WO2022210700A1 - 導電性材料 - Google Patents

導電性材料 Download PDF

Info

Publication number
WO2022210700A1
WO2022210700A1 PCT/JP2022/015404 JP2022015404W WO2022210700A1 WO 2022210700 A1 WO2022210700 A1 WO 2022210700A1 JP 2022015404 W JP2022015404 W JP 2022015404W WO 2022210700 A1 WO2022210700 A1 WO 2022210700A1
Authority
WO
WIPO (PCT)
Prior art keywords
iridium
conductive material
titanium oxide
electrode
rutile
Prior art date
Application number
PCT/JP2022/015404
Other languages
English (en)
French (fr)
Inventor
美保 岸
裕司 堤
裕亮 吉川
啓宏 植村
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to US18/553,325 priority Critical patent/US20240175151A1/en
Priority to EP22780911.8A priority patent/EP4317069A1/en
Priority to JP2023507252A priority patent/JP7255769B2/ja
Publication of WO2022210700A1 publication Critical patent/WO2022210700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to electrically conductive materials. More particularly, the present invention relates to a conductive material useful for water electrolysis cells, electrode materials for fuel cells, and the like.
  • a fuel cell is a device that electrochemically reacts a fuel such as hydrogen or alcohol with oxygen to generate electric power. It is classified into molten carbonate type (MCFC), solid oxide type (SOFC), and the like.
  • MCFC molten carbonate type
  • SOFC solid oxide type
  • polymer electrolyte fuel cells are used for stationary power sources and fuel cell vehicles, and are required to maintain desired power generation performance over a long period of time.
  • a polymer electrolyte fuel cell is a fuel cell that uses a polymer membrane (ion-exchange membrane) having ion conductivity as an electrolyte. used from.
  • Carbon which has a high specific surface area and high electrical conductivity, is used as a support for noble metal catalysts, but it has the problem of reacting with water at high potential and being decomposed into CO 2 .
  • the reaction at the anode H 2 ⁇ 2H + +2e ⁇
  • the reaction at the cathode O 2 +4H + +4e ⁇ ⁇ 2H 2 O
  • the amount of catalyst required for the reaction may be less than that at the cathode. .
  • anodes are known to have a high potential exceeding 2 V when fuel is depleted, and are required to have higher potential durability than cathodes.
  • electrolysis of water which is the most practical method for producing hydrogen, two main methods are used: solid polymer water electrolysis and alkaline electrolysis. Since water electrolysis can be operated at a higher current density than alkaline electrolysis, it has the advantage of being able to downsize the system.
  • the electrolysis reaction of water theoretically requires a voltage of 1.23 V or higher under standard conditions (25° C., 1 atm), and a water electrolysis cell normally uses a voltage as high as about 2.0 V.
  • iridium When iridium is used as an anode catalyst, it is desirable to support iridium on a carrier from the viewpoint of cost and the like, but the current situation is that there is a lack of materials that satisfy the above characteristics and can be used as iridium carriers. For this reason, only iridium or iridium oxide that does not have a support is usually used as a catalyst, but a certain catalyst volume is required to form an anode, so a large amount of expensive iridium is used. Reducing the amount used is an issue.
  • the present invention has been made in view of the above-mentioned current situation, and an object of the present invention is to provide a conductive material with high conductivity with a smaller amount of noble metal than conventional materials.
  • the present inventors found that the use of a combination of rutile-type titanium oxide and iridium oxide allows the surface of titanium oxide to be sufficiently coated with iridium oxide. If the proportion of iridium element measured by XPS, corresponding to the amount of iridium element present in the total content of iridium element is 30 atomic % or more with respect to the total 100 atomic % of titanium element and iridium element The inventors have found that the conductivity is excellent even when the amount is small, and conceived that the above-mentioned problems can be solved admirably, and arrived at the present invention.
  • the present invention provides a conductive material containing rutile-type titanium oxide, wherein iridium oxide is present on the rutile-type titanium oxide, and the content of the total iridium element in the conductive material is It is 30% by mass or less with respect to the total 100% by mass of titanium oxide and iridium, and the ratio of the iridium element measured by XPS is 30% by mass or more with respect to the total 100% by mass of the titanium element and the iridium element. It is an electrically conductive material.
  • the BET specific surface area of the rutile-type titanium oxide is preferably less than 50 m 2 /g.
  • the present invention is also an electrode material containing the conductive material.
  • the electrode material contains at least one noble metal selected from platinum, iridium, and ruthenium and/or at least one noble metal-containing compound selected from platinum, iridium, and ruthenium supported on or mixed with a conductive material. is preferred.
  • the electrode material is preferably used for fuel cells.
  • the electrode material is preferably used for water electrolysis cells.
  • the present invention is also an electrode comprising the above electrode material.
  • the present invention further provides a method of manufacturing the above conductive material, comprising:
  • the manufacturing method is also a method for manufacturing a conductive material, including the step of supporting iridium oxide on rutile-type titanium oxide.
  • the conductive material of the present invention has the structure described above, has high conductivity with a smaller amount of noble metal than conventional materials, and can improve battery performance. be able to.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Example 1.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Example 2.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Example 3.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Example 4.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Comparative Example 1.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Comparative Example 2.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Comparative Example 3.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Comparative Example 4.
  • FIG. 4 is a TEM photograph of the conductive material obtained in Comparative Example 4.
  • iridium oxide is present on rutile-type titanium oxide, and the content of all iridium elements in the conductive material is 30% by mass or less with respect to the total 100% by mass of titanium oxide and iridium. and the ratio of the iridium element measured by XPS is 30 atomic % or more with respect to the total 100 atomic % of the titanium element and the iridium element.
  • rutile-type titanium oxide is titanium oxide having a rutile-type crystal phase as a main phase.
  • the titanium oxide of the present invention may contain, for example, anatase, brookite, magnelli, corundum, and NaCl heterophases as long as it has a rutile crystal phase as a main phase.
  • Specific measurement conditions for the powder X-ray diffraction pattern will be described later in Examples.
  • the ratio of iridium element measured by XPS is 30 atomic % or more with respect to the total 100 atomic % of titanium element and iridium element.
  • the ratio of elements on the surface of the conductive material is important for the conductive material of the present invention, and the composition of elements present on the conductive material can be analyzed by XPS (X-ray photoelectron spectroscopy). Therefore, the proportion of iridium element measured by XPS corresponds to the proportion of iridium element on the surface of the conductive material.
  • the conductive material of the present invention uses a combination of rutile-type titanium oxide and iridium oxide so that the surface is coated with iridium oxide.
  • the proportion of iridium element on the surface of the material can be increased. If the ratio of the iridium element measured by XPS is within the above range, the ratio of the iridium element on the surface of the conductive material is sufficient, and the conductive paths can be sufficiently formed. It will be excellent in conductivity.
  • the proportion of iridium element measured by XPS is preferably 40 atomic % or more, more preferably 50 atomic % or more, even more preferably 60 atomic % or more, and particularly preferably 70 atomic % or more.
  • the measurement of the iridium element amount by XPS can be performed under the conditions described in Examples.
  • the conductive material contains iridium oxide. This further improves the durability of the conductive material.
  • Iridium oxide may or may not have a crystal structure (amorphous), and may be hydroxide or hydrate. Moreover, these 2 or more types may be mixed.
  • “IrOx” means amorphous iridium oxide, hydroxide, hydrate, or iridium oxide containing at least one of these.
  • the conductive material may contain the iridium element in a form other than an oxide such as metal iridium.
  • the ratio of iridium in a form other than oxide may be arbitrary as long as the volume resistance is sufficiently low to obtain performance as an electrode material, but it is 50 atomic % or less with respect to 100 atomic % of all iridium elements. Preferably. More preferably, it is 25 atomic % or less.
  • the content of all iridium elements in the conductive material is preferably 25% by mass or less with respect to 100% by mass in total of titanium oxide and iridium. If the content of all iridium elements is within the above range, the cost can be sufficiently suppressed.
  • the content of all iridium elements is preferably 1 to 25% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 20% by mass, and particularly preferably 10 to 20% by mass.
  • the content ratio of all iridium elements in the conductive material can be measured by XRF (X-ray fluorescence analysis).
  • the rutile-type titanium oxide preferably has a BET specific surface area of less than 50 m 2 /g. As a result, the rutile-type titanium oxide is more sufficiently covered with the iridium element, and the conductive path can be more sufficiently formed.
  • the BET specific surface area is more preferably 30 m 2 /g or less, still more preferably 20 m 2 /g or less.
  • the BET specific surface area is preferably 1 m 2 /g or more, more preferably 5 m 2 /g or more, still more preferably 8 m 2 /g or more.
  • the BET specific surface area is the specific surface area obtained by the BET method, which is one of the methods for measuring the specific surface area.
  • the specific surface area is the surface area per unit mass of an object.
  • the BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount of the particles adsorbed.
  • the specific surface area can be determined by the method described in the examples below.
  • the BET specific surface area of the conductive material of the present invention is not particularly limited, it is preferably less than 50 m 2 /g. It is more preferably 30 m 2 /g or less, still more preferably 20 m 2 /g or less.
  • the BET specific surface area of the conductive material is preferably 1 m 2 /g or more, more preferably 5 m 2 /g or more.
  • iridium oxide is present on rutile-type titanium oxide, and iridium oxide is preferably supported on rutile-type titanium oxide.
  • the conductive material of the present invention may contain other optional components.
  • Other components include niobium, tantalum, tungsten, molybdenum, tin, ruthenium and oxides thereof.
  • the oxide may be in a state having a crystal structure or not (amorphous), or may be a hydrate.
  • the ratio of other components in the conductive material is preferably 30% by mass or less with respect to 100% by mass of titanium oxide. It is more preferably 10% by mass or less, still more preferably 5% by mass or less.
  • the method for producing the conductive material of the present invention is not particularly limited, it is preferable to carry iridium oxide on rutile-type titanium oxide.
  • a method for producing a conductive material which includes the step of supporting iridium oxide on rutile-type titanium oxide, is also one aspect of the present invention.
  • the term "supported” means that a noble metal or its oxide is supported on the surface of titanium oxide or iridium oxide. A noble metal or its oxide may be partially adhered to their surface, but a layer may be formed. The noble metal oxide may be in a state with or without a crystal structure (amorphous), and may be a hydrate.
  • the supporting step is not particularly limited as long as iridium oxide is supported on rutile-type titanium oxide, but is preferably carried out by firing a mixture of rutile-type titanium oxide and an iridium-containing compound. More preferably, a slurry containing rutile-type titanium oxide and an iridium-containing compound is prepared, and the dried product of the obtained slurry is fired. That is, it is preferable to perform a step of preparing a slurry containing rutile-type titanium oxide and an iridium-containing compound, and a step of drying the prepared slurry and firing a product obtained.
  • the slurry preparation step is not particularly limited as long as the slurry is prepared by mixing the rutile-type titanium oxide and the iridium-containing compound, but it is preferable to mix the slurry containing the rutile-type titanium oxide and the solution of the iridium-containing compound. More preferably, the slurry containing the rutile-type titanium oxide is stirred in a vessel, and then the solution of the iridium-containing compound is added and mixed with stirring.
  • the slurry preparation step preferably includes a step of neutralizing by adding a base during or after mixing the rutile-type titanium oxide and the iridium-containing compound.
  • a base include, but are not limited to, alkali metal hydroxides, alkali metal carbonates, and ammonia. Alkali metal hydroxides are preferred, and sodium hydroxide is more preferred.
  • the temperature in the slurry preparation step is not particularly limited, it is preferably 50 to 100°C. It is more preferably 60 to 80°C.
  • the iridium-containing compound is not particularly limited as long as it contains an iridium element, but examples include inorganic salts such as nitrates, chlorides, and phosphates; Examples include organic acid salts such as acid salts. Among them, nitrates and chlorides are preferred, and chlorides are more preferred.
  • the solution of the iridium-containing compound is not particularly limited as long as the iridium-containing compound is dissolved in a solvent, but preferably contains a reducing agent.
  • the reducing agent is not particularly limited, but examples include hydrazine chloride, hydrazine, sodium borohydride, alcohol, hydrogen, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, formaldehyde, ethylene, Examples thereof include carbon oxide, and hydrazine chloride is preferred.
  • the content of the reducing agent is not particularly limited, it is preferably 0.1 to 1 times the molar equivalent of iridium contained in the mixture.
  • the firing temperature in the step of firing the mixture of the rutile-type titanium oxide and the iridium-containing compound is not particularly limited, but is preferably 100 to 750°C. It is more preferably 200 to 750°C, still more preferably 300 to 750°C. If the firing temperature is 750° C. or lower, the BET specific surface area can be set in a more suitable range, and the decrease in the amount of iridium element present on the surface of the conductive material due to the diffusion of iridium oxide can be sufficiently suppressed. can be done.
  • the firing temperature is more preferably 200 to 500°C, still more preferably 300 to 500°C. In this specification, the firing temperature means the highest temperature reached in the firing process.
  • the firing time in the firing step is not particularly limited, but is preferably 1 to 8 hours. More preferably 2 to 4 hours.
  • the conductive material of the present invention can form a conductive path with a smaller amount of noble metal than before, and can form an electrode without using carbon. do not have. Therefore, it is useful for electrodes of fuel cells such as polymer electrolyte fuel cells, water electrolysis cells, solar cells, transistors, liquid crystal displays and the like.
  • the conductive material of the present invention is also useful as a conductive material used for antistatic materials, heat ray shielding materials, and the like. More preferably, the conductive material of the present invention is used as an electrode material for polymer electrolyte fuel cells.
  • the present invention is also an electrode material containing the conductive material.
  • the electrode material contains at least one noble metal selected from platinum, iridium, and ruthenium and/or at least one noble metal-containing compound selected from platinum, iridium, and ruthenium supported on or mixed with a conductive material. is preferred.
  • the noble metal-containing compound is not particularly limited as long as it contains at least one noble metal element selected from platinum, iridium, and ruthenium. Examples include crystalline oxides, amorphous oxides, hydroxides, and sulfates.
  • inorganic salts such as nitrates, chlorides and phosphates; organic salts such as acetates and oxalates; and complex salts such as dinitrodiammine nitrates.
  • oxides and hydroxides are preferred, and oxides are more preferred.
  • the electrode material of the present invention contains the metal platinum, iridium or ruthenium, it can be supported on the conductive material using, for example, a nano-sized dispersion of these metals.
  • the noble metal and/or noble metal-containing compound particles may be physically mixed with the conductive material.
  • At least one noble metal selected from platinum, iridium, and ruthenium and/or at least one noble metal-containing compound selected from platinum, iridium, and ruthenium in the electrode material is supported or mixed in an amount that is not particularly limited, but platinum and iridium , or 1 to 50% by mass in terms of ruthenium element with respect to 100% by mass of the electrode material. More preferably 5 to 30% by mass, still more preferably 10 to 20% by mass.
  • the electrode material is preferably used for fuel cells.
  • the electrode material is preferably used for water electrolysis cells.
  • the invention is also an electrode comprising the electrically conductive material of the invention.
  • the electrode of the present invention can be obtained by forming an electrode material containing the conductive material of the present invention on a current collector.
  • a current collector carbon, titanium, gold, aluminum, copper, stainless steel, etc., or those plated with a noble metal or carbon can be used.
  • the electrodes may contain other optional components other than the electrically conductive material of the present invention and platinum and/or platinum-containing compounds.
  • Other components include conductive aids, binders, and the like. Examples of the conductive aid include acetylene black, ketjen black, and the like. Since the conductive material of the present invention has excellent conductivity, a conductive aid containing carbon, which causes corrosion at high potential, is used. Even when not used, excellent battery performance can be exhibited.
  • binder examples include polytetrafluoroethylene, polyvinylidene fluoride, perfluoroalkylsulfonic acid-based polymers, and the like.
  • the invention is also a water electrolysis cell comprising the electrically conductive material of the invention.
  • the invention is also a fuel cell comprising the electrode of the invention.
  • the electrode of the present invention can be suitably used for fuel cell applications. Among others, it is particularly suitable as an electrode for a polymer electrolyte fuel cell (PEFC). In particular, it is useful as a substitute for electrodes in which platinum is supported on a carbon carrier, which has been generally used in the past. Such electrodes are suitable for both cathodes and anodes.
  • PEFC polymer electrolyte fuel cell
  • the invention is also a water electrolysis cell comprising the electrode of the invention.
  • the electrode of the present invention can be suitably used for water electrolysis cells. Among others, it is particularly suitable as an electrode for a solid polymer type water electrolysis cell. In particular, it is useful as a substitute for iridium electrodes that have been commonly used. Such electrodes are suitable for both cathodes and anodes.
  • the sample was heat-treated in a nitrogen atmosphere at 200 ° C. for 60 minutes, and then a specific surface area measuring device (manufactured by Mountech, trade name "Macsorb HM-1220") was measured. was used to measure the BET specific surface area.
  • X-ray diffraction Measured under the following conditions using an X-ray diffraction device (RINT-TTR3, manufactured by Rigaku).
  • Optical system parallel beam optical system (long slit: PSA200/resolution: 0.057°) Tube voltage: 50kV Current: 300mA Measurement method: Continuous scan Measurement range (2 ⁇ ): 10° to 70° Sampling width: 0.04° Scan speed: 5°/min The ratio of the heterogeneous phase to the rutile crystal phase is expressed by the following formula.
  • the strongest peak intensity of the rutile crystal phase is the peak intensity at 2 ⁇ of 27.4 ⁇ 2°.
  • the total intensity of the strongest peaks of the different phases means that the peak of the anatase crystal phase at 25.3 ⁇ 2° and the different phases of Na—Ti—O, K—Ti—O, Rb—Ti—O, Cs—Ti— If O ternary system or other phases other than the rutile type crystal phase are present, their strongest peak intensities are added.
  • volume resistance Volume resistance was measured using a powder resistance measurement system MCP-PD51 manufactured by Mitsubishi Chemical Analytic Tech.
  • the powder resistance measurement system consists of a hydraulic powder press, a four-probe probe, and a high resistance measurement device (manufactured by the same company, Lorestar GX MCP-T700).
  • Electrode assembly Fuel cell power generation test Examples/Comparative Examples The electrode assembly is incorporated into a single cell (manufactured by Miclab, electrode area 1 cm ⁇ 1 cm, Au 10 ⁇ m plated Cu separator, straight flow path specification), and a PEFC single cell evaluation device (manufactured by Toyo Technica) is used to evaluate the cell temperature at 80 ° C. on the anode side. Set to 75° C. humidified 100% H 2 500 ml/min, cathode side 75° C. humidified 100% O 2 500 ml/min, sweep from open voltage to 0.2 V, voltage at 0.5 A and 1.0 A / cm 2 and cell resistance were measured.
  • Membrane electrode assembly Water electrolysis test Example/Comparative Example
  • the catalyst layer using the powder is on the anode side, the platinum basis weight 0.2 mgPt/cm 2 Pt-supported carbon electrode is on the cathode side, and the membrane electrode assembly is a single cell ( Miclab Co., Ltd., electrode area 1 cm ⁇ 1 cm, Au 10 ⁇ m plated Cu separator straight flow path specification), using a PEFC single cell evaluation device (manufactured by Toyo Technica), cell temperature 70 ° C., anode side 80 ° C. humidification 4% H 2 /N 2 1 L/min, cathode side 80° C. humidified 100% N 2 1 L/min, swept from 1.0 V to 2.0 V, and the current density at 1.5 V was measured.
  • Example 1 ⁇ Preparation of conductive material, electrode material, and electrode> (Example 1) 10.0 g of Rutile type titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., product name “STR100N”, BET specific surface area 100 m 2 /g) was placed in an alumina crucible in an electric furnace up to 850° C. over 4 hours and 15 minutes. After the temperature was raised and held at 850° C. for 4 hours, it was naturally cooled to room temperature. 3.0 g of the obtained Rutile type titanium oxide calcined at 850° C. and 480 ml of deionized water were added to a beaker and mixed with stirring to obtain a TiO 2 slurry 1 .
  • Rutile type titanium oxide manufactured by Sakai Chemical Industry Co., Ltd., product name “STR100N”, BET specific surface area 100 m 2 /g
  • an Ir solution prepared by diluting an aqueous solution of iridium chloride hydrochloride (8.6 wt % as Ir, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) to a concentration of 1.2 wt % was weighed, and hydrazine chloride was added thereto. 0.09 g was added and stirred with a magnetic stirrer (this is called "mixed Ir aqueous solution 1"). While stirring the TiO 2 slurry 1, the mixed Ir aqueous solution 1 was added, and the mixture was stirred and mixed while the liquid temperature was maintained at 70°C.
  • electrode membrane electrode assembly
  • Pt-carrying carbon ink 1 40 ⁇ l of the obtained Pt-carrying carbon ink 1 was dropped on a Teflon (registered trademark) sheet, coated using a bar coater, and then air-dried to form a Pt-carrying carbon sheet 1 (Pt usage amount: 0.2 mgPt/cm 2 ). Obtained.
  • Example 2 In the production of rutile-type titanium oxide, the temperature was raised to 900°C over 4 hours and 30 minutes in an electric furnace, and the temperature was maintained at 900°C for 4 hours, and the supported amounts of Ir and Pt were changed to 20%. In the same manner as in Example 1, IrO 2 -supported TiO 2 powder 2 (conductive material 2), Pt, IrO 2 -supported TiO 2 powder 2 (electrode material 2), and membrane electrode assembly 2 were produced.
  • Example 3 In the preparation of rutile-type titanium oxide, the temperature was raised to 500° C. over 2 hours and 30 minutes in an electric furnace, and the temperature was maintained at 500° C. for 4 hours. In the same manner as in Example 1, IrO 2 -supported TiO 2 powder 3 (conductive material 3), Pt, IrO 2 -supported TiO 2 powder 3 (electrode material 3), and membrane electrode assembly 3 were produced.
  • Example 4 An IrO 2 -supported TiO 2 powder 4 (conductive material 4) was prepared in the same manner as in Example 2, except that the supported amount of Ir was changed to 15%. 3.0 g of the conductive material 4 obtained above and 1200 ml of deionized water were weighed into a four-necked flask and mixed with stirring to obtain a slurry of the conductive material 4 . 68.2 g of a Ru solution obtained by diluting an aqueous solution of ruthenium chloride hydrochloride (8.369 parts by weight as Ru, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
  • an aqueous solution of iridium chloride hydrochloride (8.589 wt. %, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was adjusted to 1.23 wt %, and 40.7 g of the Ir solution was weighed, added to the conductive material 4 slurry, and stirred at room temperature for 18 hours.
  • the stabilized sodium borohydride solution was added dropwise to the conductive material 4 slurry to which the Ru solution and the Ir solution were added and stirred, followed by stirring for 1 hour. Filtration, washing with water, and drying were carried out according to a conventional method to evaporate all water to obtain Ru, Ir, IrO 2 -supported TiO 2 powder 1 (electrode material 4). Further, Ru, Ir, IrO 2 -supported TiO 2 powder 1 sheet 1 (total Ir usage 0.1 mgIr/cm 2 ) was obtained in the same manner as in Example 1. Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 4 .
  • Example 5 15.2 g of Ir solution adjusted to 1.23 wt % was weighed into a beaker for preparation of conductive material, and 0.05 g of hydrazine chloride was added thereto and stirred with a magnetic stirrer (this was called "mixed Ir aqueous solution 2"). called).
  • Example 6 IrO 2 and RuO 2 -supported TiO 2 powder 2 (conductive material 6) was obtained in the same manner as in Example 5 except that the supported amount of Ir was changed to 3% and the supported amount of Ru was changed to 17%. 20 wt % of Pt was supported on the conductive material 6 in the same manner as in Example 2 to obtain a Pt/IrO 2 RuO 2 -supported TiO 2 powder 2 (electrode material 6). Furthermore, in the same manner as in Example 1, a Pt, IrO 2 RuO 2 -supported TiO 2 powder 2 sheet 1 (Pt usage 0.05 mgPt/cm 2 ) was obtained. Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 6 .
  • Example 7 3.0 g of the conductive material 4 and 480 ml of deionized water were added to a beaker and mixed with stirring to obtain a slurry of the conductive material 4 . While stirring the slurry of the conductive material 4, the mixed Ir aqueous solution 1 prepared in the same manner as in Example 1 was added, and the mixture was stirred and mixed while the liquid temperature was maintained at 70°C. Furthermore, after dropping a 1.0 mol/L sodium hydroxide aqueous solution so that the pH becomes 7, the liquid temperature is heated to 70° C. for 4 hours, followed by filtering, washing with water, and drying to evaporate all the water according to the usual method. rice field.
  • the entire amount of the obtained powder was placed in an alumina boat, heated to 300 ° C. over 90 minutes in an electric furnace, held at 300 ° C. for 4 hours, and then naturally cooled to room temperature.
  • An IrO2 - supported TiO2 powder 1 (electrode material 7) was obtained.
  • IrOx and IrO 2 -supported TiO 2 powder 1 sheet 1 (Ir usage 0.1 mgIr/cm 2 ) was obtained.
  • the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 7 .
  • Example 8 In a beaker, 104.5 g of an Ir solution prepared by diluting an aqueous solution of iridium chloride hydrochloride (8.6 wt % as Ir, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and adjusted to 1.2 wt % was weighed, and 0.5 wt % of hydrazine chloride was added thereto. 35 g was added and stirred with a magnetic stirrer (this is called "mixed Ir aqueous solution 3").
  • IrOx-supported TiO 2 powder 1 sheet 1 (Ir usage 0.1 mgIr/cm 2 ) was obtained in the same manner as in Example 1 using the conductive material 7 as the electrode material 8 . Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 8 .
  • Example 9 Example except that in the production of rutile-type titanium oxide, the temperature was raised to 950° C. over 4 hours and 45 minutes in an electric furnace and held at 950° C. for 4 hours, and the amount of Ir supported was changed to 5%.
  • An IrO 2 -supported TiO 2 powder 5 (conductive material 8) was prepared in the same manner as in 2. 20 wt % of Pt was supported on the conductive material 8 in the same manner as in Example 2 to obtain a Pt/IrO 2 -supported TiO 2 powder 4 (electrode material 9). Furthermore, in the same manner as in Example 1, Pt and IrO 2 -supported TiO 2 powder 4 sheets 1 (Pt usage: 0.05 mgPt/cm 2 ) were obtained. Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 9 .
  • Example 10 Pt, IrO 2 RuO 2 -supported TiO 2 powder 1 sheet 1 prepared in Example 5 (Pt usage amount 0.05 mgPt/cm 2 ) and Pt, IrO 2 RuO 2 -supported TiO 2 powder 1 sheet 2 with further changed Pt basis weight (Pt usage 0.2 mgPt/cm 2 ) was obtained.
  • a sheet 1 of Pt-supported IrO 2 RuO 2 -supported TiO 2 powder, an electrolyte membrane, and a sheet 2 of Pt-supported IrO 2 RuO 2 -supported TiO 2 powder were laminated in this order to fabricate a membrane electrode assembly 10 .
  • Electrode material 10 was obtained by physically mixing conductive material 2 with iridium black (manufactured by Alfa Aesar) at a weight ratio of 62.5:37.5. Furthermore, in the same manner as in Example 1, an Ir-mixed IrO 2 -supporting TiO 2 sheet 1 (Ir amount used: 0.1 mgIr/cm 2 ) was obtained. Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 11 .
  • Electrode material 11 was obtained by physically mixing IrOx (manufactured by Tanaka Kikinzoku Co., Ltd.) with conductive material 2 at a weight ratio of 62.5:37.5. Furthermore, in the same manner as in Example 1, an IrOx-mixed IrO 2 -supported TiO 2 sheet 1 (Ir amount used: 0.1 mgIr/cm 2 ) was obtained. Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a membrane electrode assembly 12 .
  • Comparative example 1 Except that anatase-type titanium oxide (“SSP-N” manufactured by Sakai Chemical Industry Co., Ltd., BET 270 m 2 /g) was used as titanium oxide without being fired, and that the amount of Ir and Pt supported was 20%. Comparative conductive material 1, comparative electrode material 1, and comparative membrane electrode assembly 1 were produced in the same manner as in Example 1.
  • SSP-N anatase-type titanium oxide
  • BET 270 m 2 /g BET 270 m 2 /g
  • Comparative example 2 Comparative conductivity was carried out in the same manner as in Example 1 except that 20 wt% of Ir was supported without firing the rutile-type titanium oxide and then fired at 800 ° C., and that the supported amount of Pt was changed to 20%. Comparative material 2, comparative electrode material 2, and comparative membrane electrode assembly 2 were prepared.
  • Comparative Example 3 Comparative conductive material 3 in the same manner as in Example 1 except that the rutile-type titanium oxide fired at 850 ° C. was fired at 900 ° C. with 100% hydrogen after supporting 30% Ir, and that 15 wt % Pt was supported. , a comparative electrode material 3 and a comparative membrane electrode assembly 3 were produced.
  • Comparative Example 4 Comparative conductive material 4, comparative electrode material 4, and comparative membrane electrode assembly 4 were produced in the same manner as in Example 2 except that anatase type titanium oxide was used.
  • Example 1 (Volume resistance measurement) As shown in Table 1, the volume resistivity of Examples 1 to 9 is lower than that of Comparative Example 3, confirming that the presence of iridium oxide on titanium oxide is effective as a conductive material. In addition, since Examples 1 to 9 have a lower volume resistance than Comparative Example 2, the ratio of iridium element measured by XPS as a conductive material is 100 atomic% in total of titanium element and iridium element. It has been confirmed that a content of 30 atomic % or more is effective. In addition, since Examples 1 to 9 have lower volume resistivity than Comparative Examples 1 and 4, it was confirmed that rutile type titanium oxide is effective.
  • Example 5 A Pt-supporting carbon sheet 2 was obtained by changing the amount of Pt used in the Pt-supporting carbon sheet 1 of Example 1 to 0.05 mgPt/cm 2 ). Furthermore, in the same manner as in Example 1, the electrolyte membrane and the Pt-carrying carbon sheet 1 were laminated in this order to prepare a comparative membrane electrode assembly 5 .
  • Example 2 (High potential holding durability test) Using the membrane electrode assemblies obtained in Example 2 and Comparative Example 5, a power generation test was performed after holding a high potential. Compared to Comparative Example 5, in which Pt/C, which is generally used as an electrode material for fuel cells, was also used for the anode, Example 2 showed 112% durability, indicating that it has high high-potential durability. confirmed.
  • Comparative Example 6 A comparative membrane electrode assembly 6 was produced in the same manner as in Example 11, except that iridium black (manufactured by Alfa Aesar) was used instead of the electrode material 10 of Example 11.
  • iridium black (Comparative Example 6), which is an iridium metal generally used as an electrode material for water electrolysis cells.
  • Ir is used more efficiently by supporting or mixing a mixture of iridium, iridium oxide, and ruthenium in a conductive material in which iridium oxide is present on rutile-type titanium oxide, as opposed to using only iridium metal. It was confirmed that high water electrolysis performance can be exhibited as an electrode for water electrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明は、従来よりも少ない貴金属量で導電性が高い導電性材料を提供することを目的とする。 本発明は、ルチル型酸化チタンを含む導電性材料であって、該導電性材料は、ルチル型酸化チタン上に酸化イリジウムが存在し、該導電性材料中の全イリジウム元素の含有割合が、酸化チタンとイリジウムとの合計100質量%に対して30質量%以下であり、XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素との合計100原子%に対して30原子%以上であることを特徴とする導電性材料である。

Description

導電性材料
本発明は、導電性材料に関する。より詳しくは、水電解セル、燃料電池の電極材料等に有用な導電性材料に関する。
燃料電池は、水素やアルコール等の燃料を酸素と電気化学的に反応させて電力を発生させる装置であり、電解質や作動温度等によって、固体高分子形(PEFC)、リン酸形(PAFC)、溶融炭酸塩形(MCFC)、固体酸化物形(SOFC)等に分けられる。例えば、固体高分子形燃料電池は、定置型電源や燃料電池車用途で使用されており、長期にわたって所望の発電性能を維持することが求められている。
固体高分子形燃料電池は、電解質としてイオン伝導性を有する高分子膜(イオン交換膜)を用いる燃料電池であり、電極材料として、カーボン担体上に白金を担持した材料(Pt/C)が従来から使用されている。比表面積が高く、導電性の高いカーボンは貴金属触媒の担体として用いられているが、高電位で水と反応し、COとして分解することが問題となっている。電極の中でもアノードの反応(H→2H+2e)はカソードの反応(O+4H+4e→2HO)よりも反応が速く、反応に必要な触媒量はカソードよりも少なくてよい。一方でアノードは、燃料欠乏状態になると2Vを超える高電位になることが知られており、高電位耐久性はカソードよりも求められる。
また水素を製造するための最も現実的な方法である水の電気分解には、固体高分子形水電解とアルカリ電解と呼ばれる2種類の方式が主に使用されており、このうち固体高分子形水電解は、アルカリ電解と比較して高い電流密度で運転することが出来るため、システムを小型化出来るメリットがある。水の電気分解反応には、標準状態(25℃、1気圧)で1.23V以上の電圧が理論的に必要となり、水電解セルでは通常、2.0V程度までの高い電圧が使用される。
近年、燃料電池の電極向けに高電位耐久性の観点から、カーボンを使用しない導電性担体が開発されており、TiO上にTi系ペロブスカイト型酸化物を表面に配置したコアシェル型の触媒(特許文献1参照)や非導電性の酸化物に多量の貴金属を表面に配置した触媒(特許文献2参照)が提案されている。
水電解セルにおけるアノード(酸素発生極)には、酸素発生反応活性を有する触媒が必要であり、イリジウムが高い活性を有することが知られている(特許文献3,4参照)。
特開2017-183285号公報 国際公開第2013/092568号 特開2008-274326号公報 特開2003-166093号公報
上述のとおり、従来、固体高分子形燃料電池に用いられる種々の電極が開発されており、特許文献1に記載の電極は、電位が急上昇した際に起こるカーボンの腐食劣化を防止するために担体自体にカーボンは使用されていないものの、電子伝導性が不十分であり、導電補助剤としてカーボンが使用され、高電位による腐食の恐れがある。また特許文献2に記載の電極には、貴金属の導電パスを形成するために、貴金属成分が50%以上含まれ、電極部材のコストの問題があった。
また固体高分子形水電解セルにおけるアノードに使用する材料には、高い電子伝導性を有することに加えて、高電位耐久性に優れることが求められる。アノードの触媒としてイリジウムを使用する場合、コスト等の点から担体にイリジウムを担持して使用できることが望ましいが、上記の特性を満たし、かつイリジウムの担体に使用出来る材料が乏しいのが現状である。このため、通常は担体を有しないイリジウムまたは酸化イリジウムのみを触媒として用いているが、アノードを形成するためには一定の触媒嵩が必要であるため、高価なイリジウムを多量に使用しており、使用量低減が課題となっている。
本発明は、上記現状に鑑みてなされたものであり、従来よりも少ない貴金属量で導電性が高い導電性材料を提供することを目的とする。
本発明者は、導電性材料について種々検討したところ、ルチル型酸化チタンと酸化イリジウムとを組み合わせて用いることにより、酸化イリジウムにより酸化チタン表面が充分に被覆されることを見いだし、導電性材料の表面に存在するイリジウム元素量に相当する、XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素との合計100原子%に対して30原子%以上であれば、イリジウム元素の全含有量が少ない場合でも、導電性に優れることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち本発明は、ルチル型酸化チタンを含む導電性材料であって、該導電性材料は、ルチル型酸化チタン上に酸化イリジウムが存在し、該導電性材料中の全イリジウム元素の含有割合が、酸化チタンとイリジウムとの合計100質量%に対して30質量%以下であり、XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素との合計100原子%に対して30原子%以上である導電性材料である。
上記ルチル型酸化チタンのBET比表面積は、50m/g未満であることが好ましい。
本発明はまた、上記導電性材料を含む電極材料でもある。
上記電極材料は、導電性材料に白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属及び/又は白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属含有化合物が担持、又は、混合されていることが好ましい。
上記電極材料は、燃料電池用途に用いられることが好ましい。
上記電極材料は、水電解セル用途に用いられることが好ましい。
本発明は更に、上記電極材料を含む電極でもある。
上記電極を備える燃料電池でもある。
上記電極を備える水電解セルでもある。
本発明は更に、上記導電性材料を製造する方法であって、
該製造方法は、ルチル型酸化チタン上に酸化イリジウムを担持させる工程を含む導電性材料の製造方法でもある。
本発明の導電性材料は、上述の構成よりなり、従来よりも少ない貴金属量で導電性が高く、電池性能を向上させることができるため、水電解セル、燃料電池の電極材料等に好適に用いることができる。
実施例1で得られた導電性材料のTEM写真である。 実施例2で得られた導電性材料のTEM写真である。 実施例3で得られた導電性材料のTEM写真である。 実施例4で得られた導電性材料のTEM写真である。 比較例1で得られた導電性材料のTEM写真である。 比較例2で得られた導電性材料のTEM写真である。 比較例3で得られた導電性材料のTEM写真である。 比較例4で得られた導電性材料のTEM写真である。
以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。
<導電性材料>
本発明の導電性材料は、ルチル型酸化チタン上に酸化イリジウムが存在し、導電性材料中の全イリジウム元素の含有割合が、酸化チタンとイリジウムとの合計100質量%に対して30質量%以下であり、XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素の合計100原子%に対して30原子%以上である。
上記導電性材料において、ルチル型の酸化チタンと酸化イリジウムとを組み合わせて用いることにより、酸化イリジウムが酸化チタン表面を被覆することができる。これにより、全イリジウム量が少ない場合にも充分に導電パスを形成することができ、導電性材料は導電性に優れ、体積抵抗が小さくなる。
本発明において、ルチル型酸化チタンは、ルチル型結晶相を主相とする酸化チタンである。本発明の酸化チタンは、ルチル型結晶相を主相とするものであれば、例えば、アナタース型やブルッカイト型、マグネリ型、コランダム型、NaCl型の異相を含んでいてもよい。
本明細書中、「ルチル型結晶相を主相とする」とは、酸化チタン粉粒体の粉末X線回折パターン(CuKα、2θ=10~70°の測角範囲)において、回折角2θ=27.4°、36.1°、54.3°のそれぞれ±2°の範囲に回折ピークを有し、かつ2θ=27.4°、36.1°、39.2°、41.2°、44.1°、54.3°、56.6°のそれぞれ±2°の範囲以外に、測角範囲内の最大ピーク強度の50%、好ましくは30%、より好ましくは25%を超える回折ピークが現れないことを意味する。
粉末X線回折パターンの具体的な測定条件は、実施例において後述する。
なお、XRD測定データ全体にノイズが多い場合は、XRDに付属の解析ソフト(例えば、株式会社リガク製X線回折装置(RINT-TTR3)付属の粉末X線回折パターン総合解析ソフトウェアPDXL2)等を用いて、スムージング、バックグランド除去を実施してから判定を行ってもよい。
本発明の導電性材料は、XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素の合計100原子%に対して30原子%以上である。
本発明の導電性材料は導電性材料表面の元素割合が重要であり、XPS(X線光電子分光法)により導電性材料上に存在する元素の組成を分析することができる。したがってXPSにより測定されるイリジウム元素の割合は、導電性材料表面のイリジウム元素の割合に相当する。
上述のとおり、本発明の導電性材料は、ルチル型酸化チタンと酸化イリジウムとを組み合わせて用いることにより表面が酸化イリジウムにより被覆されるため、イリジウム元素の絶対含有量が少ない場合にも、導電性材料表面のイリジウム元素の割合を高めることができる。
XPSにより測定されるイリジウム元素の割合が上記範囲であれば、導電性材料表面のイリジウム元素の割合が充分であり、導電パスを充分に形成することができるため、本発明の導電性材料は、導電性に優れることとなる。
XPSにより測定されるイリジウム元素の割合として好ましくは40原子%以上であり、より好ましくは50原子%以上であり、更に好ましくは60原子%以上であり、特に好ましくは70原子%以上である。
XPSによるイリジウム元素量の測定は実施例に記載の条件で行うことができる。
上記導電性材料は酸化イリジウムを含むものである。これにより、導電性材料の耐久性がより向上する。酸化イリジウムは、結晶構造を持った状態であっても、持たない状態(非晶質)であってもよく、水酸化物や水和物でもよい。また、これら2種以上が混在していてもよい。なお、本明細書中、「IrOx」とは、非晶質の酸化イリジウム、水酸化物若しくは水和物又はこれらの少なくとも1種を含む酸化イリジウムを意味する。上記導電性材料はイリジウム元素を、金属イリジウム等の酸化物以外の形態で含んでいてもよい。
酸化物以外の形態のイリジウムの割合としては、体積抵抗が電極材料として性能が得られるのに十分に低ければ、割合は任意で良いが、全イリジウム元素100原子%に対して50原子%以下であることが好ましい。より好ましくは25原子%以下である。
上記導電性材料中の全イリジウム元素の含有割合としては、酸化チタンとイリジウムとの合計100質量%に対して25質量%以下であることが好ましい。全イリジウム元素の含有割合が上記範囲であれば、コストを充分に抑制することができる。全イリジウム元素の含有割合として好ましくは1~25質量%であり、より好ましくは3~20質量%、更に好ましくは5~20質量%であり、特に好ましくは10~20質量%である。
導電性材料中の全イリジウム元素の含有割合は、XRF(蛍光X線分析)にて測定することができる。
上記ルチル型酸化チタンは、BET比表面積が50m/g未満であることが好ましい。
これにより、ルチル型酸化チタンがより充分にイリジウム元素により覆われることになり、導電パスをより充分に形成することができる。BET比表面積としてより好ましくは30m/g以下であり、更に好ましくは20m/g以下である。BET比表面積として好ましくは1m/g以上、より好ましくは5m/g以上、更に好ましくは8m/g以上である。
BET比表面積とは、比表面積の測定方法の一つであるBET法により得られた比表面積のことをいう。比表面積とは、ある物体の単位質量あたりの表面積のことをいう。BET法は、窒素等の気体粒子を固体粒子に吸着させ、吸着した量から比表面積を測定する気体吸着法である。本明細書では、後述の実施例に記載した方法により比表面積を求めることができる。
本発明の導電性材料のBET比表面積は特に制限されないが、50m/g未満であることが好ましい。より好ましくは30m/g以下であり、更に好ましくは20m/g以下である。上記導電性材料のBET比表面積として好ましくは1m/g以上、より好ましくは5m/g以上である。
本発明の導電性材料は、ルチル型酸化チタン上に酸化イリジウムが存在するものであるが、酸化イリジウムがルチル型酸化チタンに担持されていることが好ましい。
本発明の導電性材料は、その他の任意成分を含んでいてもよい。
その他の成分としては、ニオブ、タンタル、タングステン、モリブデン、スズ、ルテニウム又はその酸化物等が挙げられる。上記酸化物は、結晶構造を持った状態であっても、持たない状態(非晶質)であってもよく、水和物でもよい。
上記導電性材料におけるその他の成分の割合は、酸化チタン100質量%に対して30質量%以下であることが好ましい。より好ましくは10質量%以下であり、更に好ましくは5質量%以下である。
<導電性材料の製造方法>
本発明の導電性材料の製造方法は特に制限されないが、ルチル型酸化チタンに酸化イリジウムを担持させて製造することが好ましい。ルチル型酸化チタンに酸化イリジウムを担持させる工程を含む導電性材料の製造方法もまた、本発明の1つである。
本明細書中、「担持」とは、貴金属又はその酸化物が酸化チタン又は酸化イリジウムの表面に支持されていることをいう。それらの表面に貴金属又はその酸化物が部分的に付着している場合もあるが、層が形成される場合もある。貴金属の酸化物は、結晶構造を持った状態であっても、持たない状態(非晶質)であってもよく、水和物でもよい。
上記担持工程は、ルチル型酸化チタンに酸化イリジウムを担持させる限り特に制限されないが、ルチル型酸化チタンとイリジウム含有化合物との混合物を焼成して行うことが好ましい。より好ましくは、ルチル型酸化チタンとイリジウム含有化合物とを含むスラリーを調製し、得られたスラリーの乾燥物を焼成することが好ましい。すなわち、ルチル型酸化チタンとイリジウム含有化合物とを含むスラリーを調製する工程と、調製したスラリーを乾燥させて得られた生成物を焼成する工程とを行うことが好ましい。
上記スラリー調製工程は、ルチル型酸化チタンとイリジウム含有化合物とを混合してスラリーを調製する限り特に制限されないが、ルチル型酸化チタンを含むスラリーとイリジウム含有化合物の溶液とを混合することが好ましい。より好ましくはルチル型酸化チタンを含むスラリーを容器内で撹拌した状態で、イリジウム含有化合物の溶液を添加し、撹拌混合する方法である。
上記スラリー調製工程は、ルチル型酸化チタンとイリジウム含有化合物との混合中又は混合後に、塩基を添加して中和する工程を含むことが好ましい。
塩基としては特に制限されないが、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アンモニア等が挙げられる。好ましくはアルカリ金属の水酸化物であり、より好ましくは水酸化ナトリウムである。
上記スラリー調製工程における温度は特に制限されないが、50~100℃であることが好ましい。より好ましくは60~80℃である。
上記イリジウム含有化合物としては、イリジウム元素を含む化合物であれば特に制限されないが、例えば、硝酸塩、塩化物、リン酸塩等の無機塩;酢酸塩、トリス(アセチルアセトナト)イリジウム(III)、シュウ酸塩等の有機酸塩等が挙げられる。中でも好ましくは硝酸塩、塩化物であり、より好ましくは塩化物である。
上記イリジウム含有化合物の溶液は、イリジウム含有化合物を溶媒に溶解させたものであれば特に制限されないが、還元剤を含むことが好ましい。
上記還元剤は特に限定されるものではないが、例えば、塩化ヒドラジン、ヒドラジン、水素化ホウ素ナトリウム、アルコール、水素、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、ホルムアルデヒド、エチレン、一酸化炭素等が挙げられ、好ましくは塩化ヒドラジンである。還元剤の含有量は特に限定されるものではないが、上記混合液に含まれるイリジウムのモル当量の0.1~1倍量であることが好ましい。
上記ルチル型酸化チタンとイリジウム含有化合物との混合物の焼成工程における焼成温度は、特に制限されないが、100~750℃が好ましい。より好ましくは200~750℃であり、更に好ましくは300~750℃である。焼成温度が750℃以下であればBET比表面積をより好適な範囲とすることができ、酸化イリジウムが拡散して導電性材料の表面に存在するイリジウム元素量が低下することを充分に抑制することができる。
焼成温度としてより好ましくは200~500℃であり、更に好ましくは300~500℃である。
本明細書中、焼成温度とは、焼成工程での最高到達温度を意味する。
上記焼成工程における焼成時間、すなわち上記焼成温度での保持時間は特に制限されないが、1~8時間とすることが好ましい。より好ましくは2~4時間である。
<導電性材料の用途>
本発明の導電性材料は、従来よりも少ない貴金属量で導電パスを形成することができ、炭素を使用せずに電極を形成することができるため、高電位によるカーボンの腐食劣化の問題が生じない。このため、固体高分子形燃料電池等の燃料電池や、水電解セル、太陽電池、トランジスタ、液晶等の表示装置等の電極等に有用である。
また、本発明の導電性材料は、帯電防止材、熱線遮蔽材等に使用する導電性材料としても有用である。
本発明の導電性材料の用途としてより好ましくは、固体高分子形燃料電池の電極材料である。
本発明はまた、上記導電性材料を含む電極材料でもある。
上記電極材料は、導電性材料に白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属及び/又は白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属含有化合物が担持、又は、混合されていることが好ましい。
上記貴金属含有化合物は、白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属元素を含むものであれば特に制限されず、例えば、結晶性酸化物、非晶質酸化物、水酸化物、硫酸塩、硝酸塩、塩化物、リン酸塩等の無機塩;酢酸塩、シュウ酸塩等の有機塩等;ジニトロジアンミン硝酸塩等の錯塩等が挙げられる。中でも好ましくは酸化物、水酸化物であり、より好ましくは酸化物である。
本発明の電極材料が、金属の白金、イリジウム又はルテニウムを含む場合、例えばナノサイズのこれらの金属の分散液などを用いて導電性材料に担持させることができる。また、物理的に上記貴金属及び/又は貴金属含有化合物粒子を上記導電性材料に混合しても良い。
上記電極材料における白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属及び/又は白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属含有化合物の担持、または混合量は特に制限されないが、白金、イリジウム、またはルテニウム元素換算で、電極材料100質量%に対して1~50質量%であることが好ましい。より好ましくは5~30質量%であり、更に好ましくは10~20質量%である。
上記電極材料は、燃料電池用途に用いられることが好ましい。
上記電極材料は、水電解セル用途に用いられることが好ましい。
本発明はまた、本発明の導電性材料を含む電極でもある。
本発明の電極は、本発明の導電性材料を含む電極材料を集電体上に形成することにより得ることができる。
集電体としては、カーボン、チタン、金、アルミ、銅、ステンレス等又はこれに貴金属やカーボンによるメッキを行ったものを用いることができる。
上記電極は、本発明の導電性材料並びに白金及び/又は白金含有化合物以外のその他の任意成分を含んでいてもよい。
その他の成分としては、導電助剤やバインダー等が挙げられる。
上記導電助剤としては、アセチレンブラック、ケッチェンブラック等が挙げられるが、本発明の導電性材料は導電性に優れるため、高電位とした場合の腐食の原因となる炭素を含む導電助剤を用いない場合にも、優れた電池性能を発揮することができる。
上記バインダーとしてはポリテトラフルオロエチレン、ポリフッ化ビニリデン、パーフルオロアルキルスルホン酸系ポリマー等が挙げられる。
本発明はまた、本発明の導電性材料を含む水電解セルでもある。
本発明は更に、本発明の電極を備える燃料電池でもある。
本発明の電極は、燃料電池用途に好適に用いることができる。中でも、固体高分子形燃料電池(PEFC)用の電極として特に好適である。特に、従来一般に使用されているカーボン担体上に白金を担持した電極の代替として有用である。このような電極は、カソード、アノードのいずれにも好適である。
本発明は更に、本発明の電極を備える水電解セルでもある。
本発明の電極は、水電解セル用途に好適に用いることができる。中でも、固体高分子形水電解セル用の電極として特に好適である。特に、従来一般に使用されているイリジウム電極の代替として有用である。このような電極は、カソード、アノードのいずれにも好適である。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
<物性評価>
以下の手順により、得られた各粉末の物性等を評価した。
1、BET比表面積
JIS Z8830(2013年)の規定に準じ、試料を窒素雰囲気中、200℃で60分間熱処理した後、比表面積測定装置(マウンテック社製、商品名「Macsorb HM-1220」)を用いて、BET比表面積を測定した。
2、XPSによるイリジウム元素の含有量の測定
<X線光電子分光分析(XPS)ルテニウムを含まない場合>
X線光電子分光分析装置として、PHYSICAL ELECTRONICS社製PHI5700ESCA SYSTEMを用いて、チタン2p、イリジウム4fのスペクトルを測定した。X線源には、単色化AlKα線を用い、測定の条件として、スポットサイズを800μmとした。得られたXPSスペクトルについて、同システムを用い、チタンとイリジウムの原子濃度を算出した。炭素1sスペクトルにおいて表面汚染炭化水素に帰属されるピークを284.8eVとして帯電補正した。
< X線光電子分光分析(XPS)ルテニウムを含む場合>
ルテニウムを含む場合には、チタン2p1がルテニウム3P3とピーク位置が重なるため、チタン2p3、イリジウム4f、ルテニウム3d5のスペクトルを測定した。
それ以外は上記同様に実施し、チタン、イリジウム、ルテニウムの3元素を100%として表面の原子濃度を算出の上、チタン元素とイリジウム元素との合計100原子%に換算した際のイリジウムの割合を算出した。
3、蛍光X線(XRF)によるイリジウム元素の含有量の測定
走査型蛍光X線分析装置ZSX PrimusII(株式会社リガク製)を用いてチタン並びにイリジウム含有量を測定した。
4、X線回折
X線回折装置(RINT―TTR3、Rigaku製)を用いて、以下の条件により測定した。
光学系:平行ビーム光学系(長尺スリット:PSA200/分解能:0.057°)
管電圧:50kV
電流:300mA
測定方法:連続スキャン
測定範囲(2θ):10°~70°
サンプリング幅:0.04°
スキャンスピード:5°/min
ルチル型結晶相に対する異相の割合は以下の式で表される。
[異相の最強ピークの強度の合計/(ルチル型結晶相の最強ピークの強度+異相の最強ピークの強度の合計)]×100(%)
ここで、ルチル型結晶相の最強ピークの強度とは2θが27.4±2°のピーク強度である。異相の最強ピークの強度の合計とは、アナタース型結晶相の25.3±2°のピークに、異相としてNa-Ti-O、K-Ti-O、Rb-Ti-O、Cs-Ti-O三元系やその他ルチル型結晶相以外の相が存在する場合は、これらの最強ピーク強度を加える。
5、体積抵抗
体積抵抗の測定には、株式会社三菱化学アナリテック製、粉体抵抗測定システム MCP-PD51型を用いた。粉体抵抗測定システムは、油圧による粉体プレス部と四探針プローブ、高抵抗測定装置(同社製、ロレスターGX MCP-T700)から構成される。
以下の手順に従い、体積抵抗(Ω・cm)の値を求めた。
1)四探針プローブを底面に備えたプレス冶具(直径20mm)にサンプル粉末を投入し、粉体抵抗測定システムの加圧部にセットした。
2)粉体プレス部を20kNまで加圧した後、粉体厚みをデジタルノギスで測定、抵抗値を高抵抗測定装置で測定した。
3)粉体の厚み、抵抗値から、下記数式に基づき体積抵抗率(Ω・cm)を求めた。
 (体積抵抗率)=(抵抗値)×(抵抗率補正係数)×(厚み)
6、電子顕微鏡写真観察
電解放出形透過電子顕微鏡JEM-2100F(日本電子社製)を用いて、観察を実施した。結果を図1~8に示す。
7、膜電極接合体 燃料電池発電試験
初期発電試験
実施例・比較例粉末を用いた触媒層側をアノード側、白金目付け0.2mgPt/cm白金担持カーボン触媒層側をカソード側にして、膜電極接合体を単セル(ミックラボ社製、電極面積1cm×1cm、Au10μmめっきCuセパレータ ストレート流路仕様)に組み込み、PEFC単セル評価装置(東陽テクニカ製)を用いて、セル温80℃、アノード側75℃加湿100%H 500ml/min、カソード側75℃加湿100%O 500ml/minに設定し、開放電圧から0.2Vまで掃引し、0.5Aと1.0A/cm時点の電圧とセル抵抗を測定した。
8、高電位保持後発電試験
初期発電試験を実施後に、単セルを反転させ、セル温80℃、アノード側75℃加湿100%H 500ml/min、カソード側75℃加湿100%N 500ml/minに設定し、1.7Vを10分印加した後、単セルを反転させ、再度発電試験を行い、0.5A/cm時点の電圧を測定した。
比較例5を100とした場合の高電位保持前後の電圧維持率を、以下の式に基づき算出した。
{(実施例の高電位保持前後電圧@1A/cm)÷(実施例の初期電圧@1A/cm)}÷{(比較例5の高電位保持前後電圧@1A/cm)÷(比較例5の初期電圧@1A/cm)}×100
9、膜電極接合体 水電解試験
実施例・比較例粉末を用いた触媒層をアノード側、白金目付け0.2mgPt/cm Pt担持カーボン電極をカソード側にして、膜電極接合体を単セル(ミックラボ社製、電極面積1cm×1cm、Au10μmめっきCuセパレータ ストレート流路仕様)に組み込み、PEFC単セル評価装置(東陽テクニカ製)を用いて、セル温70℃、アノード側80℃加湿4%H/N 1L/min、カソード側80℃加湿100%N 1L/minに設定し、1.0Vから2.0Vまで掃引し、1.5V時点の電流密度を測定した。
<導電性材料、電極材料、電極の作製>
(実施例1)
導電性材料の作製
Rutile型酸化チタン(堺化学工業社製 製品名『STR100N』、BET比表面積100m/g)10.0gをアルミナ坩堝中で電気炉にて850℃まで4時間15分かけて昇温し、850℃で4時間保持した後、室温まで自然冷却した。
得られたRutile型酸化チタン850℃焼成品3.0gとイオン交換水480mlをビーカーに添加して撹拌混合し、TiOスラリー1を得た。
別のビーカーにて、塩化イリジウム塩酸塩水溶液(Irとして8.6wt%、田中貴金属工業社製)を希釈して1.2wt%に調整したIr液を27.1g計量し、これに塩化ヒドラジンを0.09g添加してマグネチックスターラーにより撹拌した(これを「混合Ir水溶液1」と称す)。
TiOスラリー1を撹拌しながら、上記混合Ir水溶液1を添加し、液温70℃に加熱保持しながら撹拌混合した。更に、1.0mоl/Lの水酸化ナトリウム水溶液をpH7となるように滴下した後、液温70℃に4時間加熱保持した後、常法に従い、濾過、水洗、乾燥して水分を全て蒸発させた。得られた粉末全量をアルミナボートに入れ、電気炉にて450℃まで135分かけて昇温し、450℃で4時間保持した後、室温まで自然冷却し、IrO担持TiO粉末1(導電性材料1)を得た。
電極材料の作製
上記で得られたIrO担持TiO粉末1を3.0g、イオン交換水を960ml及びエタノール240mlを四つ口フラスコに計量して撹拌混合し、IrO担持TiOスラリー1を得た。
IrO担持TiOスラリー1を攪拌しながら、オイルバス中で加熱し、還流管を設置して、還流下で30分加熱した。これに塩化白金酸液(Ptとして15.3wt%、田中貴金属工業社製)を希釈して2.2wt%に調整したPt液を15.2g添加し、還流下で加熱保持しながら1時間撹拌混合した。常法に従い、濾過、水洗、乾燥して水分を全て蒸発させPt、IrO担持TiO粉末1(電極材料1)を得た。
電極(膜電極接合体)の作製
上記で得られたPt、IrO担持TiO粉末1を0.2g、20重量%Nafion溶液(シグマアルドリッチ社製)168μl、t-ブチルアルコール(和光純薬社製)120μl、イオン交換水24μl及び2mmφZrOビーズ1.4gをスクリュー管に入れ、超音波洗浄機を用いて、150分間分散し、Pt、IrO担持TiOインク1を得た。得られたPt、IrO担持TiOインク1をテフロン(登録商標)シートに40μl滴下し、バーコーターを用いて塗工後、自然乾燥させ、Pt、IrO担持TiO粉末1シート1(Pt使用量0.05mgPt/cm)を得た。
市販の50重量%Pt担持カーボン(エヌイーケムキャット社製)を0.02gと、20重量%Nafion溶液(シグマアルドリッチ社製)61μl、t-ブチルアルコール(和光純薬社製)179μl、イオン交換水89μl、2mmφZrOビーズ1.6gをスクリュー管に入れ、超音波洗浄機を用いて、150分間分散し、Pt担持カーボンインク1を得た。
得られたPt担持カーボンインク1をテフロン(登録商標)シートに40μl滴下し、バーコーターを用いて塗工後、自然乾燥させ、Pt担持カーボンシート1(Pt使用量0.2mgPt/cm)を得た。
電解質膜(デュポン社製、製品名NR-212)を3cm×3cmに切り抜いた後Pt、IrO担持TiOシート1と、Pt担持カーボンシート1をそれぞれ1cm×1cmに切り抜き、Pt、IrO担持TiOシート1、電解質膜、Pt担持カーボンシート1の順に重ね合わせ、加熱式油圧プレス機(東洋精機製作所製、製品名 ミニテストプレスMP-WNH)を用いて1MPaの設定圧力で140℃で6分間ホットプレスした。その後、Pt、IrO担持TiOシート1、Pt担持カーボンシート1からテフロン(登録商標)シートを剥がし、膜電極接合体1を得た。
(実施例2)
ルチル型酸化チタンの作製において電気炉にて4時間30分かけて900℃まで昇温し、900℃で4時間保持したこと、及び、Ir及びPtの担持量を20%に変更したこと以外は実施例1と同様にしてIrO担持TiO粉末2(導電性材料2)、Pt、IrO担持TiO粉末2(電極材料2)及び膜電極接合体2を作製した。
(実施例3)
ルチル型酸化チタンの作製において電気炉にて2時間30分かけて500℃まで昇温し、500℃で4時間保持したこと、及び、Ir及びPtの担持量を20%としたこと以外は実施例1と同様にしてIrO担持TiO粉末3(導電性材料3)、Pt、IrO担持TiO粉末3(電極材料3)及び膜電極接合体3を作製した。
(実施例4)
Irの担持量を15%に変更したこと以外は実施例2と同様にしてIrO担持TiO粉末4(導電性材料4)を作製した。
上記で得られた導電性材料4を3.0g、イオン交換水を1200mlを四つ口フラスコに計量して撹拌混合し、導電性材料4スラリーを得た。
塩化ルテニウム塩酸塩水溶液(Ruとして8.369重量部、田中貴金属工業社製)を2.2wt% にイオン交換水で希釈したRu液を68.2g、塩化イリジウム塩酸塩水溶液(Irとして8.589wt%、田中貴金属工業社製)を希釈して1.23wt%に調整したIr液を40.7g計量し、それぞれ導電性材料4スラリーに添加して、室温で18時間撹拌した。
水酸化ナトリウム(富士フイルム和光純薬社製、一級)18.1g、水素化ホウ素ナトリウム(富士フイルム和光純薬社製、一級)3.88gをそれぞれ計量し、イオン交換水で溶解、希釈して100mlとした(安定化水素化ホウ素ナトリウム溶液)。Ru液とIr液を添加して撹拌した導電性材料4スラリーに安定化水素化ホウ素ナトリウム溶液を滴下して1時間撹拌した。常法に従い、濾過、水洗、乾燥して水分を全て蒸発させRu、Ir、IrO担持TiO粉末1(電極材料4)を得た。更に、実施例1と同様にしてRu、Ir、IrO担持TiO粉末1シート1(全Ir使用量0.1mgIr/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体4を作製した。
(実施例5)
導電性材料の作製
ビーカーに1.23wt%に調整したIr液を15.2g計量し、これに塩化ヒドラジンを0.05g添加してマグネチックスターラーにより撹拌した(これを「混合Ir水溶液2」と称す)。
別のビーカーにて、塩化ルテニウム塩酸塩水溶液(Ruとして8.4wt%、田中貴金属工業社製)を希釈して2.2wt%に調整したRu液を25.6g計量し、これに塩化ヒドラジンを0.3g添加してマグネチックスターラーにより撹拌した(これを「混合Ru水溶液1」と称す)。
実施例1と同様に調製したTiOスラリー1を撹拌しながら、上記混合Ir水溶液2及び混合Ru水溶液1を添加し、液温70℃に加熱保持しながら撹拌混合した。更に、1.0mоl/Lの水酸化ナトリウム水溶液をpH7となるように滴下した後、液温70℃に4時間加熱保持した後、常法に従い、濾過、水洗、乾燥して水分を全て蒸発させた。得られた粉末全量をアルミナボートに入れ、電気炉にて450℃まで135分かけて昇温し、450℃で4時間保持した後、室温まで自然冷却し、IrO、RuO担持TiO粉末1(導電性材料5)を得た。
実施例2と同様にして導電性材料5にPtを20wt%担持し、Pt、IrO、RuO担持TiO粉末1(電極材料5)を得た。
更に、実施例1と同様にしてPt、IrORuO担持TiO粉末1シート1(Pt使用量0.05mgPt/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体5を作製した。
(実施例6)
Irの担持量を3%に、Ruの担持量を17%に変更したこと以外は実施例5と同様にしてIrO、RuO担持TiO粉末2(導電性材料6)を得た。実施例2と同様にして導電性材料6にPtを20wt%担持し、Pt、IrORuO担持TiO粉末2(電極材料6)を得た。
更に、実施例1と同様にしてPt、IrORuO担持TiO粉末2シート1(Pt使用量0.05mgPt/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体6を作製した。
(実施例7)
導電性材料4を3.0gとイオン交換水480mlをビーカーに添加して撹拌混合し、導電性材料4スラリーを得た。
導電性材料4スラリーを撹拌しながら、実施例1と同様に作製した混合Ir水溶液1を添加し、液温70℃に加熱保持しながら撹拌混合した。更に、1.0mоl/Lの水酸化ナトリウム水溶液をpH7となるように滴下した後、液温70℃に4時間加熱保持した後、常法に従い、濾過、水洗、乾燥して水分を全て蒸発させた。得られた粉末全量をアルミナボートに入れ、電気炉にて300℃まで90分かけて昇温し、300℃で4時間保持した後、室温まで自然冷却し、IrOx(0<X≦2)、IrO担持TiO粉末1(電極材料7)を得た。
更に、実施例1と同様にしてIrOx、IrO担持TiO粉末1シート1(Ir使用量0.1mgIr/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体7を作製した。
(実施例8)
ビーカーにて、塩化イリジウム塩酸塩水溶液(Irとして8.6wt%、田中貴金属工業社製)を希釈して1.2wt%に調整したIr液を104.5g計量し、これに塩化ヒドラジンを0.35g添加してマグネチックスターラーにより撹拌した(これを「混合Ir水溶液3」と称す)。
実施例1と同様にして作製したTiOスラリー1を撹拌しながら、上記混合Ir水溶液3を添加し、液温70℃に加熱保持しながら撹拌混合した。更に、1.0mоl/Lの水酸化ナトリウム水溶液をpH7となるように滴下した後、液温70℃に4時間加熱保持した後、常法に従い、濾過、水洗、乾燥して水分を全て蒸発させた。得られた粉末全量をアルミナボートに入れ、電気炉にて300℃まで90分かけて昇温し、300℃で4時間保持した後、室温まで自然冷却し、IrOx担持TiO粉末1(導電性材料7)を得た。
更に、導電性材料7を電極材料8として実施例1と同様にしてIrOx担持TiO粉末1シート1(Ir使用量0.1mgIr/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体8を作製した。
(実施例9)
ルチル型酸化チタンの作製において電気炉にて4時間45分かけて950℃まで昇温し、950℃で4時間保持したこと、及び、Irの担持量を5%に変更したこと以外は実施例2と同様にしてIrO担持TiO粉末5(導電性材料8)を作製した。
実施例2と同様にして導電性材料8にPtを20wt%担持し、Pt、IrO担持TiO2粉末4(電極材料9)を得た。
更に、実施例1と同様にしてPt、IrO担持TiO粉末4シート1(Pt使用量0.05mgPt/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体9を作製した。
(実施例10)
実施例5で調整したPt、IrORuO担持TiO粉末1シート1(Pt使用量0.05mgPt/cm)とさらにPt目付を変更したPt、IrORuO担持TiO粉末1シート2(Pt使用量0.2mgPt/cm)を得た。Pt担持IrORuO担持TiO粉末1シート1、電解質膜、Pt担持IrORuO担持TiO粉末1シート2の順に重ね合わせ、膜電極接合体10を作製した。
(実施例11)
導電性材料2に対して、イリジウムブラック(Alfa Aesar社製)を重量比62.5:37.5で物理混合し、電極材料10を得た。更に、実施例1と同様にしてIr混合IrO担持TiOシート1(Ir使用量0.1mgIr/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体11を作製した。
(実施例12)
導電性材料2に対して、IrOx(田中貴金属社製)を重量比62.5:37.5で物理混合し、電極材料11を得た。更に、実施例1と同様にしてIrOx混合IrO担持TiOシート1(Ir使用量0.1mgIr/cm)を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、膜電極接合体12を作製した。
(比較例1)
酸化チタンとしてアナタース型酸化チタン(堺化学工業株式会社製『SSP-N』、BET270m/g)を焼成せずに用いたこと、及び、Ir及びPtの担持量を20%としたこと以外は実施例1と同様にして比較導電性材料1、比較電極材料1及び比較膜電極接合体1を作製した。
(比較例2)
ルチル型酸化チタンを焼成せずにIrを20wt%担持させた後800℃で焼成を行ったこと、及び、Ptの担持量を20%に変更したこと以外は実施例1と同様にして比較導電性材料2、比較電極材料2及び比較膜電極接合体2を作製した。
(比較例3)
ルチル型酸化チタン850℃焼成品に、Irを30%担持後に水素100%で900℃で焼成したこと、及び、Ptを15wt%担持したこと以外は実施例1と同様にして比較導電性材料3、比較電極材料3及び比較膜電極接合体3を作製した。
(比較例4)
アナタース型酸化チタンを用いたこと以外は実施例2と同様にして比較導電性材料4、比較電極材料4及び比較膜電極接合体4を作製した。
実施例1~9及び比較例1~4で得られた導電性材料、膜電極接合体について、体積抵抗測定を行い、結果を表1に示した。また、燃料電池発電試験を行い、結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
*1:導電性材料中の、酸化チタンとイリジウムとの合計100質量%に対する全イリジウム元素の含有割合
*2:導電性材料中の、酸化チタンとイリジウムとの合計100質量%に対するルテニウム元素の含有割合
Figure JPOXMLDOC01-appb-T000002
(体積抵抗測定)
表1に示すように、実施例1~9は比較例3よりも体積抵抗が低いことから、導電性材料としては酸化チタン上に酸化イリジウムが存在することが有効であることが確認できた。
また、実施例1~9は比較例2よりも体積抵抗が低いことから、導電性材料としてはXPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素との合計100原子%に対して30原子%以上であることが有効であることが確認できた。また、実施例1~9は比較例1、4よりも体積抵抗が低いことから、酸化チタンとしてはルチル型であることが有効であることが確認できた。
(燃料電池発電試験)
表2に示すように、実施例1~6及び9、10は比較例3よりも初期電圧が高いことから、燃料電池用電極としては酸化チタン上に酸化イリジウムが存在することが有効であることが確認できた。また、実施例1~6及び9、10は比較例2よりも電圧が高いことから、XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素との合計100原子%に対して30原子%以上であることが有効であることが確認できた。また、実施例1~6及び9、10は比較例1、4よりも電圧が高いことから、酸化チタンとしてはルチル型であることが有効であることが確認できた。
(比較例5)
実施例1のPt担持カーボンシート1のPt使用量を0.05mgPt/cm)に変更してPt担持カーボンシート2を得た。更に、実施例1と同様に電解質膜、Pt担持カーボンシート1の順に重ね合わせ、比較膜電極接合体5を作製した。
(高電位保持耐久性試験)
実施例2及び比較例5で得られた膜電極接合体を用いて高電位保持後発電試験を行った。
一般に燃料電池用電極材料として使用されるPt/Cをアノードにも使用した比較例5に対して、実施例2は112%の耐久性を示し、高い高電位耐久性を有していることが確認された。
(比較例6)
実施例11の電極材料10の代わりにイリジウムブラック(Alfa Aesar社製)を用いたこと以外は実施例11と同様にして、比較膜電極接合体6を作製した。
(水電解試験)
実施例4、7、8、11、12及び比較例6で得られた膜電極接合体を用いて水電解試験を行い、結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
表3に示すように、水電解セル用電極材料として一般に使用されるイリジウム金属であるイリジウムブラック(比較例6)に対し、実施例4、7、8、11、12では高い電流密度が得られ、イリジウム金属のみで用いる場合に対して、ルチル型酸化チタン上に酸化イリジウムが存在する導電性材料にイリジウム、酸化イリジウム、ルテニウムとの混合物を担持、または混合することでIrをより効率的に使用でき、水電解用電極として高い水電解性能を発揮することができることが確認された。

 

Claims (10)

  1. ルチル型酸化チタンを含む導電性材料であって、
    該導電性材料は、ルチル型酸化チタン上に酸化イリジウムが存在し、
    該導電性材料中の全イリジウム元素の含有割合が、酸化チタンとイリジウムとの合計100質量%に対して30質量%以下であり、
    XPSにより測定されるイリジウム元素の割合が、チタン元素とイリジウム元素との合計100原子%に対して30原子%以上であることを特徴とする導電性材料。
  2. 前記ルチル型酸化チタンのBET比表面積が、50m/g未満であることを特徴とする請求項1に記載の導電性材料。
  3. 請求項1又は2記載の導電性材料を含むことを特徴とする電極材料。
  4. 請求項1又は2に記載の導電性材料に白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属及び/又は白金、イリジウム、ルテニウムから選ばれる少なくとも1種の貴金属含有化合物が担持、又は、混合されていることを特徴とする電極材料。
  5. 前記電極材料は、燃料電池用途に用いられることを特徴とする請求項3又は4に記載の電極材料。
  6. 前記電極材料は、水電解セル用途に用いられることを特徴とする請求項3又は4に記載の電極材料。
  7. 請求項3~6のいずれかに記載の電極材料を含むことを特徴とする電極。
  8. 請求項7に記載の電極を備えることを特徴とする燃料電池。
  9. 請求項7に記載の電極を備えることを特徴とする水電解セル。
  10. 請求項1又は2に記載の導電性材料を製造する方法であって、
    該製造方法は、ルチル型酸化チタン上に酸化イリジウムを担持させる工程を含むことを特徴とする導電性材料の製造方法。
     
PCT/JP2022/015404 2021-03-31 2022-03-29 導電性材料 WO2022210700A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/553,325 US20240175151A1 (en) 2021-03-31 2022-03-29 Electronically conductive material
EP22780911.8A EP4317069A1 (en) 2021-03-31 2022-03-29 Electrically conductive material
JP2023507252A JP7255769B2 (ja) 2021-03-31 2022-03-29 導電性材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061113 2021-03-31
JP2021-061113 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210700A1 true WO2022210700A1 (ja) 2022-10-06

Family

ID=83456283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015404 WO2022210700A1 (ja) 2021-03-31 2022-03-29 導電性材料

Country Status (4)

Country Link
US (1) US20240175151A1 (ja)
EP (1) EP4317069A1 (ja)
JP (1) JP7255769B2 (ja)
WO (1) WO2022210700A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192870A (ja) * 1992-12-24 1994-07-12 Permelec Electrode Ltd 電解用電極
JP2003064495A (ja) * 2001-08-22 2003-03-05 Sanyo Electric Co Ltd 電解用電極及びその製造方法
JP2003166093A (ja) 2001-09-21 2003-06-13 Honda Motor Co Ltd 水電解セル
JP2005089779A (ja) * 2003-09-12 2005-04-07 Wako Sangyo:Kk 電解用電極及びその製造方法
JP2007514520A (ja) * 2003-10-29 2007-06-07 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 水電解用の貴金属酸化物触媒
JP2008274326A (ja) 2007-04-26 2008-11-13 Chlorine Eng Corp Ltd 水電解装置
US20110207602A1 (en) * 2006-09-22 2011-08-25 Ocean University Of China Nanometer powder catalyst and its preparation method
WO2013092568A1 (de) 2011-12-22 2013-06-27 Umicore Ag & Co. Kg Elektrokatalysator für brennstoffzellen sowie verfahren zu seiner herstellung
JP2017183285A (ja) 2016-03-28 2017-10-05 国立大学法人九州大学 電極材料用コアシェル担体及びその製造方法、並びに電極材料
JP6375085B1 (ja) * 2016-12-22 2018-08-15 昭和電工株式会社 酸素還元触媒
JP2018147569A (ja) * 2017-03-01 2018-09-20 堺化学工業株式会社 導電性材料及び電極材料
KR20210034900A (ko) * 2019-09-23 2021-03-31 한국생산기술연구원 이리듐 산화물 및 이산화 티타늄을 포함하는 애노드, 그를 포함하는 막전극 접합체 및 그의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141063A1 (ja) 2012-03-23 2013-09-26 株式会社クラレ 触媒およびこれを備える燃料電池
JP6192870B2 (ja) 2015-03-18 2017-09-06 三菱電機株式会社 暗号通信装置及び暗号通信端末及び暗号通信方法及び暗号通信プログラム
KR20190084949A (ko) 2016-11-22 2019-07-17 사카이 가가쿠 고교 가부시키가이샤 전극 재료 및 그 제조 방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192870A (ja) * 1992-12-24 1994-07-12 Permelec Electrode Ltd 電解用電極
JP2003064495A (ja) * 2001-08-22 2003-03-05 Sanyo Electric Co Ltd 電解用電極及びその製造方法
JP2003166093A (ja) 2001-09-21 2003-06-13 Honda Motor Co Ltd 水電解セル
JP2005089779A (ja) * 2003-09-12 2005-04-07 Wako Sangyo:Kk 電解用電極及びその製造方法
JP2007514520A (ja) * 2003-10-29 2007-06-07 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 水電解用の貴金属酸化物触媒
US20110207602A1 (en) * 2006-09-22 2011-08-25 Ocean University Of China Nanometer powder catalyst and its preparation method
JP2008274326A (ja) 2007-04-26 2008-11-13 Chlorine Eng Corp Ltd 水電解装置
WO2013092568A1 (de) 2011-12-22 2013-06-27 Umicore Ag & Co. Kg Elektrokatalysator für brennstoffzellen sowie verfahren zu seiner herstellung
JP2015502646A (ja) * 2011-12-22 2015-01-22 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 燃料電池用電気触媒、および前記電気触媒の製造方法
JP2017183285A (ja) 2016-03-28 2017-10-05 国立大学法人九州大学 電極材料用コアシェル担体及びその製造方法、並びに電極材料
JP6375085B1 (ja) * 2016-12-22 2018-08-15 昭和電工株式会社 酸素還元触媒
JP2018147569A (ja) * 2017-03-01 2018-09-20 堺化学工業株式会社 導電性材料及び電極材料
KR20210034900A (ko) * 2019-09-23 2021-03-31 한국생산기술연구원 이리듐 산화물 및 이산화 티타늄을 포함하는 애노드, 그를 포함하는 막전극 접합체 및 그의 제조방법

Also Published As

Publication number Publication date
EP4317069A1 (en) 2024-02-07
JP7255769B2 (ja) 2023-04-11
JPWO2022210700A1 (ja) 2022-10-06
US20240175151A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US11230775B2 (en) Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making
Hunt et al. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles
Chhetri et al. Superior performance of borocarbonitrides, B x C y N z, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction
Karimi et al. Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis
Avasarala et al. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions
JP2022169613A (ja) 酸化スズ上に担持された貴金属酸化物を含む電極触媒組成物
Filip et al. Tailoring electrocatalytic properties of Pt nanoparticles grown on Ti3C2Tx MXene surface
EP2945909B1 (en) A core-shell catalyst comprising a mixed metal oxide material of tin and titanium
JP5205013B2 (ja) 燃料電池用アノードおよびそれを用いた燃料電池
Tariq et al. Facile synthesis of IrO2 nanoparticles decorated@ WO3 as mixed oxide composite for outperformed oxygen evolution reaction
Ziegelbauer et al. Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis
CN114072939A (zh) 水电解中的析氧反应的催化剂
JPWO2019117199A1 (ja) 水分解触媒用のマンガン酸化物、マンガン酸化物−カーボン混合物、マンガン酸化物複合電極材料及びそれらの製造方法
CA3202825A1 (en) Iridium-containing catalyst for water electrolysis
Kim et al. Synthesis and electrochemical properties of nano-composite IrO2/TiO2 anode catalyst for SPE electrolysis cell
WO2014111715A1 (en) Composite materials
JP7255769B2 (ja) 導電性材料
JP2022514547A (ja) 電気化学反応用アンチモン酸塩電気触媒
WO2012004639A1 (en) Palladium alloy catalysts for fuel cell cathodes and a method of preparing the same
WO2021235497A1 (ja) 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法
KR20240035414A (ko) 산소 발생 반응 촉매
Jovic et al. Dimensionally stable anodes for the oxygen evolution reaction: Ruthenium dioxide on a nickel metal substrate
WO2021193467A1 (ja) 水分解触媒用のマンガン-イリジウム複合酸化物、マンガン-イリジウム複合酸化物電極材料及びそれらの製造方法
JP7494576B2 (ja) 電極材料及びそれを用いた電極、水電解セル
JPWO2020175114A1 (ja) 電極材料及びそれを用いた電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507252

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18553325

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022780911

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780911

Country of ref document: EP

Effective date: 20231031