转蒸发器中除去水分后收集,再次烘干,收集到铁基负极材料粉末;
或者直接选择成品铁基负极材料粉末;
将上述正极材料和负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为Fe 2O 3/GO的全铁基钠离子电池。
本发明将铁基正极和铁基负极材料组合为全铁基钠离子全电池,铁基钠离子正、负极材料具有稳固的框架结构和良好的热稳定性,循环过程中结构稳定,并且原材料廉价易得,全铁基钠离子电池具备良好的商业化应用的潜力。
下面以具体实施例进一步说明本发明。
实施例1
制备正极材料:以Fe(NO 3) 3·9H 2O、NaH 2PO 4·2H 2O、柠檬酸为原料,去离子水为溶剂;其中,NaH 2PO 4·2H 2O钠源和磷源,Fe(NO 3) 3·9H 2O为铁源,柠檬酸为碳源;将6.06gFe(NO 3) 3·9H 2O,3.12g NaH 2PO 4·2H 2O,0.8gTiO 2混合加入100ml除盐水中,加入一水合柠檬酸2.10g,搅拌均匀,然后以80%的进风速率、180℃的进风温度、0.5%的进料速率进料进行喷雾干燥得到前驱体;然后将前驱体置于氩气气氛中,于550℃温度下煅烧10h,即得正极材料Na 4Fe 3(PO 4) 2P 2O 7;制得的正极活性材料Na 4Fe 3(PO 4) 2P 2O 7的XRD图如图1所示;
制备负极材料:以纳米级Fe 2O 3、氧化石墨烯水溶胶为原料,将0.9g纳米级Fe 2O 3与10ml氧化石墨烯水溶胶(11mg/ml)溶解在70ml去离子水中,搅拌均匀后超声分散50min,于旋转蒸发器中除去水分后收集,再次烘干,收集到负极材料Fe 2O 3/GO粉末;制备得到的负极活性材料Fe 2O 3的XRD图如图2所示;
将上述制备的正极材料和负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,电解液为高氯酸钠,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为Fe 2O 3/GO的全铁基钠离子电池。
本实施例1制备得到的全铁基钠离子电池的充放电曲线如图3所示,其性能指标如下:在2.0-4.3V的电压范围内,0.2C充电比容量为107mAh/g,可逆比容量为104.8mAh/g,首次效率为97.9%。
实施例2
制备正极材料:以Fe(NO 3) 3·9H 2O、NaH 2PO 4·2H 2O、柠檬酸为原料,去离子水为溶剂;其中,NaH 2PO 4·2H 2O钠源,Fe(NO 3) 3·9H 2O为铁源,柠檬酸为碳源;将6.06gFe(NO 3) 3·9H 2O,3.24g NaH 2PO 4·2H 2O,0.8gTiO 2混合加入100ml除盐水中,加入一水合柠檬酸2.10g,搅拌均匀,然后以75%的进风速率、190℃的进风温度、0.7%的进料速率进料进行喷雾干燥得到前驱体;然后将前驱体置于氩气气氛中,于500℃温度下煅烧10h,即得正极材料Na 4Fe 3(PO 4) 2P 2O 7
负极材料可直接采用市售FeS;
将上述制备的正极材料和市售FeS负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,电解液为双三氟甲基磺酸亚酰胺钠,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为FeS的全铁基钠离子电池。
本实施例制备得到的全铁基钠离子电池性能指标如下:在2.0-4.3V的电压范围内,0.2C充电比容量为101mAh/g,可逆比容量为78.2mAh/g,首次效率为77.4%。
实施例3
制备正极材料:以焦磷酸钠Na 4P 2O 7·10H 2O、FePO 4、柠檬酸为原料;其中,焦磷酸钠Na 4P 2O 7·10H 2O既是钠源又是磷源,FePO 4即为铁源又是磷源,柠檬酸为碳源;将30.52gNa 4P 2O 7·10H 2O、3.44g FePO 4、5.6g一水合柠檬酸加入至150mL水中,以转速20rpm球磨3h,然后以2000rpm砂磨3h,然后以80%的进风速率、140℃的进风温度、0.6%的进料速率进料进行喷雾干燥得到 前驱体;然后将前驱体置于氩气气氛中,于600℃温度下煅烧15h,即得Na 3Fe 2(PO 4)P 2O 7
制备负极材料:以纳米级Fe 2O 3、氧化石墨烯水溶胶为原料,将0.9g纳米级Fe 2O 3与10ml氧化石墨烯水溶胶(11mg/ml)溶解在50ml去离子水中,搅拌均匀后超声分散60min,于旋转蒸发器中除去水分后收集,再次烘干,收集到负极材料Fe 2O 3/GO粉末;
将上述制备的正极材料和负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,电解液为六氟磷酸钠,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为Fe 2O 3/GO的全铁基钠离子电池。
本实施例制备得到的全铁基钠离子电池性能指标如下:在2.0-4.3V的电压范围内,0.2C充电比容量为103mAh/g,可逆比容量为100.2mAh/g,首次效率为97.3%。
实施例4
制备正极材料:以焦磷酸钠Na 4P 2O 7·10H 2O、FePO 4、柠檬酸为原料;其中,焦磷酸钠Na 4P 2O 7·10H 2O既是钠源又是磷源,FePO 4为铁源,柠檬酸为碳源;将31.43g Na 4P 2O 7·10H 2O、3.44g FePO 4、5.6g一水合柠檬酸加入至150mL水中,以转速20rpm球磨3h,然后以2000rpm砂磨3h,然后以85%的进风速率、130℃的进风温度、0.5%的进料速率进料进行喷雾干燥得到前驱体;然后将前驱体置于氩气气氛中,于600℃温度下煅烧8h,即得Na 4Fe 3(PO 4) 2P 2O 7
制备负极材料:以FeP、氧化石墨烯水溶胶为原料,将0.9gFeP与10ml氧化石墨烯水溶胶(11mg/ml)溶解在40ml去离子水中,搅拌均匀后超声分散70min,于旋转蒸发器中除去水分后收集,再次烘干,收集到负极材料FeP/GO粉末;
将上述制备的正极材料和负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,电解液为双氟磺酰亚胺钠和双三氟甲基磺酸亚酰胺钠,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为FeP/GO的全铁基钠离子电池。
本实施例制备得到的全铁基钠离子电池性能指标如下:在2.0-4.3V的电压范围内,0.2C充电比容量为99.4mAh/g,可逆比容量为85.3mAh/g,首次效率为85.8%。

Claims (5)

  1. 一种全铁基钠离子电池,包括正极材料、负极材料与电解液,其特征在于:所述正极材料与负极材料均为铁基材料;
    所述正极材料为铁基混合阴离子化合物焦磷酸磷酸铁钠;
    所述负极材料包括氧化铁、磷化铁、硫化亚铁中的一种或多种。
  2. 如权利要求1所述的全铁基钠离子电池,其特征在于:所述电解液为高氯酸钠、六氟磷酸钠、双氟磺酰亚胺钠、双三氟甲基磺酸亚酰胺钠中的一种或多种。
  3. 如权利要求1-2任一所述的全铁基钠离子电池的制备方法,是制备铁基混合阴离子化合物正极材料焦磷酸磷酸铁钠,将该正极材料、导电剂Super P、粘结剂PVDF按质量比8:1:1混合,集流体为铝箔,组成正极;
    将负极活性材料、导电剂Super P、粘结剂PVDF按质量比8:1:1混合,集流体为铝箔,组成负极;
    将正负极与电解液、Celgard隔膜,在氧分压小于0.1ppm的氩气气氛中组装,得到正极材料与负极材料均为铁基材料的全铁基钠离子电池。
  4. 如权利要求3所述的全铁基钠离子电池的制备方法,具体制备步骤如下:
    首先制备正极材料焦磷酸磷酸铁钠,以含水硝酸铁为铁源,以含水磷酸钠和无水乙酸钠为钠源、柠檬酸为碳源,除盐水和去离子水为溶剂,其中Na:Fe:P的摩尔比为1-1.04:0.75:1,C含量为1.5-2.5%,固含量为30-45%,然后以75-85%的进风速率、130-180℃的进风温度、0.3-0.7%的进料速率进料进行喷雾干燥得到前驱体;然后将前驱体置于氩气气氛中,于500-600℃温度下煅烧8-15小时,即得正极材料Na 4Fe 3(PO 4) 2P 2O 7
    然后制备负极材料或者直接选择成品铁基负极材料;
    将上述正极材料和负极材料在水氧低于0.01ppm的手套箱中组装扣式电池,得到正极材料化学式为Na 4Fe 3(PO 4) 2P 2O 7、负极为Fe 2O 3/GO的全铁基钠离子电池。
  5. 如权利要求4所述的全铁基钠离子电池的制备方法,其特征在于:所述负极材料的制备是以铁盐、氧化石墨烯水溶胶为原料,将其溶解在40-70ml去离子水中,搅拌均匀后超声分散50-70min,于旋转蒸发器中除去水分后收集,再次烘干,收集到铁基负极材料粉末。
PCT/CN2022/141939 2022-07-15 2022-12-26 全铁基钠离子电池及其制备方法 WO2024011862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210831253.8 2022-07-15
CN202210831253.8A CN115064695A (zh) 2022-07-15 2022-07-15 全铁基钠离子电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2024011862A1 true WO2024011862A1 (zh) 2024-01-18

Family

ID=83205929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141939 WO2024011862A1 (zh) 2022-07-15 2022-12-26 全铁基钠离子电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115064695A (zh)
WO (1) WO2024011862A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118448633A (zh) * 2024-06-03 2024-08-06 南京寒锐新材料有限公司 一种锂离子电池用钴酸锂正极片的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064695A (zh) * 2022-07-15 2022-09-16 湖北万润新能源科技股份有限公司 全铁基钠离子电池及其制备方法
WO2024152193A1 (zh) * 2023-01-17 2024-07-25 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法及包含其的正极极片、二次电池和用电装置
CN116534829A (zh) * 2023-05-29 2023-08-04 浙江鑫钠新材料科技有限公司 一种从FePO4液相法制备双层包覆钠离子电池正极材料的方法
CN116779847B (zh) * 2023-08-11 2024-01-23 深圳海辰储能控制技术有限公司 正极极片及其制备方法、储能装置和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162256A (zh) * 2019-12-28 2020-05-15 上海电力大学 一种混合聚阴离子型钠离子电池正极材料及其制备
CN113060713A (zh) * 2021-02-25 2021-07-02 湖北万润新能源科技股份有限公司 一种均相法制备Na4Fe3(PO4)2(P2O7)的方法及应用
CN115064695A (zh) * 2022-07-15 2022-09-16 湖北万润新能源科技股份有限公司 全铁基钠离子电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981636A (zh) * 2017-04-11 2017-07-25 陕西科技大学 一种FeS/RGO纳米复合钠离子电池负极材料的制备方法
CN109167035B (zh) * 2018-08-22 2021-12-24 郑州大学 碳包覆的硫化亚铁负极材料、制备方法及其制备的钠离子电池
CN112510198B (zh) * 2020-12-16 2022-06-17 武汉大学 一种正极活性材料、水溶液钠离子电池和电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162256A (zh) * 2019-12-28 2020-05-15 上海电力大学 一种混合聚阴离子型钠离子电池正极材料及其制备
CN113060713A (zh) * 2021-02-25 2021-07-02 湖北万润新能源科技股份有限公司 一种均相法制备Na4Fe3(PO4)2(P2O7)的方法及应用
CN115064695A (zh) * 2022-07-15 2022-09-16 湖北万润新能源科技股份有限公司 全铁基钠离子电池及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAO YONGJIE, XIA XIUPING, LIU YAO, WANG NING, ZHANG JUNXI, ZHAO DEQIANG, XIA YONGYAO: "Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 461, 1 June 2020 (2020-06-01), AMSTERDAM, NL, pages 228130, XP093127696, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2020.228130 *
LI HENAN, XU LI, SITINAMALUWA HANSINEE, WASALATHILAKE KIMAL, YAN CHENG: "Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode", COMPOSITES COMMUNICATIONS, vol. 1, 1 October 2016 (2016-10-01), pages 48 - 53, XP093127698, ISSN: 2452-2139, DOI: 10.1016/j.coco.2016.09.004 *
YUAN TIANCI ET AL.: "3D Graphene Decorated Na4Fe3(PO4)2(P2O7) Microspheres as Low-Cost and High-Performance Cathode Materials for Sodium-Ion Batteries", NANO ENERGY, vol. 56, 8 November 2018 (2018-11-08), pages 160 - 168, XP093092553, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2018.11.011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118448633A (zh) * 2024-06-03 2024-08-06 南京寒锐新材料有限公司 一种锂离子电池用钴酸锂正极片的制备方法

Also Published As

Publication number Publication date
CN115064695A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN110474044B (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
WO2024011862A1 (zh) 全铁基钠离子电池及其制备方法
WO2021114401A1 (zh) 铁基钠离子电池正极材料,其制备方法以及钠离子全电池
CN102201576B (zh) 一种多孔碳原位复合磷酸铁锂正极材料及其制备方法
CN101159328A (zh) 一种LiFePO4/C纳米复合正极材料及其制备方法
CN113839038A (zh) MOF衍生的Bi@C纳米复合电极材料及其制备方法
CN101699639A (zh) 碳包覆纳米磷酸铁锂复合正极材料的制备方法
CN102623708A (zh) 锂离子电池正极用磷酸钒锂/石墨烯复合材料的制备方法
CN105236486B (zh) 一种高性能锂离子电池正极材料五氧化二钒空心微球及制备方法
CN113060713A (zh) 一种均相法制备Na4Fe3(PO4)2(P2O7)的方法及应用
CN107732203B (zh) 一种纳米二氧化铈/石墨烯/硫复合材料的制备方法
CN112242526B (zh) 一种Mo掺杂VS4镁离子电池正极材料
CN113078299B (zh) 钠锂铁锰基层状氧化物材料、制备方法和用途
CN108878826B (zh) 一种锰酸钠/石墨烯复合电极材料及其制备方法和应用
CN113517426B (zh) 一种氟磷酸钒钠/还原氧化石墨烯复合材料及其制备方法和应用
CN116154154B (zh) 纯相聚阴离子型硫酸盐钠离子电池正极材料及其制备方法
CN108807912B (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用
CN117594782A (zh) 一种氟掺杂锌锰基层状氧化物正极材料的制备及应用方法
CN105206815A (zh) 一种碳包覆Li4Ti5O12-TiO2/Sn纳米复合材料及其制备和应用
CN115594224A (zh) 锂/钠离子电池正极材料生产废液回收及所得材料和应用
CN110467170B (zh) 一种钾离子电池高电位正极材料及其制备方法
CN104681814B (zh) 一种具有多孔星形形貌的锂离子电池正极材料LiFePO4及其制备方法
CN109841800B (zh) 一种氟磷酸钒钠与碳复合物及其制备和应用
CN102079517A (zh) 喷雾热解法制备锂离子电池正极材料氟化磷酸钒锂
CN111994896A (zh) 一种碳复合负极材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950969

Country of ref document: EP

Kind code of ref document: A1