WO2022249797A1 - 溶鉄の脱りん方法 - Google Patents

溶鉄の脱りん方法 Download PDF

Info

Publication number
WO2022249797A1
WO2022249797A1 PCT/JP2022/018163 JP2022018163W WO2022249797A1 WO 2022249797 A1 WO2022249797 A1 WO 2022249797A1 JP 2022018163 W JP2022018163 W JP 2022018163W WO 2022249797 A1 WO2022249797 A1 WO 2022249797A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten iron
slag
iron
dephosphorization
molten metal
Prior art date
Application number
PCT/JP2022/018163
Other languages
English (en)
French (fr)
Inventor
太 小笠原
涼 川畑
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP22811071.4A priority Critical patent/EP4324940A1/en
Priority to BR112023024387A priority patent/BR112023024387A2/pt
Priority to KR1020237043468A priority patent/KR20240010004A/ko
Priority to CN202280036684.3A priority patent/CN117396614A/zh
Priority to JP2022547077A priority patent/JP7302749B2/ja
Publication of WO2022249797A1 publication Critical patent/WO2022249797A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/08Particular sequence of the process steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for dephosphorizing molten iron for producing steel products with a low phosphorus concentration, and more particularly to a method for dephosphorizing molten iron obtained by melting a cold iron source.
  • the dephosphorization reaction is thermodynamically more advantageous at lower temperatures, so so-called hot metal dephosphorization is widely used.
  • the mainstream method is to melt the cold iron source in an electric furnace such as an arc furnace to produce low-carbon molten iron without using molten pig iron.
  • a general refining process of molten iron in an electric furnace is a method as described in Patent Document 1, for example.
  • Patent Document 1 After charging raw materials including a cold iron source, electric energy is supplied to melt the cold iron source to obtain low-carbon molten iron, and the molten iron is deoxidized and oxygen source. This is a method of reducing the phosphorus concentration while reducing the carbon concentration in molten iron by supplying phosphorus flux.
  • reduced iron includes gangue components such as silicon oxide and aluminum oxide contained in iron ore, which is a raw material, and generates a large amount of slag during melting. Therefore, it is necessary to consider this point in the method of dephosphorizing molten iron.
  • Patent Document 2 As a method for dephosphorizing molten iron at the stage of molten steel, for example, methods described in Patent Document 2 and Patent Document 3 are also disclosed.
  • a gas mainly composed of oxygen gas is applied to the surface of molten iron in a reaction vessel having a temperature of 1550 ° C. or higher and a carbon content of 0.5% by mass or less from a top blowing lance.
  • a lime source containing limestone or slaked lime as a main component is projected onto the collision surface of the jet against the molten iron surface to decarburize and dephosphorize the molten iron.
  • molten steel is tapped from a converter into a ladle in a state where the oxygen concentration of the molten steel is 200 mass ppm or more, and a dephosphorizing agent is added at the time of tapping to convert CaO/SiO on a mass basis.
  • a slag having a 2 ratio of 2.5 or more and a total Fe content of 15% by mass or more is obtained, and the molten steel is stirred by introducing a gas into the molten steel during and after tapping.
  • Patent Document 2 aims at improving the dephosphorization efficiency in the final stage of decarburization refining of molten iron and molten iron in which iron scrap is melted, and excessive oxygen blowing among the problems of Patent Document 1 has been alleviated.
  • the influence of gangue derived from reduced iron was not taken into consideration, and there were cases where the present invention could not be applied to the target iron source environment (slag amount).
  • the molten iron targeted by Patent Document 2 has a low phosphorus concentration of 0.04% by mass or less before dephosphorization treatment, and it is impossible to process molten iron with a phosphorus concentration comparable to that of blast furnace molten iron (0.10% by mass or more). It is not assumed.
  • Patent Document 3 lacked dephosphorization ability. Moreover, although Patent Document 3 does not describe the phosphorus concentration before dephosphorization treatment, it is considered that the treatment of molten iron with a phosphorus concentration comparable to that of blast furnace molten iron (0.10% by mass or more) is not assumed.
  • the present invention has been made in view of such circumstances, and its object is to dephosphorize molten iron without dissolving excessive oxygen in molten iron and reducing the phosphorus concentration and slag.
  • another object of the present invention is to propose a method for dephosphorizing molten iron that is suitable even when reduced iron produced using a carbon-reduced reducing agent is blended.
  • a first method for dephosphorizing molten iron according to the present invention comprises blowing hydrogen gas, hydrocarbon gas, or a mixed gas thereof into molten iron held in a container, and supplying a source to dephosphorize the molten iron to obtain dephosphorized molten iron, and separating slag floating on the surface of the dephosphorized molten iron after the dephosphorization treatment from the dephosphorized molten iron.
  • the first molten iron dephosphorization method includes: (a) after separating the slag, deoxidizing the molten iron after dephosphorization with a deoxidizing agent; (b) the molten iron has a carbon content of 0.5% by mass or less before the dephosphorization treatment; (c) the molten iron is obtained by melting a cold iron source; (d) the cold iron source comprises reduced iron; (e) said vessel is a ladle; etc. is considered to be a more preferable solution.
  • a cold iron source is melted in a melting furnace, and the molten iron is and separating the generated slag from the molten iron before pouring the molten iron from the melting furnace into the container, and separating the slag that has flowed into the container together with the molten iron from the molten iron; It is considered that performing either one or both of them can be a more preferable solution.
  • hydrogen or hydrocarbon gas or a mixed gas thereof is supplied to molten iron, and a slag-forming material and an oxygen source are supplied to perform dephosphorization treatment.
  • Deoxidation reaction of the dissolved oxygen occurs, and it is possible to suppress the excessive oxygen dissolved in the molten iron.
  • the supplied gas containing hydrogen atoms and the water vapor gas generated by the deoxidation reaction promote stirring of the molten iron, so that low-phosphorus steel can be stably produced. Therefore, even if a large amount of reduced iron with a low carbon concentration is used and the phosphorus concentration in the molten iron increases or the amount of slag increases, it is possible to stably reduce the phosphorus by removing the slag after dissolution. Steel can be manufactured.
  • the inventors conceived the present invention as follows.
  • the dephosphorization reaction which is an oxidation reaction
  • iron oxide is generated in the oxygen source supply portion on the upper surface of the molten iron, and forms molten slag together with the slag-forming material.
  • the iron oxide in the slag is partially decomposed, and the oxygen generated thereby dissolves in the molten iron.
  • part of the supplied oxygen source dissolves oxygen in the molten iron, and the dissolved oxygen concentration rises.
  • the dissolved oxygen in the vicinity of the slag-metal interface is maintained at a high level, and the dephosphorization reaction proceeds.
  • the dissolved oxygen supplied from the oxygen source and the molten slag reacts with the carbon in the molten iron, so that the dissolved oxygen does not excessively rise.
  • the carbon concentration in molten iron is low, dissolved oxygen will continue to rise.
  • the dissolved oxygen concentration in the molten iron before dephosphorization is approximately 100 ppm by mass or more.
  • the dephosphorization treatment is performed from this state, the dissolved oxygen concentration in the molten iron further increases to a state exceeding 1000 ppm by mass.
  • the amount of deoxidizing aluminum added after slag removal following the dephosphorization treatment increases, and the Fe yield deteriorates due to an increase in oxidation loss of Fe.
  • deoxidizing elements such as aluminum and silicon are added during the dephosphorization treatment.
  • silicon oxide and aluminum oxide which are deoxidation products, increase the slag volume, which is not preferable.
  • the inventors have found that by supplying hydrogen gas, hydrocarbon gas, or a mixed gas thereof during the dephosphorization treatment, the dissolved oxygen in the molten iron is deoxidized by the gaseous deoxidizing agent. I thought it would prevent an excessive rise. In addition, since there is no change in the slag composition, it is possible to suppress excessive increases in the slag volume and the amount of lime required.
  • the dephosphorization treatment in the melting process, that is, in the melting furnace.
  • the slag is sludged before tapping from the melting furnace, or the slag is removed after tapping, or the slag is cast before tapping from the melting furnace, the slag is removed after tapping, and then dephosphorization is performed in a ladle or the like. , it was thought that the increase in slag volume due to the effect of gangue contained in reduced iron could be suppressed.
  • the iron source is melted and heated using electrical energy in a steelmaking melting furnace.
  • a steelmaking melting furnace for steelmaking, an electric furnace such as an arc furnace or an induction furnace can be used.
  • the iron source may be not only a solid iron source (cold iron source) such as scrap or reduced iron, but also molten iron melted in another process.
  • the thermal energy supplied for melting the solid iron source and heating the iron source may be not only electric energy, but also combustion heat of metal or the like may be used as a complement. These energies are preferably renewable energies from the viewpoint of reducing CO 2 emissions.
  • the furnace body may be tilted before pouring out the molten iron from the electric furnace to pour out the slag.
  • the furnace body may be tilted before the hot water is discharged from the electric furnace to discharge hot water after the slag, and the slag flowing out together with the molten iron into a container such as a ladle may be further removed.
  • a slag-forming material containing lime as a main component is added from an automatic feeding hopper or the like onto the molten iron in the ladle.
  • the input amount of the slag-forming material is preferably adjusted so that the slag basicity defined by the mass-based (calcium oxide concentration)/(silicon oxide concentration) ratio is about 2.0.
  • oxygen gas is supplied from a top-blowing lance as an oxygen source.
  • the oxygen gas flow rate per unit mass of molten iron is preferably about 0.05 to 0.15 Nm 3 /(t ⁇ min).
  • Nm 3 means the volume of gas under standard conditions. In this specification, the standard gas state is 0° C. and 1 atm (101325 Pa).
  • the behavior of spitting differs depending on the freeboard height of the ladle and the shape of the nozzle of the top blowing lance, it is preferable to finely adjust the acid feed rate and the lance height.
  • oxygen gas When oxygen gas is supplied, the temperature of the molten iron rises due to the heat of oxidation reaction, so there is no problem even if a solid oxygen source such as iron oxide is added to adjust the temperature of the molten iron.
  • a solid oxygen source such as iron oxide
  • an oxygen-containing gas obtained by diluting oxygen gas with an inert gas may be used as the oxygen source.
  • a gas containing hydrogen atoms consisting of hydrogen gas, hydrocarbon gas, or a mixed gas thereof is supplied into the molten iron.
  • This gas containing hydrogen atoms may be supplied from an injection lance, or may be supplied by installing a porous plug or the like at the bottom of the ladle.
  • a gas containing hydrogen atoms causes a deoxidation reaction of dissolved oxygen in the molten iron, thereby suppressing excessive dissolved oxygen in the molten iron.
  • bubbles are generated from the supplied gas containing hydrogen atoms and the water vapor gas generated by the deoxidation reaction. The buoyancy of the bubbles also has the effect of promoting stirring of the molten iron.
  • a total flow rate of about 3 to 10 vol% of the oxygen flow rate supplied from the top blowing lance is an appropriate range for the amount of hydrogen gas and hydrocarbon gas supplied. rice field. If the supply amount is smaller than that, the deoxidizing effect may be low and the dissolved oxygen reducing effect may be small. On the other hand, if the supply amount is excessive, the dissolved oxygen in the molten iron may be too low, resulting in a decrease in the dephosphorization ability.
  • the slag floating on the surface of the molten iron after dephosphorization is separated from the molten iron after dephosphorization.
  • a container such as a ladle containing the dephosphorized molten iron is tilted, and slag removal is performed by scraping off slag floating on the surface of the dephosphorized molten iron with a slag dragger or the like.
  • the dephosphorized portion of the phosphorus contained in the molten iron before the dephosphorization treatment is transferred to the slag.
  • an operation of deoxidizing the molten iron after dephosphorization with a deoxidizing agent is performed.
  • This deoxidation is performed within a period from the separation of the slag from the molten iron after dephosphorization to the casting of the molten iron.
  • deoxidizing may be performed by adding a deoxidizing agent to the ladle containing the molten iron immediately after the slag removal, or after the slag removal, the ladle containing the molten iron is transported to the refining equipment for the next process.
  • deoxidation may be performed by adding a deoxidizing agent during the refining treatment in the next step.
  • deoxidizing may be performed by adding a deoxidizing agent during the vacuum degassing treatment.
  • the timing of adding the deoxidizing agent during the vacuum degassing process is not particularly limited.
  • a so-called killed treatment may be performed in which a deoxidizing agent is added at the beginning of the vacuum degassing treatment to deoxidize the molten iron, and then the molten iron is refluxed after deoxidizing.
  • the molten iron is circulated without adding a deoxidizing agent, and during this period, decarburization is performed by sending oxygen as necessary.
  • Killing treatment may be performed by adding a deoxidizing agent.
  • the next step is not limited to the treatment in the RH type vacuum degassing equipment, but may be the treatment in the VOD equipment or the treatment in the ladle furnace (LF).
  • the addition timing of the deoxidizing agent during treatment in these facilities is not particularly limited, as in the vacuum degassing treatment in the RH vacuum degassing facility described above.
  • commonly used deoxidizing agents such as metallic aluminum, metallic silicon, ferrosilicon, and silicon manganese can be used.
  • the scrap or reduced iron was charged into a 150t scale electric furnace and melted, and the slag was removed after the hot water was poured into the ladle.
  • the reduced iron used in the test was produced by reduction with hydrogen, and the carbon concentration was analyzed to be 0.15% by mass.
  • a slag-forming material is added to the molten iron in the ladle after tapping, oxygen gas is supplied from the top-blowing lance, and argon gas, hydrogen gas, hydrocarbon gas, or a mixed gas of hydrogen gas and hydrocarbon gas is supplied from the bottom of the ladle.
  • Dephosphorization treatment was performed. After the dephosphorization treatment was completed, the slag on the surface of the hot ladle was removed, followed by vacuum degassing treatment with an RH reflux apparatus, adding an Al-containing substance for deoxidation, and adjusting other components. .
  • Test 1 As a source of cold iron, 150 tons of scrap was melted in an electric furnace, poured into a ladle, and then slag was removed.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.25% by mass
  • the P concentration [P] i was 0.040% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 125 mass ppm. rice field.
  • oxygen gas was supplied at 20 Nm 3 /min from a top blowing lance, and argon gas was supplied at 1 Nm 3 /min from a porous plug installed at the bottom of the ladle to dephosphorize for 10 minutes. processed.
  • the phosphorus concentration in the molten iron after the dephosphorization treatment decreased to 0.004% by mass, but the dissolved oxygen concentration [O] f was 1530 mass ppm. For this reason, the input amount of Al for deoxidization and quality defects became high. Moreover, the Fe yield became low.
  • Test 2 As a source of cold iron, 150 tons of scrap was melted in an electric furnace, poured into a ladle, and then slag was removed.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.23% by mass
  • the P concentration [P] i was 0.035% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 140 mass ppm. rice field.
  • oxygen gas is supplied at 20 Nm 3 /min from a top blowing lance
  • hydrogen gas is supplied at 1 Nm 3 /min from a porous plug installed at the bottom of the ladle, and dephosphorization is performed for 10 minutes. processed.
  • the phosphorus concentration in the molten iron after dephosphorization treatment decreased to 0.005% by mass.
  • the dissolved oxygen concentration [O] f was 630 ppm by mass, and the input amount of deoxidizing Al and quality defects were low. Also, the Fe yield became high.
  • Test 3 As a source of cold iron, 150 tons of scrap was melted in an electric furnace, poured into a ladle, and then slag was removed.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.25% by mass
  • the P concentration [P] i was 0.038% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 123 mass ppm. rice field.
  • oxygen gas was supplied at 20 Nm 3 /min from a top blowing lance
  • propane gas was supplied at 1 Nm 3 /min from a porous plug installed at the bottom of the ladle, and dephosphorization was performed for 10 minutes.
  • the phosphorus concentration in the molten iron after dephosphorization treatment decreased to 0.005% by mass.
  • the dissolved oxygen concentration [O] f was 560 ppm by mass, and the input amount of deoxidizing Al and quality defects were low. Also, the Fe yield became high.
  • Test 4 As a source of cold iron, 150 tons of scrap was melted in an electric furnace, poured into a ladle, and then slag was removed.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.24% by mass
  • the P concentration [P] i was 0.036% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 132 mass ppm. rice field.
  • oxygen gas is supplied at 20Nm 3 /min from a top blowing lance
  • 50vol% hydrogen-50vol% propane gas is supplied at 1Nm 3 /min from a porous plug installed at the bottom of the ladle.
  • the phosphorus concentration in the molten iron after the dephosphorization treatment decreased to 0.004% by mass.
  • the dissolved oxygen concentration [O] f was 590 ppm by mass, and the input amount of deoxidizing Al and quality defects were low. Also, the Fe yield became high.
  • Test 5 150 tons of reduced iron was melted in an electric furnace as a source of cold iron, and slag was removed after pouring into a ladle.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.20% by mass
  • the P concentration [P] i was 0.140% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 136 mass ppm. rice field.
  • oxygen gas was supplied at 20 Nm 3 /min from a top blowing lance
  • argon gas was supplied at 1 Nm 3 /min from a porous plug installed at the bottom of the ladle to dephosphorize for 10 minutes.
  • the phosphorus concentration in the molten iron after the dephosphorization treatment decreased to 0.003% by mass, but the dissolved oxygen concentration [O] f was 1720 mass ppm. For this reason, the input amount of Al for deoxidization and quality defects became high. Moreover, the Fe yield became low.
  • Test 6 150 tons of reduced iron was melted in an electric furnace as a source of cold iron, and slag was removed after pouring into a ladle.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.19% by mass
  • the P concentration [P] i was 0.130% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 160 mass ppm. rice field.
  • oxygen gas was supplied at 20 Nm 3 /min from a top blowing lance
  • hydrogen gas was supplied at 1 Nm 3 /min from a porous plug installed at the bottom of the ladle, and dephosphorization was performed for 10 minutes. processed.
  • the phosphorus concentration in the molten iron after dephosphorization treatment decreased to 0.005% by mass.
  • the dissolved oxygen concentration [O] f was 510 ppm by mass, and the input amount of deoxidizing Al and quality defects were low. Also, the Fe yield became high.
  • Test 7 150 tons of reduced iron was melted in an electric furnace as a source of cold iron, and slag was removed after pouring into a ladle.
  • the C concentration [C] i of the molten iron after tapping into the ladle was 0.23% by mass
  • the P concentration [P] i was 0.126% by mass
  • the dissolved oxygen concentration [O] i in the molten iron was 140 mass ppm. rice field.
  • oxygen gas was supplied at 20 Nm 3 /min from a top blowing lance
  • propane gas was supplied at 1 Nm 3 /min from a porous plug installed at the bottom of the ladle, and dephosphorization was performed for 10 minutes. processed.
  • the phosphorus concentration in the molten iron after dephosphorization treatment decreased to 0.005% by mass.
  • the dissolved oxygen concentration [O] f was 600 ppm by mass, and the input amount of deoxidizing Al and quality defects were low. Also, the Fe yield became high.
  • the phosphorus concentration in the molten iron after the dephosphorization treatment decreased to 0.005% by mass, but the dissolved oxygen concentration [O] f was 530 mass ppm.
  • the input amount of Al for deoxidization and quality defects were low. Also, the Fe yield became high.
  • the method for dephosphorizing molten iron according to the present invention it is possible to stably produce low-phosphorus steel without dissolving excess oxygen and even when the phosphorus concentration and the amount of slag are increased . Since it is possible to stably produce low-phosphorus steel even when reduced iron produced using a reducing agent with reduced emissions is blended, it contributes to the reduction of CO2 and is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

安定して低りん鋼を製造することができる溶鉄の脱りん方法を提案する。容器に保持された溶鉄に、水素ガスもしくは炭化水素ガスまたはそれらの混合ガスを吹込みつつ、造滓材と酸素源を供給して溶鉄の脱りん処理を行い脱りん後溶鉄を得、脱りん処理後に脱りん後溶鉄の表面に浮遊するスラグを脱りん後溶鉄から分離することを含む溶鉄の脱りん方法である。また、スラグを分離した後、脱りん後溶鉄を脱酸剤で脱酸することが好ましい。脱りん処理の前に、冷鉄源を溶解炉で溶解して溶鉄を得、溶鉄を溶解炉より容器に出湯するにあたり、生成したスラグを出湯前に溶鉄から分離すること、および、容器に溶鉄と共に流入したスラグを溶鉄から分離することのいずれか一方または両方を行う溶鉄の脱りん方法である。

Description

溶鉄の脱りん方法
 本発明は、りん濃度の低い鉄鋼製品を製造するための溶鉄の脱りん方法に関するものであり、特に冷鉄源を溶解して得た溶鉄の脱りん方法に関する。
 近年、地球温暖化防止の観点から、鉄鋼業界においても化石燃料の消費量を削減してCOガスの発生量を減少させる技術開発が進められている。従来の一貫製鉄所においては、鉄鉱石を炭素で還元して溶銑を製造している。この溶銑を製造するには鉄鉱石の還元等のために溶銑1tあたり500kg程度の炭素源を必要とする。一方、鉄スクラップなどの冷鉄源を原料として溶鋼を製造する場合には、鉄鉱石の還元に必要とされる炭素源が不要となり、冷鉄源を溶解するのに十分な熱量分のエネルギーのみを必要とする。そのため、CO排出量を大幅に低減可能となる。
 冷鉄源としてスクラップ(鉄屑)を用いる場合、溶解後の溶鉄のりん濃度は高炉溶銑のそれと比較して低位となる。一方、冷鉄源として還元鉄を用いる場合、溶解後の溶鉄のりん濃度は高炉溶銑とほぼ同等となる。そのため、製品規格範囲内となるよう、脱りん精錬を実施する必要がある。市場に流通するスクラップの量は限られており、将来的には還元鉄の使用比率が増加することが予想される。その場合、溶鉄の精錬段階における脱りん負荷が増大すると考えられる。
 高炉溶銑から低りん鋼を製造する際には、脱りん反応は熱力学的に低温ほど有利であることから溶銑段階で脱りん処理を施す、いわゆる溶銑脱りん処理が広く行われている。一方、冷鉄源を高配合して低りん鋼を製造する場合は、アーク炉等の電気炉で冷鉄源を溶解し、溶銑を経ずに低炭素溶鉄を製造する方法が主流になる。電気炉における溶鉄の一般的な精錬工程は、たとえば特許文献1に記載されているような方法である。特許文献1に記載の技術は、冷鉄源をはじめとする原料を装入したのちに、電気エネルギーを供給して冷鉄源を溶解して低炭素溶鉄を得、この溶鉄に酸素源および脱りんフラックスを供給することで溶鉄中の炭素濃度を低下させつつ、りん濃度を低下させる方法である。
 上述したように、今後は、還元鉄を高配合して得た溶鉄を脱りん処理する技術のニーズが高まることが予想されるが、その際には以下の課題が顕在化すると考えられる。現状流通している還元鉄は炭化水素で還元されたものが主流であるため、1質量%程度の炭素を含有している。しかし将来的には、さらなるCO排出量低減ニーズから、水素などの炭素を低減した還元剤を用いて製造された還元鉄が主流になると考えられる。そしてこの還元鉄は、炭素分をほとんど含有しないものになる可能性がある。この場合、還元鉄を溶解した溶鉄中の炭素濃度は低下し、りん濃度は上昇することになる。溶鉄は炭素濃度が低いほど融点が上昇するため、脱りん反応に不利な、より高温の条件で、低炭素かつ高りんの溶鉄の脱りん処理を余儀なくされる。そこで、それに応じた溶鉄の脱りん方法が求められる。また、還元鉄は、原料である鉄鉱石中に含有されている酸化珪素や酸化アルミニウムなどの脈石分を内包しており、溶解時に大量のスラグが発生する。そのため、溶鉄の脱りん方法ではこの点も考慮する必要がある。
 溶鋼段階で溶鉄の脱りん処理を行なう方法としては、たとえば、特許文献2や特許文献3に記載の方法も開示されている。特許文献2に記載の方法は、温度が1550℃以上、炭素含有量が0.5質量%以下である、反応容器内の溶鉄の表面に、酸素ガスを主体としたガスを、上吹きランスからの噴流として吹き付けると同時に、石灰石または消石灰を主成分とする石灰源を、前記噴流の溶鉄表面への衝突面に投射し、溶鉄の脱炭および脱りんを行なうものである。特許文献3に記載の方法は、溶鋼の酸素濃度が200質量ppm以上の状態で溶鋼を転炉から取鍋に出鋼し、この出鋼時に脱りん剤を添加して質量基準でCaO/SiO比が2.5以上で全Feが15質量%以上のスラグを得、出鋼中及び出鋼後に溶鋼中にガスを導入して溶鋼を撹拌するものである。
特開平08-225880号公報 特開2005-89839号公報 特開昭61-291913号公報
 しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。
 今後、前述のように炭素を低減した還元剤を用いて製造された還元鉄の使用比率が増加すると、溶解後の溶鉄中の炭素濃度が低位となる。その結果、特許文献1の方法では、脱りん処理を行うために酸素源を供給すると溶鋼中に溶存する酸素の濃度が著しく上昇し、脱酸用の金属アルミニウム使用量が増加する。そのため、製造コストが増加する問題と、脱酸生成物であるアルミナ系介在物の生成量が増加することで品質上の問題が生じる。また、還元鉄の使用量が増加するにつれて、溶解後のりん濃度が増加するため、脱りん能を強化する必要がある。そのためには質量比の(酸化カルシウム濃度)/(酸化珪素濃度)で定義されるスラグの塩基度を上げる必要がある。しかしながら、還元鉄の使用量が増加すると同時に酸化珪素や酸化アルミニウムの発生量も増加するため、脱りん能力を確保するために必要な石灰添加量が莫大となる。
 特許文献2の方法では、溶鉄の脱炭精錬末期や鉄スクラップを溶解した溶鉄における脱りん効率の向上を目的としており、特許文献1の問題のうち過剰な酸素吹精は軽減された。しかしながら、還元鉄に由来する脈石分の影響は考慮されておらず、本発明が対象とする鉄源の環境(スラグ量)に対しては適用できない場合があった。また、特許文献2が対象としている溶鉄は、脱りん処理前のりん濃度が0.04質量%以下と低く、高炉溶銑並み(0.10質量%以上)のりん濃度の溶鉄を処理することは想定されていないと考えられる。
 特許文献3の方法では、発明者らの検討によると脱りん能が不足した。また、特許文献3には脱りん処理前のりん濃度が記載されていないが、高炉溶銑並み(0.10質量%以上)のりん濃度の溶鉄を処理することは想定されていないと考えられる。
 本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、溶鉄の脱りん処理にあたり、溶鉄中に過剰な酸素を溶存させることなく、また、りん濃度やスラグ量が増大した場合でも安定して低りん鋼を製造することができる溶鉄の脱りん方法を提案することにある。加えて、炭素を低減した還元剤を用いて製造された還元鉄を配合した場合にも好適な溶鉄の脱りん方法を提案することにある。
 発明者らはこれらの問題に鑑み、溶鉄の脱りん処理にあたり水素原子を含有するガスの使用による冶金反応効果について鋭意検討を重ねた結果、本発明を完成するに至った。
 上記課題を有利に解決する本発明にかかる第一の溶鉄の脱りん方法は、容器に保持された溶鉄に、水素ガスもしくは炭化水素ガスまたはそれらの混合ガスを吹込みつつ、造滓材と酸素源を供給して前記溶鉄の脱りん処理を行い脱りん後溶鉄を得、該脱りん処理後に前記脱りん後溶鉄の表面に浮遊するスラグを該脱りん後溶鉄から分離することを含むことを特徴とする。
 また、本発明にかかる第一の溶鉄の脱りん方法は、
(a)前記スラグを分離した後、前記脱りん後溶鉄を脱酸剤で脱酸すること、
(b)前記溶鉄は、前記脱りん処理前の炭素含有量が0.5質量%以下であること、
(c)前記溶鉄は冷鉄源を溶解して得たものであること、
(d)前記冷鉄源が還元鉄を含むこと、
(e)前記容器が取鍋であること、
などが、より好ましい解決手段になり得るものと考えられる。
 また、本発明にかかる第二の溶鉄の脱りん方法は、上記第一の溶鉄の脱りん方法のいずれかで行う溶鉄の脱りん処理の前に、冷鉄源を溶解炉で溶解して溶鉄を得、該溶鉄を前記溶解炉より前記容器に出湯するにあたり、生成したスラグを出湯前に前記溶鉄から分離すること、および、前記容器に前記溶鉄と共に流入したスラグを該溶鉄から分離すること、のいずれか一方または両方を行うことが、より好ましい解決手段になり得るものと考えられる。
 本発明によれば、水素もしくは炭化水素ガスまたはそれらの混合ガスを溶鉄に供給しつつ、造滓材および酸素源を供給して脱りん処理を行うことで、水素ガスまたは炭化水素ガスによって溶鉄中の溶存酸素の脱酸反応が起き、溶鉄中に過剰な酸素が溶存するのを抑制することができる。また、供給した水素原子を含有するガスと上記脱酸反応によって生じた水蒸気ガスとによって溶鉄の攪拌が促進され、安定して低りん鋼を製造することができる。もって、炭素濃度の低い還元鉄を大量に使用し溶鉄中のりん濃度が増加したり、スラグ量が増加したりした場合であっても、溶解後に除滓等することで、安定して低りん鋼を製造することができる。
 発明者らは、本発明にあたり、以下のように考えた。
 酸化反応である脱りん反応を促進するためには、反応領域であるスラグ-メタル界面近傍の溶存酸素を高位に維持する必要がある。そのためには、溶鉄中の溶存酸素濃度を500質量ppm程度まで上げれば十分である。そして、溶鉄に造滓材および酸素源を供給すると、溶鉄上面の酸素源供給部分に酸化鉄が生成し、造滓材とともに溶融スラグを形成する。スラグ中の酸化鉄は一部分解し、それによって発生した酸素は溶鉄中に溶存する。また供給した酸素源の一部は溶鉄中に酸素を溶存させ、溶存酸素濃度は上昇する。その結果、スラグ-メタル界面近傍の溶存酸素は高位に維持され、脱りん反応が進行する。溶鉄中に炭素が存在していれば、上記酸素源および溶融スラグから供給された溶存酸素は、溶鉄中炭素と反応するため、溶存酸素の過剰な上昇は起こらない。しかしながら、溶鉄中の炭素濃度が低い場合は溶存酸素が上昇し続けることになる。
 炭素濃度が0.5質量%以下の溶鉄を脱りん処理しようとする場合、脱りん処理前の溶鉄中の溶存酸素濃度はおよそ100質量ppm以上である。その状態から脱りん処理を行った場合にはさらに溶鉄中の溶存酸素濃度が上昇し、1000質量ppmを超えるような状態となる。そのため、脱りん処理に続いて除滓した後に添加する脱酸用アルミニウムの使用量が増大したり、Feの酸化ロスが増大することによるFe歩留まりが悪化したりすることが問題となる。
 溶存酸素の過剰な上昇を抑止するため、脱りん処理中にアルミニウムや珪素などの脱酸元素を添加する。そのような場合には、脱酸生成物である酸化珪素や酸化アルミニウムによってスラグボリュームが増加するため好ましくない。さらにスラグ塩基度を確保するために必要な石灰量が増加するため好ましくない。
 そこで、発明者らは、脱りん処理中に水素ガスもしくは炭化水素ガスまたはそれらの混合ガスを供給することで、溶鉄中の溶存酸素が気体の脱酸剤により脱酸されるため、溶存酸素の過剰上昇を抑止できると考えた。加えて、スラグ組成に変化がないので、スラグボリュームや必要石灰量が過剰に上昇することを抑止できると考えた。
 また、還元鉄を溶解する際には酸化珪素や酸化アルミニウムのような脈石分が大量に発生するので、溶解工程すなわち溶解炉内で脱りん処理を行うことは好ましくない。溶解炉出湯前に流滓し、もしくは、出湯後に除滓を行い、または、溶解炉出湯前に流滓し、さらに出湯後に除滓を行い、その後、取鍋等で脱りん処理を行うことで、還元鉄中に含有する脈石の影響によるスラグボリュームの増加を抑止することができると考えた。
 以下、本発明の実施の形態について具体的に説明する。
 第一工程として、製鋼用溶解炉において、電気エネルギーを用いて、鉄源の溶解および昇熱を行う。ここで、製鋼用溶解炉としては、アーク炉や誘導炉のような電気炉を用いることができる。この際、鉄源とはスクラップや還元鉄のような固体鉄源(冷鉄源)だけでなく、別プロセスで溶解した溶鉄を利用してもよい。また、固体鉄源の溶解および、鉄源の昇熱のために供給する熱エネルギーは電気エネルギーだけではなく、補填的に金属の燃焼熱等を使用してもよい。これらのエネルギーは、再生可能エネルギーであることがCO排出量削減の観点から好ましい。
 第二工程として、取鍋などの容器に出湯し除滓を行う。除滓はスラグドラッガーなどで行ってもよい。取鍋のフリーボード高さ(取鍋上端から溶鉄表面までの高さ)が不十分な場合は、電気炉からの出湯前に炉体を傾動して流滓後に出湯してもよい。また、電気炉からの出湯前に炉体を傾動して流滓後に出湯し、取鍋などの容器に溶鉄とともに流出したスラグをさらに除滓してもよい。
 第三工程として、石灰を主成分とする造滓材を自動投入ホッパー等から取鍋内の溶鉄上に添加する。このとき、質量基準の(酸化カルシウム濃度)/(酸化珪素濃度)比で定義されるスラグ塩基度が2.0程度となるように、造滓材の投入量を調整するとよい。その後、酸素源として上吹きランスから酸素ガスを供給する。溶鉄の単位質量当たりの酸素ガスの流量は0.05~0.15Nm/(t・min)程度とすることが好ましい。ここで「Nm」は、標準状態におけるガスの体積を意味する。本明細書では、ガスの標準状態を0℃、1atm(101325Pa)とする。取鍋のフリーボード高さや上吹きランスのノズルの形状によりスピッティングの発生挙動は異なるので、送酸速度やランス高さは微調整することが好ましい。酸素ガスを供給すると、酸化反応熱により溶鉄温度が上昇するので、溶鉄温度を調整するため、酸化鉄等の固体酸素源を投入しても問題ない。また、酸素源として、酸素ガスを不活性ガスで希釈した酸素含有ガスを用いてもよい。
 酸素源の供給開始とともに溶鉄中に水素ガスもしくは炭化水素ガスまたはそれらの混合ガスからなる水素原子を含有するガスを供給する。この水素原子を含有するガスはインジェクションランスから供給してもよいし、取鍋底部にポーラスプラグ等を設置して供給しても問題ない。水素原子を含有するガスによって溶鉄中の溶存酸素の脱酸反応が起き、溶鉄中に過剰な酸素が溶存するのを抑制することができる。また、供給した水素原子を含有するガスと上記脱酸反応によって生じた水蒸気ガスとの気泡を生成する。その気泡の浮力によって溶鉄の攪拌が促進される効果も得られる。発明者らは鋭意検討を重ねた結果、水素ガスおよび炭化水素ガスの供給量は、合計で、上吹きランスから供給する酸素流量の3~10vol%程度の流量が適正な範囲であることを見出した。それよりも供給量が少ない場合は、脱酸効果が低く溶存酸素低減効果が小さくなるおそれがある。一方、供給量過多の場合は、溶鉄中の溶存酸素が低下しすぎて脱りん能が小さくなるおそれがある。
 第四工程として、上記脱りん後の溶鉄の表面に浮遊するスラグを、該脱りん後溶鉄から分離する操作を行なう。例えば、上記脱りん後溶鉄が収容された取鍋などの容器を傾動し、上記脱りん後の溶鉄の表面に浮遊するスラグを、スラグドラッガーなどで掻き出す除滓を行う。上記脱りん処理の直後は、脱りん処理前に溶鉄中に含有されていたりんのうち、脱りんされた分がスラグ中へ移行した状態である。従って、脱りん後スラグを、脱りん後溶鉄から分離する操作を行なうことにより、後の脱酸工程において脱りん後溶鉄の脱酸を行なっても、りんがスラグから溶鉄に再度移行する、いわゆる復りんを防止することが出来る。上記の復りんを防止する観点から、できるだけ脱りん後スラグが溶鉄表面に残らないよう除滓することが好ましい。ただし、溶鉄表面が完全に露出するまで除滓を行なうと、鉄歩留まりの低下や溶鉄温度の降下が著しくなるなどの場合もあるので、要求される製品のりん濃度のレベルに合わせて除滓の程度を調整してもよい。
 第五工程として、上記脱りん後溶鉄からスラグの分離を行なった後、該脱りん後溶鉄を脱酸剤で脱酸する操作を行なう。この脱酸は、上記の脱りん後溶鉄からスラグの分離を行なった後、溶鉄を鋳造するまでの期間内に行なう。例えば、除滓後すぐに溶鉄が収容された取鍋に脱酸剤を添加して脱酸を行なってもよいし、除滓後、溶鉄が収容された取鍋を次工程の精錬設備に搬送し、次工程の精錬処理中に脱酸剤を添加して脱酸を行なってもよい。具体的には、次工程が、たとえば、RH式真空脱ガス設備で真空脱ガス処理を行なう工程であれば、真空脱ガス処理中に脱酸剤を添加して脱酸を行なってもよい。ここで、真空脱ガス処理中の脱酸剤の添加タイミングは特に限定されない。真空脱ガス処理の初期に脱酸剤を添加して脱酸を行ない、その後脱酸後溶鉄を還流させる、いわゆるキルド処理を行なってもよい。また、真空脱ガス処理の前半は脱酸剤を添加せず溶鉄を還流させ、この間必要に応じて送酸を行なうなどして脱炭を行なう、いわゆるリムド処理を行なった後、処理の後半で脱酸剤を添加してキルド処理を行なってもよい。また次工程はRH式真空脱ガス設備での処理に限らず、VOD設備での処理であってもよいし、レードルファーネス(LF)での処理であってもよい。これらの設備における処理中の脱酸剤の添加タイミングが特に限定されないことは、上記のRH式真空脱ガス設備における真空脱ガス処理の場合と同様である。さらに、添加される脱酸剤としては、金属アルミニウム、金属シリコン、フェロシリコン、シリコンマンガン等、常用の脱酸剤を用いることが出来る。
 150t規模電気炉にスクラップまたは還元鉄を装入して溶解し、取鍋に出湯後スラグの除滓を行った。試験に用いた還元鉄は、水素で還元することによって製造した還元鉄であり、炭素濃度を分析したところ、0.15質量%であった。出湯後の取鍋内溶鉄に造滓材を添加し、上吹きランスから酸素ガスを供給、取鍋底部からアルゴンガス、水素ガス、炭化水素ガスまたは水素ガスと炭化水素ガスの混合ガスを供給して脱りん処理を行った。脱りん処理終了後は取鍋湯面上のスラグを除滓したのちに、RH式還流装置で真空脱ガス処理を行い、脱酸用のAl含有物質を投入し、その他の成分調整を行った。
(試験1)
 冷鉄源としてスクラップ150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.25質量%、P濃度[P]は0.040質量%、溶鉄中の溶存酸素濃度[O]は125質量ppmであった。生石灰2tおよび珪石1tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、アルゴンガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.004質量%まで低下したが、溶存酸素濃度[O]は1530質量ppmとなった。このため、脱酸用Alの投入量および品質欠陥が高位となった。またFe歩留まりが低位となった。
(試験2)
 冷鉄源としてスクラップ150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.23質量%、P濃度[P]は0.035質量%、溶鉄中の溶存酸素濃度[O]は140質量ppmであった。生石灰2tおよび珪石1tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、水素ガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.005質量%まで低下した。この時、溶存酸素濃度[O]は630質量ppmとなり、脱酸用Alの投入量および品質欠陥は低位となった。また、Fe歩留まりは高位となった。
(試験3)
 冷鉄源としてスクラップ150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.25質量%、P濃度[P]は0.038質量%、溶鉄中の溶存酸素濃度[O]は123質量ppmであった。生石灰2tおよび珪石1tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、プロパンガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.005質量%まで低下した。この時、溶存酸素濃度[O]は560質量ppmとなり、脱酸用Alの投入量および品質欠陥は低位となった。また、Fe歩留まりは高位となった。
(試験4)
 冷鉄源としてスクラップ150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.24質量%、P濃度[P]は0.036質量%、溶鉄中の溶存酸素濃度[O]は132質量ppmであった。生石灰2tおよび珪石1tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、50vol%水素-50vol%プロパンガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.004質量%まで低下した。この時、溶存酸素濃度[O]は590質量ppmとなり、脱酸用Alの投入量および品質欠陥は低位となった。また、Fe歩留まりは高位となった。
(試験5)
 冷鉄源として還元鉄150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.20質量%、P濃度[P]は0.140質量%、溶鉄中の溶存酸素濃度[O]は136質量ppmであった。生石灰6tおよび珪石3tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、アルゴンガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.003質量%まで低下したが、溶存酸素濃度[O]は1720質量ppmとなった。このため、脱酸用Alの投入量および品質欠陥が高位となった。またFe歩留まりが低位となった。
(試験6)
 冷鉄源として還元鉄150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.19質量%、P濃度[P]は0.130質量%、溶鉄中の溶存酸素濃度[O]は160質量ppmであった。生石灰6tおよび珪石3tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、水素ガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.005質量%まで低下した。この時、溶存酸素濃度[O]は510質量ppmとなり、脱酸用Alの投入量および品質欠陥は低位となった。また、Fe歩留まりは高位となった。
(試験7)
 冷鉄源として還元鉄150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。取鍋に出湯後の溶鉄のC濃度[C]は0.23質量%、P濃度[P]は0.126質量%、溶鉄中の溶存酸素濃度[O]は140質量ppmであった。生石灰6tおよび珪石3tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、プロパンガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.005質量%まで低下した。この時、溶存酸素濃度[O]は600質量ppmとなり、脱酸用Alの投入量および品質欠陥は低位となった。また、Fe歩留まりは高位となった。
(試験8)
冷鉄源として還元鉄150tを電気炉にて溶解し、取鍋に出湯後除滓を行った。出湯後の溶鉄のC濃度[C]は0.21質量%、P濃度[P]は0.132質量%、溶鉄中の溶存酸素濃度[O]は150質量ppmであった。生石灰6tおよび珪石3tを添加したのち、上吹きランスより酸素ガスを20Nm/minで供給し、取鍋の底部に設置したポーラスプラグより、50vol%水素ガス-50vol%プロパンガス1Nm/minを供給し、10分間脱りん処理を行った。その結果、脱りん処理後の溶鉄中のりん濃度は0.005質量%まで低下したが、溶存酸素濃度[O]は530質量ppmとなった。このため、脱酸用Alの投入量および品質欠陥は低位となった。また、Fe歩留まりは高位となった。
 以上の試験条件および結果をまとめて、表1に示す。なお、脱酸用Al投入量指数は、金属Alとしての質量について、試験2、3、4、6、7および8の平均を1.0とした。Fe歩留指数は、溶解したFe成分の質量に対する処理後の溶鉄中Fe成分の質量の比率について、試験2、3、4、6、7および8の平均を1.0とした。品質欠陥指数は、製品の単位質量あたりの品質欠陥発生率について、試験2、3、4、6、7および8の平均を1.0とした。
Figure JPOXMLDOC01-appb-T000001
 本発明にかかる溶鉄の脱りん方法によれば、過剰な酸素を溶存させることなく、また、りん濃度やスラグ量が増大した場合でも安定して低りん鋼を製造することができ、特にCO排出量を低減した還元剤を用いて製造された還元鉄を配合した場合にも安定して低りん鋼を製造することができるので、CO削減に寄与し産業上有用である。
 

 

Claims (7)

  1. 容器に保持された溶鉄に、水素ガスもしくは炭化水素ガスまたはそれらの混合ガスを吹込みつつ、造滓材と酸素源を供給して前記溶鉄の脱りん処理を行い脱りん後溶鉄を得、該脱りん処理後に前記脱りん後溶鉄の表面に浮遊するスラグを該脱りん後溶鉄から分離することを含む、溶鉄の脱りん方法。
  2. 前記スラグを分離した後、前記脱りん後溶鉄を脱酸剤で脱酸する、請求項1に記載の溶鉄の脱りん方法。
  3. 前記溶鉄は、前記脱りん処理前の炭素含有量が0.5質量%以下である、請求項1または2に記載の溶鉄の脱りん方法。
  4. 前記溶鉄は冷鉄源を溶解して得たものである、請求項1ないし3のいずれか1項に記載の溶鉄の脱りん方法。
  5. 前記冷鉄源が還元鉄を含む、請求項4に記載の溶鉄の脱りん方法。
  6. 前記容器が取鍋である、請求項1ないし5のいずれか1項に記載の溶鉄の脱りん方法。
  7. 前記脱りん処理の前に、冷鉄源を溶解炉で溶解して溶鉄を得、該溶鉄を前記溶解炉より前記容器に出湯するにあたり、生成したスラグを出湯前に前記溶鉄から分離すること、および、前記容器に前記溶鉄と共に流入したスラグを該溶鉄から分離すること、のいずれか一方または両方を行う、請求項1~6のいずれか1項に記載の溶鉄の脱りん方法。
PCT/JP2022/018163 2021-05-26 2022-04-19 溶鉄の脱りん方法 WO2022249797A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22811071.4A EP4324940A1 (en) 2021-05-26 2022-04-19 Method for dephosphorization of molten metal
BR112023024387A BR112023024387A2 (pt) 2021-05-26 2022-04-19 Método para desfosforação de ferro fundido
KR1020237043468A KR20240010004A (ko) 2021-05-26 2022-04-19 용철의 탈인 방법
CN202280036684.3A CN117396614A (zh) 2021-05-26 2022-04-19 铁液的脱磷方法
JP2022547077A JP7302749B2 (ja) 2021-05-26 2022-04-19 溶鉄の脱りん方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088400 2021-05-26
JP2021-088400 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249797A1 true WO2022249797A1 (ja) 2022-12-01

Family

ID=84229949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018163 WO2022249797A1 (ja) 2021-05-26 2022-04-19 溶鉄の脱りん方法

Country Status (7)

Country Link
EP (1) EP4324940A1 (ja)
JP (1) JP7302749B2 (ja)
KR (1) KR20240010004A (ja)
CN (1) CN117396614A (ja)
BR (1) BR112023024387A2 (ja)
TW (1) TWI823400B (ja)
WO (1) WO2022249797A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56216A (en) * 1979-06-16 1981-01-06 Chobe Taguchi Dephosphoration of iron steel
JPS5980711A (ja) * 1982-09-23 1984-05-10 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン 鉄から燐を除去する方法
JPS61291913A (ja) 1985-06-20 1986-12-22 Nippon Kokan Kk <Nkk> 溶鋼の脱燐方法
JPH08225880A (ja) 1995-01-16 1996-09-03 Kct Technol Gmbh 合金鋼の製造方法および合金鋼の製造プラント
JP2001107125A (ja) * 1999-09-30 2001-04-17 Sumitomo Metal Ind Ltd 精錬時のスラグフォーミングの抑制方法
JP2005089839A (ja) 2003-09-18 2005-04-07 Jfe Steel Kk 溶鋼の溶製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950131B (zh) * 2018-07-10 2020-04-28 娄永琰 一种h13模具钢的冶炼及还原脱磷方法
CN111748673B (zh) * 2020-06-02 2021-06-11 北京科技大学 一种电弧炉炼钢用多功能氢氧烧嘴及供能控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56216A (en) * 1979-06-16 1981-01-06 Chobe Taguchi Dephosphoration of iron steel
JPS5980711A (ja) * 1982-09-23 1984-05-10 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン 鉄から燐を除去する方法
JPS61291913A (ja) 1985-06-20 1986-12-22 Nippon Kokan Kk <Nkk> 溶鋼の脱燐方法
JPH08225880A (ja) 1995-01-16 1996-09-03 Kct Technol Gmbh 合金鋼の製造方法および合金鋼の製造プラント
JP2001107125A (ja) * 1999-09-30 2001-04-17 Sumitomo Metal Ind Ltd 精錬時のスラグフォーミングの抑制方法
JP2005089839A (ja) 2003-09-18 2005-04-07 Jfe Steel Kk 溶鋼の溶製方法

Also Published As

Publication number Publication date
JPWO2022249797A1 (ja) 2022-12-01
EP4324940A1 (en) 2024-02-21
BR112023024387A2 (pt) 2024-02-15
TWI823400B (zh) 2023-11-21
KR20240010004A (ko) 2024-01-23
CN117396614A (zh) 2024-01-12
JP7302749B2 (ja) 2023-07-04
TW202246531A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5343308B2 (ja) 溶鋼の脱硫方法
JP2013234379A (ja) 極低燐極低硫鋼の溶製方法
JP2007224367A (ja) 高窒素含有鋼の溶製方法
WO1995001458A1 (fr) Procede de production et d&#39;acier au moyen d&#39;un convertisseur
JP6693536B2 (ja) 転炉製鋼方法
JP2006233264A (ja) 高クロム溶鋼の溶製方法
JP2007051350A (ja) 低硫鋼の溶製方法
JP6028755B2 (ja) 低硫鋼の溶製方法
JP2016151027A (ja) 溶鋼の製造方法
JPH09217110A (ja) 超低硫鋼の溶製方法
TWI685577B (zh) 高錳鋼的冶煉方法
JP2008063610A (ja) 溶鋼の製造方法
JP7302749B2 (ja) 溶鉄の脱りん方法
JP2008169407A (ja) 溶鋼の脱硫方法
JPH09235611A (ja) 清浄性の高い極低硫純鉄の製造方法
JP7384294B2 (ja) 溶鉄の精錬方法
JP2016079462A (ja) 溶銑の精錬方法
JPH0987732A (ja) 溶鋼の精錬方法
JP2002129221A (ja) 溶銑の精錬方法
JP4192503B2 (ja) 溶鋼の製造方法
JP2006241561A (ja) 溶銑輸送容器からの発塵防止方法
US20240229177A1 (en) Method for dephosphorization of molten iron
JP7167704B2 (ja) 溶銑脱硫方法
JP7248195B2 (ja) 転炉製鋼方法
WO2022259808A1 (ja) 溶鋼の脱窒方法、脱窒及び脱硫同時処理方法および鋼の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022547077

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022811071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280036684.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18563597

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022811071

Country of ref document: EP

Effective date: 20231116

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024387

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237043468

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043468

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023135001

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023024387

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231122