WO2022247694A1 - 填充材料及制备方法、高频信号传输用电解铜箔制备方法 - Google Patents

填充材料及制备方法、高频信号传输用电解铜箔制备方法 Download PDF

Info

Publication number
WO2022247694A1
WO2022247694A1 PCT/CN2022/093416 CN2022093416W WO2022247694A1 WO 2022247694 A1 WO2022247694 A1 WO 2022247694A1 CN 2022093416 W CN2022093416 W CN 2022093416W WO 2022247694 A1 WO2022247694 A1 WO 2022247694A1
Authority
WO
WIPO (PCT)
Prior art keywords
filling material
preparation
imprinted
additive
reaction solution
Prior art date
Application number
PCT/CN2022/093416
Other languages
English (en)
French (fr)
Inventor
陈智栋
曹乾莹
王文昌
吴敏贤
明小强
王朋举
Original Assignee
江苏铭丰电子材料科技有限公司
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏铭丰电子材料科技有限公司, 常州大学 filed Critical 江苏铭丰电子材料科技有限公司
Priority to JP2022554789A priority Critical patent/JP7436997B2/ja
Priority to US18/023,361 priority patent/US20230330625A1/en
Publication of WO2022247694A1 publication Critical patent/WO2022247694A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3092Packing of a container, e.g. packing a cartridge or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • the invention belongs to the technical field of additive decomposition products, and in particular relates to a filling material and a preparation method, and a preparation method of electrolytic copper foil for high-frequency signal transmission.
  • additives In order to prepare low-profile electrolytic copper foil, additives (brighteners and leveling agents) need to be added to the copper electrodeposition solution. However, with the progress of copper electrodeposition, some additives will be oxidized and decomposed. In addition, the general electrodeposition temperature is higher than 50°C. At this temperature, it is inevitable that part of the additives will be oxidized and decomposed after passing through the foil machine tank. These additive decomposition products are not only not helpful for copper electrodeposition, but also accompanied by The electrodeposition of copper will be mixed into the copper deposition layer, which will affect the quality of the electrolytic copper foil. If it will reduce the ductility and tensile strength of the copper foil, it must be removed in time.
  • activated carbon is added to the pipeline during the electrolyte circulation process to remove additive decomposition products.
  • the removal of organic matter by activated carbon is not selective. Activated carbon not only removes the decomposition products of additives, but also removes additives, resulting in a large waste of additives and activated carbon.
  • the purpose of the present invention is to provide a filling material and preparation method, and a preparation method of electrolytic copper foil for high-frequency signal transmission, so as to solve the problem of removing additive decomposition products in copper electrolyte in the production process of electrolytic copper foil for high-frequency signal transmission.
  • the invention provides filling materials, comprising the following raw materials:
  • Imprinted molecules 0.15-3g;
  • the present invention also provides a method for preparing a filling material, comprising:
  • Step S01 dissolving ferric chloride hexahydrate (FeCl3 ⁇ 6H2O) and imprinted molecules in water to form a reaction solution;
  • Step S02 adding N'N-dimethylformamide (DMF) to the reaction solution and stirring to dissolve;
  • DMF N'N-dimethylformamide
  • Step S03 adding 2-aminoterephthalic acid (BDC) into the reaction solution and stirring to dissolve;
  • Step S04 immerse the porous ceramic (PC) in the reaction solution and stir;
  • Step S05 Treat the reaction solution with a hydrothermal method to remove the molecules of the decomposition products of the additives, and prepare a crystalline filling material (MI-Fe-MOFs/PC) imprinted with a molecular cast structure of the decomposition products of the additives.
  • MI-Fe-MOFs/PC crystalline filling material
  • step S05 includes:
  • Step S05.1 pour the reaction solution stirred in step S04 into a polytetrafluoroethylene-lined bottle, then transfer it to a reaction kettle, and place it in a blast drying oven for reaction;
  • Step S05.2 Cool down after the reaction, take out the reaction solution and centrifuge, discard the supernatant and collect the product;
  • Step S05.3 washing the product with DMF to remove uncoordinated reaction precursors
  • Step S05.4 Secondary washing the product with methanol to remove imprinted molecules-additive decomposition products in the product;
  • Step S05.5 Collect the double-washed product by centrifugation, and dry it in vacuum to obtain the filling material (MI-Fe-MOFs/PC) imprinted with the molecular casting structure of the decomposition product of the additive.
  • the mass percentage concentration of BDC, FeCl 3 6H 2 O, DMF and H 2 O in the preparation process of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the imprinted molecule includes:
  • the electrolytic solution is neutralized with NaOH solution, it is extracted with acetone organic solvent to obtain imprinted molecules.
  • porous ceramic is one of alumina porous ceramics, zirconia porous ceramics or aluminum nitride porous ceramics.
  • the particle size of the porous ceramic (PC) is greater than 100 ⁇ m and less than 1000 ⁇ m.
  • the present invention also provides a method for preparing electrolytic copper foil for high-frequency signal transmission, including:
  • the copper electrolyte in the electrolytic cell is filtered with an adsorption column for additive decomposition products to remove the additive decomposition products in the copper electrolyte and retain the additives to prepare electrolytic copper foil for high-frequency signal transmission.
  • the additive decomposition product adsorption column includes:
  • the filling material (MI-Fe-MOFs/PC) was prepared by the method described above.
  • the beneficial effect of the present invention is that the filling material and its preparation method and the preparation method of the electrolytic copper foil for high-frequency signal transmission of the present invention fully absorb and treat the copper electrodeposition solution in the Products that have been decomposed by additives; even in the presence of strong acid and a large amount of copper ions, it can effectively selectively adsorb the decomposition products of additives, so as to effectively remove the decomposition products of additives and prevent the copper electrodeposited film from being mixed with these Decompose products, achieve uniform distribution of current on the cathode and anode, improve the quality of electrolytic copper foil, and prepare electrolytic copper foil for high-frequency signal transmission.
  • Fig. 1 is a schematic structural view of a preferred embodiment of the adsorption column for additive decomposition products of the present invention.
  • FeCl 3 ⁇ 6H 2 O 3g; imprinted molecule: 0.15-3g; N'N-dimethylformamide (DMF): 60g; 2-aminoterephthalic acid (BDC): 1g; porous ceramic (PC): 6-30g.
  • DMF N'N-dimethylformamide
  • BDC 2-aminoterephthalic acid
  • PC porous ceramic
  • Step S01 dissolving ferric chloride hexahydrate (FeCl3 ⁇ 6H2O) and imprinted molecules in water to form a reaction solution;
  • Step S02 adding N'N-dimethylformamide (DMF) to the reaction solution and stirring to dissolve;
  • DMF N'N-dimethylformamide
  • Step S03 adding 2-aminoterephthalic acid (BDC) into the reaction solution and stirring to dissolve;
  • Step S04 immerse the porous ceramic (PC) in the reaction solution and stir;
  • Step S05 Treat the reaction solution with a hydrothermal method to remove the molecules of the decomposition products of the additives, and prepare a crystalline filling material (MI-Fe-MOFs/PC) imprinted with a molecular cast structure of the decomposition products of the additives.
  • MI-Fe-MOFs/PC crystalline filling material
  • step S05 includes:
  • Step S05.1 pour the reaction solution stirred in step S04 into a polytetrafluoroethylene-lined bottle, then transfer it to a reaction kettle, and place it in a blast drying oven for reaction;
  • Step S05.2 Cool down after the reaction, take out the reaction solution and centrifuge, discard the supernatant and collect the product;
  • Step S05.3 washing the product with DMF to remove uncoordinated reaction precursors
  • Step S05.4 Secondary washing the product with methanol to remove imprinted molecules-additive decomposition products in the product;
  • Step S05.5 Collect the double-washed product by centrifugation, and dry it in vacuum to obtain the filling material (MI-Fe-MOFs/PC) imprinted with the molecular casting structure of the decomposition product of the additive.
  • the filling material (MI-Fe-MOFs/PC) is composed of two parts, namely MI-Fe-MOFs and MI-Fe-MOFs support ceramic material ( PC) composition.
  • the basic composition of organic framework Fe-MOFs with iron as the central ion is FeCl 3 ⁇ 6H 2 O, DMF, BDC and reaction solvent H 2 O.
  • the mass percentage concentration of BDC, FeCl 3 6H 2 O, DMF and H 2 O in the preparation process of the filling material (MI-Fe-MOFs/PC) is:
  • the amount of imprinted molecules used is 0.1-1 times that of iron salts . If no imprinted molecules are added during the preparation of MI-Fe-MOFs, the synthesis will produce Fe-MOFs without imprinted molecular cast structures. When the amount of imprinted molecules used is less than 0.1 times, because the concentration of imprinted molecules is too low, there are not many cast structures of imprinted molecules in MI-Fe-MOFs materials, which will affect the subsequent adsorption capacity of additive decomposition products. When imprinted molecules are used When the amount is greater than 1 time of the iron salt, it is a waste of the imprinted molecule, and the optimal amount of the imprinted molecule is usually about 0.3 times that of the iron salt.
  • the MI-Fe-MOFs are loaded on the porous ceramic (PC) with large particles.
  • PC porous ceramic
  • the amount of PC added to the MI-Fe-MOFs synthesis solution is usually 0.5-10 times the amount of iron salt, and the amount of PC added is too small, less than 0.5 times the amount of iron salt, the PC surface load If the MI-Fe-MOFs film is too thick, the adsorption efficiency of additive decomposition products will decrease.
  • the optimal amount of PC added is about 5 times the amount of iron salt.
  • the preparation method of imprinted molecules includes:
  • the mixed solution is electrolyzed; after the electrolytic solution is neutralized with NaOH solution, the imprinted molecule is obtained by extracting with an acetone organic solvent.
  • a mixed solution of concentrated sulfuric acid containing 50mL/L and 100mL/L of additives will be prepared, and two titanium plates will be placed in the solution to serve as the anode and cathode respectively, at a temperature of 50°C and a current density of 70A/ dm ,
  • the electrolysis time is generally 6-12h.
  • the electrolysis time when the imprinted molecules are prepared by electrochemical methods should be the time required to completely decompose the additives, usually 12 hours at the current density prepared by electrolytic copper foil.
  • the current density and temperature should adopt the operating conditions for the preparation of electrolytic copper foil in order to obtain the same additive decomposition products.
  • the electrolysis time refers to the time for all the additives in the electrolyte to be decomposed. To judge whether the additives are all decomposed, it can be determined by liquid chromatography analysis. Generally speaking, the electrolysis time is 6-12h. If the electrolysis time is too short, the decomposition products of additives will be too small, the concentration of imprinted molecules will be too low, and there will be a large number of additive molecules, which will affect the molecular imprinting in the next step. On the contrary, if the electrolysis time is too long, it will waste time for no reason. After the electrolytic solution is neutralized with NaOH solution, it is extracted with an organic solvent of acetone to obtain the molecule of the additive decomposition product, that is, the imprinted molecule.
  • the porous ceramic (PC) is one of alumina porous ceramics, zirconia porous ceramics or aluminum nitride porous ceramics.
  • the porous ceramic (PC) can also be made of other materials, as long as the porous ceramic (PC) has acid corrosion resistance.
  • the particle size of the porous ceramic (PC) is greater than 100 ⁇ m and less than 1000 ⁇ m. If the particle size of the porous ceramic (PC) is too small, the flow resistance of the prepared filling material (MI-Fe-MOFs/PC) is too large, which affects the circulation of the copper electrolyte; if the particle size of the porous ceramic (PC) is too large, due to The flow of the copper electrolyte is fast, resulting in a decrease in the adsorption effect on the decomposition products of additives.
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the washed product was collected by centrifugation, and dried in vacuum at 60° C. for 12 h to obtain the filling material (MI-Fe-MOFs/PC) imprinted with the molecular casting structure of the decomposition product of the additive.
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the preparation method of the filling material (MI-Fe-MOFs/PC) is:
  • the additive decomposition product adsorption column Connects the additive decomposition product adsorption column to the electrolytic cell; use the additive decomposition product adsorption column to filter the copper electrolyte in the electrolytic cell to remove the additive decomposition product in the copper electrolyte and retain the additive to prepare electrolytic copper for high-frequency signal transmission foil.
  • the adsorption column is connected to the electrolytic cell of the electrolytic copper foil, and the electrolyte is passed through the MI-Fe-MOFs/PC adsorption column and continuously circulated to realize the removal of additive decomposition products in the copper electrolyte.
  • the actual environment of electrolytic copper foil production is simulated.
  • the actual production process of electrolytic copper foil is Effectively removes decomposition products of additives.
  • the copper electrolytic solution was passed through the MI-Fe-MOFs/PC adsorption column by a peristaltic pump, the flow rate was 100mL/min, and the internal volume of the MI-Fe-MOFs/PC adsorption column was about 10mL.
  • the contents of the additive decomposition products before and after the copper foil electrolyte passed through the MI-Fe-MOFs/PC adsorption column were measured respectively, and the determination of the additive decomposition products was performed by liquid chromatography.
  • the simulation solution is to dissolve copper sulfate in sulfuric acid solution, so that the concentration of copper sulfate is 300g/L, and the concentration of sulfuric acid is 100g/L.
  • the amount of additive added is the amount specified by each company. Since the additives of each company are different, the decomposition products of the additives are also different. In the embodiment of the present invention, the additives of two companies are selected as representatives, denoted as A and B respectively.
  • liquid chromatography was used for analysis, and the chromatographic peak area of the decomposition products of copper electrolyte additives without MI-Fe-MOFs/PC column treatment was counted as 100.
  • the concentration of the additive decomposition products was calculated proportionally by the decrease of the peak area. If no peak of the additive decomposition product is shown in the chromatographic analysis after being treated by the MI-Fe-MOFs/PC adsorption column, then the additive decomposition product is not detected and recorded as 0.
  • the above specific examples 2.1 to 2.9, comparative example 1 and comparative example 2 are the specific preparation methods of the filling material (MI-Fe-MOFs/PC) of the present application, but are not limited to those listed in the above examples and comparative examples Reaction conditions and starting material concentrations.
  • the concentration changes of additive decomposition products before and after A and B were treated by MI-Fe-MOFs/PC adsorption column, see Table 2.
  • the additive decomposition product adsorption column includes:
  • the two ends of the two ends; the filling material 2 (MI-Fe-MOFs/PC) was prepared by the method described above.
  • the porous ceramic (PC) powder loaded with MI-Fe-MOFs imprinted with additive decomposition product molecules is used as the filling material 2 (MI-Fe-MOFs/PC), and the filling material 2 (MI-Fe-MOFs
  • the adsorption column prepared by /PC) has a good selective removal ability for the decomposition products of additives, and the additives of the electrolytic copper solution are not removed.
  • the glass tube 1 filled with the filling material 2 (MI-Fe-MOFs/PC) can also be replaced by a stainless steel tube.
  • Example 2.1 to Example 2.9 and Comparative Example 1 and Comparative Example 2 through MI-Fe-MOFs/PC
  • the MI-Fe-MOFs/PC adsorption column is very effective for the removal of additive decomposition products in the copper electrolyte; in addition, from Table 2 Comparative Example 1 and According to the results of Comparative Example 2, the Fe-MOFs/PC adsorption column without imprinted additive decomposition product molecules hardly adsorbs additive decomposition products.
  • ferric trichloride hexahydrate FeCl3 Fe- MOFs material
  • MI-Fe-MOFs ferric trichloride hexahydrate
  • the adsorption column has a good ability to remove the decomposition products of additives in the copper electrolyte, and can fully absorb and treat the decomposed products of the additives in the copper electrodeposition solution, so that these decomposition products will not be mixed into the copper electrodeposition film, and the current can be achieved at the same time.
  • the uniform distribution on the cathode and anode improves the quality of the electrolytic copper foil and achieves the effect of preparing electrolytic copper foil for high-frequency signal transmission.
  • the invention provides a method for selectively removing decomposition products of additives in the production process of electrolytic copper foil without affecting the additives.
  • the porous ceramic (PC) powder loaded with MI-Fe-MOFs imprinted with the additive decomposition product molecular cast structure is used as the filling material (MI-Fe-MOFs/PC), and the filling material (MI-Fe-MOFs/PC).
  • the adsorption column prepared by ) has good selective removal ability to the decomposition products of additives, and the additives of electrolytic copper solution are not removed; so that the concentration of additive decomposition products in copper electrolyte is reduced, and the low profile electrolytic copper foil is effectively improved. of extensibility.
  • connection In the description of the embodiments of the present invention, unless otherwise clearly stipulated and limited, the terms “installation”, “connection” and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • connection In the description of the embodiments of the present invention, unless otherwise clearly stipulated and limited, the terms “installation”, “connection” and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • connection In the description of the embodiments of the present invention, unless otherwise clearly stipulated and limited, the terms “installation”, “connection” and “connection” should be understood in a broad sense, for example, it can be
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明属于添加剂分解产物技术领域,具体涉及一种填充材料及制备方法、高频信号传输用电解铜箔的制备方法。本填充材料包括:FeCl 3·6H2O:3g;印迹分子:0.15-3g;DMF:60g;BDC:1g;PC:6-30g。本填充材料的制备方法包括:将FeCl3·6H2O和印迹分子溶于水中形成反应溶液;反应溶液中加入DMF搅拌溶解;反应溶液中加入BDC搅拌溶解;PC浸渍于反应溶液中搅拌;水热法处理反应溶液,去除添加剂分解产物分子,制备印迹有添加剂分解产物分子铸型结构的填充材料。本发明可有效对添加剂分解产物选择性吸附,达到有效去除添加剂分解产物、使铜的电沉积薄膜中不混入分解产物、实现电流在阴极和阳极上均匀分布、提高品质、制备高频信号传输用电解铜箔的效果。

Description

填充材料及制备方法、高频信号传输用电解铜箔制备方法 技术领域
本发明属于添加剂分解产物技术领域,具体涉及一种填充材料及制备方法、高频信号传输用电解铜箔制备方法。
背景技术
铜箔作为线路板中电子与信号传导通道的载体,是印制线路板(PCB)制造中最重要原料之一。随着5G的兴起,伴随着传输信号频率的增大,高频信号在传输线的铜箔表面产生的“趋肤效应”越来越显著,当传输信号为5G时,其信号在导线表面的传输厚度为0.93μm左右,也就是说信号传输仅在粗糙度的厚度范围内进行,那么必然产生严重的信号“驻波”和“反射”等,使信号造成损失,甚至形成严重或完全失真。铜箔表面越粗糙,信号损耗随之增大。因此,随着5G的技术的普及以及信号传输不断向高频发展,适用于高频PCB的表面低粗糙度的低轮廓电解铜箔被人们所关注。
为了制备低轮廓电解铜箔,需要在铜电沉积溶液中加入有添加剂(光亮剂和整平剂)。然而,伴随着铜电沉积的进行,一些添加剂会发生氧化而分解。另外,一般电沉积温度均高于50℃,在此温度下,难免会发生添加剂在经过生箔机槽体后,一部分被氧化分解,这些添加剂分解产物对于铜的电沉积不仅没有帮助,而且伴随着铜的电沉积,会夹杂进入铜的沉积层中,反而还会影响电解铜箔的品质,如会降低铜箔的延展性和抗拉强度等,必须及时除去。所以,目前现行工艺,在电解液循环过程中,会在管路中添加活性炭,以便去除添加剂分解产物。但是,活性炭对有机物的去除是没有选择性的,活性炭不仅去除了添加剂分解产物,同时也去除了添加剂,由此造成添加剂和活性炭的大量浪费。
发明内容
本发明的目的是提供一种填充材料及制备方法、高频信号传输用电解铜箔制备方法,以解决在高频信号传输用电解铜箔生产工艺中,去除铜电解液中的添加剂分解产物,提高电解铜箔的延展性和降低铜箔的粗糙度的技术问题。
为了解决上述技术问题,本发明提供了填充材料,包括以下原料:
FeCl3·6H2O:3g;
印迹分子:0.15-3g;
N’N-二甲基甲酰胺(DMF):60g;
2-氨基对苯二甲酸(BDC):1g;
多孔陶瓷(PC):6-30g。
又一方面,本发明还提供了填充材料的制备方法,包括:
步骤S01:将六水合三氯化铁(FeCl3·6H2O)和印迹分子溶于水中形成反应溶液;
步骤S02:在反应溶液中加入N’N-二甲基甲酰胺(DMF)并搅拌溶解;
步骤S03:在反应溶液中加入2-氨基对苯二甲酸(BDC)并搅拌溶解;
步骤S04:将多孔陶瓷(PC)浸渍于反应溶液中并搅拌;
步骤S05:采用水热法处理反应溶液,去除添加剂分解产物分子,制备晶体状的印迹有添加剂分解产物分子铸型结构的填充材料(MI-Fe-MOFs/PC)。
进一步,所述步骤S05包括:
步骤S05.1:将步骤S04搅拌后的反应溶液倒入聚四氟乙烯内衬瓶中,再转入反应釜中,置于鼓风干燥箱内反应;
步骤S05.2:反应结束后冷却,取出反应溶液离心,弃去上清液并收集产物;
步骤S05.3:用DMF一级洗涤产物,洗去未配位的反应前驱体;
步骤S05.4:用甲醇二级洗涤产物,洗去产物中的印迹分子-添加剂分解产物;
步骤S05.5:离心收集双重洗涤后的产物,真空干燥,得到印迹有添加剂分解产物分子铸型结构的填充材料(MI-Fe-MOFs/PC)。
进一步,所述填充材料(MI-Fe-MOFs/PC)在制备过程中BDC、FeCl 3·6H 2O、DMF和H 2O的质量百分比浓度为:
BDC:FeCl3·6H2O:DMF:H2O=1:3:60:200。
进一步,所述印迹分子的制备方法包括:
配制含添加剂和浓硫酸的混合溶液;
在混合溶液中放置两片不参与电解反应的材料作为阳极和阴极;
将混合溶液电解;
用NaOH溶液将电解溶液中和后,经丙酮有机溶剂萃取,得到印迹分子。
进一步,所述多孔陶瓷(PC)采用氧化铝多孔陶瓷、氧化锆多孔陶瓷或氮化铝多孔陶瓷中的一种。
进一步,所述多孔陶瓷(PC)的粒径大于100μm,且小于1000μm。
第三方面,本发明还提供了高频信号传输用电解铜箔制备方法,包括:
将添加剂分解产物吸附柱与电解槽相连接;
用添加剂分解产物吸附柱过滤电解槽内的铜电解液,实现去除铜电解液中的添加剂分解产物,保留添加剂,以制备高频信号传输用电解铜箔。
进一步,所述添加剂分解产物吸附柱包括:
玻璃管,以容纳填充材料(MI-Fe-MOFs/PC);
两片网状尼龙,均设置在玻璃管内,以封堵填充材料(MI-Fe-MOFs/PC)的两端;
所述填充材料(MI-Fe-MOFs/PC)采用如前所述的方法制备。
本发明的有益效果是,本发明的填充材料及制备方法、高频信号传输用电解铜箔制备方法,通过分别制备印迹分子、填充材料和添加剂分解产物吸附柱,充分吸附处理铜电沉积溶液中添加剂已经分解的产物;即便是在强酸和大量铜离子存在的条件下,也可有效地对添加剂分解产物进行选择性吸附,达到有效地去除添加剂分解产物、使铜的电沉积薄膜中不混入这些分解产物、实现电流在阴极和阳极上的均匀分布、提高电解铜箔的品质、制备高频信号传输用电解铜箔的效果。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中显而易见,或者通过实施本发明而了解。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的添加剂分解产物吸附柱的优选实施例的结构示意图。
图中:
玻璃管1、填充材料2、网状尼龙3。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例的填充材料,包括以下原料:
FeCl 3·6H 2O:3g;印迹分子:0.15-3g;N’N-二甲基甲酰胺(DMF):60g;2-氨基对苯二甲酸(BDC):1g;多孔陶瓷(PC):6-30g。
实施例2
本实施例的填充材料的制备方法,包括:
步骤S01:将六水合三氯化铁(FeCl3·6H2O)和印迹分子溶于水中形成反应溶液;
步骤S02:在反应溶液中加入N’N-二甲基甲酰胺(DMF)并搅拌溶解;
步骤S03:在反应溶液中加入2-氨基对苯二甲酸(BDC)并搅拌溶解;
步骤S04:将多孔陶瓷(PC)浸渍于反应溶液中并搅拌;
步骤S05:采用水热法处理反应溶液,去除添加剂分解产物分子,制备晶体状的印迹有添加剂分解产物分子铸型结构的填充材料(MI-Fe-MOFs/PC)。
在本实施例中,步骤S05包括:
步骤S05.1:将步骤S04搅拌后的反应溶液倒入聚四氟乙烯内衬瓶中,再转入反应釜中,置于鼓风干燥箱内反应;
步骤S05.2:反应结束后冷却,取出反应溶液离心,弃去上清液并收集产物;
步骤S05.3:用DMF一级洗涤产物,洗去未配位的反应前驱体;
步骤S05.4:用甲醇二级洗涤产物,洗去产物中的印迹分子-添加剂分解产物;
步骤S05.5:离心收集双重洗涤后的产物,真空干燥,得到印迹有添加剂分解产物分子铸型结构的填充材料(MI-Fe-MOFs/PC)。
在本实施例中,填充材料(MI-Fe-MOFs/PC)是由两部分构成,即具有添加剂分子分解产物分子铸型结构的MI-Fe-MOFs和MI-Fe-MOFs的担体陶瓷材料(PC)构成。以铁为中心离子的有机骨架Fe-MOFs的基本构成是FeCl 3·6H 2O、DMF、BDC和反应溶剂H 2O。填充材料(MI-Fe-MOFs/PC)在制备过程中BDC、FeCl 3·6H 2O、DMF和H 2O的质量百分比浓度为:
BDC:FeCl 3·6H 2O:DMF:H 2O=1:3:60:200。
当向该有机骨架Fe-MOFs中加入印迹分子时,并洗脱后,即可得到具有模板分子铸型结构的MI-Fe-MOFs,一般,印迹分子的使用量是铁盐的0.1-1倍。若在制备MI-Fe-MOFs时不加入印迹分子,则该合成制备的是不具有印迹分子铸型结构的Fe-MOFs。印迹分子的使用量小于0.1倍时,由于印迹分子的浓度过低,MI-Fe-MOFs材料中印迹分子的铸型结构不多,会影响后续对添加剂分解产物的吸附能力,当印迹分子的使用量大于铁盐的1倍时,对印迹分子又是浪费,印迹分子的最佳使用量通常为铁盐使用量的0.3倍左右。
为了使电解液顺利的通过MI-Fe-MOFs所制备的吸附柱,实现去除铜箔电解液中添加剂分解产物的目的,将MI-Fe-MOFs负载与大颗粒的多孔陶瓷(PC)上,是非常有效的办法,在制备MI-Fe-MOFs合成溶液中加入PC的量通常是铁盐量的0.5-10倍,加入的PC量过少,小于铁盐量的0.5倍时,PC表面负载的MI-Fe-MOFs膜过厚,会导致对添加剂分解产物吸附效率的下降,反之若PC的加入量过多,大于铁盐加入量的10倍时,PC表面的MI-Fe-MOFs膜过薄,同样会导致对添加剂分解产物吸附能力的下降。一般PC的最佳加入量约为铁盐量的5倍。
在本实施例中,印迹分子的制备方法包括:
配制含添加剂和浓硫酸的混合溶液;在混合溶液中放置两片不参与电解反应的材料作为阳极和阴极;采用电化学方法制备印迹分子,所采用的阴、阳电极,只要不参与电解反应的材料即可,如金、铂、碳和钛电极等,其电解条件如电流密度与电解温度与制备电解铜箔时的条件相一致。将混合溶液电解;用NaOH溶液将电解溶液中和后,经丙酮有机溶剂萃取,得到印迹分子。具体的,将配制含添加剂50mL/L和100mL/L的浓硫酸的混合溶液,在该溶液中放置两片钛板,分别作阳极和阴极,在温度50℃,电流密度70A/dm 2条件下,电解时间一般为6-12h。采用电化学方法制备印迹分子时的电解时间,应为将添加剂全部分解所需要时间,通常在电解铜箔制备的电流密度下一般为12h。对于制备印迹分子的电解条件而言,电流密度和温度应采用制备电解铜箔时的操作条件,以便获得相同的添加剂分解产物。电解时间是指将电解液中添加剂全部分解的时间,判断添加剂是否全部分解,可以使用液相色谱分析来确定。一般而言,电解时间为6-12h,若电解时间过短,则添加剂的分解物过少,印迹分子浓度过低,同时添加剂分子也会大量存在,影响下一步的分子印迹。反之电解时间过长,无端浪费时间。用NaOH溶液将电解溶液中和后,用丙酮有机溶剂萃取,即可得到添加剂分解产物分子,即印迹分子。
在本实施例中,多孔陶瓷(PC)采用氧化铝多孔陶瓷、氧化锆多孔陶瓷或氮化铝多孔陶瓷中的一种。当然,多孔陶瓷(PC)也可以选用其他材质,只要该多孔陶瓷(PC)具备耐酸腐蚀性能即可选择。
在本实施例中,多孔陶瓷(PC)的粒径大于100μm,且小于1000μm。若多孔陶瓷(PC)的粒径过小,制备的填充材料(MI-Fe-MOFs/PC)流通阻力过大,影响铜电解液的流通;若多孔陶瓷(PC)的粒径过大,由于铜电解液的流通过快,导致对添加剂分解产物吸附效果的下降。
在本实施例中,填充材料(MI-Fe-MOFs/PC)的具体制备方法,参见如下实施例2.1至实施例2.9、对比例1和对比例2。下面列举九个实施例的原料配比表,参见表1。
实施例2.1
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.15g的印迹分子溶于200g的水中,再加入60g N’N-二甲 基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)15g,充分搅拌1h。
将上述混合均匀的溶液倒入500mL的聚四氟乙烯内衬瓶中,再转入500mL的不锈钢反应釜中,置于鼓风干燥箱内在120℃下反应24h。反应结束后,自然冷却到室温,取出溶液于3000rpm离心10min,弃去上清液并收集产物。先用DMF洗涤产物三次,目的是洗去未配位的反应前驱体。再使用约50mL甲醇在搅拌状态下洗涤产物共两次,每次约12h。其目的是从充分洗去填充材料中的印迹分子-添加剂分解产物。然后离心收集洗涤后的产物,并于60℃下真空干燥12h,即得到印迹有添加剂分解产物分子铸型结构的填充材料(MI-Fe-MOFs/PC)。
实施例2.2
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.2g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)15g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.3
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.9g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)15g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.4
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和2.4g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)15g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.5
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和3g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)15g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.6
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.9g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)1.5g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.7
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.9g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)6g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.8
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.9g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)24g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例2.9
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.9g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)30g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
对比例1
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸(BDC)搅拌溶解后,加入多孔陶瓷(PC)15g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
对比例2
填充材料(MI-Fe-MOFs/PC)的制备方法为:
分别取3g FeCl 3·6H 2O和0.9g的印迹分子溶于200g的水中,再加入60g N’N-二甲基甲酰胺(DMF),搅拌使其全部溶解,再向该溶液中加入1g的2-氨基对苯二甲酸搅拌溶解后,加入多孔陶瓷(PC)0g,充分搅拌1h。
后续的操作步骤与实施例2.1相同,此处不再赘述。
实施例3
本实施例的高频信号传输用电解铜箔制备方法,包括:
将添加剂分解产物吸附柱与电解槽相连接;用添加剂分解产物吸附柱过滤电解槽内的铜电解液,实现去除铜电解液中的添加剂分解产物,保留添加剂,以制备高频信号传输用电解铜箔。吸附柱与电解铜箔的电解槽相连接,将电解液通过MI-Fe-MOFs/PC吸附柱且不断循环,实现铜电解液中添加剂分解产物的去除。
在本实施例中,为了简化实验,模拟了电解铜箔生产的实际环境,在该体系下,若对电解液中添加剂的分解产物能有效去除,在实际生产中的电解铜箔生产工艺下即可有效地去除添加剂的分解产物。通过蠕动泵将该铜电解溶液通过MI-Fe-MOFs/PC吸附柱,流速为 100mL/min,MI-Fe-MOFs/PC吸附柱的内部体积约10mL。分别测定铜箔电解液通过MI-Fe-MOFs/PC吸附柱前后的添加剂分解产物的含量,添加剂的分解产物的测定使用液相色谱。
模拟溶液是将硫酸铜溶解于硫酸溶液中,使硫酸铜的浓度为300g/L,硫酸的浓度为100g/L。添加剂的加入量为各公司指定的加入量。由于每个公司的添加剂不同,所以添加剂的分解产物也不同。在本发明的实施例中选取了两家公司的添加剂为代表,分别表示为A和B。为了简化定量分析操作,使用液相色谱进行分析,将未经MI-Fe-MOFs/PC柱处理的铜电解液添加剂分解产物的色谱峰面积计为100。经过MI-Fe-MOFs/PC吸附柱处理后,添加剂分解产物的浓度,用峰面积的下降按比例来计算。若经过MI-Fe-MOFs/PC吸附柱处理后,在色谱分析中,未显示添加剂分解产物的出峰,则该添加剂分解产物是未检出记为0。以上具体实施例2.1至实施例2.9、对比例1和对比例2为本申请的填充材料(MI-Fe-MOFs/PC)的具体制备方法,但并不限于上述实施例和对比例中所列举反应条件及原料浓度。A和B经MI-Fe-MOFs/PC吸附柱处理前后添加剂分解产物的浓度变化,参见表2。
如图1所示,在本实施例中,添加剂分解产物吸附柱包括:
玻璃管1,以容纳填充材料2(MI-Fe-MOFs/PC);两片网状尼龙3,均设置在玻璃管1内,用以封堵填充材料2(MI-Fe-MOFs/PC)的两端;填充材料2(MI-Fe-MOFs/PC)采用如前所述的方法制备。本实施例采用负载了印迹有添加剂分解产物分子的MI-Fe-MOFs的多孔陶瓷(PC)粉体为填充材料2(MI-Fe-MOFs/PC),以填充材料2(MI-Fe-MOFs/PC)制备的吸附柱对添加剂的分解产物具有良好的选择性去除能力,且电解铜溶液的添加剂不被去除。以实现在电解铜箔生产工艺中选择性去除添加剂的分解产物,且不会去除添加剂。当然,可选的,装填容纳填充材料2(MI-Fe-MOFs/PC)的玻璃管1也可以采用不锈钢管替代。
表1本申请的实施例2.1至实施例2.9的各原料的配比表
Figure PCTCN2022093416-appb-000001
表2在实施例2.1至实施例2.9及对比例1和对比例2中,经MI-Fe-MOFs/PC
吸附柱处理前后添加剂分解产物的浓度变化
Figure PCTCN2022093416-appb-000002
从表1和表2中实施例2.1至实施例2.9可知,MI-Fe-MOFs/PC吸附柱对铜电解液中的添加剂分解产物的去除是非常有效;另外,从表2中对比例1和对比例2的结果来看,没有印迹添加剂分解产物分子的Fe-MOFs/PC吸附柱,对添加剂分解产物几乎不吸附。
综上所述,使用本发明的填充材料及制备方法、高频信号传输用电解铜箔制备方法,通过将铜电解液中的有机添加剂分解产物作为模板分子,采用六水合三氯化铁(FeCl3·6H2O)、N’N-二甲基甲酰胺(DMF)、2-氨基对苯二甲酸(BDC)和多孔陶瓷(PC)为原料,制备出印迹有添加剂分解产物分子铸型结构的Fe-MOFs材料,该材料标记为MI-Fe-MOFs。将MI-Fe-MOFs填充于玻璃管中,制备成添加剂分解产物吸附柱,用于吸附铜电解液中添加剂的分解产物。该吸附柱对铜电解液中的添加剂分解产物具有良好的去除能力,能充分吸附处理铜电沉积溶液中添加剂已经分解的产物,以使铜的电沉积薄膜中不混入这些分解产物,实现电流在阴极和阳极上的均匀分布,提高电解铜箔的品质,达到制备高频信号传输用电解铜箔的效果。
本发明提供一种电解铜箔生产工艺中选择性去除添加剂的分解产物,且不影响添加剂的方法。用负载了印迹有添加剂分解产物分子铸型结构的MI-Fe-MOFs的多孔陶瓷(PC)粉体为填充材料(MI-Fe-MOFs/PC),以填充材料(MI-Fe-MOFs/PC)制备的吸附柱对添加剂的分解产物具有良好的选择性去除能力,且电解铜溶液的添加剂不被去除;以使铜电解液中添加剂分解产物浓度的降低,有效地提高了低轮廓电解铜箔的延展性。
本申请中选用的各个器件(未说明具体结构的部件)均为通用标准件或本领域技术人员知晓的部件,其结构和原理都为本技术人员均可通过技术手册得知或通过常规实验方法获知。
在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中 的具体含义。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

  1. 一种晶体状印迹有电解铜箔添加剂分解产物分子铸型结构的填充材料,其特征在于包括以下原料:
    六水三氯化铁:3g;
    印迹分子:0.15-3g;
    N’N-二甲基甲酰胺:60g;
    2-氨基对苯二甲酸:1g;
    多孔陶瓷:6-30g;
    所述印迹分子为电解铜箔添加剂分解产物分子。
  2. 一种制备权利要求1所述填充材料的制备方法,其特征在于包括以下反应步骤:
    步骤S01:将六水三氯化铁和印迹分子溶于水中形成反应溶液;
    步骤S02:在反应溶液中加入N’N-二甲基甲酰胺并搅拌溶解;
    步骤S03:在反应溶液中加入2-氨基对苯二甲酸并搅拌溶解;
    步骤S04:将多孔陶瓷浸渍于反应溶液中并搅拌;
    步骤S05:采用水热法处理反应溶液,去除添加剂分解产物分子,制备晶体状的印迹有添加剂分解产物分子铸型结构的填充材料。
  3. 如权利要求2所述的填充材料的制备方法,其特征在于,
    所述步骤S05包括:
    步骤S05.1:将步骤S04搅拌后的反应溶液倒入聚四氟乙烯内衬瓶中,再转入反应釜中,置于鼓风干燥箱内反应;
    步骤S05.2:反应结束后冷却,取出反应溶液离心,弃去上清液并收集产物;
    步骤S05.3:用N’N-二甲基甲酰胺一级洗涤产物,洗去未配位的反应前驱体;
    步骤S05.4:用甲醇二级洗涤产物,洗去产物中的印迹分子-添加剂分解产物;
    步骤S05.5:离心收集双重洗涤后的产物,真空干燥,得到印迹有添加剂分解产物分子铸型结构的填充材料。
  4. 如权利要求2所述的填充材料的制备方法,其特征在于,
    所述填充材料在制备过程中2-氨基对苯二甲酸、六水三氯化铁、N’N-二甲基甲酰胺和水的质量百分比浓度为:
    2-氨基对苯二甲酸:六水三氯化铁:N’N-二甲基甲酰胺:水=1:3:60:200。
  5. 如权利要求2所述的填充材料的制备方法,其特征在于,
    所述印迹分子的制备方法包括:
    配制含添加剂和浓硫酸的混合溶液;
    在混合溶液中放置两片不参与电解反应的材料作为阳极和阴极;
    将混合溶液电解;
    用NaOH溶液将电解溶液中和后,经丙酮有机溶剂萃取,得到印迹分子。
  6. 如权利要求2所述的填充材料的制备方法,其特征在于,
    所述多孔陶瓷采用氧化铝多孔陶瓷、氧化锆多孔陶瓷或氮化铝多孔陶瓷中的一种。
  7. 如权利要求2所述的填充材料的制备方法,其特征在于,
    所述多孔陶瓷的粒径大于100μm,且小于1000μm。
  8. 一种高频信号传输用电解铜箔制备方法,其特征在于包括以下步骤:
    将添加剂分解产物吸附柱与电解槽相连接;
    用添加剂分解产物吸附柱过滤电解槽内的铜电解液,实现去除铜电解液中的添加剂分解产物,保留添加剂,以制备高频信号传输用电解铜箔;
    所述添加剂分解产物吸附柱包括:
    玻璃管,以容纳填充材料;
    两片网状尼龙,均设置在玻璃管内,以封堵填充材料的两端;
    所述填充材料采用如权利要求2所述的方法制备。
PCT/CN2022/093416 2021-05-24 2022-05-18 填充材料及制备方法、高频信号传输用电解铜箔制备方法 WO2022247694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022554789A JP7436997B2 (ja) 2021-05-24 2022-05-18 フィラー及びその生成方法、高周波信号伝送用電解銅箔の製造方法
US18/023,361 US20230330625A1 (en) 2021-05-24 2022-05-18 Filling material, method for preparing same and method for preparing electrolytic copper foil for high-frequency signal transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110565990.3 2021-05-24
CN202110565990.3A CN113337855B (zh) 2021-05-24 2021-05-24 填充材料及制备方法、高频信号传输用电解铜箔制备方法

Publications (1)

Publication Number Publication Date
WO2022247694A1 true WO2022247694A1 (zh) 2022-12-01

Family

ID=77471081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093416 WO2022247694A1 (zh) 2021-05-24 2022-05-18 填充材料及制备方法、高频信号传输用电解铜箔制备方法

Country Status (4)

Country Link
US (1) US20230330625A1 (zh)
JP (1) JP7436997B2 (zh)
CN (1) CN113337855B (zh)
WO (1) WO2022247694A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337855B (zh) * 2021-05-24 2022-04-05 常州大学 填充材料及制备方法、高频信号传输用电解铜箔制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030179A1 (en) * 2006-09-07 2008-03-13 Sellergren Boerje Metal imprinted polymers for selective pick up of cobalt
CN109402678A (zh) * 2018-12-07 2019-03-01 常州大学 电解铜箔电解液中铅离子的去除方法
CN110479220A (zh) * 2019-08-23 2019-11-22 河南师范大学 基于负载离子液体金属有机骨架的分子印迹聚合物分离富集痕量磺胺甲恶唑污染物的方法
WO2021007987A1 (zh) * 2019-07-15 2021-01-21 华南理工大学 一种MOFs/MIPs催化剂及其原位生长制备方法与应用
CN113337855A (zh) * 2021-05-24 2021-09-03 常州大学 填充材料及制备方法、高频信号传输用电解铜箔制备方法
CN113354445A (zh) * 2021-05-24 2021-09-07 常州大学 填充材料及制备方法、高延展性低轮廓电解铜箔制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466987B2 (ja) * 2000-04-14 2003-11-17 三井金属鉱業株式会社 電解銅箔の製造方法
JP3794613B2 (ja) * 2000-05-18 2006-07-05 三井金属鉱業株式会社 電解銅箔の電解装置
CN100562224C (zh) * 2002-02-22 2009-11-18 株式会社藤仓 多层线路基板、多层线路基板用基材、印刷线路基板及其制造方法
US8137525B1 (en) * 2003-01-13 2012-03-20 The Regents Of The University Of California Colloidal sphere templates and sphere-templated porous materials
US8968820B2 (en) * 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries
CN103214689B (zh) * 2013-03-20 2014-06-11 太原理工大学 一种离子印迹聚合物薄膜的制备方法
CN104479072B (zh) * 2014-11-24 2016-11-09 常州大学 一种制备磁性分子印迹吸附剂的方法
CN105753727A (zh) * 2016-02-24 2016-07-13 常州大学怀德学院 一种由分子印迹聚吡咯电极柱选择性分离氨基酸光学异构体的方法
KR102413056B1 (ko) * 2017-07-18 2022-06-23 에스케이넥실리스 주식회사 주름이 방지되고 우수한 충방전 특성을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102433032B1 (ko) * 2017-07-31 2022-08-16 에스케이넥실리스 주식회사 주름 발생이 방지된 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102446550B1 (ko) * 2017-10-18 2022-09-22 에스케이넥실리스 주식회사 고용량 이차전지용 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
CN107913682A (zh) * 2017-11-08 2018-04-17 常州大学 一种制备多孔温敏分子印迹吸附剂的方法
CN108855008A (zh) * 2018-07-06 2018-11-23 常州大学 一种3D有序大孔印迹壳聚糖膜的制备及其在水中去除Cu(II)的应用
JP6667840B1 (ja) * 2019-07-22 2020-03-18 テックス・テクノロジー株式会社 電解銅箔の製造方法
CN111074317B (zh) * 2019-12-30 2022-02-18 禹象铜箔(浙江)有限公司 一种铜箔的表面处理方法及铜箔材料
CN112387250B (zh) * 2020-10-21 2022-05-20 广西大学 一种类印迹mof吸附剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030179A1 (en) * 2006-09-07 2008-03-13 Sellergren Boerje Metal imprinted polymers for selective pick up of cobalt
CN109402678A (zh) * 2018-12-07 2019-03-01 常州大学 电解铜箔电解液中铅离子的去除方法
WO2021007987A1 (zh) * 2019-07-15 2021-01-21 华南理工大学 一种MOFs/MIPs催化剂及其原位生长制备方法与应用
CN110479220A (zh) * 2019-08-23 2019-11-22 河南师范大学 基于负载离子液体金属有机骨架的分子印迹聚合物分离富集痕量磺胺甲恶唑污染物的方法
CN113337855A (zh) * 2021-05-24 2021-09-03 常州大学 填充材料及制备方法、高频信号传输用电解铜箔制备方法
CN113354445A (zh) * 2021-05-24 2021-09-07 常州大学 填充材料及制备方法、高延展性低轮廓电解铜箔制造方法

Also Published As

Publication number Publication date
CN113337855A (zh) 2021-09-03
US20230330625A1 (en) 2023-10-19
CN113337855B (zh) 2022-04-05
JP7436997B2 (ja) 2024-02-22
JP2023534885A (ja) 2023-08-15

Similar Documents

Publication Publication Date Title
CN110117049B (zh) 一种金属-有机框架/聚吡咯杂化导电电极的制备方法
CN105198048B (zh) 一种三维电极填料及其制备方法
CN101394712B (zh) 黑孔化溶液及其制备方法
WO2022247694A1 (zh) 填充材料及制备方法、高频信号传输用电解铜箔制备方法
CN109402678B (zh) 电解铜箔电解液中铅离子的去除方法
CN103276412B (zh) 一种制备铜粉或镍粉的方法及其电解装置
CN105018971B (zh) 一种由铁制备功能性的微纳结构枝状α‑Fe基材料的方法
CN113354445B (zh) 填充材料及制备方法、高延展性低轮廓电解铜箔制造方法
CN106987869B (zh) 电解碱性蚀刻废液用的混合添加剂及用其制备铜粉的方法
JP2002544382A (ja) ニッケル水酸化物の製法
CN103194769A (zh) 一种从废弃线路板中回收高纯铜的电解装置及其方法
CN111020643B (zh) 一种双面光铜箔及其制备方法与装置
TW201520340A (zh) 從棕化廢液中回收銅之方法
CN207699687U (zh) 一种硫酸铜电解液循环装置
CN112011821A (zh) 三价铁溶铜系统
WO2022143860A1 (zh) 不溶性阳极酸性硫酸盐电镀铜的优化工艺及装置
RU2469111C1 (ru) Способ получения медных порошков из медьсодержащих аммиакатных отходов
CN111378992B (zh) 一种铜粉的制备方法
CN109537010A (zh) 一种电子元器件零件镀镍打底后无氰镀金的工艺
CN107768144A (zh) 一种微孔金属材料及其制备方法和应用
CN107963744A (zh) 一种污水处理工艺
CN109989080B (zh) 一种多羟基离子液体电沉积制备钢铁表面高锡青铜耐蚀膜的方法
CN208171090U (zh) 一种冷却塔旁流水电解处理器
CN113285169A (zh) 一种锂离子电池复合隔膜及其制备方法与应用
RO119838B1 (ro) Procedeu pentru placarea galvanică, cu cupru, a substraturilor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022554789

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810421

Country of ref document: EP

Kind code of ref document: A1