WO2022268146A1 - 聚酰亚胺共聚物和膜、它们的制备方法和用途以及提纯氦气的系统和方法 - Google Patents

聚酰亚胺共聚物和膜、它们的制备方法和用途以及提纯氦气的系统和方法 Download PDF

Info

Publication number
WO2022268146A1
WO2022268146A1 PCT/CN2022/100611 CN2022100611W WO2022268146A1 WO 2022268146 A1 WO2022268146 A1 WO 2022268146A1 CN 2022100611 W CN2022100611 W CN 2022100611W WO 2022268146 A1 WO2022268146 A1 WO 2022268146A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
membrane
hollow fiber
separation
fiber membrane
Prior art date
Application number
PCT/CN2022/100611
Other languages
English (en)
French (fr)
Inventor
吴长江
张锁江
魏昕
郦和生
罗双江
王玉杰
张新妙
丁黎明
孟凡宁
郗仁杰
徐一潇
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院, 中国科学院过程工程研究所 filed Critical 中国石油化工股份有限公司
Priority to JP2023579486A priority Critical patent/JP2024524292A/ja
Priority to EP22827638.2A priority patent/EP4361199A1/en
Priority to US18/573,989 priority patent/US20240327574A1/en
Priority to AU2022297493A priority patent/AU2022297493A1/en
Priority to KR1020247002683A priority patent/KR20240023442A/ko
Publication of WO2022268146A1 publication Critical patent/WO2022268146A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/088Co-extrusion; Co-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/642Polyester-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • C01B23/0047Physical processing only by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/60Co-casting; Co-extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2340/00Filter material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present application relates to polyimide copolymers and methods for their preparation.
  • the present application also relates to membranes prepared from polyimide copolymers, methods of making said membranes and methods and uses of said membranes for separating gases.
  • the present application also relates to systems and methods for purifying helium.
  • Gas membrane separation is a "green technology”. Compared with traditional separation technologies such as adsorption, absorption, and cryogenic separation, membrane separation technology has the advantages of high separation efficiency, low energy consumption, and simple operation. It is a mainstream technology for gas separation in the future. It has broad application prospects in decarbonization and other fields.
  • Polyimide has both high permeability and selectivity and is an ideal gas separation membrane material. Although polyimide has made some progress in the use of separation membranes, it is necessary to seek polyimides with better permeability and/or selectivity and good thermal stability, mechanical stability, chemical stability and/or film-forming properties. The imide material is still a hot spot that people pay attention to.
  • helium The chemical properties of helium are extremely stable, and it has special properties such as strong diffusivity, good thermal conductivity, low solubility and low latent heat of vaporization. It is a very important industrial gas. Due to its unique properties, helium is widely used in low temperature, aerospace, electronics industry, biomedicine, nuclear facilities and other fields.
  • the current helium purification and refining process is a cryogenic process. In the process of extracting helium from natural gas by the cryogenic process, there are problems such as strict equipment design and manufacturing requirements, high construction and operation costs, large equipment, and high energy consumption. Therefore, people are constantly seeking new systems and processes for purifying helium.
  • the present application provides a polyimide random copolymer.
  • the polyimide random copolymer provided by the invention has good permeability and selectivity.
  • the first aspect of the present invention provides a kind of polyimide random copolymer, and described copolymer has the structure shown in formula (I):
  • n are each independently an integer of 10-2000;
  • X is selected from any one of formulas (X3) and (X4);
  • R 5 , R 6 , R 9 and R 10 are each independently H, optionally substituted C1-C4 alkyl, optionally substituted C6-C10 aryl base;
  • Y is selected from any one of formulas (Y1), (Y3), (Y4) and pterenyl structures;
  • R 7 , R 8 , R 11 , R 12 , R 13 , and R 14 are each independently H, optionally substituted C1-C4 alkyl, optionally substituted C6-C10 aryl;
  • Z and Z' are each independently selected from a pterenyl structure and an optionally substituted formula (Z1);
  • a second aspect of the present invention provides a method for preparing the polyimide random copolymer of the first aspect, said method comprising the following steps:
  • step (2) Imidating the polyamic acid obtained in step (1) to obtain a polyimide random copolymer.
  • said X and Y are as defined in the first aspect, and said diamine monomers correspond to NH 2 -Z-NH 2 and NH 2 -Z'-NH 2 , wherein Z and Z ' is as defined in the first aspect.
  • the third aspect of the present invention provides a polyimide random copolymer prepared by the method described in the second aspect.
  • a fourth aspect of the present invention provides a membrane prepared from the polyimide random copolymer of the first aspect.
  • the membrane is a separation membrane, preferably a gas separation membrane.
  • said membrane is a hollow fiber membrane.
  • the fifth aspect of the present invention provides the application of the polyimide random copolymer described in the first aspect or the third aspect or the membrane described in the fourth aspect in gas separation.
  • a sixth aspect of the present invention provides a method for preparing a polyimide-based hollow fiber membrane, the method comprising the following steps:
  • the seventh aspect of the present invention provides a system for purifying helium, which includes a catalytic dehydrogenation separation unit, a polymer membrane separation unit and a palladium membrane separation unit.
  • the catalytic dehydrogenation separation unit includes a catalytic oxidation device and an adsorption device.
  • the polymeric membrane separation unit comprises the membrane of the fourth aspect of the invention.
  • the eighth aspect of the present invention provides a method for purifying helium, the method comprising: sequentially performing catalytic dehydrogenation separation, polymer membrane separation and palladium membrane dehydrogenation separation on the feed gas to obtain purified helium.
  • the polymeric membrane separation comprises the use of the membrane of the fourth aspect of the invention.
  • the invention provides a polyimide random copolymer obtained by polycondensation of two kinds of dianhydrides with specific structures and diamines with specific structures as monomers.
  • membranes such as hollow fiber membranes
  • the selection of structural units in the polyimides of the present invention enables membranes (such as hollow fiber membranes) prepared from the polyimide copolymers of the present invention to have excellent gas permeability and/or selectivity, especially For He and/or H2 .
  • other properties of the polyimide random copolymer of the present invention including thermal stability, mechanical stability, chemical stability, and film-forming property, are good.
  • the polyimide-based hollow fiber membrane provided by the invention has a thin dense layer (separation layer) and a support layer with a sponge pore structure.
  • the support layer with high porosity and thin separation layer can effectively reduce the resistance and increase the permeation rate of the membrane.
  • the polyimide-based hollow fiber membrane has high mechanical strength such as compressive strength.
  • a bimodal pore size distribution can be obtained to realize precise screening of gas molecules.
  • an asymmetric ultra-thin polyimide hollow fiber membrane is prepared by a dry-wet spinning phase inversion method, the thickness of the dense layer can be controlled below 1 ⁇ m, and the supporting layer has high porosity.
  • the hollow fiber membrane provided by the present invention is suitable for the separation of gas mixtures, including but not limited to CO 2 and CH 4 , O 2 and N 2 , He and N 2 , He and CH 4 , CO 2 and N 2 , He and CO 2 , H 2 and N 2 , H 2 and CH 4 , H 2 and CO 2 separation, etc., preferably suitable for the purification of helium or hydrogen.
  • the helium purification method of the present invention comprises first converting the hydrogen in the raw material gas into H 2 O and the like through catalytic oxidation and initially removing it through an alkaline adsorption drying process; Purification to obtain crude helium; the obtained crude helium is dehydrogenated and separated by a palladium membrane to remove traces of hydrogen, and is further purified to an ultra-pure level.
  • the helium purification method of the present invention can raise helium to 5N level or 6N level under mild temperature and pressure conditions, reduces energy consumption and equipment requirements in the process of purifying helium, and makes the helium production process simple and economical. Continuous and stable.
  • Fig. 1 is the infrared spectrogram of the polyimide random copolymer prepared in preparation example 2;
  • Fig. 2 is the infrared spectrogram of the polyimide random copolymer prepared in preparation example 3;
  • Fig. 3 is the infrared spectrogram of the polyimide random copolymer prepared in preparation example 4;
  • Fig. 4 is the cross-sectional scanning electron microscope picture of the polyimide-based hollow fiber membrane prepared by hollow fiber membrane preparation example 2;
  • Fig. 5 is the cross-sectional scanning electron microscope picture of the polyimide-based hollow fiber membrane prepared by hollow fiber membrane preparation example 3;
  • Fig. 6 is the scanning electron micrograph of the section of the polyimide-based hollow fiber membrane prepared by hollow fiber membrane preparation example 12;
  • Fig. 7 is a cross-sectional scanning electron micrograph of a polyimide-based hollow fiber membrane prepared in comparison with hollow fiber membrane preparation example S2;
  • Fig. 8 is the 1 H NMR spectrogram of the polyimide-based hollow fiber membrane prepared in Hollow Fiber Membrane Preparation Example 1;
  • Figure 9 is the pore size distribution of flat homogeneous membranes prepared from the polyimide copolymers of Preparation Example 4 and Preparation Example 10, wherein the curve represented by the dots is Preparation Example 10, and the curve represented by squares is Preparation Example 4.
  • room temperature means about 20°C to about 25°C.
  • the pressures mentioned in the present invention are gauge pressures unless otherwise specified.
  • the term “and/or” encompasses “and” as well as “or”. Elements defined with “and/or” mean any one of them and any combination thereof.
  • a and/or B encompasses A, B, and A+B.
  • A, B and/or C covers A, B, C, A+B, A+C, B+C and A+B+C.
  • C1-C4 alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and tert-butyl group.
  • C6-C10 aryl includes phenyl, tolyl, xylyl (o, m, p), ethylphenyl, methylethylphenyl, propylphenyl, butylphenyl and the like.
  • the C1-C4 alkyl group may be optionally substituted with a substituent selected from halogen.
  • the halogen is for example selected from fluorine, chlorine, bromine and iodine, preferably from fluorine and chlorine.
  • the C6-C10 aryl group may be optionally substituted with a substituent selected from halogen.
  • the halogen is for example selected from fluorine, chlorine, bromine and iodine, preferably from fluorine and chlorine.
  • C1-C4 haloalkyl includes C1-C4 alkyl substituted by one or more halogens selected from fluorine, chlorine and bromine, and the C1-C4 alkyl includes methyl, ethyl, n-propyl, iso Propyl, n-butyl, isobutyl, tert-butyl; the "C1-C4 haloalkyl” includes, but not limited to, monofluoromethyl, difluoromethyl, trifluoromethyl, monofluoroethyl, Difluoroethyl, trifluoroethyl, monochloromethyl, dichloromethyl, trichloromethyl...etc.
  • C1-C4 saturated monohydric alcohol includes methanol, ethanol, n-propanol, isopropanol, n-butanol, and isobutanol.
  • C3-C5 alkanes include straight-chain alkanes and branched-chain alkanes with 3-5 carbon atoms, such as but not limited to n-propane, isopropane, n-butane, isobutane, n-pentane, isopentane , neopentane; or cycloalkanes such as cyclopropane, cyclobutane, cyclopentane.
  • C5-C7 alkanes include straight-chain alkanes and branched-chain alkanes with 5-7 carbon atoms, such as but not limited to n-pentane, isopentane, neopentane, n-hexane, isohexane, n-heptane , isoheptane; or cycloalkanes, such as cyclopentane, cyclohexane, cycloheptane.
  • the first aspect of the present invention provides a kind of polyimide random copolymer, and described copolymer has the structure shown in formula (I):
  • n are each independently an integer of 10-2000;
  • X is selected from any one of formulas (X3) and (X4);
  • R 5 , R 6 , R 9 and R 10 are each independently H, optionally substituted C1-C4 alkyl, optionally substituted C6-C10 aryl base
  • Y is selected from any one of formulas (Y1), (Y3), (Y4) and pterenyl structures;
  • R 7 , R 8 , R 11 , R 12 , R 13 , and R 14 are each independently H, optionally substituted C1-C4 alkyl, optionally substituted C6-C10 aryl;
  • Z and Z' are each independently selected from a pterenyl structure and an optionally substituted formula (Z1);
  • n and n may each independently be an integer of 50-1000.
  • m and n are defined as 0.95 ⁇ n/(m+n) ⁇ 0.3, preferably 0.9 ⁇ n/(m+n) ⁇ 0.3, more preferably, 0.7 ⁇ n/(m+n ) ⁇ 0.5.
  • m and n are defined as 0.95 ⁇ n/(m+n) ⁇ 0.5, preferably, 0.9 ⁇ n/(m+n) ⁇ 0.6.
  • the said pteryl structure is selected from a triptyl structure or a pentadecyl structure.
  • the pterenyl structure as Y is formula (Y5), and/or the pterenyl structures as Z and Z' are each independently (Z2):
  • R 15 and R 16 are each independently H, optionally substituted C1-C4 alkyl, optionally substituted C6-C10 aryl; Ra and Rb are each independently H, C1-C4 alkyl group or C1-C4 haloalkyl group.
  • the "optionally substituted C1-C4 alkyl group” is a "C1-C4 alkyl group” optionally substituted with one or more halogen substituents.
  • the “optionally substituted C6-C10 aryl group” is a "C6-C10 aryl group” optionally substituted with one or more substituents selected from halogen and C1-C4 alkoxy.
  • the “optionally substituted formula (Z1)” is "formula (Z1)” optionally substituted with one or more substituents selected from halogen, C1-C4 alkyl and C1-C4 alkoxy.
  • the halogen is for example selected from fluorine, chlorine, bromine and iodine, preferably from fluorine and chlorine.
  • the C1-C4 alkoxy group is, for example, selected from methoxy, ethoxy, propoxy and butoxy.
  • Z and Z' are the same.
  • X is selected from any of the structures shown below,
  • Y is selected from any of the structures shown below,
  • Z and Z' are each independently selected from the structure shown in Z1 or Z3,
  • X is Xb, Y is Ya, Z and Z' are both Z1;
  • X is Xb
  • Y is Yd
  • Z and Z' are both Z1;
  • X is Xc
  • Y is Ya
  • Z and Z' are both Z1;
  • X is Xc
  • Y is Yc
  • both Z and Z' are Z1;
  • X is Xc
  • Y is Y4, and both Z and Z' are Z1;
  • X is Xc
  • Y is Yd
  • both Z and Z' are Z1;
  • X is Xb
  • Y is Ya
  • Z and Z' are Z3;
  • X is Xb
  • Y is Yd
  • Z and Z' are both Z3;
  • X is Xc
  • Y is Ya
  • Z and Z' are Z3;
  • X is Xc
  • Y is Yd
  • both Z and Z' are Z3.
  • X, Y, Z and Z' have a specific structure, but the present invention does not exclude that X is taken from two different structures, and Y is taken from two, three or four different structures. structure, where Z is taken from two different structures and/or Z' is taken from two different structures.
  • the present invention also relates to the preparation method of polyimide random copolymer, it is based on at first dianhydride monomer (the dianhydride shown in the following formula (II) and the dianhydride shown in formula (III)) and diamine mono
  • the polyamic acid is obtained by polycondensation reaction, and then the polyamic acid is imidized (intramolecular dehydration).
  • Such general procedures for preparing polyimide polymers are known in the art.
  • the method of the present invention can obtain polyamic acid by polycondensation reaction of dianhydride monomer and diamine monomer by one-pot method (that is, all monomers are directly mixed and reacted in a reactor), or by first mixing dianhydride monomer (that is, the dianhydride represented by the formula (II) and the dianhydride represented by the formula (III)) are mixed (preferably uniformly mixed), and then mixed with a diamine monomer to carry out polycondensation reaction. In order to better control the progress of the reaction, it is preferred to carry out the reaction in the latter manner.
  • the second aspect of the present invention provides a kind of method for preparing polyimide random copolymer according to the present invention, described method comprises the following steps:
  • step (2) Imidating the polyamic acid obtained in step (1) to obtain a polyimide random copolymer.
  • X of the dianhydride monomer shown in formula (II) corresponds to X in the structure shown in formula (I) in the present application
  • X of the dianhydride monomer shown in formula (III) Y corresponds to Y in the structure shown in formula (I) in the present application
  • the diamine monomer has the formula NH 2 -Z-NH 2 and/or NH 2 -Z'-NH 2 , wherein NH 2 -Z-NH 2 Z in corresponds to Z in the structure shown in formula (I), and Z' in NH 2 -Z'-NH 2 corresponds to Z' in the structure shown in formula (I).
  • X, Y and Z and Z' may each be as defined in the first aspect above.
  • the molar amounts of the dianhydride monomer represented by formula (II) and the dianhydride monomer represented by formula (III) are defined as M and N, respectively.
  • M and N are defined as 0.95 ⁇ N/(M+N) ⁇ 0.5, preferably, 0.9 ⁇ N/(M+N) ⁇ 0.6.
  • the molar amount ratio of the dianhydride monomer shown in formula (II) and the dianhydride monomer shown in formula (III) to the molar amount of diamine monomer is 1: (0.6- 1.5), preferably 1:(0.8-1.2).
  • the polycondensation reaction is known in the art and can be carried out under polycondensation conditions generally known in the art.
  • the conditions of the polycondensation reaction may include: reaction temperature -20°C to 60°C, preferably -10°C to 40°C; reaction time 5-30h, preferably 8-24h .
  • the polycondensation reaction can be carried out under an inert atmosphere.
  • An inert atmosphere generally known in the art may be used; for example the inert atmosphere is preferably provided by nitrogen.
  • the pressure of the polymerization reaction or the pressure of the inert atmosphere can be freely selected by those skilled in the art, but is preferably atmospheric pressure.
  • the first solvent may be selected from N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone (NMP) And at least one of mixtures thereof, preferably selected from N-methylpyrrolidone and/or N,N-dimethylformamide.
  • the amount of the first solvent used is 1000-3000 mL.
  • the dianhydride monomer represented by formula (II) and the dianhydride monomer represented by formula (III) may be mixed in any appropriate manner to obtain a mixture.
  • the mixture can be obtained by mixing in the following ways: mechanical stirring, shaking or ultrasonication.
  • Conditions of mechanical stirring may include: 20-40°C, 2000-15000rpm, 2-12h.
  • the conditions of ultrasound may include: 20-40°C, 0.5-2.0h.
  • Shaking conditions may include: 20-40°C, 260-800rpm, 12-36h.
  • the dianhydride monomer represented by formula (II) and the dianhydride monomer represented by formula (III) may be added to the first solvent and further mixed with the diamine monomer.
  • the imidization of polyamic acids is known in the art.
  • the polyamic acid obtained in step (1) can be imidized by various methods known in the art to obtain a polyimide random copolymer.
  • the imidization includes adding a dehydrating agent and a catalyst to the polyamic acid-containing material obtained in step (1), and reacting at 0-200°C for 12-24h.
  • the dehydrating agent is at least one selected from dichlorobenzene, toluene, acetic anhydride, xylene and mixtures thereof.
  • the catalyst is selected from pyridine and/or bisquinoline.
  • the amount of the dehydrating agent may be 2-15 mol, preferably 3-8 mol.
  • the catalyst may be used in an amount of 2-15 mol, preferably 3-8 mol.
  • the method for preparing polyimide further includes: diluting the imidized material in step (2) and then contacting a precipitating agent to obtain the polyimide copolymerization things.
  • the precipitating agent may be a poor solvent for polyimide.
  • the precipitating agent can be selected from at least one of ethanol, acetone and water, more preferably at least two of ethanol, acetone and water.
  • the total amount of the precipitating agent can be 10-50L.
  • the solvent used for dilution can be N-methylpyrrolidone.
  • the amount of solvent used for dilution may be 5-8 L.
  • the imidized material in step (2) contacts the precipitating agent, as long as it can meet the requirements of the present invention.
  • it can be carried out in the following manner: the material after the imidization treatment in step (2) (after dilution) is added in the precipitating agent, so that the polyimide is precipitated, and then the polyimide precipitated is treated with the precipitating agent.
  • the amine is rinsed (3-5 times can be rinsed), and finally the polyimide random copolymer is obtained after suction filtration and drying (70-150°C, 24-48h).
  • the third aspect of the present invention provides the polyimide random copolymer prepared by the method of the second aspect.
  • a fourth aspect of the present invention provides a membrane prepared from a polyimide polymer, preferably from the polyimide random copolymer of the first aspect.
  • the membrane is a separation membrane, preferably a gas separation membrane.
  • the membrane may be a flat sheet membrane, preferably a flat sheet homogeneous membrane.
  • the preparation method of the flat membrane is not particularly limited, for example, it can be carried out by conventional membrane production methods in the art.
  • CN107968214A can be referred to to prepare a gas separation membrane (homogeneous membrane).
  • the following method can be used to prepare a flat film: coating the casting solution containing the polyimide random copolymer on a support plate (such as a glass plate), at 50-80 ° C, 6-24h Perform the first drying (to remove most of the solvent); perform the second drying at 100-140°C for 12-48h; then soak (for example, soak in deionized water until the film falls off the surface of the glass plate) to obtain polyimide Amine random copolymer gas separation membranes.
  • a support plate such as a glass plate
  • the casting solution can be obtained by mixing the polyimide random copolymer with the second solvent, and stirring (for example, in a shaker) at 40-80°C until the copolymer is completely dissolved to obtain a uniform Casting solution; and after ultrasonic degassing treatment, a uniform and stable casting solution is obtained.
  • the amount of the second solvent is such that the solid content of the polyimide random copolymer is 5-60 wt%.
  • the second solvent may be selected from N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, tetrahydrofuran and ethanol, and At least one of the mixtures.
  • the first solvent and the second solvent may be the same or different.
  • the polyimide copolymer flat film may have a thickness of 30-50 ⁇ m.
  • the polyimide copolymer flat sheet membrane such as a gas separation membrane, is a homogeneous membrane.
  • said membrane is a hollow fiber membrane.
  • the hollow fiber membrane includes a support layer and a dense layer attached to the outer surface of the support layer. Both the support layer and the dense layer are formed of the polyimide random copolymer.
  • the thickness of the dense layer is less than or equal to 1000nm and the porosity of the hollow fiber membrane (support layer) is 40-80%; more preferably the thickness of the dense layer is 100-500nm and the hollow fiber
  • the membrane porosity is 50-70%.
  • the porosity of the hollow fiber membrane is measured by mercury intrusion porosimetry.
  • the outer diameter and inner diameter of the hollow fiber membrane may be appropriately determined by those skilled in the art.
  • the outer diameter of the hollow fiber membrane can be 50 microns to 2000 microns, preferably 100 microns to 1000 microns, more preferably 200 microns to 900 microns, still more preferably 300 microns to 800 microns, such as 400 microns to 700 microns, for example preferably 450 microns to 650 microns, such as about 500 microns or about 600 microns.
  • the inner diameter of the hollow fiber membrane may be from 10 microns to 1000 microns, preferably from 40 microns to 800 microns, more preferably from 60 microns to 600 microns, still more preferably from 80 microns to 400 microns, such as from 100 microns to 300 microns, such as preferably 120 microns to 250 microns, such as about 150 microns or about 200 microns.
  • the thickness of the dense layer is 100-2000nm, preferably 100-1000nm, more preferably 200-500nm; for example, 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 400nm or between the above values any value of .
  • the porosity of the hollow fiber membrane (support layer) is 50-70%.
  • the fifth aspect of the present invention provides the application of the polyimide random copolymer described in the first aspect or the third aspect or the membrane described in the fourth aspect in gas separation.
  • the use of polymer membranes for gas separation is known in the art.
  • the polymer membranes of the present invention may be used for gas separation in any suitable manner known in the art.
  • a sixth aspect of the present invention provides a method for preparing a polyimide-based hollow fiber membrane. The method comprises the steps of:
  • the method for preparing polyimide-based hollow fiber membranes of the present invention comprises the steps of:
  • step (1) based on the total weight of the casting solution, the content of the polyimide is 20-40wt%, and the content of the diluent is 50-75wt%,
  • the additive when present, is present in an amount of 0.5-10 wt%.
  • the content of the polyimide is 25-35wt%
  • the content of the diluent is 60-70wt%
  • the additive The content is 1-5wt%.
  • the boiling point B1 of the poor solvent of the first polyimide is 5 times higher than the boiling point B2 of the second polyimide poor solvent. -200°C, preferably 10-20°C higher.
  • the boiling point refers to the normal pressure boiling point.
  • the poor solvent of the first polyimide is selected from at least one of C2-C4 saturated monohydric alcohol, ⁇ -butyrolactone, water and mixtures thereof.
  • the poor solvent for the second polyimide is selected from at least one of C3-C5 alkanes, tetrahydrofuran, acetone, chloroform, and mixtures thereof.
  • the good solvent of the polyimide is selected from at least A sort of.
  • the weight ratio of the good solvent of the polyimide, the poor solvent of the first polyimide and the poor solvent of the second polyimide is 1:(0.001-0.5):( 0.1-0.5), preferably 1:(0.15-0.3):(0.15-0.3).
  • the additive may be a lithium salt, preferably selected from lithium nitrate and/or lithium chloride.
  • the casting solution contains the additive. According to some embodiments of the present invention, the casting solution does not contain the additive.
  • the casting solution is prepared according to a method comprising the following steps: mixing polyimide, diluent and optional additives at 20-50°C, 100-1200r/ Stir at min for 12-48h, then remove impurities by vacuum defoaming and filtration (for example, 20-50°C).
  • the conditions for the vacuum defoaming include: a pressure of -0.1MPa to -0.095MPa, a temperature of 20-30°C, a rotation speed of 10-50r/min, and a time of 12-24h.
  • the inner core liquid includes solvent A and solvent B, wherein the solvent A is selected from N-methylpyrrolidone, N,N-dimethylformamide and At least one of N,N-dimethylacetamide and mixtures thereof, and the solvent B is at least one selected from C1-C4 saturated monohydric alcohols, ⁇ -butyrolactone, water and mixtures thereof.
  • solvent A is selected from N-methylpyrrolidone, N,N-dimethylformamide and At least one of N,N-dimethylacetamide and mixtures thereof
  • the solvent B is at least one selected from C1-C4 saturated monohydric alcohols, ⁇ -butyrolactone, water and mixtures thereof.
  • the solvent A accounts for 50-99wt% of the total weight of the inner core liquid, preferably 60-95wt%; the solvent B accounts for 50-1wt% of the total weight of the inner core liquid , preferably 40-5wt%.
  • the extrusion is performed in a spinneret.
  • the extrusion temperature (spinneret temperature) is 40-75°C, preferably 60-70°C.
  • spinnerets for hollow fiber membrane production are known in the art. A person skilled in the art can appropriately select the spinneret used.
  • the flow rate of the casting solution is 6-30 mL/min.
  • the flow rate of the core liquid is 2-10 mL/min.
  • the extruded hollow fiber before solidification, is passed through an air gap, so as to promote the formation of a dense layer and better control the thickness of the dense layer.
  • the air gap has a height of 5-30 cm.
  • the air gap can be heated with an annular sleeve; preferably, the temperature is controlled to be 50-150°C, more preferably, the temperature is controlled to be 70-150°C.
  • the curing is performed in a coagulation bath.
  • the bath liquid used in the coagulation bath is solvent C and/or water.
  • the temperature of the coagulation bath is 40-70°C.
  • the solvent C is selected from at least one of C1-C4 saturated monohydric alcohols, ⁇ -butyrolactone, water and mixtures thereof.
  • step (3) the speed of the winding is 0.5-2m/s.
  • the purpose of the extraction is to remove the diluent and additives in the hollow fiber membrane precursor.
  • the extraction agent used for the extraction is at least one selected from water, C1-C4 saturated monohydric alcohols, C5-C7 alkanes and mixtures thereof.
  • the amount of extractant used is not particularly limited, as long as it can meet the requirements of the present invention.
  • the extraction conditions include: a temperature of 20-35° C. and a time of 3-48 hours.
  • the extraction time refers to the soaking time of the membrane filament (hollow fiber membrane precursor).
  • the extraction method is: successively extract 2-5 times in water, C1-C4 saturated monoalcohol and C5-C7 alkanes respectively.
  • a drying step is also included after the extraction.
  • the drying conditions include: a temperature of 20-35° C., and a time of 2-15 hours.
  • the present invention also provides the polyimide-based hollow fiber membrane prepared by the method described in the sixth aspect.
  • the seventh aspect of the present invention provides a system for purifying helium, which includes a catalytic dehydrogenation separation unit, a polymer membrane separation unit and a palladium membrane separation unit.
  • the polymer membrane separation unit uses a membrane of the invention, preferably a polyimide-based hollow fiber membrane of the invention.
  • the catalytic dehydrogenation separation unit includes a catalytic oxidation device and an adsorption device.
  • the eighth aspect of the present invention provides a method for purifying helium, the method comprising: sequentially performing catalytic dehydrogenation separation, polymer membrane separation and palladium membrane dehydrogenation separation on raw gas to obtain purified helium, wherein the polymer Membrane separation uses the membrane of the present invention, preferably the polyimide-based hollow fiber membrane of the present invention.
  • the raw material gas may be a mixed gas containing helium, hydrogen and other impurity gases.
  • the raw material gas may be selected from at least one of natural gas, shale gas, helium-enriched hydrogen-containing gas (mixed gas containing helium and hydrogen), and liquefied natural gas flash steam (BOG).
  • the natural gas or shale gas can be subjected to multi-stage flash evaporation and then used as raw material gas for helium purification.
  • the catalytic dehydrogenation separation includes catalytic oxidation and adsorption.
  • the catalyst used in the catalytic oxidation is a noble metal catalyst; preferably at least one selected from Pt, Pd, Rh, Ru, Au and mixtures thereof.
  • the conditions for the catalytic oxidation include: the temperature is 40-150°C, preferably 50-120°C; the space velocity of the feed gas is 1-10000m 3 /m 3 ⁇ h, preferably 10-1000m 3 /m 3 h.
  • the conditions of the catalytic oxidation are such that 90-99% by volume of the hydrogen in the feed gas is converted into H 2 O.
  • the oxygen required in the catalytic dehydrogenation separation process can be provided by the oxygen contained in the raw material gas itself, or can be provided by an external source.
  • the volume fraction of oxygen in the catalytic dehydrogenation separation process is kept greater than or equal to 8%.
  • the adsorption can adopt any adsorption method capable of adsorbing water.
  • the adsorption method is preferably alkaline adsorption.
  • the adsorbent used in the alkaline adsorption is at least one selected from potassium hydroxide, sodium hydroxide, quicklime and soda lime.
  • the adsorption conditions include: the adsorption temperature is 70-90°C.
  • the polymer membrane used in the polymer membrane separation unit and the polymer membrane separation unit is selected from at least one of hollow fiber membrane, flat membrane and tubular membrane; more preferably hollow Fiber membrane.
  • said polymer membrane separation comprises separation using a membrane of the fourth aspect of the invention.
  • the polymeric membrane separation unit comprises the membrane of the fourth aspect of the invention.
  • the polymer membrane separation adopts one-stage or multi-stage membrane (polymer membrane) separation (for example, 2-stage to 5-stage).
  • two-stage membrane separation means that the gas on the permeate side is pressurized and used as the intake air of the membrane again for polymer membrane separation.
  • 3-stage membrane separation, 4-stage membrane separation, and 5-stage membrane separation have similar meanings.
  • the polymer membrane separation process can be 1 to 5 stages, such as 1 stage, 2 stages, 3 stages, 4 stages, or 5 stages.
  • the conditions of the polymer membrane separation include: before the polymer membrane separation, the pressure of the gas obtained from the catalytic dehydrogenation separation is controlled to 0.01-50 MPa, and the gas temperature is controlled to 20-100°C. Wherein, the pressure of the polymer membrane separation permeate side (measured by the outlet) is lower than the pressure of the positive pressure side (measured by the inlet), and may be a negative pressure.
  • the polymer membrane used in the polymer membrane separation is a polyimide-based hollow fiber membrane, preferably the polyimide-based hollow fiber membrane of the present invention.
  • the conditions of the palladium membrane dehydrogenation separation may include: before the palladium membrane dehydrogenation separation, the temperature of the gas obtained from the polymer membrane separation is controlled to 50-500° C., preferably controlled to 200-500° C. 500°C; the gas pressure is controlled at 1-50MPa, preferably at 2-20MPa.
  • the palladium membrane used in the palladium membrane dehydrogenation separation has a thickness of 5-100 ⁇ m.
  • the palladium membrane is a tubular membrane or a porous carrier composite membrane.
  • the porous carrier in the porous carrier composite membrane is selected from one of porous ceramics and porous stainless steel.
  • the palladium film is a pure palladium film or a palladium-based alloy film.
  • the palladium-based alloy film is selected from at least one of palladium-yttrium alloy film, palladium-cerium alloy film, palladium-copper alloy film, palladium-gold alloy film, palladium-nickel alloy film and palladium-silver alloy film .
  • the catalytic dehydrogenation separation unit, the polymer membrane separation unit and the palladium membrane separation unit in the system for purifying helium of the present invention are respectively used for or correspond to the purification of helium of the present invention Catalytic dehydrogenation separation, polymer membrane separation and palladium membrane dehydrogenation separation in the method.
  • Catalytic dehydrogenation separation, polymer membrane separation and palladium membrane dehydrogenation separation in the method are properly select or configure a catalytic dehydrogenation separation unit, a polymer membrane separation unit and a palladium membrane separation unit.
  • TPDAn Triptyl dianhydride (compound shown in formula (III), wherein Y is Yd) (refer to "LUO S J, WIEGAND J R, KAZANOWSKA B, et al. Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport. Macromolecules 2016, 49, (9): 3395-3405" preparation)
  • mPDA m-phenylenediamine
  • PPDA pentadecyl diamine (structural formula is ) (prepared with reference to "LUO S J, LIU Q, ZHANG B H, et al. Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation. J Membrane Sci 2015, 480: 20-30”)
  • the hollow spinneret was purchased from Shanghai Zhanxin (wet process NIPS series, model 0.6/0.4/0.2).
  • the porosity of the hollow fiber membrane support layer is measured by mercury porosimetry according to GB/T 21650.1-2008 using a mercury porosimeter (Poremaster-33, Quantachrome, USA).
  • IR test Fourier transform infrared spectrometer (Bruker Tensor 27 or Thermo Nicolet 380) is used for total reflection measurement; the test wavelength range is 4000cm -1 ⁇ 600cm -1 .
  • NMR test Under room temperature, using DMSO-d6 as solvent, use NMR spectrometer (Bruker AVANCE III 500MHZ) to characterize the hydrogen spectrum of polyimide, and the scanning frequency is 500MHZ.
  • Molecular weight Mn test Gel permeation chromatography (model 1515, from Waters company) was used to characterize the molecular weight of polyimide; DMF was used as solvent and monodisperse polystyrene was used as molecular weight calibration.
  • Morphology test Scanning electron microscope (S-4800, Hitachi) was used to characterize the cross-section of the hollow fiber membrane; the membrane filament was quenched in liquid nitrogen, and the surface was sprayed with a layer of gold before testing.
  • Gas volume fraction test Gas chromatography is used for testing with Agilent 6890N gas chromatograph; column: HP-PLOT molecular sieve capillary column; detector: thermal conductivity detector TCD; column temperature: 50°C; carrier gas flow rate: 16mL/min.
  • the first-stage polymer separation represents a polymer membrane separation
  • the second-stage polymer membrane separation represents the gas after the first-stage polymer separation as an air intake to re-separate the polymer membrane (using a new membrane module); three
  • the one-stage polymer membrane separation, the four-stage polymer membrane separation and the five-stage polymer membrane separation are similar to the example.
  • step (S2) Add a mixture of acetic anhydride (40.836 g, 0.4 mol) and pyridine (31.60 g, 0.4 mol) to the polyamic acid material obtained in step (S1), and perform intramolecular dehydration at 25° C.
  • a Fourier transform infrared spectrometer (Thermo Nicolet 380) was used to conduct infrared tests on polyimide random copolymers. The infrared spectrum is shown in Figure 1. Infrared testing shows that PI-2 has a polyimide structure. In addition, no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • the peaks at 1775cm -1 and 1716cm -1 are the symmetrical stretching vibration peak and the asymmetrical stretching vibration peak of the two carbonyl groups on the five-membered imide ring in polyimide respectively, and the peak at 1370cm -1 is polyimide
  • the stretching vibration of CN, 721cm -1 is the deformation vibration peak of the imine ring
  • the stretching vibration peak of CF is at 1110cm -1 , that is, the appearance of the above characteristic peaks indicates the successful synthesis of PI-2.
  • step (2) Add a mixture of acetic anhydride (55.1286g, 0.54mol) and pyridine (42.714g, 0.54mol) to the polyamic acid material obtained in step (1), carry out intramolecular dehydration at 0°C for 24h, and obtain polyamic acid containing polyamic acid
  • the material of imide Add 600mL of N-methylpyrrolidone (NMP) to the material containing polyimide to dilute afterwards, and pour the above-mentioned diluted material into a mixed solvent of water and ethanol (500mL: 500mL ), the polyimide was precipitated to obtain polyimide, and then rinsed (3 times) with a mixture of water and ethanol (1500mL: 1500mL), filtered and dried (220°C for 24 hours in vacuum; then 70 °C blast drying for 48 hours) to obtain a polyimide random copolymer, counted as PI-3.
  • NMP N-methylpyrrolidone
  • a Fourier transform infrared spectrometer (Thermo Nicolet 380) was used to conduct infrared tests on polyimide random copolymers. The infrared spectrum is shown in Figure 2. Infrared testing shows that PI-3 has a polyimide structure. In addition, no raw materials were detected in the remaining liquid phase after precipitation of the polyimide, indicating that all raw materials participated in the reaction.
  • the peaks at 1776cm -1 and 1715cm -1 are the symmetrical stretching vibration peak and the asymmetrical stretching vibration peak of the two carbonyl groups on the five-membered imide ring in polyimide respectively, and the peak at 1372cm -1 is polyimide
  • the stretching vibration of CN in middle, 1255cm -1 is the stretching vibration of ether bond in aryl ether, and 721cm -1 is the deformation vibration peak of imine ring, that is, the appearance of the above characteristic peaks indicates the successful synthesis of PI-3.
  • step (2) Add a mixture of acetic anhydride (36.7524g, 0.36mol) and pyridine (28.4760g, 0.36mol) to the polyamic acid material obtained in step (1), carry out intramolecular dehydration at 20°C for 18h, and obtain polyamic acid containing The material of imide; Add 600mL of N-methylpyrrolidone (NMP) to the material containing polyimide to dilute afterwards, and pour the above-mentioned diluted material into a mixed solvent of water and ethanol (500mL: 500mL ), the polyimide was precipitated to obtain polyimide, and then rinsed (3 times) with a mixture of water and ethanol (1500mL: 1500mL), filtered and dried (220°C for 24 hours in vacuum; then 70 °C blast drying for 48 hours) to obtain a polyimide random copolymer, counted as PI-4.
  • NMP N-methylpyrrolidone
  • a Fourier transform infrared spectrometer (Thermo Nicolet 380) was used to conduct infrared tests on polyimide random copolymers.
  • the infrared spectrum is shown in Figure 3.
  • Infrared testing shows that PI-4 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • the peaks at 1784cm -1 and 1730cm -1 are the symmetrical stretching vibration peak and the asymmetric stretching vibration peak of the two carbonyl groups on the five-membered imide ring in polyimide respectively, and the peaks at 1357cm -1 are polyimide
  • the stretching vibration of CN in middle, 721cm -1 is the deformation vibration peak of imine ring, 1255cm -1 is the stretching vibration of ether bond in aryl ether, and 1144cm -1 is the stretching vibration peak of CF, that is, the peak of the above characteristic peak Appearance indicates successful synthesis of PI-4.
  • the pore size distribution of the flat homogeneous membrane prepared from the polymer of this preparation example was analyzed by positron annihilation lifetime spectroscopy (PALS). Please see Figure 9.
  • Films were cut to approximately 15 x 15 mm and stacked to a total thickness of approximately 2 mm. Two such film stacks were prepared for each film sample. 22Na was used as the positron source, which was wrapped by two 7.5 ⁇ m Kapton foils, sandwiched between two membrane stacks. The positron annihilation lifetime spectra of the membranes were tested using a fast-fast system with a time resolution of 200 ps. The measurement system is a self-built system. Each sample was measured twice in vacuum. All PALS data were analyzed using the CONTIN program.
  • the prepared polyimide random copolymer membrane has a bimodal pore size distribution.
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 16 hours at 20° C. to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-5.
  • NMP N-methylpyrrolidone
  • PI-5 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • X is Xc
  • Y is Ya
  • Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 18 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-6.
  • NMP N-methylpyrrolidone
  • PI-6 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • X is Xc
  • Y is Ya
  • Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 24 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-7.
  • NMP N-methylpyrrolidone
  • PI-7 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • X is Xc
  • Y is Ya
  • Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 18 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-8.
  • NMP N-methylpyrrolidone
  • PI-8 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • X is Xc
  • Y is Ya
  • Z and Z' are Z1.
  • no raw materials were detected in the liquid phase remaining after precipitation of the polyimide, indicating that all raw materials participated in the reaction.
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 18 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the material containing polyimide to dilute afterwards, and pour the above-mentioned diluted material into a mixed solvent of water and ethanol (500mL: 500mL) under stirring to make the polyimide The imide was precipitated to obtain polyimide, which was rinsed (3 times) with a mixture of water and ethanol (1500mL: 1500mL), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours) to obtain a polyimide random copolymer, counted as PI-9.
  • NMP N-methylpyrrolidone
  • PI-9 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • X is Xc
  • Y is Ya
  • Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 24 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-10.
  • NMP N-methylpyrrolidone
  • PI-10 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z1.
  • X is Xc
  • Y is Ya
  • Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • step (2) adding a mixture of acetic anhydride (0.4mol) and pyridine (0.4mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 24 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-12. Infrared testing shows that PI-12 has a polyimide structure. . In addition, no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating
  • step (2) Add a mixture of acetic anhydride (0.4mol) and pyridine (0.4mol) to the polyamic acid material obtained in step (1), carry out intramolecular dehydration at 0°C for 18h, and obtain a material containing polyimide; after that Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material for dilution, and pour the diluted material into a mixed solvent of water and ethanol (500mL: 500mL) under stirring to make the polyimide Amine was precipitated to obtain polyimide, and then rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered by suction, and dried (vacuum-dried at 220°C for 24 hours; then air-dried at 70°C for 48 hours) Finally, a random polyimide copolymer is obtained, which is called PI-13. Infrared testing shows that PI-13 has a polyimide structure. In addition, no raw materials were detected in
  • step (2) adding a mixture of acetic anhydride (0.36mol) and pyridine (0.36mol) to the polyamic acid material obtained in step (1), and carrying out intramolecular dehydration for 18 hours at 20°C to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-14.
  • NMP N-methylpyrrolidone
  • Infrared testing shows that PI-14 has a structure shown in formula (I), wherein X is Xc, Y is Yd, and Z and Z' are Z1.
  • X is Xc
  • Y is Yd
  • Z and Z' are Z1.
  • no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • step (2) Adding a mixture of acetic anhydride (0.52mol) and pyridine (0.52mol) to the polyamic acid material obtained in step (1), carrying out intramolecular dehydration for 18h at 20° C., to obtain a material containing polyimide; Add 600mL of N-methylpyrrolidone (NMP) to the polyimide-containing material to dilute, and pour the diluted material into a mixed solvent (500mL: 500mL) of water and ethanol under stirring to make the polyimide The imine was precipitated to obtain polyimide, which was rinsed with a mixture of water and ethanol (1500mL: 1500mL) (3 times), filtered and dried (220°C for 24 hours in vacuum; then 70°C for 48 hours in air) ) to obtain a polyimide random copolymer, counted as PI-16. Infrared testing shows that PI-16 has the structure 3 shown in formula (I). In addition, no raw materials were detected in the remaining liquid phase after precipitation of polyimi
  • PI-20 A polyimide random copolymer was prepared, which was designated as PI-20.
  • the specific reaction conditions are shown in Table 1. Infrared testing shows that PI-20 has a structure shown in formula (I), wherein X is Xc, Y is Ya, and Z and Z' are Z3. In addition, no raw materials were detected in the remaining liquid phase after precipitation of polyimide, indicating that all raw materials participated in the reaction.
  • 6FDA-mPDA copolymer was prepared with reference to the literature "YAMAMOTO H, MI Y, STERN S A. Structure/Permeability Relationships of Polyimide Membranes. II. Journal of Polymer Science: Part B: Polymer Physics 1990, 28: 2291-2304.”
  • a mixture of acetic anhydride (36.7524g, 0.36mol) and pyridine (28.4760g, 0.36mol) was added to the material of polyamic acid, and intramolecular dehydration was carried out at 20°C for 18h to obtain a material containing polyimide;
  • NMP N-methylpyrrolidone
  • NMP N-methylpyrrolidone
  • step (3) The polyimide hollow fiber membrane precursor obtained in step (2) is wound up through a winder (on a cylinder with a diameter of 50 cm, a circle is 157 cm), and then put into water, ethanol, n-hexane Alkanes were extracted twice in sequence, and the extraction time was 3 hours; then the extracted hollow fiber membrane was placed in a fume hood at room temperature and air-dried for 12 hours to obtain a polyimide-based hollow fiber membrane.
  • the speed of winding is 1m/s.
  • the obtained hollow fiber membrane was characterized by mercury porosimetry, and the porosity was 65.5%.
  • the thickness of the dense layer is 150nm.
  • the results of mechanical property characterization are that the breaking force of the membrane filament is 6N, and the elongation at break is 50%.
  • step (3) The polyimide hollow fiber membrane precursor obtained in step (2) is wound up through a winder (on a cylinder with a diameter of 50 cm, a circle is 157 cm), and then put into water, ethanol, n-hexane Alkanes were extracted twice in sequence, and the extraction time was 3 hours; then, the extracted hollow fiber membrane was placed in a fume hood at room temperature and air-dried for 12 hours to obtain a polyimide-based hollow fiber membrane.
  • the winding speed is 1m/s.
  • the obtained hollow fiber membrane was characterized by mercury porosimetry, and the porosity of the support layer was 67.5%.
  • the thickness of the dense layer is 400nm.
  • the scanning electron micrograph of the hollow fiber membrane section is shown in Fig. 4 .
  • step (3) The polyimide hollow fiber membrane precursor obtained in step (2) is wound up through a winder (on a cylinder with a diameter of 50 cm, one circle is 157 cm), and then put into water, ethanol, The extracted hollow fiber membrane was extracted twice in n-hexane in sequence for 3 hours; then the extracted hollow fiber membrane was placed in a fume hood at room temperature and air-dried for 12 hours to obtain a polyimide-based hollow fiber membrane. Wherein, the winding speed is 1.5m/s.
  • the obtained hollow fiber membrane was characterized by mercury porosimetry, and the porosity was 70%.
  • the thickness of the dense layer is 500nm.
  • the scanning electron microscope picture of the hollow fiber membrane section is shown in Fig. 5 .
  • the hollow fiber membrane preparation example 1 was repeated, except that the diluent formulation, the parameters of the preparation conditions (such as extrusion temperature) were changed.
  • the specific conditions and the thickness of the dense layer of the prepared hollow fiber membrane are shown in Table 2.
  • the hollow fiber membrane preparation example 1 was repeated, except that the addition ratio of the additives was changed.
  • the added materials are 20wt% polyimide random copolymer, 50wt% NMP, 10wt% ethanol, 10wt% THF and 10wt% lithium nitrate.
  • the thickness of the dense layer of the finally prepared hollow fiber membrane is shown in Table 2.
  • the hollow fiber membrane preparation example 1 was repeated, except that the polyimide copolymer obtained in the above preparation example 4, preparation example 14 and preparation example 17 was used instead of the polyimide random copolymer obtained in the preparation example 10.
  • the thickness of the dense layer of the finally prepared hollow fiber membrane is shown in Table 2.
  • the hollow fiber membrane preparation example 1 was repeated, except that the diluent formulation, the parameters of the preparation conditions (such as extrusion temperature) were changed.
  • the specific conditions and the thickness of the dense layer of the prepared hollow fiber membrane are shown in Table 2.
  • the scanning electron microscope picture of the hollow fiber membrane section is shown in Fig. 6 .
  • step (3) The polyimide hollow fiber membrane precursor obtained in step (2) is wound up through a winder (on a cylinder with a diameter of 50 cm, a circle is 157 cm), and then put into water, ethanol, n-hexane Alkanes were extracted twice in sequence, and the extraction time was 3 hours; then the extracted hollow fiber membrane was placed in a fume hood at room temperature and air-dried for 12 hours to obtain a polyimide-based hollow fiber membrane.
  • the winding speed is 1m/s.
  • step (3) The polyimide hollow fiber membrane precursor obtained in step (2) is wound up through a winder (on a cylinder with a diameter of 50 cm, a circle is 157 cm), and then put into water, ethanol, n-hexane Alkanes were extracted twice in sequence, and the extraction time was 3 hours; then the extracted hollow fiber membrane was placed in a fume hood at room temperature and air-dried for 12 hours to obtain a polyimide-based hollow fiber membrane.
  • the winding speed is 1m/s.
  • Repeat hollow fiber membrane preparation example 1 the difference is that THF is not added in the process of preparing the casting solution, wherein, the added materials are 25wt% polyimide random copolymer, 50wt% NMP, 20wt% Ethanol and 5wt% lithium nitrate.
  • FIG. 7 the scanning electron micrograph of the section of the prepared hollow fiber membrane is shown in FIG. 7 . It can be seen that the hollow fiber membrane prepared in this comparative example has a porous structure without forming an effective separation skin layer (dense layer).
  • Repeat hollow fiber membrane preparation example 1 the difference is that NMP is not added in the process of preparing the casting solution, wherein, the added materials are 30wt% polyimide random copolymer, 28wt% ethanol, 28wt% THF and 14 wt% lithium nitrate.
  • the prepared hollow fiber membrane is broken and does not have spinnability.
  • the hollow fiber membrane preparation example 1 was repeated except that the extrusion was performed at 100°C.
  • the prepared polyimide hollow fiber membrane had poor film-forming properties and no effective separation skin layer was formed.
  • solvent 1 represents the good solvent of polyimide
  • solvent 2 represents the poor solvent of the first polyimide
  • solvent 3 represents the poor solvent of the second polyimide
  • Thickness indicates the thickness of the dense layer of the polyimide-based hollow fiber membrane
  • gap indicates the air gap during the preparation of the hollow fiber membrane.
  • the hollow fiber membranes prepared in the above hollow fiber membrane preparation examples were tested for gas separation performance.
  • Permeation rate (unit GPU) test method at 20°C, measure the gas flow per unit membrane area per unit time under a pressure difference of 0.1 MPa.
  • the separation coefficient ⁇ is dimensionless and is used to characterize the selective permeability of gas components in the membrane.
  • the separation coefficient is the ratio of the permeation rates of two gases in the membrane.
  • the present invention also tests the gas separation performance of the hollow fiber membrane (E1) prepared from the commercially available polyimide material Torlon 4000TF. The test results are shown in Table 3.
  • E1 The hollow fiber membrane preparation example 1 was repeated, except that the commercially available polyimide material Torlon 4000TF was used to prepare a polyimide hollow fiber membrane (E1).
  • the polyimide hollow fiber membrane prepared from commercially available polyimide materials is significantly different from the polyimide hollow fiber membrane prepared in Preparation Example 1.
  • the mechanical properties tested are: the breaking force of the film filament is 2.0N, and the elongation at break is 9%. It can be seen that the mechanical properties of the polyimide hollow fiber membrane prepared in Preparation Example 1 are significantly better than the hollow fiber membrane prepared from the commercially available polyimide material.
  • the natural gas produced in a gas field is subjected to multi-stage flash distillation to obtain raw material gas, in which the volume fraction of helium in the raw gas is 8.5%, and other gas components include: methane with a volume fraction of 35%, nitrogen with a volume fraction of 37.3% , the volume fraction is 2.1% hydrogen, the volume fraction is 7.5% carbon dioxide, the volume fraction is 0.1% water and the volume fraction is 9.5% oxygen.
  • the crude helium is compressed and heat-exchanged, and passed into the palladium-copper alloy film at a pressure of 10 MPa and a temperature of 400 ° C (the thickness of the alloy film is 20 ⁇ m, purchased from Yiwu Ruisheng New Material Technology Co., Ltd. PdAM-600) separation unit for deep dehydrogenation to obtain 5N grade ultra-pure helium.
  • the volume fraction of gas components after each stage of separation is shown in Table 4.
  • the raw gas is the flash steam (BOG) of the liquefied natural gas station, in which the volume fraction of helium is 15.73%, and other gas components include: methane with a volume fraction of 19.9%, nitrogen with a volume fraction of 57.7%, and a volume fraction of 6.62% hydrogen, and the sum of the volume fractions is 0.05% oxygen.
  • BOG flash steam
  • the raw gas is obtained after the natural gas produced in a certain gas field is pretreated (two-stage flash evaporation), wherein the volume fraction of helium in the raw gas is 19.7%, and other gas components include: methane with a volume fraction of 15.9%, volume fraction It is 53.7% nitrogen, 0.05% hydrogen by volume, 10.65% carbon dioxide by volume, 2.5% water by volume and 2.15% oxygen by volume.
  • the membrane module of the polyimide hollow fiber membrane prepared by the above-mentioned hollow fiber membrane preparation example 6 is passed through at a pressure of 5 MPa and a temperature of 85° C.
  • the polymer membrane is separated to obtain crude helium; after that, the crude helium is compressed and heat-exchanged, and passed into the palladium-gold alloy membrane (thickness 10 ⁇ m, purchased from Nanjing Gaoqian Functional Materials Technology Co., Ltd. at a pressure of 4 MPa and a temperature of 304 ° C
  • the company's UHP-500 separation unit performs deep dehydrogenation to obtain 5N-grade ultra-pure helium.
  • the volume fraction of gas components after separation in each stage is shown in Table 6.
  • the volume fraction of helium in a certain helium-rich hydrogen-containing gas is 49.33%, and other gas components include: hydrogen with a volume fraction of 20.09%, carbon dioxide with a volume fraction of 29.15%, and water with a volume fraction of 1.43%.
  • the membrane module of the polyimide hollow fiber membrane prepared by the above-mentioned hollow fiber membrane preparation example 10 is passed through at a pressure of 2 MPa and a temperature of 50° C.
  • Example 1 The method of Example 1 was followed, except that the membrane module of the polyimide hollow fiber membrane prepared in Example 7 of the above-mentioned hollow fiber membrane preparation was used for polymer membrane separation. Among them, the volume fraction of gas components after separation in each stage is shown in Table 8.
  • Example 1 The method of Example 1 was followed, except that the membrane module of the polyimide hollow fiber membrane prepared in the above hollow fiber membrane preparation example 1 was used for polymer membrane separation. Among them, the volume fraction of gas components after separation in each stage is shown in Table 9.
  • Example 3 Carry out in the manner of Example 3, the difference is that no catalytic oxidation device is provided. Among them, the volume fraction of gas components after each stage of separation is shown in Table 10.
  • Example 11 Proceed in the same manner as in Example 3, except that no polymer membrane separation unit is provided for separation. Among them, the volume fraction of gas components after each stage of separation is shown in Table 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本申请涉及具有式(I)所示结构的聚酰亚胺无规共聚物。本申请还涉及制备聚酰亚胺无规共聚物的方法、由聚酰亚胺无规共聚物制备的膜、制备聚酰亚胺基中空纤维膜的方法。本申请另外涉及提纯氦气的系统和提纯氦气的方法。

Description

聚酰亚胺共聚物和膜、它们的制备方法和用途以及提纯氦气的系统和方法 技术领域
本申请涉及聚酰亚胺共聚物及其制备方法。
本申请还涉及由聚酰亚胺共聚物制备的膜、制备所述膜的方法和使用所述膜分离气体的方法和用途。
本申请还涉及提纯氦气的系统及方法。
背景技术
气体膜分离是一种“绿色技术”。与吸附、吸收、深冷分离等传统分离技术相比,膜分离技术具有分离效率高、能耗低、操作简单等优点,是未来气体分离的一种主流技术,在天然气脱氦、氢气纯化、脱碳等领域有着广泛的应用前景。
聚酰亚胺同时具有高渗透性和选择性,是一种理想的气体分离膜材料。虽然聚酰亚胺在用于分离膜方面已经获得了一定的进步,但是寻求渗透性和/或选择性更好且热稳定性、机械稳定性、化学稳定性和/或成膜性良好的聚酰亚胺材料,仍然是人们关注的热点。
氦气的化学性质极为稳定,且具有很强的扩散性、良好的导热性、低溶解度及低蒸发潜热等特殊性质,是一种非常重要的工业气体。由于其独特的性质,氦气在低温、航天、电子工业、生物医疗、核设施等领域应用广泛。目前氦气提纯精制工艺为深冷工艺。深冷工艺进行天然气提氦的过程中存在着设备设计制造要求苛刻,建设和运行成本较高、设备庞大、能耗高等问题。因此,人们在不断寻求提纯氦气的新系统和新工艺。
发明内容
本申请提供了一种聚酰亚胺无规共聚物。本发明提供的聚酰亚胺 无规共聚物具有良好的渗透性与选择性。
本发明第一方面提供一种聚酰亚胺无规共聚物,所述共聚物具有式(I)所示的结构:
Figure PCTCN2022100611-appb-000001
式(I)中,m和n各自独立地为10-2000的整数;
X选自式(X3)和(X4)中的任意一种;
Figure PCTCN2022100611-appb-000002
式(X3)和式(X4)中,R 5、R 6、R 9和R 10各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C10的芳基;
Y选自式(Y1)、(Y3)、(Y4)和蝶烯基结构中的任意一种;
Figure PCTCN2022100611-appb-000003
式(Y1)和(Y3)中,R 7、R 8、R 11、R 12、R 13、和R 14各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C 10的芳基;
Z和Z’各自独立地选自蝶烯基结构和任选被取代的式(Z1);
Figure PCTCN2022100611-appb-000004
本发明第二方面提供一种制备第一方面的聚酰亚胺无规共聚物的方法,所述方法包括以下步骤:
(1)在第一溶剂存在下,将包含式(II)所示的二酐单体和式(III)所示的二酐单体的混合物与二胺单体混合,进行缩聚反应,得到聚酰胺酸;
Figure PCTCN2022100611-appb-000005
(2)将步骤(1)得到的聚酰胺酸进行酰亚胺化,得到聚酰亚胺无规共聚物。
在第二方面中,所述X和Y是如第一方面中所限定,并且所述二胺单体对应于NH 2-Z-NH 2和NH 2-Z’-NH 2,其中Z和Z′是如第一方面中所限定。
本发明第三方面提供一种由前述第二方面所述的方法制得的聚酰亚胺无规共聚物。
本发明第四方面提供一种膜,所述膜由第一方面的聚酰亚胺无规共聚物制备。根据一些实施方案,所述膜是分离膜,优选气体分离膜。根据一些优选实施方案,所述膜是中空纤维膜。
本发明第五方面提供第一方面或第三方面所述的聚酰亚胺无规共聚物或第四方面所述的膜在气体分离中的应用。
本发明第六方面提供制备聚酰亚胺基中空纤维膜的方法,所述方法包括以下步骤:
(1)制备包含第一或第三方面的聚酰亚胺的铸膜液;
(2)将内芯液和铸膜液挤出,然后经固化得到中空纤维膜前体;
(3)将所述中空纤维膜前体进行收卷和萃取后得到所述聚酰亚胺基中空纤维膜。
本发明第七方面提供一种提纯氦气的系统,该系统包括催化脱氢分离单元、聚合物膜分离单元以及钯膜分离单元。优选地,所述催化脱氢分离单元包括催化氧化装置和吸附装置。根据一些实施方案,所述聚合物膜分离单元包括本发明第四方面的膜。
本发明第八方面提供一种提纯氦气的方法,该方法包括:将原料 气依次进行催化脱氢分离、聚合物膜分离以及钯膜脱氢分离,得到纯化的氦气。根据一些实施方案,所述聚合物膜分离包括使用本发明第四方面的膜。
本发明提供了一种由两种特定结构的二酐与特定结构的二胺作为单体缩聚得到的聚酰亚胺无规共聚物。出人意料地发现,本发明的聚酰亚胺中的结构单元的选择使得由本发明的聚酰亚胺共聚物制备的膜(例如中空纤维膜)具有优异的气体渗透性能和/或选择性,尤其是针对He和/或H 2。而且,本发明的聚酰亚胺无规共聚物的其他性能,包括热稳定性、机械稳定性、化学稳定性以及成膜性,良好。
本发明提供的聚酰亚胺基中空纤维膜具有薄致密层(分离层)以及海绵孔结构的支撑层。孔隙率高的支撑层和薄的分离层可有效降低阻力,提高膜的渗透速率。另外,所述聚酰亚胺基中空纤维膜具有高机械强度例如抗压强度。本发明提供的中空纤维膜制备方法中,可得到双峰分布的孔尺寸分布,实现对气体分子的精准筛分。本发明中,通过干-湿纺相转化方法制备了不对称超薄聚酰亚胺中空纤维膜,其致密层厚度可以控制在1μm以下,而支撑层具有高孔隙率。本发明提供的中空纤维膜适用于气体混合物的分离,包括但不限于CO 2和CH 4,O 2和N 2,He和N 2,He和CH 4,CO 2和N 2,He和CO 2、H 2和N 2,H 2和CH 4,H 2和CO 2的分离等,优选适于氦气或氢气的提纯。
本发明通过将聚合物膜分离技术与催化氧化脱氢、钯膜分离工艺进行组合,可以以天然气、页岩气、多级闪蒸气等作为原料气,制备高纯氦气(5N或6N级氦气)。本发明的氦气纯化方法包括首先通过催化氧化,将原料气中的氢气转化H 2O等并通过碱式吸附干燥工艺初步去除;随后应用一级或多级聚合物膜分离工艺对氦气进行提纯获得粗氦气;得到的粗氦气经钯膜脱氢分离使其中微量氢气得以去除,被进一步提纯至超纯级别。本发明的氦气纯化方法可在温和的温度、压力条件下,将氦气提至5N级别或6N级别,降低了提纯氦气过程中的能耗和设备要求,使得氦气制备过程简单经济,连续稳定。
附图说明
图1是制备例2中制备的聚酰亚胺无规共聚物的红外光谱图;
图2是制备例3中制备的聚酰亚胺无规共聚物的红外光谱图;
图3是制备例4中制备的聚酰亚胺无规共聚物的红外光谱图;
图4是中空纤维膜制备实施例2制备的聚酰亚胺基中空纤维膜的断面扫描电镜图;
图5是中空纤维膜制备实施例3制备的聚酰亚胺基中空纤维膜的断面扫描电镜图;
图6是中空纤维膜制备实施例12制备的聚酰亚胺基中空纤维膜的断面扫描电镜图;
图7是对比中空纤维膜制备实施例S2制备的聚酰亚胺基中空纤维膜的断面扫描电镜图;
图8是中空纤维膜制备实施例1制备的聚酰亚胺基中空纤维膜的 1H NMR谱图;
图9是由制备例4和制备例10的聚酰亚胺共聚物制得的平板均质膜的孔尺寸分布,其中圆点代表的曲线是制备例10,方块代表的曲线是制备例4。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本发明中,“室温”是指约20℃至约25℃。
在本发明中,本发明中所述的压力,没有特殊说明时均为表压。
在本发明中,术语“和/或”涵盖“和”以及“或”。以“和/或”限 定的元素表示涵盖其中任一个及其任意组合。例如,A和/或B涵盖A、B和A+B。A、B和/或C则涵盖A、B、C、A+B、A+C、B+C以及A+B+C。
本发明中,“C1-C4的烷基”包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基。“C6-C10的芳基”包括苯基、甲苯基、二甲苯基(邻、间、对)、乙苯基、甲乙苯基、丙苯基、丁苯基等。所述C1-C4的烷基可以任选地被选自卤素的取代基取代。所述卤素例如选自氟、氯、溴和碘,优选选自氟和氯。所述C6-C10的芳基可以任选地被选自卤素的取代基取代。所述卤素例如选自氟、氯、溴和碘,优选选自氟和氯。“C1-C4的卤代烷基”包括被一个或多个选自氟、氯和溴的卤素取代的C1-C4烷基,该C1-C4的烷基包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基;所述“C1-C4的卤代烷基”例如包括但不限于一氟甲基、二氟甲基、三氟甲基、一氟乙基、二氟乙基、三氟乙基、一氯甲基、二氯甲基、三氯甲基......等。“C1-C4的饱和一元醇”包括甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇。“C3-C5的烷烃”包括碳原子数为3-5的直链烷烃和支链烷烃,例如包括但不限于正丙烷、异丙烷、正丁烷、异丁烷、正戊烷、异戊烷、新戊烷;或环烷烃,例如环丙烷、环丁烷、环戊烷。“C5-C7的烷烃”包括碳原子数为5-7的直链烷烃和支链烷烃,例如包括但不限于正戊烷、异戊烷、新戊烷、正己烷、异己烷、正庚烷、异庚烷;或环烷烃,例如环戊烷、环己烷、环庚烷。
本发明第一方面提供一种聚酰亚胺无规共聚物,所述共聚物具有式(I)所示的结构:
Figure PCTCN2022100611-appb-000006
式(I)中,m和n各自独立地为10-2000的整数;
X选自式(X3)和(X4)中的任意一种;
Figure PCTCN2022100611-appb-000007
式(X3)和式(X4)中,R 5、R 6、R 9和R 10各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C10的芳基
Y选自式(Y1)、(Y3)、(Y4)和蝶烯基结构中的任意一种;
Figure PCTCN2022100611-appb-000008
式(Y1)和(Y3)中,R 7、R 8、R 11、R 12、R 13、和R 14各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C 10的芳基;
Z和Z’各自独立地选自蝶烯基结构和任选被取代的式(Z1);
Figure PCTCN2022100611-appb-000009
根据本发明的一些实施方式,m和n可以各自独立地为50-1000的整数。
根据本发明的一些实施方式,m和n限定为0.95≥n/(m+n)≥0.3,优选0.9≥n/(m+n)≥0.3,更优选地,0.7≥n/(m+n)≥0.5。
根据本发明的一些优选实施方式,m和n限定为0.95≥n/(m+n)≥0.5,优选地,0.9≥n/(m+n)≥0.6。
根据本发明的一些实施方式,所述蝶烯基结构选自三蝶烯基结构或五蝶烯基结构。优选地,作为Y的蝶烯基结构为式(Y5),和/或作为Z和Z’的蝶烯基结构各自独立地为(Z2):
Figure PCTCN2022100611-appb-000010
其中R 15和R 16各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C10的芳基;Ra和Rb各自独立地为H、C1-C4的烷基或C1-C4的卤代烷基。
在本发明中,所述″任选被取代的C1-C4的烷基″是任选被一个或多个卤素取代基取代的“C1-C4的烷基”。所述″任选被取代的C6-C10的芳基″是任选被一个或多个选自卤素和C1-C4烷氧基的取代基取代的“C6-C10的芳基”。所述″任选被取代的式(Z1)″是任选被一个或多个选自卤素、C1-C4烷基和C1-C4烷氧基的取代基取代的″式(Z1)″。所述卤素例如选自氟、氯、溴和碘,优选选自氟和氯。所述C1-C4烷氧基例如选自甲氧基、乙氧基、丙氧基和丁氧基。
根据本发明的一些实施方案,Z和Z’是相同的。
根据本发明的一些实施方式,X选自以下所示结构中的任一种,
Figure PCTCN2022100611-appb-000011
和/或,Y选自以下所示结构中的任一种,
Figure PCTCN2022100611-appb-000012
和/或,Z和Z’各自独立地选自Z1或Z3所示的结构,
Figure PCTCN2022100611-appb-000013
本发明述及的结构式中,“-”表示与其它部分的连接位置。
根据本发明的一些优选实施方式,其中,
X为Xb,Y为Ya,Z和Z’均为Z1;
或者,X为Xb,Y为Yd,Z和Z’均为Z1;
或者,X为Xc,Y为Ya,Z和Z’均为Z1;
或者,X为Xc,Y为Yc,Z和Z’均为Z1;
或者,X为Xc,Y为Y4,Z和Z’均为Z1;
或者,X为Xc,Y为Yd,Z和Z’均为Z1;
或者,X为Xb,Y为Ya,Z和Z’均为Z3;
或者,X为Xb,Y为Yd,Z和Z’均为Z3;
或者,X为Xc,Y为Ya,Z和Z’均为Z3;
或者,X为Xc,Y为Yd,Z和Z’均为Z3。
虽然根据本发明的优选实施方式,X、Y、Z和Z’具有特定的某一种结构,但本发明不排除X取自两种不同结构,Y取自两种、三种或四种不同结构,Z取自两种不同结构和/或Z’取自两种不同结构的情况。
本发明还涉及聚酰亚胺无规共聚物的制备方法,其基于首先将二酐单体(以下式(II)所示的二酐和式(III)所示的二酐)和二胺单体进行缩聚反应得到聚酰胺酸,然后对聚酰胺酸进行酰亚胺化(分子内脱水)的原理。这种制备聚酰亚胺聚合物的一般过程是本领域中已知的。本发明的方法可以通过一锅法(即将所有单体直接在反应器中混合并反应)将二酐单体和二胺单体进行缩聚反应得到聚酰胺酸,也可以通过先将二酐单体(也即式(II)所示的二酐和式(III)所示的二酐) 混合(优选均匀混合)之后,然后再与二胺单体混合来进行缩聚反应。为了更好的控制反应的进行,优选以后者的方式进行反应。
本发明第二方面提供一种制备根据本发明的聚酰亚胺无规共聚物的方法,所述方法包括以下步骤:
(1)在第一溶剂存在下,将包含式(II)所示的二酐单体和式(III)所示的二酐单体的混合物与二胺单体混合,进行缩聚反应,得到聚酰胺酸;
Figure PCTCN2022100611-appb-000014
(2)将步骤(1)得到的聚酰胺酸进行酰亚胺化,得到聚酰亚胺无规共聚物。
如本领域技术人员所理解的那样,式(II)所示的二酐单体的X对应于本申请中式(I)所示结构中的X,式(III)所示的二酐单体的Y对应于本申请中式(I)所示结构中的Y,而二胺单体具有式NH 2-Z-NH 2和/或NH 2-Z’-NH 2,其中NH 2-Z-NH 2中的Z对应于式(I)所示结构中的Z,和NH 2-Z’-NH 2中的Z’对应于式(I)所示结构中的Z’。
在以上方法中,X、Y以及Z和Z’可以各自是如以上第一方面中所限定。
根据本发明的一些实施方式,式(II)所示的二酐单体和式(III)所示的二酐单体的摩尔用量分别定义为M和N。
根据本发明的一些优选实施方式,M和N限定为0.95≥N/(M+N)≥0.5,优选地,0.9≥N/(M+N)≥0.6。
根据本发明的一些实施方式,式(II)所示的二酐单体和式(III)所示的二酐单体的摩尔总量与二胺单体的摩尔用量比为1∶(0.6-1.5),优选为1∶(0.8-1.2)。
所述缩聚反应是本领域中已知的并可以在本领域通常已知的缩聚条件下进行。根据本发明的一些实施方式,步骤(1)中,所述缩聚反应的条件可以包括:反应温度-20℃至60℃,优选-10℃至40℃;反应时间5-30h,优选8-24h。
本发明中,所述缩聚反应可以在惰性气氛下进行。可以使用本领域中通常已知的惰性气氛;例如所述惰性气氛优选由氮气提供。所述聚合反应的压力或者所述惰性气氛的压力可以由本领域技术人员自由选择,但优选是大气压力。
根据本发明的一些实施方式,所述第一溶剂可以选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜和N-甲基吡咯烷酮(NMP)及其混合物中的至少一种,优选选自N-甲基吡咯烷酮和/或N,N-二甲基甲酰胺。
根据本发明的一些实施方式,相对于1mol的二胺单体,所述第一溶剂的用量为1000-3000mL。
本发明中,式(II)所示的二酐单体和式(III)所示的二酐单体可以采用任意合适的方式混合来得到混合物。根据一些实施方式,可以采用以下方式混合得到混合物:机械搅拌、震荡或超声。机械搅拌的条件可以包括:20-40℃,2000-15000rpm,2-12h。超声的条件可以包括:20-40℃,0.5-2.0h。震荡的条件可以包括:20-40℃,260-800rpm,12-36h。可选择地,可以将式(II)所示的二酐单体和式(III)所示的二酐单体加入到第一溶剂中并进一步与二胺单体混合。
聚酰胺酸的酰亚胺化是本领域中已知的。可以采用本领域中已知的各种方式将步骤(1)得到的聚酰胺酸进行酰亚胺化,得到聚酰亚胺无规共聚物。根据本发明的一些实施方式,酰亚胺化包括向步骤(1)得到的含聚酰胺酸的物料中加入脱水剂和催化剂,在0-200℃下反应12-24h。
根据本发明的一些实施方式,所述脱水剂选自二氯苯、甲苯、醋酸酐和二甲苯及其混合物中的至少一种。
根据本发明的一些实施方式,所述催化剂选自吡啶和/或二喹啉。
根据本发明的一些实施方式,相对于1mol的二胺单体,所述脱水剂的用量可以为2-15mol,优选为3-8mol。
根据本发明的一些实施方式,相对于1mol的二胺单体,所述催化剂的用量可以为2-15mol,优选为3-8mol。
根据本发明的一些实施方式,所述制备聚酰亚胺的方法还包括:将步骤(2)中酰亚胺化处理后的物料经稀释之后与沉淀剂接触,得到所述聚酰亚胺共聚物。所述沉淀剂可以为聚酰亚胺的不良溶剂。例如所述沉淀剂可以选自乙醇、丙酮和水中的至少一种,更优选选自乙醇、丙酮和水中的至少两种。相对于1mol的二胺单体,所述沉淀剂的总用量可以为10-50L。稀释用的溶剂可以为N-甲基吡咯烷酮。优选地,相对于1mol的二胺单体,稀释用的溶剂的用量可以为5-8L。
本发明中,对步骤(2)中酰亚胺化处理后的物料与沉淀剂接触的方式没有特别的限制,只要能够满足本发明的需求即可。例如可以按照以下方式进行:将步骤(2)中酰亚胺化处理后的物料(经稀释后)加入沉淀剂中,使得聚酰亚胺析出,之后再用沉淀剂对上述析出的聚酰亚胺进行淋洗(可以淋洗3-5次),最后经抽滤、干燥(70-150℃,24-48h)后得到聚酰亚胺无规共聚物。
本发明第三方面提供由第二方面的方法制得的聚酰亚胺无规共聚物。
本发明第四方面提供膜,所述膜由聚酰亚胺聚合物制备,优选由第一方面的聚酰亚胺无规共聚物制备。
根据一些实施方案,所述膜是分离膜,优选气体分离膜。
根据一些实施方案,所述膜可以是平板膜,优选平板均质膜。
本发明中,对所述平板膜,例如气体分离膜,的制备方法没有特别的限制,例如可以通过本领域中常规的制膜方法进行。例如可以参考CN107968214A制备气体分离膜(均质膜)。
可选择地,可以采用如下方法制备平板膜:将含所述聚酰亚胺无 规共聚物的铸膜液涂覆于支撑板(例如玻璃板)上,在50-80℃,6-24h下进行第一干燥(以除去大部分溶剂);在100-140℃,12-48h下进行第二干燥;之后经浸泡(例如浸泡于去离子水中,直至膜从玻璃板表面脱落)得到聚酰亚胺无规共聚物气体分离膜。所述铸膜液可以通过如下方式获得:将所述聚酰亚胺无规共聚物与第二溶剂混合,在40-80℃搅拌(例如在摇床内)至共聚物完全溶解,得到均匀的铸膜液;并经超声脱泡处理,得到均匀稳定的铸膜液。
根据一些实施方式,所述第二溶剂的用量使得聚酰亚胺无规共聚物的固含量为5-60wt%。
根据一些实施方式,所述第二溶剂可以选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、四氢呋喃和乙醇及其混合物中的至少一种。
根据一些实施方式,所述第一溶剂和第二溶剂可以相同或不同。
根据一些实施方式,所述聚酰亚胺共聚物平板膜的厚度可以为30-50μm。
根据一些实施方式,所述聚酰亚胺共聚物平板膜,例如气体分离膜,为均质膜。
根据一些优选实施方案,所述膜是中空纤维膜。所述中空纤维膜包括支撑层和附着在支撑层外表面的致密层。所述支撑层和致密层都由所述聚酰亚胺无规共聚物形成。优选地,所述致密层的厚度小于或等于1000nm并且所述中空纤维膜(支撑层)的孔隙率为40-80%;更优选地所述致密层的厚度为100-500nm并且所述中空纤维膜孔隙率为50-70%。所述中空纤维膜孔隙率通过压汞法测定。
所述中空纤维膜的外径和内径可以由本领域技术人员合适地确定。例如所述中空纤维膜的外径可以为50微米至2000微米,优选100微米至1000微米,更优选200微米至900微米,还更优选300微米至800微米,例如400微米至700微米,例如优选450微米至650微米,例如大约500微米或大约600微米。所述中空纤维膜的内径可以为10 微米至1000微米,优选40微米至800微米,更优选60微米至600微米,还更优选80微米至400微米,例如100微米至300微米,例如优选120微米至250微米,例如大约150微米或大约200微米。
根据本发明的一些实施方式,所述致密层的厚度为100-2000nm,优选100-1000nm,更优选为200-500nm;例如100nm、150nm、200nm、250nm、300nm、350nm、400nm或以上数值之间的任意值。
根据本发明的一些实施方式,所述中空纤维膜(支撑层)孔隙率为50-70%。
本发明第五方面提供第一方面或第三方面所述的聚酰亚胺无规共聚物或第四方面所述的膜在气体分离中的应用。将聚合物膜用于气体分离是本领域中已知的。可以采用任何本领域中已知的合适方式来将本发明的聚合物膜用于气体分离。
本发明第六方面提供制备聚酰亚胺基中空纤维膜的方法。所述方法包括以下步骤:
(1)制备包含聚酰亚胺,优选本发明第一或第三方面的聚酰亚胺,的铸膜液;
(2)将内芯液和铸膜液挤出,然后经固化得到中空纤维膜前体;
(3)将所述中空纤维膜前体进行收卷和萃取后得到所述聚酰亚胺基中空纤维膜。
根据一些实施方案,本发明的制备聚酰亚胺基中空纤维膜的方法包括以下步骤:
(1)制备含聚酰亚胺、稀释剂和任选的添加剂的铸膜液,所述稀释剂含有聚酰亚胺的良溶剂、第一聚酰亚胺的不良溶剂和第二聚酰亚胺的不良溶剂,其中,第一聚酰亚胺的不良溶剂的沸点B1高于第二聚酰亚胺不良溶剂的沸点B2;
(2)将内芯液和铸膜液在温度T下进行挤出,然后经固化得到中空纤维膜前体,其中,B2≤T<B1;
(3)将所述中空纤维膜前体进行收卷和萃取后得到所述聚酰亚胺 基中空纤维膜。
根据本发明的一些实施方式,步骤(1)中,以铸膜液的总重量为基准,所述聚酰亚胺的含量为20-40wt%,所述稀释剂的含量为50-75wt%,当存在时所述添加剂的含量为0.5-10wt%。
根据本发明的一些实施方式,以铸膜液的总重量为基准,所述聚酰亚胺的含量为25-35wt%,所述稀释剂的含量为60-70wt%,当存在时所述添加剂的含量为1-5wt%。
根据本发明的一些实施方式,为了更有利于形成所述中空纤维膜的致密层,所述第一聚酰亚胺的不良溶剂的沸点B1比第二聚酰亚胺不良溶剂的沸点B2高5-200℃,优选高10-20℃。其中,所述沸点指的是常压沸点。
根据本发明的一些实施方式,所述第一聚酰亚胺的不良溶剂选自C2-C4的饱和一元醇、γ-丁内酯和水及其混合物中的至少一种。
根据本发明的一些实施方式,所述第二聚酰亚胺的不良溶剂选自C3-C5的烷烃、四氢呋喃、丙酮和氯仿及其混合物中的至少一种。
根据本发明的一些实施方式,所述聚酰亚胺的良溶剂选自N-甲基吡咯烷酮、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺及其混合物中的至少一种。
根据本发明的一些实施方式,所述聚酰亚胺的良溶剂、第一聚酰亚胺的不良溶剂和第二聚酰亚胺的不良溶剂的重量比为1∶(0.001-0.5)∶(0.1-0.5),优选为1∶(0.15-0.3)∶(0.15-0.3)。
根据本发明的一些实施方式,所述添加剂可以为锂盐,优选选自硝酸锂和/或氯化锂。
根据本发明的一些实施方式,所述铸膜液包含所述添加剂。根据本发明的一些实施方式,所述铸膜液不包含所述添加剂。
根据本发明的一些实施方式,步骤(1)中,所述铸膜液按照包括如下步骤的方法制备:将聚酰亚胺、稀释剂和任选的添加剂在20-50℃、100-1200r/min下搅拌12-48h,之后通过真空脱泡、过滤(例如20-50 ℃)除去杂质制得。
根据本发明的一些实施方式,所述真空脱泡的条件包括:压力为-0.1MPa至-0.095MPa,温度为20-30℃,转速为10-50r/min,时间为12-24h。
根据本发明的一些实施方式,步骤(2)中,所述内芯液包含溶剂A和溶剂B,其中,所述溶剂A选自N-甲基吡咯烷酮、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺及其混合物中的至少一种,所述溶剂B选自C1-C4的饱和一元醇、γ-丁内酯和水及其混合物中的至少一种。
根据本发明的一些实施方式,所述溶剂A占所述内芯液总重量的50-99wt%,优选为60-95wt%;所述溶剂B占所述内芯液总重量的50-1wt%,优选为40-5wt%。
根据本发明的一些实施方式,所述挤出在喷丝头中进行。根据一些实施方式,挤出温度(喷丝头温度)为40-75℃,优选为60-70℃。用于中空纤维膜制备的喷丝头是本领域中已知的。本领域技术人员可以合适地选择所用的喷丝头。
根据本发明的一些实施方式,挤出过程中,所述铸膜液的流量为6-30mL/min。
根据本发明的一些实施方式,挤出过程中,所述内芯液的流量为2-10mL/min。
根据本发明的一些实施方式,在固化之前,将挤出得到的中空纤维通过空气间隙,以促进致密层的形成,更好地调控致密层的厚度。
根据本发明的一些实施方式,所述空气间隙的高度为5-30cm。
根据本发明的一些实施方式,所述空气间隙可采用环形套管加热;优选地控制温度为50-150℃,更优选地控制温度为70-150℃。
根据本发明的一些实施方式,所述固化在凝固浴中进行。优选地,所述凝固浴使用的浴液为溶剂C和/或水。根据一些实施方式,所述凝固浴的温度为40-70℃。
根据本发明的一些实施方式,所述溶剂C选自C1-C4的饱和一元 醇、γ-丁内酯和水及其混合物中的至少一种。
根据本发明的一些实施方式,步骤(3)中,所述收卷的速率为0.5-2m/s。
本发明中,所述萃取的目的是为了脱除中空纤维膜前体中的稀释剂和添加剂。
根据本发明的一些实施方式,所述萃取用的萃取剂选自水、C1-C4的饱和一元醇和C5-C7的烷烃及其混合物中的至少一种。对萃取剂的用量没有特别的限定,只要能够满足本发明的需求即可。
根据本发明的一些实施方式,所述萃取的条件包括:温度为20-35℃,时间为3-48h。萃取时间是指膜丝(中空纤维膜前体)浸泡的时间。
本发明中,优选地,所述萃取的方式为:依次在水、C1-C4的饱和一元醇和C5-C7的烷烃中分别萃取2-5次。
根据本发明的一些实施方式,所述萃取后还包括干燥的步骤。
根据本发明的一些实施方式,所述干燥的条件包括:温度为20-35℃,时间为2-15h。
本发明还提供前述第六方面所述的方法制备的聚酰亚胺基中空纤维膜。
本发明第七方面提供一种提纯氦气的系统,该系统包括催化脱氢分离单元、聚合物膜分离单元以及钯膜分离单元。优选地,所述聚合物膜分离单元使用本发明的膜,优选本发明的聚酰亚胺基中空纤维膜。优选地,所述催化脱氢分离单元包括催化氧化装置和吸附装置。
本发明第八方面提供一种提纯氦气的方法,该方法包括:将原料气依次进行催化脱氢分离、聚合物膜分离以及钯膜脱氢分离,得到纯化的氦气,其中所述聚合物膜分离使用本发明的膜,优选本发明的聚酰亚胺基中空纤维膜。
根据本发明的一些实施方式,所述原料气可以为含氦气、氢气和其他杂质气体的混合气。优选地,所述原料气可以选自天然气、页岩气、富氦含氢气(含氦气和氢气的混合气)和液化天然气闪蒸汽(BOG) 中的至少一种。所述天然气或页岩气可以进行多级闪蒸后再作为原料气进行氦气的提纯。
根据本发明的一些实施方式,所述催化脱氢分离包括催化氧化和吸附。
根据本发明的一些实施方式,所述催化氧化中采用的催化剂为贵金属催化剂;优选选自Pt、Pd、Rh、Ru和Au及其混合物中的至少一种。
根据本发明的一些实施方式,所述催化氧化的条件包括:温度为40-150℃,优选为50-120℃;所述原料气的空速为1-10000m 3/m 3·h,优选为10-1000m 3/m 3·h。
根据本发明的一些实施方式,所述催化氧化的条件使得所述原料气中的氢气中的90-99体积%转化为H 2O。
本发明中,所述催化脱氢分离过程中所需的氧气可以由原料气中本身含有的氧气提供,也可以由外界来源提供。为了使得氢气更彻底地转化为水,所述催化脱氢分离过程中氧气的体积分数保持大于等于8%。
所述吸附可以采用任何可以吸附水的吸附方式。
根据本发明的一些实施方式,当原料气中含有二氧化碳时,为了能够同时除去水和二氧化碳,所述吸附的方式优选为碱式吸附。根据本发明的一些实施方式,所述碱式吸附所用的吸附剂选自氢氧化钾、氢氧化钠、生石灰和碱石灰中的至少一种。
本发明中,对所述吸附的条件没有特别的限制,只要能够满足本发明的需求即可。根据本发明的一些实施方式,所述吸附的条件包括:吸附温度为70-90℃。
根据本发明的一些实施方式,所述聚合物膜分离和所述聚合物膜分离单元中采用的聚合物膜选自中空纤维膜、平板膜和管式膜中的至少一种;更优选为中空纤维膜。
根据一些优选实施方案,所述聚合物膜分离包括使用本发明第四 方面的膜进行分离。根据一些实施方案,所述聚合物膜分离单元包括本发明第四方面的膜。
根据本发明的一些实施方式,所述聚合物膜分离采用一级或多级膜(聚合物膜)分离(例如2级至5级)的方式。在本发明中,2级膜分离是指透过侧气体经过加压后再次作为膜的进气进行聚合物膜分离。3级膜分离、4级膜分离和5级膜分离具有相似的含义。所述聚合物膜分离的过程可以为1到5级,例如1级、2级、3级、4级、或5级。
根据本发明的一些实施方式,所述聚合物膜分离的条件包括:在进行聚合物膜分离前,将催化脱氢分离得到的气体压力控制为0.01-50MPa,气体温度控制为20-100℃。其中,所述聚合物膜分离透过侧(出口测)压力低于正压侧(入口测)压力,且可以是负压。
根据本发明的一些实施方式,所述聚合物膜分离中采用的聚合物膜为聚酰亚胺基中空纤维膜,优选本发明的聚酰亚胺基中空纤维膜。
根据本发明的一些实施方式,所述钯膜脱氢分离的条件可以包括:在进行钯膜脱氢分离前,将聚合物膜分离得到的气体温度控制为50-500℃,优选控制为200-500℃;气体压力控制为1-50MPa,优选控制为2-20MPa。
根据本发明的一些实施方式,所述钯膜脱氢分离中采用的钯膜的厚度为5-100μm。
根据本发明的一些实施方式,所述钯膜为管状膜或多孔载体复合膜。
根据本发明的一些实施方式,所述多孔载体复合膜中多孔载体选自多孔陶瓷、和多孔不锈钢中的一种。
根据本发明的一些实施方式,所述钯膜为纯钯膜或钯基合金膜。
根据本发明的一些实施方式,所述钯基合金膜选自钯钇合金膜、钯铈合金膜、钯铜合金膜、钯金合金膜、钯镍合金膜和钯银合金膜中的至少一种。
如本领域技术人员所理解的那样,本发明的所述提纯氦气的系统中的催化脱氢分离单元、聚合物膜分离单元和钯膜分离单元分别用于或对应于本发明的提纯氦气的方法中的催化脱氢分离、聚合物膜分离和钯膜脱氢分离。本领域技术人员在以上描述的提纯氦气的方法的基础上,可以合适地选择或配置催化脱氢分离单元、聚合物膜分离单元和钯膜分离单元。
实施例部分
本发明中,缩写的含义:
PMDA:均苯四甲酸酐
BPDA:3,3′,4,4′-联苯四甲酸二酐
ODPA:4,4’-联苯醚二酐
6FDA:4,4′-(六氟异丙烯)二酞酸酐
BTDA:3,3′,4,4′-二苯酮四酸二酐
TPDAn:三蝶烯基二酐(式(III)所示的化合物,其中Y为Yd)(参照“LUO S J,WIEGAND J R,KAZANOWSKA B,et al.Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport.Macromolecules 2016,49,(9):3395-3405”制备)
mPDA:间苯二胺
PPDA:五蝶烯基二胺(结构式为
Figure PCTCN2022100611-appb-000015
)(参照“LUO S J,LIU Q,ZHANG B H,et al.Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation.J Membrane Sci 2015,480:20-30”制备)
以下将通过实施例对本发明进行详细描述。
以下制备例中,机械搅拌条件:室温10000rpm,5h;超声条件:室温,1h;震荡条件:30℃,600rpm,15h。
中空喷丝头购自上海湛信(湿法NIPS系列,型号0.6/0.4/0.2)。
所述中空纤维膜支撑层的孔隙率通过压汞法根据GB/T 21650.1-2008采用压汞仪(Poremaster-33,Quantachrome,USA)测定。
IR测试:采用傅里叶变换红外光谱仪(Bruker Tensor 27或Thermo Nicolet 380)采用全反射方法测定;测试波长范围4000cm -1~600cm -1
核磁测试:室温条件下,以DMSO-d6为溶剂,用核磁共振光谱仪(Bruker AVANCE III 500MHZ)对聚酰亚胺的氢谱进行表征,扫描频率为500MHZ。
分子量Mn测试:采用凝胶渗透色谱仪(型号1515,来自Waters公司)对聚酰亚胺的分子量进行表征;以DMF为溶剂、单分散聚苯乙烯作为分子量校准。
形貌测试:采用扫描电镜(S-4800,Hitachi)对中空纤维膜的断面进行表征;其中将膜丝于液氮中淬断后,在表面喷镀一层金后进行测试。
气体的体积分数测试:采用气相色谱法使用美国安捷伦公司6890N气相色谱仪进行测试;色谱柱:HP-PLOT分子筛毛细管柱;检测器:热导检测器TCD;柱温:50℃;载气流速:16mL/min。
实施例中,一级聚合物分离代表进行一次聚合物膜分离,二级聚合物膜分离代表一级聚合物分离后的气体作为进气重新进行聚合物膜分离(采用新的膜组件);三级聚合物膜分离、四级聚合物膜分离和五级聚合物膜分离与之例类似。
以下制备例用于说明聚酰亚胺无规共聚物的制备。
制备例1(对比)
(S1)氮气保护下,在1L的三口瓶中依次加入200mI无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解; 将均苯四甲酸酐(PMDA)(10.91g,0.05mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(22.2g,0.05mol)在机械搅拌下混匀后,在10℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(S2)向步骤(S1)得到的聚酰胺酸的物料中加入乙酸酐(40.836g,0.4mol)和吡啶(31.60g,0.4mol)的混合物,25℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(1000mL×3),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-1。红外测试表明PI-1具有聚酰亚胺结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料。其中取析出聚合物后的混合溶剂,室温下,以DMSO-d6为溶剂,用核磁共振光谱仪(Bruker Avance III 400 HD,Bruker)对混合溶液的氢谱进行表征,未发现苯环特征峰,说明析出聚酰亚胺后剩余的液相中检测不到原料。这表明单体均参与反应(表明所有原料均参与反应)。
制备例2(对比)
(S1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将3,3′,4,4′-联苯四甲酸二酐(BPDA)(14.71g,0.05mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(22.2g,0.05mol)在机械搅拌下混匀后,在-10℃下加入上述体系,进行缩聚反应18h,得到含聚酰胺酸的物料;
(S2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(40.836g,0.4mol)和吡啶(31.60g,0.4mol)的混合物,20℃下进行分子内脱水24h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚 酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-2。采用傅里叶红外光谱仪(Thermo Nicolet 380)对聚酰亚胺无规共聚物进行红外测试,红外光谱图见图1。红外测试表明PI-2具有聚酰亚胺结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
图1中,1775cm -1和1716cm -1处的峰分别为聚酰亚胺中五元亚胺环上两个羰基的对称伸缩振动峰和不对称伸缩振动峰,1370cm -1为聚酰亚胺中C-N的伸缩振动,721cm -1为亚胺环的变形振动峰,1110cm -1处为C-F的伸缩振动峰,也即,上述特征峰的出现表明PI-2的成功合成。
制备例3(对比)
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(16.51g,0.05mol)和3,3′,4,4′-二苯酮四酸二酐(BTDA)(16.11g,0.05mol)在机械搅拌下混匀后,在0℃下加入上述体系,进行缩聚反应18h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(55.1286g,0.54mol)和吡啶(42.714g,0.54mol)的混合物,0℃下进行分子内脱水24h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-3。采用傅里叶红外光谱仪(Thermo Nicolet 380)对聚酰亚胺无规共聚物进行红外测试,红外光谱图见图2。红外测试表明PI-3具有聚酰亚胺结构。此外,析出聚 酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
图2中,1776cm -1和1715cm -1处的峰分别为聚酰亚胺中五元亚胺环上两个羰基的对称伸缩振动峰和不对称伸缩振动峰,1372cm -1为聚酰亚胺中C-N的伸缩振动,1255cm -1处为芳醚中醚键的伸缩振动,721cm -1为亚胺环的变形振动峰,也即,上述特征峰的出现表明PI-3的成功合成。
制备例4
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(12.4138g,0.04mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(26.6544g,0.06mol)在机械搅拌下混匀后,在20℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(36.7524g,0.36mol)和吡啶(28.4760g,0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-4。采用傅里叶红外光谱仪(Thermo Nicolet 380)对聚酰亚胺无规共聚物进行红外测试,红外光谱图见图3。红外测试表明PI-4具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
图3中,1784cm -1和1730cm -1处的峰分别为聚酰亚胺中五元亚胺环上两个羰基的对称伸缩振动峰和不对称伸缩振动峰,1357cm -1为聚酰亚胺中C-N的伸缩振动,721cm -1为亚胺环的变形振动峰,1255cm -1 处为芳醚中醚键的伸缩振动,1144cm -1处为C-F的伸缩振动峰,也即,上述特征峰的出现表明PI-4的成功合成。
采用正电子湮灭寿命谱(PALS)分析了由本制备例的聚合物制得的平板均质膜的孔尺寸分布。请见图9。
将聚合物按照固含量10wt%加入NMP中,在50℃的摇床内搅拌至完全溶解,得到均匀稳定的铸膜液;将铸膜液冷却至室温,超声脱泡后均匀的涂覆到洁净的玻璃板表面,在70℃的鼓风烘箱内干燥6h,除去大量的溶剂后移至真空烘箱中在120℃下干燥12h进一步除去剩余溶剂;之后冷却至室温后。将粘有膜的玻璃板浸泡于去离子水中至膜从玻璃板表面脱落,得到膜。
将膜切割成约15×15mm,堆叠至总厚度约2mm。每个膜样品制备两个这样的膜叠层。使用22Na作为正电子源,其被两个7.5μm Kapton箔包裹,夹在两个膜叠层之间。采用时间分辨率为200ps的快-快系统测试膜的正电子湮灭寿命图谱。测量系统为自建系统。每个样品在真空中测量两次。所有PALS数据均使用CONTIN程序进行分析。
由图9可以看出,制备的聚酰亚胺无规共聚物膜具有双峰孔尺寸分布。
制备例5
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(0.04mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.06mol)在机械搅拌下混匀后,在50℃下加入上述体系,进行缩聚反应24h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水16h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的 混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-5。红外测试表明PI-5具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例6
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(0.03mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.07mol)在机械搅拌下混匀后,在20℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-6。红外测试表明PI-6具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例7
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(0.03mol)和4,4′-(六氟异丙烯)二酞酸酐 (6FDA)(0.07mol)在机械搅拌下混匀后,在0℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水24h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-7。红外测试表明PI-7具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例8
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(0.02mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.08mol)在机械搅拌下混匀后,在20℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-8。红外测试表明PI-8具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺 后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例9
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(0.01mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.09mol)在机械搅拌下混匀后,在20℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂中(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-9。红外测试表明PI-9具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例10
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(0.01mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.09mol)在机械搅拌下混匀后,在0℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水24h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯 烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-10。红外测试表明PI-10具有式(I)所示的结构,其中,X为Xc,Y为Ya,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
如制备例4中所述,采用正电子湮灭寿命谱(PALS)分析了由本制备例的聚合物制得的平板均质膜的孔尺寸分布。请见图9。
制备例11(对比)
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将3,3′,4,4′-联苯四甲酸二酐(BPDA)(0.02mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.08mol)在震荡条件下混匀后,在-10℃下加入上述体系,进行缩聚反应18h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.4mol)和吡啶(0.4mol)的混合物,20℃下进行分子内脱水24h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-11。红外测试表明PI-11具有聚酰亚胺结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例12(对比)
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将3,3′,4,4′-联苯四甲酸二酐(0.01mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.09mol)在震荡条件下混匀后,在-10℃下加入上述体系,进行缩聚反应18h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.4mol)和吡啶(0.4mol)的混合物,20℃下进行分子内脱水24h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-12。红外测试表明PI-12具有聚酰亚胺结构。。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例13(对比)
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将均苯四甲酸二酐(PMDA)(0.03mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(0.07mol)在超声条件下混匀后,在25℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.4mol)和吡啶(0.4mol)的混合物,0℃进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220 ℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-13。红外测试表明PI-13具有聚酰亚胺结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例14
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、间苯二胺(10.81g,0.1mol),搅拌直至物料完全溶解;将4,4’-联苯醚二酐(0.05mol)和三蝶烯基二酐(0.05mol)在机械搅拌下混匀后,在20℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-14。红外测试表明PI-14具有式(I)所示的结构,其中,X为Xc,Y为Yd,Z和Z’均为Z1。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例15
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、五蝶烯基二胺(0.1mol),搅拌直至物料完全溶解;将3,3′,4,4′-联苯四甲酸二酐(0.04mol)和3,3′,4,4′-二苯酮四酸二酐(0.06mol)在机械搅拌下混匀后,在20℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.36mol)和吡啶(0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-15。红外测试表明PI-15具有式(I)所示的结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例16
(1)氮气保护下,在1L的三口瓶中依次加入200mL无水N-甲基吡咯烷酮、五蝶烯基二胺(0.1mol),搅拌直至物料完全溶解;将4,4’-联苯醚二酐(0.02mol)和4,4′-(六氟异丙烯)二酞酸酐(0.08mol)在超声条件下混匀后,在10℃下加入上述体系,进行缩聚反应12h,得到含聚酰胺酸的物料;
(2)向步骤(1)得到的聚酰胺酸的物料中加入乙酸酐(0.52mol)和吡啶(0.52mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入600mL的N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂(500mL∶500mL)中,使聚酰亚胺析出得到聚酰亚胺,之后用水和乙醇的混合液(1500mL∶1500mL)淋洗(3次),经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺无规共聚物,计为PI-16。红外测试表明PI-16具有式(I)所示的结构3。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例17
按照制备例4的方式进行,不同的是,用等摩尔量的三蝶烯基二酐代替4,4′-(六氟异丙烯)二酞酸酐(6FDA),用摩尔量的五蝶烯基二胺代替间苯二胺。制备得到聚酰亚胺无规共聚物,计为PI-17。具体反应条件见表1。红外测试表明PI-17具有式(I)所示的结构,其中,X为Xc,Y为Yd,Z和Z’均为Z3。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例18
按照制备例4的方式进行,不同的是,用等摩尔量的3,3′,4,4′-二苯酮四酸二酐代替4,4′-(六氟异丙烯)二酞酸酐,并用等摩尔量的五蝶烯基二胺代替间苯二胺。制备得到聚酰亚胺无规共聚物,计为PI-18。具体反应条件见表1。红外测试表明PI-18具有式(I)所示的结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例19
按照制备例4的方式进行,不同的是,用等摩尔量的3,3′,4,4′-联苯四甲酸二酐代替4,4-联苯醚二酐(ODPA),并用等摩尔量的五蝶烯基二胺代替间苯二胺。制备得到聚酰亚胺无规共聚物,计为PI-19。具体反应条件见表1。红外测试表明PI-19具有式(I)所示的结构。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例20
按照实施例4的方式进行,不同的是,用等摩尔量的五蝶烯基二胺代替间苯二胺。制备得到聚酰亚胺无规共聚物,计为PI-20。具体反应条件见表1。红外测试表明PI-20具有式(I)所示的结构,其中,X 为Xc,Y为Ya,Z和Z’均为Z3。此外,析出聚酰亚胺后剩余的液相中检测不到原料,表明所有原料均参与反应。
制备例21
参照文献“YAMAMOTO H,MI Y,STERN S A.Structure/Permeability Relationships of Polyimide Membranes.II.Journal of Polymer Science:Part B:Polymer Physics 1990,28:2291-2304.”制备6FDA-mPDA共聚物。
制备例22
参照文献“LUO S J,LIU Q,ZHANG B H,et al.Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation.J Membrane Sci 2015,480:20-30.”制备6FDA-PPDA共聚物。
制备例23
以4,4-联苯醚二酐(0.04mol)和4,4-(六氟异丙烯)二钛酸酐(0.06mol)作为二酐单体。氮气保护下,在0.5L的三口瓶中分别加入80mL(A)和120mL(B)无水N-甲基吡咯烷酮,向A、B中加入分别加入0.04mol和0.06mol间苯二胺,搅拌直至物料完全溶解;将4,4-联苯醚二酐(ODPA)(12.4138g,0.04mol)和4,4′-(六氟异丙烯)二酞酸酐(6FDA)(26.6544g,0.06mol)分别加入到A和B中,在20℃下加入上述体系,进行缩聚反应8h,将两个反应体系中溶液移至1L的三口瓶中,20℃条件下继续反应4h,得到聚酰胺酸溶液,向聚酰胺酸的物料中加入乙酸酐(36.7524g,0.36mol)和吡啶(28.4760g,0.36mol)的混合物,20℃下进行分子内脱水18h,得到含聚酰亚胺的物料;之后向含聚酰亚胺的物料中加入N-甲基吡咯烷酮(NMP)进行稀释,并在搅拌下将上述稀释物料倒入水和乙醇的混合溶剂中,使聚酰亚胺析出 得到聚酰亚胺,之后用水和乙醇的混合液淋洗,经抽滤、烘干(220℃真空干燥24小时;然后70℃鼓风干燥48小时)后得到聚酰亚胺嵌段共聚物。
表1
Figure PCTCN2022100611-appb-000016
以下实施例用于说明聚酰亚胺基中空纤维膜的制备。
中空纤维膜制备实施例1
(1)在带有搅拌装置的釜中加入30wt%的上述制备例10得到的聚酰亚胺无规共聚物、45wt%的NMP、10wt%的乙醇(沸点为78℃)、10wt%的THF(沸点为68.28℃)以及5wt%的硝酸锂,加热至50℃,并在氮气保护条件下搅拌(转速600r/min)36小时,停止搅拌后,在 25℃、-0.1MPa、转速10r/min下脱泡24小时,之后在50℃下过滤网(孔径100目)过滤,得到铸膜液;
(2)采用计量泵将铸膜液和内芯液(NMP∶水=95wt%∶5wt%)分别以0.8MPa铸膜液压力和20Pa内芯液压力输送至单孔喷丝头(规格0.6/0.4/0.2),内芯液和铸膜液一起经喷丝头挤出,经过10cm的空气间隙,之后置入50℃的水中固化得到聚酰亚胺基中空纤维膜前体;其中,喷丝头温度(挤出温度)为75℃;铸膜液和内芯液进入中空喷丝头的流量分别为6mL/min和2mL/min;
(3)步骤(2)得到的聚酰亚胺中空纤维膜前体经过卷绕机收卷(在直径为50cm的圆筒上收卷,一圈为157cm),再放入水、乙醇、正己烷中依次萃取两次,萃取时间为3小时;之后将萃取后的中空纤维膜置于通风橱室温经空气自然干燥12小时,得到聚酰亚胺基中空纤维膜。其中,收卷的速率为1m/s。
将得到的中空纤维膜经压汞法表征,孔隙率为65.5%。致密层厚度为150nm。力学性能表征(根据GB/T1040.1-2006)结果是膜丝拉断力6N,断裂伸长率50%;膜丝采用氘代试剂DMSO溶解后进行 1H NMR波谱分析,见图8。
中空纤维膜制备实施例2
(1)在带有搅拌装置的釜中加入27.5wt%的上述制备例4得到的聚酰亚胺无规共聚物、48.5wt%的DMF、10wt%的乙醇(沸点为78℃)、10wt%的THF(沸点为68.28℃)以及4wt%的硝酸锂,加热至50℃,并在氮气保护条件下搅拌(转速120r/min)36小时,停止搅拌后,在25℃、-0.1MPa、转速10r/min下脱泡24小时,之后在50℃下过滤网(孔径100目)过滤,得到铸膜液;
(2)采用计量泵将铸膜液和内芯液(NMP∶水=95wt%∶5wt%)分别以0.8MPa铸膜液压力和20Pa内芯液压力输送至单孔喷丝头(规格0.6/0.4/0.2),内芯液和铸膜液一起经喷丝头挤出,经过5cm的空气 间隙,之后置入50℃的水中固化得到聚酰亚胺基中空纤维膜前体;其中,喷丝头温度为70℃;铸膜液和内芯液进入中空喷丝头的流量分别为8mL/min和2.5mL/min;
(3)步骤(2)得到的聚酰亚胺中空纤维膜前体经过卷绕机收卷(在直径为50cm的圆筒上收卷,一圈为157cm),再放入水、乙醇、正己烷中依次萃取两次,萃取时间为3小时;之后将萃取后的中空纤维膜置于通风橱室温经空气自然干燥12小时,得到聚酰亚胺基中空纤维膜。其中,收卷的速率为1m/s。
将得到的中空纤维膜经压汞法表征,支撑层的孔隙率为67.5%。致密层厚度为400nm。中空纤维膜断面的电镜扫描图见图4。
中空纤维膜制备实施例3(对比)
(1)在带有搅拌装置的釜中加入25wt%的上述制备例11得到的聚酰亚胺无规共聚物、50wt%的NMP、10wt%的乙醇(沸点为78℃)、10wt%的THF(沸点为68.28℃)以及5wt%的氯化锂,加热至50℃,并在氮气保护条件下搅拌(转速100r/min)36小时,停止搅拌后,在25℃、-0.1MPa、转速10r/min下脱泡24小时,之后在50℃下过滤网(孔径100目)过滤,得到铸膜液;
(2)采用计量泵将铸膜液和内芯液(NMP∶水=30wt%∶70wt%)分别以0.8MPa铸膜液压力和20Pa内芯液压力输送至单孔喷丝头(规格0.6/0.4/0.2),内芯液和铸膜液一起经喷丝头挤出,经过30cm的空气间隙,之后置入50℃的水中固化得到聚酰亚胺基中空纤维膜前体;其中,喷丝头温度为60℃;铸膜液和内芯液进入中空喷丝头的流量分别为6mL/min和2mL/min;
(3)步骤(2)得到的聚酰亚胺中空纤维膜前体经过卷绕机收卷(在直径为50cm的圆筒上收卷,一圈为157cm),再分别放入水、乙醇、正己烷中依次萃取两次,萃取时间为3小时;之后将萃取后的中空纤维膜置于通风橱室温经空气自然干燥12小时,得到聚酰亚胺基中 空纤维膜。其中,收卷的速率为1.5m/s。
将得到的中空纤维膜经压汞法表征,孔隙率为70%。致密层厚度为500nm。中空纤维膜断面的电镜扫描图见图5。
中空纤维膜制备实施例4-7
重复中空纤维膜制备实施例1,不同的是,改变稀释剂配方、制备条件的参数(例如挤出温度)。具体条件以及制备的中空纤维膜的致密层的厚度见表2。
中空纤维膜制备实施例8
重复中空纤维膜制备实施例1,不同的是,改变添加剂的加入比例。
其中,加入的物料为20wt%的聚酰亚胺无规共聚物、50wt%的NMP、10wt%的乙醇、10wt%的THF以及10wt%的硝酸锂。
最终制备的中空纤维膜的致密层的厚度见表2。
中空纤维膜制备实施例9-11
重复中空纤维膜制备实施例1,不同的是,分别采用以上制备例4、制备例14和制备例17得到的聚酰亚胺共聚物代替制备例10得到的聚酰亚胺无规共聚物。
最终制备的中空纤维膜的致密层的厚度见表2。
中空纤维膜制备实施例12
重复中空纤维膜制备实施例1,不同的是,改变稀释剂配方、制备条件的参数(例如挤出温度)。
具体条件以及制备的中空纤维膜的致密层的厚度见表2。中空纤维膜断面的电镜扫描图见图6。
中空纤维膜制备实施例13
(1)在带有搅拌装置的釜中加入30wt%的上述制备例10得到的聚酰亚胺无规共聚物、45wt%的NMP、12wt%的乙醇(沸点为78℃)、12wt%的THF(沸点为68.28℃)以及1wt%的硝酸锂,加热至50℃,并在氮气保护条件下搅拌(转速60r/min)36小时,停止搅拌后,在25℃、-0.1MPa、转速3r/min下脱泡24小时,之后在50℃下过滤网(孔径100目)过滤,得到铸膜液;
(2)采用计量泵将铸膜液和内芯液(NMP∶水=70wt%∶30wt%)分别以1.8MPa铸膜液压力和120Pa内芯液压力输送至单孔喷丝头(规格0.6/0.4/0.2),内芯液和铸膜液一起经喷丝头挤出,经过15cm的空气间隙,之后置入50℃的水中固化得到聚酰亚胺基中空纤维膜前体;其中,喷丝头温度(挤出温度)为60℃;铸膜液和内芯液进入中空喷丝头的流量分别为6mL/min和2mL/min;
(3)步骤(2)得到的聚酰亚胺中空纤维膜前体经过卷绕机收卷(在直径为50cm的圆筒上收卷,一圈为157cm),再放入水、乙醇、正己烷中依次萃取两次,萃取时间为3小时;之后将萃取后的中空纤维膜置于通风橱室温经空气自然干燥12小时,得到聚酰亚胺基中空纤维膜。其中,收卷的速率为1m/s。
中空纤维膜制备实施例14
(1)在带有搅拌装置的釜中加入30wt%的上述制备例10得到的聚酰亚胺无规共聚物、45wt%的NMP、12.5wt%的乙醇(沸点为78℃)、12.5wt%的THF(沸点为68.28℃),加热至50℃,并在氮气保护条件下搅拌(转速60r/min)36小时,停止搅拌后,在25℃、-0.1MPa、转速3r/min下脱泡24小时,之后在50℃下过滤网(孔径100目)过滤,得到铸膜液;
(2)采用计量泵将铸膜液和内芯液(NMP∶水=70wt%∶30wt%)分别以1.8MPa铸膜液压力和120Pa内芯液压力输送至单孔喷丝头(规格0.6/0.4/0.2),内芯液和铸膜液一起经喷丝头挤出,经过15cm的空 气间隙,之后置入50℃的水中固化得到聚酰亚胺基中空纤维膜前体;其中,喷丝头温度(挤出温度)为65℃;铸膜液和内芯液进入中空喷丝头的流量分别为8mL/min和2.5mL/min;
(3)步骤(2)得到的聚酰亚胺中空纤维膜前体经过卷绕机收卷(在直径为50cm的圆筒上收卷,一圈为157cm),再放入水、乙醇、正己烷中依次萃取两次,萃取时间为3小时;之后将萃取后的中空纤维膜置于通风橱室温经空气自然干燥12小时,得到聚酰亚胺基中空纤维膜。其中,收卷的速率为1m/s。
中空纤维膜制备实施例15-16(对比)
重复中空纤维膜制备实施例1,不同的是,分别采用以上制备例11和制备例13得到的聚酰亚胺共聚物代替制备例10得到的聚酰亚胺无规共聚物,并调节条件和参数。
具体条件以及制备的中空纤维膜的致密层的厚度见表2。
中空纤维膜制备实施例17-18
重复中空纤维膜制备实施例14,不同的是,分别采用以上制备例16和制备例20得到的聚酰亚胺共聚物代替制备例10得到的聚酰亚胺无规共聚物,并调节条件和参数。
具体条件以及制备的中空纤维膜的致密层的厚度见表2。
对比中空纤维膜制备实施例S2
重复中空纤维膜制备实施例1,不同的是,制备铸膜液的过程中不加入THF,其中,加入的物料为25wt%的聚酰亚胺无规共聚物、50wt%的NMP、20wt%的乙醇以及5wt%的硝酸锂。
最终,制备得到的中空纤维膜断面的电镜扫描图见图7。可以看出,本对比例制备的中空纤维膜呈多孔结构,未形成有效的分离皮层(致密层)。
对比中空纤维膜制备实施例S3
重复中空纤维膜制备实施例1,不同的是,制备铸膜液的过程中不加入NMP,其中,加入的物料为30wt%的聚酰亚胺无规共聚物、28wt%的乙醇、28wt%的THF以及14wt%的硝酸锂。
最终,制备得到的中空纤维膜断丝,不具备可纺性。
对比中空纤维膜制备实施例S4
重复中空纤维膜制备实施例1,不同的是,在100℃进行挤出。
最终,制备得到聚酰亚胺中空纤维膜成膜性差,未形成有效的分离皮层。
表2中,“溶剂1”表示聚酰亚胺的良溶剂,“溶剂2”表示第一聚酰亚胺的不良溶剂,“溶剂3”表示第二聚酰亚胺的不良溶剂;“致密层厚度”表示聚酰亚胺基中空纤维膜致密层的厚度;“间隙”表示中空纤维膜制备过程中的空气间隙。
表2
Figure PCTCN2022100611-appb-000017
测试例1
将以上中空纤维膜制备实施例制备的中空纤维膜进行气体分离性能测试。
渗透速率(单位GPU)的测试方法:在20℃,测量0.1MPa压力差下,单位时间内透过单位膜面积的气体流量。分离系数α无量纲,用于表征气体组分在膜中的选择透过能力,分离系数为两种气体在膜中的渗透速率之比。测试结果见表3。其中,1GPU=10 -6cm 3(STP)/(cm 2·s·cmHg)。
本发明还对市售聚酰亚胺料Torlon 4000TF制备的中空纤维膜(E1)进行气体分离性能测试。测试结果见表3。
E1的制备:重复中空纤维膜制备实施例1,不同的是采用市售聚酰亚胺料Torlon 4000TF,制备得到聚酰亚胺中空纤维膜(E1)。
表3
Figure PCTCN2022100611-appb-000018
可以看出市售聚酰亚胺料制备的聚酰亚胺中空纤维膜与制备实施例1制得的聚酰亚胺中空纤维膜有显著区别。测试力学性能为:膜丝拉断力2.0N、断裂伸长率为9%。可见,制备实施例1制得的聚酰亚胺中空纤维膜力学性能明显优于该市售聚酰亚胺料制备的中空纤维膜。
以下实施例用于说明提纯氦气的过程。
实施例1
某气田采出的天然气进行多级闪蒸后得到原料气,其中,原料气中氦气的体积分数为8.5%,其他气体组成包括:体积分数为35%的甲烷,体积分数为37.3%的氮气,体积分数为2.1%的氢气,体积分数为7.5%的二氧化碳、体积分数为0.1%的水以及体积分数为9.5%的氧气。
将原料气(空速为200m 3/m 3·h)通入催化脱氢单元,其中,催化脱氢装置中采用Pt作为催化剂,催化氧化反应的温度为110℃,并保持氧气的体积分数大于等于8%,将来自催化脱氢装置出口的气体换热降温至95℃后送入吸附装置(碱式吸附,其中,吸附剂为碱石灰)除去水蒸气和二氧化碳气体;之后原料气中剩余气体经压缩和换热,以5MPa的压力和90℃的温度通入采用上述中空纤维膜制备实施例4制备的聚酰亚胺中空纤维膜的膜组件进行一级和二级聚合物膜分离,得到粗氦气;之后粗氦气再经压缩和换热,以10MPa的压力和400℃的温度通入钯铜合金膜(合金膜的厚度20μm,为购自义乌市锐胜新材料科技有限公司的PdAM-600)分离单元进行深度脱氢,得到5N级超纯氦气。其中,每一阶段分离后气体组分的体积分数见表4。
表4
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 8.5 35 37.3 7.5 2.1 0.1 9.5
催化氧化 9 36.6 39.5 9.2 0.005 1.7 4
碱式吸附 12 39 40.43 0 0.018 0.0001 5.41
一级聚合物膜分离 95.1 0.95 3.89 0 0.04 0 1
二级聚合物膜分离 99.933 0.0002 0.015 0 0.05 0 0
钯铜合金膜分离 99.999 0.0002 0 0 0.00016 0 0
实施例2
原料气为液化天然气站的闪蒸汽(BOG),其中,氦气的体积分数为15.73%,其他气体组成包括:体积分数为19.9%的甲烷,体积分 数为57.7%的氮气,体积分数为6.62%的氢气,以及体积分数之和为0.05%的氧气。
将原料气(空速为600m 3/m 3·h)通入催化脱氢单元,其中,催化脱氢装置中采用Ru作为催化剂,催化氧化反应的温度为90℃,并保持氧气的体积分数大于等于8%,将来自催化脱氢装置出口的气体换热降温至95℃后送入吸附装置(碱式吸附,其中,吸附剂为碱石灰)除去水蒸气;之后原料气中剩余气体经压缩和换热,以3MPa的压力和90℃的温度通入采用上述中空纤维膜制备实施例2制备的聚酰亚胺中空纤维膜的膜组件进行一级和二级聚合物膜分离,得到粗氦气;之后粗氦气再经压缩和换热,以15MPa的压力和277℃的温度通入钯金合金膜(合金膜的厚度6μm,为购自南京高谦功能材料科技有限公司的UHP-2L)分离单元进行深度脱氢,得到5N级超纯氦气。其中,每一阶段分离后气体组分的体积分数见表5。
表5
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 15.73 19.9 57.7 0 6.62 0 0.05
催化氧化 14.72 18.63 54.01 0.001 0.02 9.71 2.92
碱式吸附 16.31 20.63 59.81 0 0.02 0.00009 3.24
一级聚合物膜分离 99.37 0.25 0.22 0 0.12 0 0.04
二级聚合物膜分离 99.88 0.0005 0.0001 0 0.12 0 0.0001
钯钇合金膜分离 99.999 0.0005 0.0001 0 0.0003 0 0.0001
实施例3
在某气田采出的天然气经预处理(两级闪蒸)之后得到原料气,其中,原料气中氦气的体积分数为19.7%,其他气体组成包括:体积分数为15.9%的甲烷,体积分数为53.7%的氮气,体积分数为0.05%的氢气,体积分数为10.65%的二氧化碳、体积分数为2.5%的水以及体积分数为2.15%的氧气。
将原料气(空速为520m 3/m 3·h)通入催化脱氢单元,其中,催化脱氢装置中采用Pd作为催化剂,催化氧化反应的温度为120℃,并保 持氧气的体积分数大于等于8%,将来自催化脱氢装置出口的气体换热降温至80℃后送入吸附装置(碱式吸附,其中,吸附剂为碱石灰)除去水蒸气和二氧化碳气体;之后原料气中剩余气体经压缩和换热,以5MPa的压力和85℃的温度通入采用上述中空纤维膜制备实施例6制备的聚酰亚胺中空纤维膜的膜组件进行一级、二级、三级和四级聚合物膜分离,得到粗氦气;之后粗氦气再经压缩和换热,以4MPa的压力和304℃的温度通入钯金合金膜(厚度10μm,为购自南京高谦功能材料科技有限公司的UHP-500)分离单元进行深度脱氢,得到5N级超纯氦气。其中,每一阶段分离后气体组分的体积分数见表6。
表6
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 19.7 15.9 53.7 6 0.05 2.5 2.15
催化氧化 19.32 15.60 52.67 5.89 0.0002 2.56 3.96
碱式吸附 21.11 17.03 57.53 0.00001 0.0003 0.0001 4.33
一级聚合物膜分离 95.63 0.39 2.61 0.00001 0.001 0 1.37
二级聚合物膜分离 99.87 0.002 0.03 0 0.001 0 0.1
三级聚合物膜分离 99.99 0.00001 0 0 0.001 0 0.01
四级聚合物膜分离 99.9985 0 0 0 0.001 0 0.0005
钯铈合金膜分离 99.9995 0 0 0 0 0 0.0005
实施例4
某富氦含氢气体中氦气的体积分数为49.33%,其他气体组成包括:体积分数为20.09%的氢气,体积分数为29.15%的二氧化碳、体积分数为1.43%的水。
将原料气(空速为150m 3/m 3·h)通入催化脱氢单元,其中,催化脱氢装置中采用Pt作为催化剂,催化氧化反应的温度为120℃,并保持氧气的体积分数大于等于8%,将来自催化脱氢装置出口的气体换热降温至90℃后送入吸附装置(碱式吸附,其中,吸附剂为碱石灰)除去水蒸气和二氧化碳气体;之后原料气中剩余气体经压缩和换热,以2MPa的压力和50℃的温度通入采用上述中空纤维膜制备实施例10制备的聚酰亚胺中空纤维膜的膜组件进行聚合物膜分离,得到粗氦气; 之后粗氦气再经压缩和换热,以22MPa的压力和489℃的温度通入钯银合金膜(厚度为12μm,为购自义乌市锐胜新材料科技有限公司的PdAM-800)分离单元进行深度脱氢,得到5N级超纯氦气。其中,每一阶段分离后气体组分的体积分数见表7。
表7
编号\组成mol% 氦气 CO 2 氢气 氧气
原料气 49.33 29.15 20.09 1.43 0
催化氧化 50.43 29.80 0.04 19.73 0.003
碱式吸附 99.91 0.0001 0.08 0.001 0.006
聚合物膜分离 99.92 0.00002 0.08 0 0.0004
钯银合金膜分离 99.999 0.00002 0.0003 0 0.0004
实施例5
按照实施例1的方式进行,不同的是,采用上述中空纤维膜制备实施例7制备的聚酰亚胺中空纤维膜的膜组件进行聚合物膜分离。其中,每一阶段分离后气体组分的体积分数见表8。
表8
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 8.5 35 37.3 7.5 2.1 0.1 8.5
催化氧化 8.96 36.89 39.31 7.90 0.02 2.24 4.68
碱式吸附 9.97 41.05 43.75 0.00001 0.02 0.001 5.21
一级聚合物膜分离 99.38 0.15 0.31 0.00001 0.09 0 0.07
二级聚合物膜分离 99.96 0.0001 0.0002 0 0.04 0 0.0001
钯铜合金膜分离 99.999 0.0001 0.0002 0 0.0003 0 0.0001
实施例6
按照实施例1的方式进行,不同的是,采用上述中空纤维膜制备实施例1制备的聚酰亚胺中空纤维膜的膜组件进行聚合物膜分离。其中,每一阶段分离后气体组分的体积分数见表9。
表9
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 8.5 35 37.3 7.5 2.1 0.1 8.5
催化氧化 9.07 37.34 39.79 8.00 0.00 2.37 3.43
碱式吸附 10.12 41.66 44.39 0.00001 0.01 0.001 3.83
一级聚合物膜分离 99.47 0.15 0.31 0.00001 0.02 0 0.05
二级聚合物膜分离 99.99 0.0001 0.0002 0 0.01 0 0.0001
钯铜合金膜分离 99.9996 0.0001 0.0002 0 0.00005 0 0.0001
对比例1
按照实施例3的方式进行,不同的是,不设置催化氧化装置。其中,每一阶段分离后气体组分的体积分数见表10。
表10
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 19.7 15.9 53.7 6 0.05 2.5 2.15
碱式吸附 21.53 17.38 58.69 0.00001 0.05 0.000 2.35
一级聚合物膜分离 92.79 3.74 2.53 0.00002 0.22 0 0.71
二级聚合物膜分离 99.49 0.20 0.03 0 0.23 0 0.05
三级聚合物膜分离 99.77 0.01 0.0003 0 0.22 0 0.004
四级聚合物膜分离 99.79 0.0005 0 0 0.21 0 0.0003
钯金合金膜分离 99.998 0.0005 0 0 0.001 0 0.0003
对比例2
按照实施例3的方式进行,不同的是,不设置聚合物膜分离单元进行分离。其中,每一阶段分离后气体组分的体积分数见表11。
表11
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 19.7 15.9 53.7 6 0.05 2.5 2.15
催化氧化 19.50 15.74 53.15 5.939 0.0002 2.557 3.11
碱式吸附 21.31 17.20 58.09 0 0.0002 0.001 3.4
钯金合金膜分离 21.31 17.20 58.09 0 0 0.001 3.4
对比例3
按照实施例3的方式进行,不同的是,将催化脱氢单元与聚合物 膜分离单元的顺序进行替换。其中,每一阶段分离后气体组分的体积分数见表12。
表12
编号\组成mol% 氦气 甲烷 氮气 CO 2 氢气 氧气
原料气 19.7 15.9 53.7 6 0.05 2.5 2.15
一级聚合物膜分离 83.90 3.39 2.29 9.58 0.20 0 0.64
二级聚合物膜分离 95.42 0.19 0.03 4.09 0.22 0 0.05
三级聚合物膜分离 98.20 0.01 0.0003 1.58 0.21 0 0.004
四级聚合物膜分离 99.20 0.0005 0 0.60 0.21 0 0.0003
催化氧化 95.30 0.0005 0 0.57 0.0006 0.17 3.96
碱式吸附 96.01 0.0005 0 0 0.0006 0.00007 3.99
钯金合金膜分离 96.01 0.0005 0 0 0.00004 0.00007 3.99
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
已经为了说明和描述提供了实施方案的上述描述。其无意是穷举性的或限制本公开。一个特定实施方案的单独要素或特征通常不限于该特定实施方案,而是在适用时可互换并可用于选择的实施方案中,即使没有明确展示或描述。其也可以以许多方式改变。此类变动不被视为背离本公开,并且所有这样的修改都意在包括在本公开的范围内。

Claims (20)

  1. 一种聚酰亚胺无规共聚物,其特征在于,所述共聚物具有式(I)所示的结构:
    Figure PCTCN2022100611-appb-100001
    式(I)中,m和n各自独立地为10-2000的整数;
    X选自式(X3)和(X4)中的任意一种;
    Figure PCTCN2022100611-appb-100002
    式(X3)和式(X4)中,R 5、R 6、R 9和R 10各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C10的芳基;
    Y选自式(Y1)、(Y3)、(Y4)和蝶烯基结构中的任意一种;
    Figure PCTCN2022100611-appb-100003
    式(Y1)和(Y3)中,R 7、R 8、R 11、R 12、R 13、和R 14各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C10的芳基;
    Z和Z’各自独立地选自蝶烯基结构和任选被取代的式(Z1);
    Figure PCTCN2022100611-appb-100004
  2. 根据权利要求1所述的共聚物,其中,m和n各自独立地为50-1000的整数;
    和/或,0.95≥n/(m+n)≥0.5,优选地,0.9≥n/(m+n)≥0.6。
  3. 根据权利要求1或2所述的共聚物,其中所述蝶烯基结构选自三蝶烯基结构或五蝶烯基结构,优选作为Y的蝶烯基结构为式(Y5) 和/或作为Z和Z’的蝶烯基结构各自独立地为式(Z2):
    Figure PCTCN2022100611-appb-100005
    式(Y5)中,R 15和R 16各自独立地为H、任选被取代的C1-C4的烷基、任选被取代的C6-C10的芳基;和
    式(Z2)中,Ra和Rb各自独立地为H、C1-C4的烷基或C1-C4的卤代烷基。
  4. 根据权利要求1-3中任一项所述的共聚物,其中,X选自以下所示结构中的任一种,
    Figure PCTCN2022100611-appb-100006
    和/或,Y选自以下所示结构中的任一种,
    Figure PCTCN2022100611-appb-100007
    和/或,Z和Z’各自独立地选自Z1或Z3所示的结构,
    Figure PCTCN2022100611-appb-100008
  5. 根据权利要求4所述的共聚物,其中
    或者,X为Xb,Y为Ya,Z和Z’均为Z1;
    或者,X为Xb,Y为Yd,Z和Z’均为Z1;
    或者,X为Xc,Y为Ya,Z和Z’均为Z1;
    或者,X为Xc,Y为Yc,Z和Z’均为Z1;
    或者,X为Xc,Y为Y4,Z和Z’均为Z1;
    或者,X为Xc,Y为Yd,Z和Z’均为Z1;
    或者,X为Xb,Y为Ya,Z和Z’均为Z3;
    或者,X为Xb,Y为Yd,Z和Z’均为Z3;
    或者,X为Xc,Y为Ya,Z和Z’均为Z3;
    或者,X为Xc,Y为Yd,Z和Z’均为Z3。
  6. 一种制备根据权利要求1-5任一项所述的聚酰亚胺无规共聚物的方法,其特征在于,所述方法包括以下步骤:
    (1)在第一溶剂存在下,将包含式(II)所示的二酐单体和式(III)所示的二酐单体的混合物与二胺单体混合,进行缩聚反应,得到聚酰胺酸;
    Figure PCTCN2022100611-appb-100009
    (2)将步骤(1)得到的聚酰胺酸进行酰亚胺化,得到聚酰亚胺 无规共聚物。
  7. 一种膜,其特征在于,所述膜由权利要求1-5中任意一项所述的聚酰亚胺无规共聚物制备。
  8. 根据权利要求7所述的膜,其中所述膜是分离膜,优选气体分离膜。
  9. 根据权利要求7或8所述的膜,其中所述膜是中空纤维膜,优选所述中空纤维膜包括支撑层和附着在支撑层外表面的致密层,优选地所述致密层的厚度小于或等于1000nm并且所述中空纤维膜的孔隙率为40-80%,更优选地所述致密层的厚度为100-500nm并且所述中空纤维膜的孔隙率为50-70%。
  10. 根据权利要求1-5任一项所述的聚酰亚胺无规共聚物或权利要求7-9任一项所述的膜在气体分离中的应用。
  11. 一种制备聚酰亚胺基中空纤维膜的方法,其特征在于,所述方法包括以下步骤:
    (1)制备包含根据权利要求1-5中任一项所述的聚酰亚胺的铸膜液;
    (2)将内芯液和铸膜液挤出,然后经固化得到中空纤维膜前体;
    (3)将所述中空纤维膜前体进行收卷和萃取后得到所述聚酰亚胺基中空纤维膜。
  12. 根据权利要求11所述的制备聚酰亚胺基中空纤维膜的方法,其特征在于,所述方法包括以下步骤:
    (1)制备包含所述聚酰亚胺、稀释剂和任选的添加剂的铸膜液,所述稀释剂含有聚酰亚胺的良溶剂、第一聚酰亚胺的不良溶剂和第二聚酰亚胺的不良溶剂,其中,第一聚酰亚胺的不良溶剂的沸点B1高于第二聚酰亚胺不良溶剂的沸点B2;
    (2)将内芯液和铸膜液在温度T下进行挤出,然后经固化得到中空纤维膜前体,其中,B2≤T<B1;
    (3)将所述中空纤维膜前体进行收卷和萃取后得到所述聚酰亚胺 基中空纤维膜。
  13. 根据权利要求12所述的方法,其中,步骤(1)中,以铸膜液的总重量为基准,所述聚酰亚胺的含量为20-40wt%,所述稀释剂的含量为50-75wt%,当存在时所述添加剂的含量为0.5-10wt%;优选地,以铸膜液的总重量为基准,所述聚酰亚胺的含量为25-35wt%,所述稀释剂的含量为60-70wt%,当存在时所述添加剂的含量为1-5wt%;和/或,
    其中,所述第一聚酰亚胺的不良溶剂的沸点B1比第二聚酰亚胺不良溶剂的沸点B2高5-200℃,优选高10-20℃;
    和/或,所述第一聚酰亚胺的不良溶剂选自C2-C4的饱和一元醇、γ-丁内酯和水及其混合物中的至少一种;
    和/或,所述第二聚酰亚胺的不良溶剂选自C3-C5的烷烃、四氢呋喃、丙酮和氯仿及其混合物中的至少一种;
    和/或,所述聚酰亚胺的良溶剂选自N-甲基吡咯烷酮、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺及其混合物中的至少一种;
    和/或,所述聚酰亚胺的良溶剂、第一聚酰亚胺的不良溶剂和第二聚酰亚胺的不良溶剂的重量比为1∶(0.001-0.5)∶(0.1-0.5),优选为1∶(0.15-0.3)∶(0.15-0.3);
    和/或,其中,所述添加剂为锂盐,优选选自硝酸锂和/或氯化锂;
    和/或,其中,步骤(1)中,所述铸膜液按照包括如下步骤的方法制备:将聚酰亚胺、稀释剂和任选的添加剂在20-50℃、100-1200r/min下搅拌12-48h,之后通过真空脱泡、过滤除去杂质制得;优选地,所述真空脱泡的条件包括:压力为-0.1MPa至-0.095MPa,温度为20-30℃,转速为10-50r/min,时间为12-24h;
    和/或,步骤(2)中,所述内芯液包括溶剂A和溶剂B,其中,所述溶剂A选自N-甲基吡咯烷酮、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺及其混合物中的至少一种,所述溶剂B选自C1-C4的饱和一元醇、γ-丁内酯和水及其混合物中的至少一种;优选地,所述溶剂A占所述内 芯液总重量的50-99wt%,优选为60-95wt%;
    和/或,所述挤出在喷丝头中进行,其中,所述挤出的温度为40-75℃,优选为60-70℃;
    和/或,挤出过程中,所述铸膜液的流量为6-30mL/min;
    和/或,挤出过程中,所述内芯液的流量为2-10mL/min;
    和/或,在固化之前,将挤出得到的中空纤维通过空气间隙;优选地,所述空气间隙的高度为5-30cm;优选地,所述空气间隙采用环形套管加热,优选控制温度为50-150℃;
    和/或,所述固化在凝固浴中进行;优选地,所述凝固浴使用的浴液为溶剂C和/或水,所述凝固浴的温度为40-70℃;优选地,所述溶剂C选自C1-C4的饱和一元醇、γ-丁内酯和水及其混合物中的至少一种;
    和/或,其中,步骤(3)中,所述收卷的速率为0.5-2m/s;
    和/或,所述萃取用的萃取剂选自水、C1-C4的饱和一元醇和C5-C7的烷烃及其混合物中的至少一种;
    和/或,所述萃取的条件包括:温度为20-35℃,时间为3-48h;
    和/或,所述萃取后还包括干燥的步骤;优选地,所述干燥的条件包括:温度为20-35℃,时间为2-15h。
  14. 一种提纯氦气的系统,该系统包括催化脱氢分离单元、聚合物膜分离单元以及钯膜分离单元;其特征在于,所述聚合物膜分离单元包括权利要求7-9中任一项所述的膜。
  15. 根据权利要求14所述的提纯氦气的系统,其特征在于,所述催化脱氢分离单元包括催化氧化装置和吸附装置。
  16. 一种提纯氦气的方法,该方法包括:将含氦气的原料气依次进行催化脱氢分离、聚合物膜分离以及钯膜脱氢分离,得到纯化的氦气;其特征在于,所述聚合物膜分离包括使用权利要求7-9中任一项所述的膜。
  17. 根据权利要求16所述的方法,其中,所述原料气选自天然气、 页岩气、富氦含氢气和液化天然气闪蒸汽(BOG)中的至少一种;
    和/或,其中,所述催化脱氢分离包括催化氧化和吸附,所述催化氧化中采用的催化剂为贵金属催化剂,选自Pt、Pd、Rh、Ru和Au及其混合物中的至少一种;
    和/或,所述催化氧化的条件包括:温度为40-150℃,优选为50-120℃;所述原料气的空速为1-10000m 3/m 3·h,优选为10-1000m 3/m 3·h;优选地,所述催化氧化的条件使得所述原料气中的氢气中的90-99体积%转化为H 2O;优选地,所述吸附的方式为碱式吸附;优选地,所述吸附用的吸附剂选自氢氧化钾、氢氧化钠、生石灰和碱石灰及其混合物中的至少一种;优选地,所述吸附的条件包括:吸附温度为70-90℃。
  18. 根据权利要求16-17中任意一项所述的方法,其中,所述聚合物膜分离采用一级或多级分离的方式;
    和/或,所述聚合物膜分离的条件包括:在进行聚合物膜分离前,将催化脱氢分离得到的气体压力控制为0.01-50MPa,气体温度控制为20-100℃。
  19. 根据权利要求16-18中任意一项所述的方法,其中,所述钯膜脱氢分离的条件包括:在进行钯膜脱氢分离前,将聚合物膜分离得到的气体温度控制为50-500℃,优选控制为200-500℃;气体压力控制为1-50MPa,优选控制为2-20MPa。
  20. 根据权利要求16-19中任意一项所述的方法,其中,所述钯膜脱氢分离中采用的钯膜的厚度为5-100μm;
    和/或,所述钯膜为管状膜或多孔载体复合膜;优选地,所述多孔载体复合膜中多孔载体选自多孔陶瓷和多孔不锈钢中的一种;
    和/或,所述钯膜为纯钯膜或钯基合金膜;优选地,所述钯基合金膜选自钯钇合金膜、钯铈合金膜、钯铜合金膜、钯金合金膜、钯镍合金膜和钯银合金膜中的至少一种。
PCT/CN2022/100611 2021-06-23 2022-06-23 聚酰亚胺共聚物和膜、它们的制备方法和用途以及提纯氦气的系统和方法 WO2022268146A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023579486A JP2024524292A (ja) 2021-06-23 2022-06-23 ポリイミド共重合体及び膜、その調製方法及び利用、ならびにヘリウムを精製するためのシステム及び方法
EP22827638.2A EP4361199A1 (en) 2021-06-23 2022-06-23 Polyimide copolymer and film, preparation methods therefor and applications thereof, and system and method for purifying helium
US18/573,989 US20240327574A1 (en) 2021-06-23 2022-06-23 Polyimide copolymers and membranes, preparation methods and uses thereof as well as systems and methods for purifying helium gas
AU2022297493A AU2022297493A1 (en) 2021-06-23 2022-06-23 Polyimide copolymer and film, preparation methods therefor and applications thereof, and system and method for purifying helium
KR1020247002683A KR20240023442A (ko) 2021-06-23 2022-06-23 폴리이미드 코폴리머 및 막, 이의 제조 방법 및 용도, 및 헬륨 가스를 정제하기 위한 시스템 및 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110699869 2021-06-23
CN202110699869.X 2021-06-23
CN202110864549 2021-07-29
CN202110866371.8 2021-07-29
CN202110866371 2021-07-29
CN202110864549.5 2021-07-29

Publications (1)

Publication Number Publication Date
WO2022268146A1 true WO2022268146A1 (zh) 2022-12-29

Family

ID=84500773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100611 WO2022268146A1 (zh) 2021-06-23 2022-06-23 聚酰亚胺共聚物和膜、它们的制备方法和用途以及提纯氦气的系统和方法

Country Status (7)

Country Link
US (1) US20240327574A1 (zh)
EP (1) EP4361199A1 (zh)
JP (1) JP2024524292A (zh)
KR (1) KR20240023442A (zh)
CN (2) CN117024733A (zh)
AU (1) AU2022297493A1 (zh)
WO (1) WO2022268146A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177180A (en) * 1990-08-07 1993-01-05 General Electric Company High temperature mixed polyimides and composites formed therefrom
CN102892485A (zh) * 2010-05-28 2013-01-23 环球油品公司 用于空气分离的高渗透性聚酰亚胺膜
CN103788651A (zh) * 2014-01-17 2014-05-14 四川大学 低表观粘度的聚酰胺酸溶液及其制备方法
CN104829853A (zh) * 2015-05-15 2015-08-12 中国科学院化学研究所 一种聚酰亚胺气体分离膜及其制备方法与应用
US20170189850A1 (en) * 2016-01-04 2017-07-06 Saudi Arabian Oil Company Sour gas feed separations and helium recovery from natural gas using block co-polyimide membranes
CN107968214A (zh) 2017-11-09 2018-04-27 大连理工大学 一种亲水长侧链碱性阴离子交换膜及其制备方法
CN109575328A (zh) * 2017-09-29 2019-04-05 华中科技大学 手性三蝶烯聚酰亚胺薄膜及其制法和手性分子分离之应用
US20190194393A1 (en) * 2016-06-07 2019-06-27 King Abdullah University Of Science And Technology Diamines, polyimides, methods of making each, and methods of use
CN110215850A (zh) * 2019-05-10 2019-09-10 北京工业大学 一种中空纤维膜及其制备方法和应用
WO2020018617A1 (en) * 2018-07-20 2020-01-23 Dupont Electronics, Inc. Polymers for use in electronic devices
CN114716676A (zh) * 2022-05-11 2022-07-08 浙江工业大学 一种聚酰亚胺在气体分离膜中的应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322549A (en) * 1993-06-04 1994-06-21 E. I. Du Pont De Nemours And Company Polyimides and gas separation membranes prepared therefrom
US5591250A (en) * 1993-08-09 1997-01-07 Gas Research Institute Material and process for separating carbon dioxide from methane
CN101733027A (zh) * 2008-11-12 2010-06-16 中国科学院大连化学物理研究所 含有柔性链段聚醚的聚酰亚胺膜材料及均质膜的制备方法
CN102716680B (zh) * 2012-06-05 2014-05-07 中国科学院化学研究所 一种聚酰亚胺微孔膜及其制备方法
CN103846022A (zh) * 2012-12-05 2014-06-11 中国科学院大连化学物理研究所 一种共聚聚酰亚胺中空纤维气体分离膜的制备方法
WO2014207559A2 (en) * 2013-06-06 2014-12-31 King Abdullah University Of Science And Technlology Triptycene-based dianhydrides, polyimides, methods of making each, and methods of use
EP3359586B1 (en) * 2015-10-08 2019-12-04 King Abdullah University Of Science And Technology Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof
CN106139936B (zh) * 2016-06-29 2018-09-11 常州市阳光药业有限公司 聚酰亚胺气体分离膜及其制备方法和应用
CN111918712A (zh) * 2018-02-28 2020-11-10 赢创(上海)投资管理有限公司 官能化聚酰亚胺和气体分离用膜
CN108745006B (zh) * 2018-07-12 2020-08-07 北京化工大学 含氟聚酰亚胺中空纤维膜及其制备方法
CN110686464A (zh) * 2019-10-15 2020-01-14 北京石油化工工程有限公司 一种液化天然气的闪蒸汽中氦气的回收方法及装置
CN112694612B (zh) * 2019-10-23 2022-12-09 中国石油化工股份有限公司 交替共聚酰亚胺的制备方法及聚酰亚胺薄膜
CN110986484B (zh) * 2019-10-31 2020-12-04 中国科学院高能物理研究所 一种利用lng厂尾气进行氦气提取的工艺系统
CN110921625B (zh) * 2019-11-19 2023-02-28 安徽中科皖能科技有限公司 合成氨弛放气中氢气和氦气的分离回收装置
CN112174102B (zh) * 2020-09-24 2022-04-22 四川省达科特能源科技股份有限公司 一种bog气体多级分离提取高纯氦气的装置及方法
CN112574412A (zh) * 2020-12-20 2021-03-30 天津工业大学 基于二氨基三蝶烯及其衍生物制备的气体分离用聚酰亚胺及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177180A (en) * 1990-08-07 1993-01-05 General Electric Company High temperature mixed polyimides and composites formed therefrom
CN102892485A (zh) * 2010-05-28 2013-01-23 环球油品公司 用于空气分离的高渗透性聚酰亚胺膜
CN103788651A (zh) * 2014-01-17 2014-05-14 四川大学 低表观粘度的聚酰胺酸溶液及其制备方法
CN104829853A (zh) * 2015-05-15 2015-08-12 中国科学院化学研究所 一种聚酰亚胺气体分离膜及其制备方法与应用
US20170189850A1 (en) * 2016-01-04 2017-07-06 Saudi Arabian Oil Company Sour gas feed separations and helium recovery from natural gas using block co-polyimide membranes
US20190194393A1 (en) * 2016-06-07 2019-06-27 King Abdullah University Of Science And Technology Diamines, polyimides, methods of making each, and methods of use
CN109575328A (zh) * 2017-09-29 2019-04-05 华中科技大学 手性三蝶烯聚酰亚胺薄膜及其制法和手性分子分离之应用
CN107968214A (zh) 2017-11-09 2018-04-27 大连理工大学 一种亲水长侧链碱性阴离子交换膜及其制备方法
WO2020018617A1 (en) * 2018-07-20 2020-01-23 Dupont Electronics, Inc. Polymers for use in electronic devices
CN110215850A (zh) * 2019-05-10 2019-09-10 北京工业大学 一种中空纤维膜及其制备方法和应用
CN114716676A (zh) * 2022-05-11 2022-07-08 浙江工业大学 一种聚酰亚胺在气体分离膜中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LUO S JLIU QZHANG B H ET AL.: "Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation", J MEMBRANE SCI, vol. 480, 2015, pages 20 - 30
LUO S JWIEGAND J RKAZANOWSKA B ET AL.: "Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport", MACROMOLECULES, vol. 49, no. 9, 2016, pages 3395 - 3405, XP055501566, DOI: 10.1021/acs.macromol.6b00485
YAMAMOTO HMI YSTERN S A: "Structure/Permeability Relationships of Polyimide Membranes. II", JOURNAL OF POLYMER SCIENCE: PART B: POLYMER PHYSICS, vol. 28, 1990, pages 2291 - 2304, XP000541406, DOI: 10.1002/polb.1990.090281210

Also Published As

Publication number Publication date
CN115501758B (zh) 2023-08-11
KR20240023442A (ko) 2024-02-21
EP4361199A1 (en) 2024-05-01
US20240327574A1 (en) 2024-10-03
EP4361199A8 (en) 2024-06-12
CN115501758A (zh) 2022-12-23
JP2024524292A (ja) 2024-07-05
AU2022297493A1 (en) 2024-01-18
CN117024733A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN106674560B (zh) 一种含有冠醚微孔的聚酰亚胺类自具微孔聚合物膜及其制备方法
CN104829853B (zh) 一种聚酰亚胺气体分离膜及其制备方法与应用
JP4249138B2 (ja) ガス分離膜用のポリイミドブレンド
CN105289337A (zh) 一种可交联聚酰亚胺气体分离膜及制备方法
JPS61133118A (ja) ガス分離ポリイミド膜
JP2011502049A (ja) 気体分離膜及びその製造方法
CN109937084B (zh) 改进的制备碳分子筛中空纤维膜的方法
WO2012148360A1 (en) Cardo-polybenzoxazole polymer/copolymer membranes for improved permeability and method for fabricating the same
CN103846023A (zh) 一种共聚聚酰亚胺气体分离膜材料及其制备和应用
CN111019133A (zh) 气体分离膜用聚酰亚胺树脂及其制法、采用其制备聚酰亚胺气体分离膜的方法
CN114591503B (zh) 一种可溶聚(苯并咪唑-共-酰亚胺)聚合物及其制备和应用
US5939520A (en) Gas separation membranes based on regiospecific polyamide-imides
WO2012133743A1 (ja) ポリイミド系非対称中空糸膜
CN111116912A (zh) 聚酰亚胺树脂及其制法、采用其制备聚酰亚胺薄膜/交联型聚酰亚胺薄膜的方法
WO2022268146A1 (zh) 聚酰亚胺共聚物和膜、它们的制备方法和用途以及提纯氦气的系统和方法
CN115770494B (zh) 聚酰亚胺复合气体分离膜及其制备方法和应用
KR20140048056A (ko) 폴리이미드계 고분자 화합물 및 이를 포함하는 기체 분리용 비대칭 중공사막
KR20200066446A (ko) Bcda 기반의 부분-지환족 폴리이미드 기체분리막 소재 및 이의 제조방법
CN111214969A (zh) 一种聚醚共聚酰亚胺膜及制备和应用
CN115872373A (zh) 从富氦气体中提纯氦气的方法和系统
JP2010202864A (ja) 新規なポリイミド
CN115872372A (zh) 采用二段膜结合合金吸附提纯氦气的方法及系统
CN115845572A (zh) 二段聚合物膜分离结合钯膜分离提纯氦气的方法和系统
CN115463561B (zh) 一种共混基质气体分离膜及其制备方法
CN115872371B (zh) 提纯超纯氦气的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18573989

Country of ref document: US

Ref document number: 2022297493

Country of ref document: AU

Ref document number: AU2022297493

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023579486

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022297493

Country of ref document: AU

Date of ref document: 20220623

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247002683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022827638

Country of ref document: EP

Ref document number: 1020247002683

Country of ref document: KR

Ref document number: 2024101221

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022827638

Country of ref document: EP

Effective date: 20240123

WWE Wipo information: entry into national phase

Ref document number: 11202309878Q

Country of ref document: SG