WO2021235497A1 - 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法 - Google Patents

酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法 Download PDF

Info

Publication number
WO2021235497A1
WO2021235497A1 PCT/JP2021/019061 JP2021019061W WO2021235497A1 WO 2021235497 A1 WO2021235497 A1 WO 2021235497A1 JP 2021019061 W JP2021019061 W JP 2021019061W WO 2021235497 A1 WO2021235497 A1 WO 2021235497A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
oxygen catalyst
electrode
catalyst
sodium
Prior art date
Application number
PCT/JP2021/019061
Other languages
English (en)
French (fr)
Inventor
正嗣 盛満
Original Assignee
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社 filed Critical 学校法人同志社
Priority to CN202180036422.2A priority Critical patent/CN115668553B/zh
Priority to US17/999,425 priority patent/US11777106B2/en
Priority to EP21808831.8A priority patent/EP4156383A4/en
Publication of WO2021235497A1 publication Critical patent/WO2021235497A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes

Definitions

  • an oxygen catalyst used for a reduction reaction using an alkaline aqueous solution as an electrolyte to reduce oxygen to generate hydroxide ions and / or an oxidation reaction to oxidize hydroxide ions to generate oxygen, the oxygen catalyst.
  • the present invention relates to an electrode and an electrochemical measurement method using the above.
  • the oxygen catalyst has a catalytic action on the reduction of oxygen, the generation of oxygen, or both.
  • alkaline aqueous solution such as an aqueous solution of lithium hydroxide, an aqueous solution of potassium hydroxide, or an aqueous solution of sodium hydroxide as an electrolyte
  • hydroxides are contained in the alkaline aqueous solution by reducing oxygen.
  • ion (OH -) is generated, the generation of oxygen are known the following reactions as the hydroxide ions in the alkaline aqueous solution is oxidized. Reduction: O 2 + 2H 2 O + 4e - ⁇ 4OH - ⁇ (1)
  • the positive electrode It is the positive electrode that these reactions occur in the air battery.
  • the reduction reaction of the above formula (1) occurs at the time of discharge.
  • the above formula (1) occurs in the same as the air primary battery in the discharge, and the oxidation reaction of the above formula (2) occurs in the charge.
  • the name of the air battery is used because oxygen in the air can be used for discharging, and for the same reason, the positive electrode of the air battery is also called the air electrode.
  • the oxygen used in the reaction of the above formula (1) does not necessarily have to be oxygen in the air, and may be, for example, high-purity oxygen.
  • the oxygen reduction reaction of the air electrode of the air battery using the alkaline aqueous solution as described above is the same as the oxygen reduction reaction at the oxygen cathode of the salt electrolysis that produces caustic soda and chlorine by electrolysis, and these have the same oxygen catalyst. Can be used. Further, even in the cathode of the alkaline fuel cell, the reaction at the time of power generation is the same reduction of oxygen, and the same oxygen catalyst can be used for the air electrode of the air battery, the oxygen cathode of the salt electrolysis, and the cathode of the alkaline fuel cell. .. Further, the charging reaction at the air electrode of the air secondary battery (formula (2) above) is the same as the oxygen evolution reaction of the anode in alkaline water electrolysis. Therefore, the same oxygen catalyst can be used for these.
  • the air battery, salt electrolysis, alkaline fuel cell, and alkaline water electrolysis shown above all use an alkaline aqueous solution as an electrolyte, and the operating temperature thereof is around 90 ° C. from room temperature. That is, the oxygen reaction using an alkaline aqueous solution as an electrolyte is an oxidation reaction or a reduction reaction between oxygen and hydroxide ions in such a temperature range, and the oxygen catalyst of the present disclosure is a catalyst for these reactions. There are other electrochemical reactions that reduce oxygen and generate oxygen. For example, the reaction at the cathode of a solid oxide fuel cell (abbreviated as SOFC) is a reduction reaction from oxygen to oxide ions (O2-).
  • SOFC solid oxide fuel cell
  • the reaction at the anode of the solid oxide electrolyzer cell (abbreviated as SOEC) is an oxidation reaction from oxide ions to oxygen. All of these are reactions at high temperatures around 600 ° C to 1000 ° C. Since the reaction mechanism of the oxygen reaction differs depending on the temperature, the oxygen catalyst suitable for it naturally differs, and if the reaction mechanism differs in this way, the action mechanism and effect of the catalyst also differ greatly.
  • the activity of the oxygen catalyst not only the activity of the oxygen catalyst but also its stability greatly changes depending on the temperature and the reaction mechanism. For example, even if it is found that a certain catalyst has high activity at a high temperature such as 600 ° C. or higher, the catalyst does not necessarily have high catalytic activity at a temperature of 100 ° C. or lower. It is extremely difficult for those skilled in the art to infer and infer such things. Further, as a catalyst for an electrochemical reaction, it is difficult to develop high activity with respect to a high temperature at a lower temperature, for example, at a low temperature such as near room temperature, and a catalyst having higher activity is found as the temperature used is lower. That is difficult.
  • an air primary battery using an alkaline aqueous solution as an electrolyte a zinc-air primary battery using zinc as a negative electrode has been put into practical use as a power source for hearing aids.
  • Similar air primary batteries that use metals such as magnesium, calcium, aluminum, and iron for the negative electrode in addition to zinc have been developed, and air primary batteries that use an alkaline aqueous solution as an electrolyte and magnesium for the negative electrode have been commercialized as an emergency power source. ..
  • air secondary batteries that use an alkaline aqueous solution as an electrolyte are put into practical use except for mechanical rechargeable zinc air secondary batteries that regenerate the discharge function by replacing the negative electrode and electrolyte with a mechanical (physical) type.
  • the materials used or examined so far for the oxygen catalyst in the oxygen cathode of salt electrolysis, the cathode of alkaline fuel cell, and the anode of alkaline water electrolysis include platinum, silver, and the like.
  • Noble metals such as gold or their alloys, platinum group metals and other transition metal elements and alloys containing them, various oxides and sulfides, doped or non-doped carbon materials (graphite, amorphous carbon, glassy carbon, It contains various crystal structures and forms of carbon such as carbon nanotubes, carbon nanofibers, and fullerene), various nitrides, carbides, and metal organic compounds.
  • oxides oxides having a crystal structure called pyrochlore, perovskite, and spinel are known as oxygen catalysts, and are disclosed in Patent Documents 1 to 4, for example.
  • Patent Document 1 it is a positive electrode of an air secondary battery using an alkaline aqueous solution as an electrolyte, and is composed of a core material having a density lower than that of nickel and nickel and / or a nickel alloy covering the core material.
  • a nickel coating material including a coating layer are described, and a catalyst composed of bismuth iridium oxide and / or bismas ruthenium oxide mixed with the nickel coating material is disclosed.
  • Patent Document 2 the positive electrode catalyst of metal-air battery of atomic ratio represented by La x Sr 3-x Fe 2 -y Co y O 7 is disclosed.
  • this catalyst at least a part of the Sr site of Sr 3 Fe 2 O 7 is replaced with La, or at least a part of the Fe site is replaced with Co, so that excellent alkali resistance and catalytic activity are exhibited. It is described as.
  • Patent Document 3 discloses an air battery having a negative electrode, an electrolyte layer interposed between the air electrode and the negative electrode, and an electrode catalyst, and the electrode catalyst is at least an oxide (oxidation) active against an oxygen reduction reaction.
  • (Physical electrode catalyst) and preferred oxide electrode catalysts include at least one metal element selected from iron, cobalt, nickel, titanium, manganese and copper, and have a perovskite structure or a spinel structure. It is listed.
  • Patent Document 4 describes, as a method for producing a catalyst for an air secondary battery used for an air electrode of an air secondary battery, a precursor preparation step for preparing a precursor of a pyrochlore-type oxide and a pyrochlore step of calcining the precursor. It is disclosed that a firing step of forming a type oxide and an acid treatment step of immersing the pyrochlore-type oxide obtained in the firing step in an acidic aqueous solution for acid treatment are included, and such pyrochlore-type oxidation is disclosed. As a substance, an oxygen-deficient type bismaslutenium oxide is mentioned.
  • the composition of the oxide having a pyrochlore structure is A 2 B 2 O in a general atomic ratio with respect to the A site element (A), the B site element (B), and the oxygen (O) in the crystal structure. It becomes 7. However, it has been reported that the atomic ratios obtained from the analysis results of actual oxides are not always such integers.
  • BRO bismuth ruthenium oxide having a pyrochlore structure in which the A site is bismuth (Bi) and the B site is ruthenium (Ru) Bi 2 Ru 2 O 7 Bi 2 Ru 2 O 6.9 Bi 2 Ru 2 O 6.92 Bi 1.87 Ru 2 O 6.903 Bi 1.88 Ru 2 O 6.906 Bi 1.9 Ru 2 O 6.922 Bi 1.9 Ru 2 O 6.928 Bi 1.9 Ru 2 O 6.901
  • the atomic ratio BRO indicated by is registered in the database of the International Diffraction Data Center. As described above, BRO is known to have different atomic ratios depending on the synthesis method and synthesis conditions, and is a compound whose composition is liable to change.
  • an oxygen catalyst using an alkaline aqueous solution as an electrolyte is required to have chemical and electrochemical stability in a strongly alkaline environment and high catalytic activity for oxygen reduction and / or oxygen evolution at the same time. That is, in response to an oxygen reaction accompanied by a strongly oxidizing atmosphere that occurs in a strongly corrosive environment of strong alkalinity, the oxygen catalyst keeps its own composition constant, but on its surface, it is not the oxygen of the oxygen catalyst itself. It is necessary to reduce oxygen in the atmosphere and / or generate oxygen from hydroxide ions in the electrolyte.
  • Patent Document 4 points out the problem that the discharge capacity of the air secondary battery decreases in a relatively small number of cycles due to the by-products generated when synthesizing the oxygen-deficient BRO. Further, the BRO synthesized and obtained for this task is immersed in an acidic solution such as nitric acid for a certain period of time, washed with ion-exchanged water, and dried (this operation is described as "acid treatment"). It is disclosed that the atomic ratio of Bi to Ru is lowered and the maintenance rate of the discharge capacity with respect to the charge / discharge cycle is improved for BRO not subjected to such acid treatment.
  • the oxygen-deficient type is used when the atomic ratio of oxygen is smaller than 7
  • the oxygen-rich type is used when the atomic ratio of oxygen is larger than 7 with respect to the above-mentioned general atomic ratio A 2 B 2 O 7. Is called.
  • Japanese Unexamined Patent Publication No. 2016-152068 Japanese Unexamined Patent Publication No. 2018-149518 Japanese Unexamined Patent Publication No. 2015-046403 Japanese Unexamined Patent Publication No. 2019-179592
  • BRO the A site is bismuth (Bi) and the B site is ruthenium (Ru), and these two metal elements and oxygen (O) form a pyrochlorite structure.
  • an oxygen catalyst high catalytic activity is expected for both oxygen reduction and oxygen generation for oxygen reactions using either aqueous or non-aqueous electrolytes, and both of these are required for air secondary batteries. It has also been developed as an oxygen catalyst for the air electrode.
  • BRO is a compound in which the atomic ratio of Bi, Ru, and O changes depending on the synthesis method and synthesis conditions, that is, the composition easily changes, and the by-products generated during synthesis cause a reaction to cause an air secondary. Deteriorates the cycle characteristics of the battery.
  • Patent Document 4 discloses a method of acid-treating the synthesized BRO, but it is a two-step process in which the synthesized BRO is once synthesized and then further treated. As the number of steps for obtaining an oxygen catalyst increases, the BRO in this treatment is increased. The composition and particle size (particle size) of the material change.
  • the electrode using BRO as an oxygen catalyst has a problem that it is difficult to maintain high catalytic activity and stability against the oxygen reaction generated in the electrode due to the problem of BRO.
  • the oxygen catalyst is generally fixed to the surface of a disk-shaped conductive substrate, attached to the rotating disk electrode device with the surface on which the oxygen catalyst is fixed facing down, and the oxygen catalyst is placed in the electrolytic solution.
  • the rotating disk electrode In the immersed state, the rotating disk electrode is rotated at a constant speed, and the relationship between the electric potential and the current is recorded by an electrochemical measurement method called cyclic voltammetry or linear sweep voltammetry.
  • carbon is often used as the material of the conductive substrate, but since carbon causes oxygen reduction and oxygen generation on its own surface, the recorded current is the current due to the reaction on the oxygen catalyst and carbon.
  • the oxygen catalyst is made conductive.
  • a fixing agent such as resin particles or ionomer.
  • an oxygen catalyst having better composition stability is desired.
  • an electrode that uses an oxygen catalyst and has high activity and stability against an oxygen reaction.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an oxygen catalyst having excellent catalytic activity and composition stability in a system using an alkaline aqueous solution as an electrolyte, and the oxygen catalyst is used. It is an object of the present invention to provide an electrode having high activity and stability, and an electrochemical measurement method capable of evaluating the catalytic activity of only an oxygen catalyst.
  • the oxygen catalyst of the present disclosure has the following configuration.
  • 2 ⁇ in the X-ray diffraction measurement is the diffraction angle of the diffracted X-ray, and hereinafter, this diffraction angle is simply referred to as 2 ⁇ .
  • the term "oxide containing bismuth, ruthenium, sodium and oxygen as constituent elements" as used herein does not exclude impurities inevitably generated during the production of the oxygen catalyst of the present disclosure.
  • the oxide used as an oxygen catalyst in the present disclosure includes metal salts of bismuth and ruthenium, such as metal nitrates and metal chlorides, as shown in Examples described later. It can be obtained by preparing a dissolved aqueous solution, adding a sodium hydroxide aqueous solution to the mixed solution, precipitating the metal hydroxide in the stirred and mixed solution, and firing the precipitate at a predetermined temperature. .. At this time, the introduction of sodium ions into the metal hydroxide is promoted so that the metal hydroxide contains sodium ions together with bismuth ions and ruthenium ions, and the precipitation of the metal hydroxide in that state is promoted.
  • the above-mentioned mixed solution contains an introduction-promoting / stabilizing agent as described later, which has a nano-sized stabilizing effect.
  • the oxygen catalyst obtained by such a method has a 2 ⁇ value of 14.82 °, 30.07 °, 34.88 °, 38.17 °, 45.88 °, 50.20 in X-ray diffraction using CuK ⁇ ray. It has diffraction peaks at °, 59.65 °, 62.61 °, 73.80 °, 81.68 ° and 84.28 °. However, each 2 ⁇ value has a range of about ⁇ 1.00 °.
  • the oxygen catalyst of the present disclosure has a crystal structure of the X-ray diffraction pattern shown above, and uses an oxide composed of bismuth, ruthenium, sodium and oxygen.
  • the oxygen catalyst of the present disclosure can be obtained by first precipitating and precipitating a metal hydroxide in a solution and then calcining the precipitate as described above.
  • a metal salt can be obtained.
  • a sodium salt solution is added to the solution to make the hydrogen ion index (hereinafter referred to as pH) of the solution alkaline.
  • pH hydrogen ion index
  • the metal salt solution contains a component that acts to promote and stabilize the introduction of sodium into the metal hydroxide.
  • the substance obtained without the sodium introduction promoting / stabilizing agent is BRO from the result of the diffraction peak by the X-ray diffraction method generally used for crystal structure analysis, and generally the type of element. Even if the results of the energy dispersive X-ray analysis used for the analysis of the composition and the results showing sodium together with bismuth and ruthenium are obtained, this does not mean that the BRO contains sodium. The reason is that in the absence of a sodium introduction promoting / stabilizing agent, sodium-containing oxides such as BiNaO 3 are produced as by-products.
  • the diffraction peak of such a by-product becomes invisible when the amount is relatively small, while in the energy dispersive X-ray analysis method, the element is more sensitive than the X-ray diffraction method. Since all the elements present in the object are detected even in a small amount that can be detected and does not cause a peak by the X-ray diffraction method, when BRO and BiNaO 3 are mixed, bismuth and ruthenium are detected. The result is that sodium is detected together with. However, these are different compounds, not one compound. Therefore, what kind of element is contained in the crystal structure of a certain oxide can be clarified only by analyzing the crystal structure in a finer region.
  • X-ray As described later. It is clarified by absorption fine structure analysis (XAFS). Even under the condition that there is a sodium introduction promoting / stabilizing agent, the mixing / stirring of the metal salt solution is insufficient, or the amount of the metal salt solution is large and the mixing / stirring time is short with respect to the solution amount.
  • XAFS absorption fine structure analysis
  • the temperature at which the metal hydroxide is fired is the type of the solvent used in the solution for causing the precipitation of the metal hydroxide, the type of the metal salt used, the concentration in the solution, and the precipitation. It varies depending on various conditions other than the temperature at the time of firing, such as the drying method of the metal hydroxide and its conditions. For example, in the method using an aqueous solution as described above, when the firing temperature is lower than 300 ° C., the structural change from the state of the hydroxide to the oxide is unlikely to occur sufficiently, which is generally not preferable. If the firing temperature exceeds 800 ° C., the oxide may decompose, which is not preferable.
  • the range of 450 ° C to 650 ° C is preferable, and further, 550 ° C to 600 ° C is more preferable.
  • the method for producing an oxygen catalyst disclosed in the present disclosure is not limited to the above method, and for example, a sol-gel method, a method called a hydrothermal synthesis method, or a method called bismuth oxide, ruthenium oxide, and sodium oxide are prepared in advance.
  • Various production methods can be used, such as a method in which mechanical, thermal, and electrical energies are added to the oxide to form an oxide by a solid phase reaction or a semi-solid phase reaction.
  • the sodium salt solution in the above method includes, but is not limited to, a sodium hydroxide aqueous solution as a typical example.
  • the pH can be made alkaline so that precipitation of the metal hydroxide occurs, and it is desirable that the anion of the sodium salt does not inhibit the introduction and stabilization of the sodium ion into the metal hydroxide.
  • the oxygen catalyst of the present disclosure has the crystal structure shown by the above-mentioned X-ray diffraction pattern, and as will be described later, the position of the bismuth in the crystal structure is the theoretical pyrochlore structure shown by A 2 B 2 O 7.
  • the position of ruthenium corresponds to the position of the B site of the same structure
  • the position of sodium corresponds to the position of the vicinity of the A site or the vicinity of the B site. ..
  • the catalyst of the present disclosure is similar to the pyrochlore structure, but because it is a different structure, the meaning of "near the site” is explained here using the pyrochlore structure represented by A 2 B 2 O 7. It means that it is located off the center of the site or B site.
  • sodium is a cation together with bismuth and ruthenium, and as will be described later, it has +1 valence, +3 valence, and +4 valence, respectively, and is an anion, an oxide ion (-2 valence) and a cation.
  • charge balance generally means that the total number of charges of cations and the total number of charges of anions are the same, and if this is significantly different, as described above. It causes a decrease in composition stability, long-term maintainability, or uniformity. That is, it is considered that the oxygen catalyst of the present disclosure contains sodium ions together with bismuth ions, ruthenium ions, and oxide ions, and the good balance of electric charges contributes to the production of properties that are significantly different from those of BRO. Be done.
  • the oxide of the pyrochlor structure is represented by a general atomic ratio A 2 B 2 O 7 , where the atomic ratio of oxygen to the A site element is O / A, and the atomic ratio to the B site element is set to O / A. Assuming that the atomic ratio of oxygen is O / B, all of these atomic ratios are 3.5. On the other hand, if the above-mentioned oxygen-deficient BRO is considered in the same manner, the atomic ratio O / Ru of oxygen to Ru is smaller than 3.5.
  • both the atomic ratio O / Bi and the atomic ratio O / Ru are larger than 3.5. Further, in the oxygen catalyst of the present disclosure, it is preferable that both the atomic ratio O / Bi and the atomic ratio O / Ru are 4 or less. Simply put, this is because there are many anions, oxide ions (ion formula is O2- ), and relatively few cations in terms of charge balance, compared to the composition ratio of a general pyrochlor structure. However, the oxygen catalyst of the present disclosure contains not only bismuth and ruthenium but also sodium. That is, the charge is balanced between these three metal ions and oxide ions.
  • the total number of charges for the cations of these three metals is almost the same as the total number of charges for the oxide ion, which is the only anion. That is, when (total charge of anions) / (total charge of cations) is defined as the total charge ratio, the oxygen catalyst of the present disclosure has a total charge ratio of 0.9 or more and 1.1 or less.
  • the atomic ratios of bismuth, ruthenium, sodium, and oxygen in the four elements constituting the oxygen catalyst of the present disclosure are K, L, M, and N, respectively, the total charge of anions is 2N, and the charge of cations.
  • the total number is a value represented by (3K + 4L + M), and the total charge ratio is represented by 2N / (3K + 4L + M).
  • the inclusion of sodium ions in the crystal structure together with bismus ions and ruthenium ions improves composition stability and long-term maintainability as compared with BRO, and also has uniformity in nanoparticles.
  • the reason for the improving effect will be explained from the coordination number of cations and the ionic radius.
  • the coordination number of cations at the A site is 8.
  • the coordination number of a cation of 8 means that the cation is surrounded by the closest 8 anions.
  • the coordination number of cations at the B site is 6.
  • the radius of an ion in a solid crystal differs depending on the type of element, the oxidation number, and the coordination number, and the data is published in various books and data books. For example, even if the bismuth ion has the same +3 valence, the ionic radius is 0.96 ⁇ when the coordination number is 5, 1.03 ⁇ when the coordination number is 6, and 1.17 ⁇ when the coordination number is 8.
  • the coordination number is 8 as described above, and its ionic radius is 1.17 ⁇ .
  • the ruthenium ion has a +4 valence and has a coordination number of 6 because it is a B site, and its ionic radius is 0.62 ⁇ .
  • the valence of the sodium ion is only +1 valence, but its ionic radius is 0.99 ⁇ for the coordination number 4, 1.00 ⁇ for the coordination number 5, 1.02 ⁇ for the coordination number 6, and the coordination number 7.
  • coordination number 8 is 1.18 ⁇
  • coordination number 9 is 1.24 ⁇
  • coordination number 12 is 1.39 ⁇
  • various coordination numbers from 4 to 12 coordination numbers are taken.
  • the ionic radius (1.18 ⁇ ) of the sodium ion at the coordination number 8 is 1% or less the difference from the ionic radius (1.17 ⁇ ) of the bismuth ion at the coordination number 8. Therefore, it is predicted that sodium ions can enter the position of bismuth ions in BRO if only the ionic radius is considered, but since sodium ions are +1 valent and bismuth ions are +3 valence, the pyrochlor structure was maintained.
  • the oxygen catalyst of the present disclosure is not a pyrochlore structure in which a part of bismuth ions in BRO is simply replaced with sodium ions, but is similar to the pyrochlore structure but has a different structure.
  • sodium ions contribute to the stabilization of the obtained oxide structurally and in terms of charge balance in the formation of a structure similar to pyrochlore.
  • the constituent elements of the oxygen catalyst of the present disclosure are sodium in addition to bismuth, ruthenium and oxygen.
  • the constituent elements of the oxygen catalyst of the present disclosure are sodium in addition to bismuth, ruthenium and oxygen.
  • other elements classified as the same alkali metal element as sodium are used, it is difficult to obtain an oxygen catalyst having a structure similar to the pyrochlore structure such as the oxygen catalyst of the present disclosure. This will be shown in a comparative example described later, but the reason why it is difficult with other alkali metal elements can be understood from the ionic radius.
  • lithium which is an alkali metal element
  • potassium has a +1 valence and an ionic radius of coordination number 8 of 0.92 ⁇
  • rubidium has a coordination number of +1 valence.
  • the ionic radius of the number 8 is 1.61 ⁇
  • the cesium is +1 valence
  • the ionic radius of the coordination number 8 is 1.74 ⁇ .
  • the sodium ion has an ionic radius close to that of the +3 valent bismuth ion at the coordination number 8
  • the lithium ion has an ionic radius that is 20% or more smaller than that of the +3 valence bismuth ion. It is presumed that it is very difficult to obtain a stable crystal structure because the ionic radii of the + 1-valent cations differ greatly by 29% or more.
  • the oxygen catalyst of the present disclosure is characterized in that the atomic ratio Na / Ru of sodium to ruthenium is 0.285 ⁇ 0.015.
  • the atomic ratio Na / Ru is in the range of this value, it has the effect of suppressing the structural strain caused by the inclusion of both bismuth ions and sodium ions having a similar ionic radius in a crystal structure similar to pyrochlore. ..
  • the atomic ratio Na / Ru is preferably 0.286 ⁇ 0.013, more preferably 0.275 to 0.297.
  • the oxygen catalyst of the present disclosure is characterized in that the total atomic ratio of bismuth and sodium to ruthenium (Bi + Na) / Ru (this is referred to as a cation atomic ratio) is 1.285 ⁇ 0.010. .. This has the effect of further suppressing the above-mentioned structural strain. Further, the oxygen catalyst of the present disclosure has a ratio of the sum of the total charge of bismuth and the total charge of sodium (3Bi + Na) to the total charge of ruthenium of 4Ru (3Bi + Na) / 4Ru (this is referred to as a cation charge ratio) of 0.820. It is characterized by being ⁇ 0.020.
  • the cation charge ratio (3Bi + Na) / 4Ru is preferably 0.821 ⁇ 0.015, more preferably 0.810 to 0.833.
  • the electrode of the present disclosure is characterized by using the oxygen catalyst of the present disclosure. Further, the electrode of the present disclosure is characterized in that the oxygen catalyst of the present disclosure is supported on titanium. Since titanium has a very small current for reducing oxygen and generating oxygen, it does not overlap with the reaction current of oxygen in the oxygen catalyst and can support the oxygen catalyst without an immobilizing agent. Further, the electrode of the present disclosure is characterized in that the oxygen catalyst of the present disclosure is supported on the bottom surface of titanium formed in a columnar shape. Further, the present disclosure is an electrochemical measurement method using a rotating disk electrode method, which is characterized in that an electrode in which an oxygen catalyst of the present disclosure is supported on titanium is used as a rotating disk electrode.
  • the electrodes of the present disclosure may be any of an air electrode of an air primary battery or an air secondary battery, an oxygen cathode of salt electrolysis, a cathode of an alkaline fuel cell, or an anode of alkaline water electrolysis, which uses an alkaline aqueous solution as an electrolyte. Therefore, it is characterized by using the oxygen catalyst of the present disclosure.
  • the inclusion of sodium as a constituent element has the following effects.
  • the stability of the composition from the viewpoint of charge balance is improved.
  • long-term maintainability is improved.
  • the uniformity of the composition from the inside to the surface is improved.
  • the production of by-products during synthesis is suppressed.
  • it can provide high catalytic activity for oxygen reduction and / or oxygen evolution.
  • this catalyst is used as a catalyst for oxygen reduction and / or oxygen evolution using an alkaline aqueous solution as an electrolyte. It is possible to simultaneously impart high catalytic activity and stability to oxygen reduction and / or oxygen evolution. As a result, the reaction overvoltage at the air electrode of the air battery, the oxygen cathode of salt electrolysis, the cathode of the alkaline fuel cell, and the anode of alkaline water electrolysis is reduced. In addition, the discharge voltage of the air primary battery becomes high. Further, the discharge voltage of the air secondary battery is high, and the charge voltage is low. In addition, the electrolytic voltage in salt electrolysis becomes low. In addition, the voltage of the alkaline fuel cell becomes high. In addition, the electrolytic voltage in alkaline water electrolysis becomes low. And these are maintained.
  • the energy density and output density of the air battery are improved by increasing the discharge voltage of the air primary battery.
  • the energy density, output density, voltage efficiency, and energy efficiency are improved by increasing the discharge voltage and decreasing the charge voltage in the air secondary battery. Also, these are maintained.
  • the electric power basic unit and electric energy basic unit of manufactured chlorine and caustic soda become smaller, and the electric power cost in manufacturing can be reduced.
  • the energy density and the output density are improved by increasing the voltage.
  • the electric power basic unit and the electric energy basic unit of the produced hydrogen become small, and the electric power cost in the production can be reduced.
  • the oxygen catalyst of the present disclosure post-processes such as those disclosed in Reference 4, such as performing acid treatment to remove by-products from the synthesis obtained after performing BRO synthesis, are performed. Not needed.
  • the oxygen cathode of salt electrolysis, the cathode of a fuel cell, or the anode of alkaline water electrolysis, the manufacturing cost of an air primary battery or an air secondary battery, and salt electrolysis are used. It is possible to further reduce the production cost of chlorine and caustic soda, the production cost of alkaline fuel cells, and the production cost of hydrogen for alkaline water electrolysis.
  • the price of sodium is 1/1000 or less as compared with bismuth and ruthenium, and the raw material cost can be significantly reduced with respect to BRO.
  • the oxygen catalyst of the present disclosure is supported on the bottom surface of titanium or titanium formed in a columnar shape, so that an electrode suitable for use in a rotating disk electrode can be provided. Further, it is possible to provide an electrode on which an oxygen catalyst is supported without using an immobilizing agent. Further, it is possible to provide an oxygen catalyst-supported electrode that serves as a reference for comparison in the development of an oxygen catalyst. Further, according to the electrodes of the present disclosure, the air of an air primary battery or an air secondary battery which has high catalytic activity and stability as described above, is low in cost, and uses an alkaline aqueous solution as an electrolyte. Any of a pole, an oxygen cathode for salt electrolysis, a cathode for an alkaline fuel cell, and an anode for alkaline water electrolysis can be provided.
  • the electrochemical measurement method of the present disclosure oxygen reduction and oxygen evolution on the conductive substrate, which have been problems in the conventional method, do not occur in the activity evaluation of the oxygen catalyst. Therefore, the recorded current is only the reaction current on the oxygen catalyst.
  • the fixing agent since no fixing agent such as resin particles or ionomer is used when fixing the oxygen catalyst on the conductive substrate, the fixing agent is used to react the oxygen reaction with hydroxide ions or oxygen molecules and the oxygen catalyst. There is no possibility that an unused oxygen catalyst will be produced by inhibiting contact with the oxygen catalyst or by coating a part of the oxygen catalyst with a resin or an ionomer.
  • the surface area and weight of the oxygen catalyst involved in the reaction which is important in the evaluation of the activity of the oxygen catalyst, cannot be accurately determined. Therefore, the Tafel gradient and the exchange current density, which are evaluation indexes of catalytic activity, can be accurately determined.
  • Example 1 An oxide used as the oxygen catalyst of Example 1 (hereinafter, may be simply referred to as an oxygen catalyst) was synthesized by the following procedure. First, tetra-n-propylammonium bromide (abbreviation; TPAB, purity 98.0%) was dissolved in distilled water in a beaker, and then added to distilled water at 75 ° C. using a hot stirrer. The concentration was about 9.0 ⁇ 10 -1 mol / L. In the following, this solution will be referred to as a TPAB solution. TPAB has the role of the above-mentioned introduction promoting / stabilizing agent.
  • TPAB tetra-n-propylammonium bromide
  • ruthenium (III) chloride-n-hydrate (Ru content 43.25%) and bismuth (III) nitrate pentahydrate (purity 99.5%) were weighed and dissolved in distilled water. bottom. The concentration of each solution was about 1.8 ⁇ 10 -1 mol / L. The solution of bismuth (III) nitrate pentahydrate was ultrasonically stirred for about 5 minutes.
  • each solution will be referred to as a Ru solution and a Bi solution.
  • a predetermined amount of TPAB solution, Ru solution, Bi solution, and distilled water was mixed at 75 ° C. to prepare a metal salt solution having a total volume of 500 mL.
  • the concentration of Ru and the concentration of Bi in this metal salt solution were both 7.44 ⁇ 10 -3 mol / L, and the concentration of TPAB was 3.72 ⁇ 10 ⁇ 2 mol / L.
  • 60 mL of a separately prepared 2 mol / L NaOH (sodium hydroxide) aqueous solution was added. After this, the mixture was stirred for 24 hours while blowing oxygen at 50 mL / min (while bubbling oxygen) at 75 ° C.
  • Example 1 After the stirring was completed, the mixture was allowed to stand for another 24 hours to obtain a precipitate. The precipitate was taken out and evaporated to dryness in an electric furnace at 105 ° C. for about 2 hours. The dry matter thus obtained was transferred to an evaporating dish and dried in an electric furnace at 120 ° C. for 3 hours. After the dried substance was crushed in a Menor mortar, it was held at 600 ° C. for 1 hour in an electric furnace and fired. The substance obtained after firing was suction-filtered using distilled water at 75 ° C., an aspirator, and a filter paper. The substance on the filter paper was recovered and dried in an electric furnace at 120 ° C. for 3 hours. In this way, the oxygen catalyst (oxide) of Example 1 was obtained.
  • TPAB has a role as an introduction promoting / stabilizing agent for sodium, but it is not preferable that TPAB is too much or too little with respect to the concentration of Ru or Bi. Too much TPAB is not preferable because it inhibits the introduction of sodium into metal hydroxides. On the other hand, if the amount is too small, the stabilization of the metal hydroxide containing sodium is not sufficient, the particle size of the obtained oxygen catalyst becomes large, and it becomes difficult to obtain an oxygen catalyst at the nano level, which is not preferable.
  • the concentration of TPAB is 5 times the concentration of Ru, but for example, when this is 1 time, TPAB is insufficient, and when it exceeds 20 times, it is excessive. In either case, the function as an introduction promoting / stabilizing agent cannot be fulfilled, which is not preferable.
  • the introduction promoting / stabilizing agent is not limited to TPAB, and other substances may be used.
  • Example 2 In the synthesis of the oxygen catalyst of Example 1, a predetermined amount of TPAB solution, Ru solution, Bi solution and distilled water was mixed at 75 ° C., and the total amount was 500 mL, and the concentration of Bi in the metal salt solution was 7.44 ⁇ 10 ⁇ .
  • the oxygen catalyst of Example 2 was obtained as the same except that the value was changed from 3 mol / L to 6.96 ⁇ 10 -3 mol / L.
  • Comparative Example 1 In the synthesis of the oxygen catalyst of Example 1, the oxide of Comparative Example 1 was obtained as the same except that the aqueous NaOH solution was changed to the aqueous solution of LiOH (lithium hydroxide).
  • Example 2 It is the same as that of Example 1 except that the following acid treatment is additionally performed on the oxygen catalyst of Example 1. 0.145 g of the oxygen catalyst of Example 1 and 12 mL of a 0.1 mol / L nitric acid solution were placed in a container, and ultrasonic stirring was performed for 30 minutes. After ultrasonic stirring, the mixture was allowed to stand for 1 hour (acid treatment). After that, the supernatant was removed, 12 mL of distilled water was added for washing, the mixture was ultrasonically stirred for 30 minutes, and then allowed to stand for 1 hour.
  • the oxygen catalysts of Examples 1 and 2 have an average value of 2 ⁇ values (2 ⁇ average value) of 14.82 ° and 30 by X-ray diffraction measurement using CuK ⁇ rays. Diffracted to .07 °, 34.88 °, 38.17 °, 45.88 °, 50.20 °, 59.65 °, 62.61 °, 73.80 °, 81.68 ° and 84.28 ° It turned out to be an oxide with a peak.
  • the 2 ⁇ average value in Table 1 a plurality of oxides were synthesized for each of Example 1 and Example 2, and the 2 ⁇ value was determined for all of them, and 2 ⁇ was determined for each of Example 1 and Example 2. The average value of the values is obtained, and the average value of these two average values is shown. That is, the 2 ⁇ average value in Table 1 is the average value of Example 1 and Example 2.
  • Both the oxygen catalyst of Example 1 and the oxygen catalyst of Example 2 have diffraction peaks of 30.07 °, 34.88 °, 50.20 ° and 59.65 ° among the above 2 ⁇ values as compared with the others. It occurs with high diffraction intensity and is characteristic of the oxygen catalyst according to the present embodiment. Theoretically, the diffraction intensity in the X-ray diffraction measurement tends to be remarkably weakened as the particle size of the object becomes smaller, especially at the nano level. Therefore, the above-mentioned characteristic 2 ⁇ value characterizes the oxygen catalyst according to the present embodiment even if the particles have a size of several tens of nanometers, as will be described later. In addition, in the result of FIG. 1, a diffraction peak indicating the presence of a by-product was not observed other than the oxygen catalyst according to the present embodiment.
  • Comparative Example 1 unlike the oxygen catalysts of Examples 1 and 2, diffraction lines (diffraction peaks) were detected at a very large number of 2 ⁇ values. ing. From this detection result, it was found that the oxide of Comparative Example 1 was a compound having a structure different from that of the oxygen catalyst according to the present embodiment. That is, it was found that when the sodium hydroxide aqueous solution in Example 1 was changed to the lithium hydroxide aqueous solution as in Comparative Example 1, the oxygen catalyst according to the present embodiment could not be obtained. It was also suggested that the oxygen catalyst according to this embodiment contains sodium in the crystal structure.
  • the oxygen catalyst of Example 1 is observed with a scanning electron microscope (abbreviated as SEM, manufactured by ZEISS, ULTRA 55), and the major axis of each particle is image-processed from the SEM image. This major axis was defined as the primary particle size of the oxygen catalyst of Example 1 and its frequency distribution was determined.
  • FIG. 4 shows an SEM image obtained by observing the particle size.
  • FIG. 5 shows the frequency distribution analysis result of the particle size obtained from such an SEM image. The frequency distribution was analyzed for at least 250 particles.
  • Example 1 From this, the oxygen catalyst of Example 1 was obtained as nanoparticles having a particle size distribution having a high frequency of 20 to 30 nm over a range of 10 to 70 nm as a whole. The same observation and particle size analysis were performed for Example 2, but the results were almost the same as those for Example 1.
  • the atomic ratio of O is given as a value for Bi as a result of RBS
  • the atomic ratio of Na is given as a value for Bi as a result of EDX
  • the atomic ratios of Bi and Ru are given by EDX and RBS, respectively. Therefore, there are two ways to determine the atomic ratio of the four elements, depending on whether the results of EDX or RBS are used for the atoms of Bi and Ru. Therefore, the atomic ratios of these two methods were calculated respectively, and the results are shown in Table 3.
  • Table 3 the atomic ratio of Bi, Ru, Na and O (atomic ratio of 4 elements), the case where the result of EDX is used for the atomic ratio of Bi and Ru is described as the case where the result of EDX and RBS is used as RBS. bottom.
  • Table 4 shows the total charge ratio, atomic ratio Na / Ru, cation atomic ratio and cation charge ratio calculated using these values.
  • the oxygen catalyst is evaluated based on the results of RBS in Tables 3 and 4 together with the results of Table 2. That is, in each of Tables 2 to 4, the oxygen catalyst is evaluated based on the atomic ratio obtained by RBS, and the EDX results in Tables 3 and 4 are treated as reference values.
  • X-ray absorption fine structure analysis For the oxygen catalyst of Example 1, the X-ray absorption fine structure (XAFS) spectrum is measured, and information on the chemical state of bismuth and ruthenium is obtained from the structure near the absorption edge (X-ray Absorption Near Edge Structure, abbreviated as XANES) in the spectrum. Obtained. The measurement was carried out using the equipment of the High Energy Accelerator Research Organization (BL12C, NW10A) and the Aichi Synchrotron Optical Center (BL1N2). As a result, it was found from the analysis result of the XANES spectrum at the L3 end of Bi that it was +3 valence, and from the analysis result of the XANES spectrum at the K end of Ru, it was +4 valence. The cation valence of Na is only +1 valence. The total charge ratio and the cation charge ratio in Table 4 are calculated by using the valence of each of the above elements and the atomic ratio of the four elements shown in Table 3.
  • the FT-EXAFS spectrum obtained from the EXAFS spectrum at the L3 end of Bi (corresponding to the radial distribution function and indicating the interatomic distance in the crystal structure) and Bi in the A 2 B 2 O 7 structure form the A site.
  • the theoretically obtained FT-EXAFS spectrum is abbreviated as the theoretical spectrum)
  • the peak intensity of the measured spectrum was smaller than that of the theoretical spectrum.
  • the reason why the peak intensity of the measured spectrum is smaller than that of the theoretical spectrum is that the actual structure is different from the crystal structure assumed in obtaining the theoretical spectrum, that is, the A 2 B 2 O 7 structure, or the atom. For example, there is a difference in the distance between them, causing distortion.
  • the peak derived from the Bi-O component in the first proximity of 1.6 to 2.2 ⁇ in the theoretical spectrum corresponds to the Bi-O component in the first proximity of 1.2 to 2.0 ⁇ in the measurement spectrum. There was a peak. As a result, it was found that in the oxygen catalyst of Example 1, Bi is located near the A site when the A 2 B 2 O 7 structure is assumed, but is located away from the center of the site.
  • the FT-EXAFS spectrum at the K-end of Na was compared with the FT-EXAFS spectrum theoretically obtained in each case assuming that Na occupies the A site or the B site in the A 2 B 2 O 7 structure. ..
  • the peak intensity of the measured spectrum was smaller for both the theoretical spectrum occupied by the A site and the theoretical spectrum occupied by the B site.
  • a peak (1) was observed in the measurement spectrum at 1.2 to 2.0 ⁇
  • a peak (2) was also observed at 2.0 to 2.8 ⁇ on the longer distance side.
  • the peak derived from the Na—O component in the first vicinity is 1.6 to 2.6 ⁇ , which correlates with the peak (2), and the theoretical spectrum of B site occupancy shows.
  • the peak derived from the Na—O component in the first vicinity was 0.7 to 2.1 ⁇ , and a correlation with the peak (1) was observed.
  • Na exists at a position close to the A site or a position close to the B site when the A 2 B 2 O 7 structure is assumed.
  • the vicinity of the A site is closer than that of the B site. It is highly possible that many are located.
  • the oxygen catalyst according to the present embodiment does not have a pyrochlore structure like BRO but has a structure similar to pyrochlore, but sodium is arranged near the A site or the B site in the pyrochlore. , It became clear that the structure is different from that of BRO. Furthermore, as a result of performing the same analysis as above for the oxygen catalyst of Example 2, the results showing the same tendency as that of Example 1 in terms of valence and interatomic distance were obtained.
  • An electrode in which the oxygen catalysts of Examples 1 and 2 and the oxide of Comparative Example 1 were supported on a titanium disk as a conductive material was produced by the following method. First, the oxygen catalyst or oxide was pulverized in a mortar. Then, using distilled water as a dispersion medium, crushed powder was added into the sample bottle so as to have a concentration of 3.77 g / L, and ultrasonic dispersion was performed for 2 hours with an ultrasonic generator to obtain a suspension. As shown in FIG. 6, a titanium disc 10 formed in a columnar shape (diameter d is 4.0 mm, height h is 4.0 mm, hereinafter referred to as titanium disc 10) is placed in acetone and ultrasonically.
  • the above-mentioned electrode was attached to a rotary electrode device, and this was used as a working electrode.
  • This working electrode and a platinum plate (area: 25 cm 2 ) were immersed in a 0.1 mol / L potassium hydroxide aqueous solution in the same container.
  • the pH of the aqueous potassium hydroxide solution was 13 or higher.
  • a commercially available mercury / mercury oxide electrode immersed in a 0.1 mol / L potassium hydroxide aqueous solution was prepared.
  • These two potassium hydroxide aqueous solutions were connected by a liquid junction also filled with a 0.1 mol / L potassium hydroxide aqueous solution.
  • the temperature of the aqueous solution was adjusted to 25 ° C., and electrochemical measurement was performed.
  • the measurement was performed by linear sweep voltammetry using a commercially available electrochemical measuring device and electrochemical software.
  • Linear sweep voltammetry is a method of measuring the current flowing through the working electrode while changing the potential of the working electrode at a constant scanning speed.
  • the current flowing during this measurement is the current of the reaction that occurs in the oxygen catalyst carried on the electrode. That is, since the reduction of oxygen and the generation of oxygen do not occur in a wide potential range only with the titanium disk, the reaction current generated only with the oxide layer C can be measured according to the above measurement method.
  • the oxygen reduction current was measured as follows. First, nitrogen was aerated at a flow rate of 30 mL / min for 2 hours or more in an aqueous solution in which the working electrode was immersed to remove dissolved oxygen, and then measurement was performed while aerating nitrogen. After that, oxygen was aerated at the same flow rate for 2 hours or more, and the measurement was performed again while continuing the aeration. After that, the value obtained by subtracting the current measured while aerating nitrogen from the current measured while aerating oxygen was taken as the reduction current of oxygen. Further, the value obtained by dividing this oxygen reduction current by the surface area of the titanium disk was taken as the oxygen reduction current density.
  • the results showing the relationship between the potential of the working electrode and the oxygen reduction current density were obtained and used in the preparation of the Tafel plot described later.
  • the working electrode was rotated at 1600 rpm (min -1 ) and used.
  • the titanium disk 10 is attached to the rotating disk electrode device with the surface (one side 11) to which the oxygen catalyst fixed is facing downward (an example of the rotating disk electrode), and the oxygen catalyst is immersed in the electrolytic solution. This was rotated at a constant speed.
  • Such a measurement is called a rotating disk electrode method or an RDE (Rotating Disk Electrode) method.
  • the scanning speed which means the amount of change in potential per unit time, was set to 1 mV / s.
  • oxygen evolution current was measured.
  • nitrogen and oxygen were not aerated, and the measurement was performed under the condition of opening to the atmosphere.
  • Oxygen evolution is a reaction in which oxygen is generated from hydroxide ions, so it is not related to the aeration of nitrogen or oxygen.
  • the oxygen evolution current was also measured by linear sweep voltammetry at a scanning speed of 1 mV / s while rotating at 1600 rpm in the same manner as the oxygen reduction current.
  • Oxygen is not affected by the difference in the amount of oxygen catalyst carried on the linear sweep voltamogram (results showing the relationship between the potential and current of the working electrode obtained by linear sweep voltammetry) obtained by the above method.
  • the value obtained by dividing the current value (A) at the time of reduction or oxygen generation by the catalyst weight (g) was used as the specific activity.
  • the unit of specific activity is A / g.
  • the amount of the oxygen catalyst supported was 35 ⁇ g to 43 ⁇ g.
  • the results of the electrode potential and the specific activity for oxygen evolution thus prepared are shown in FIG.
  • the results of the electrode potential and specific activity with respect to oxygen reduction are shown in FIG.
  • the short broken line, the solid line, and the long broken line in FIGS. 7 and 8 are Example 1, Example 2, and Comparative Example 1, respectively.
  • Example 1 Comparing the specific activities at an electrode potential of 0.6 V from the results shown in FIG. 7, Example 1 was 14.5 times and Example 2 was 29.0 times that of Comparative Example 1, and the catalyst was 10 times or more. It turned out to be highly active. Similarly, when comparing the specific activities at an electrode potential of ⁇ 0.1 V from the results of FIG. 8, Example 1 is 6.6 times and Example 2 is 6.1 times that of Comparative Example 1. It was found that the catalytic activity was more than 6 times higher even with oxygen reduction.
  • the oxygen catalyst according to the present embodiment has high catalytic activity for both oxygen evolution and oxygen reduction.
  • Tafel gradient From the above-mentioned linear sweep voltammogram, according to the conventional method, the common logarithm of the current density of oxygen reduction or oxygen evolution is arranged on the horizontal axis and the potential is arranged on the vertical axis (hereinafter, the result of such arrangement is called Tafel plot). , The inclination of the straight part in the Tafel plot, that is, the Tafel gradient was obtained.
  • the Tafel gradient is the amount of change in potential required for a 10-fold increase in current in response to various electrochemical reactions such as oxygen reduction and oxygen evolution, and is usually V / dec (dec is 10-fold). It is expressed in units of (abbreviation of decrease) which means.
  • the Tafel gradient has a positive value in the oxidation reaction and a negative value in the reduction reaction, but in either case, the smaller the absolute value, the higher the catalytic activity.
  • the magnitude of the Tafel gradient shall be described with respect to its absolute value.
  • the reactions of oxygen evolution and oxygen reduction are known as reactions that are unlikely to occur because of the large Tafel gradient among electrochemical reactions.
  • platinum which is known to have high catalytic activity, has an absolute value of Tafel gradient of 60 mV / dec or more for both oxygen evolution and oxygen reduction.
  • Very few catalysts exhibit a Tafel gradient smaller than platinum.
  • the Tafel gradient in the oxygen catalyst of Example 1 was 44 mV / dec for oxygen evolution and ⁇ 43 mV / dec for oxygen reduction
  • the Tafel gradient in the oxygen catalyst of Example 2 was 39 mV / dec for oxygen evolution and oxygen reduction.
  • the Tafel gradients of the oxygen catalysts of Examples 1 and 2 were reduced by 25% or more in both oxygen evolution and oxygen reduction with respect to the Tafel gradient of platinum, indicating that the catalytic activity was extremely high.
  • the oxygen catalyst and electrodes according to the present embodiment include the air electrode of an air primary cell or an air secondary battery, the oxygen cathode of salt electrolysis, the cathode of an alkaline fuel cell, the anode of alkaline water electrolysis, and oxygen using an alkaline aqueous solution as an electrolyte. It can be used as a catalyst for oxygen evolution, oxygen evolution, or both reactions in batteries, electrolyzers, and sensors that utilize reduction, oxygen evolution, or both reactions. Further, the electrodes according to the present embodiment are also used as reference samples for catalytic activity evaluation used in electrochemical measurement and electrochemical analysis, electrodes as reference samples for comparison, and detection electrodes used in electrochemical analysis and electrochemical sensors. be able to.
  • Electrode C Oxide layer (oxygen catalyst, oxide)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

アルカリ水溶液を電解質とする場合において、触媒活性と組成安定性に優れた酸素触媒の提供、当該酸素触媒を用いた高い活性と安定性を有する電極、並びに酸素触媒のみの触媒活性を評価できる電気化学測定法を提供する。酸素触媒は、CuKα線を用いたX線回折測定における2θ=30.07°±1.00°、34.88°±1.00°、50.20°±1.00°、59.65°±1.00°の位置にピークを有し、ビスマス、ルテニウム、ナトリウム、酸素を構成元素とする酸化物で、ビスマスに対する酸素の原子比O/Biとルテニウムに対する酸素の原子比O/Ruがいずれも3.5よりも大きい。

Description

酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法
 本開示は、アルカリ水溶液を電解質とし、酸素を還元して水酸化物イオンを生じる還元反応、及び/又は、水酸化物イオンを酸化して酸素を生じる酸化反応、に用いる酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法に関する。
 酸素触媒とは酸素の還元、酸素の発生、又はその両方に対して触媒作用を有するものである。例えば、水酸化リチウム水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液などのようなアルカリ性の水溶液(以下、アルカリ水溶液と略す)を電解質とする空気電池では、酸素の還元でアルカリ水溶液中に水酸化物イオン(OH-)が生じ、酸素の発生ではアルカリ水溶液中の水酸化物イオンが酸化されるという以下のような反応が知られている。
  還元:O2+2H2O+4e-→4OH-・・・(1)
  酸化:4OH-→O2+2H2O+4e-・・・(2)
 空気電池でこれらの反応が起こるのは正極である。空気一次電池では放電の際に上記式(1)の還元反応が起こる。空気二次電池では放電では空気一次電池と同じで上記式(1)が起こり、充電では上記式(2)の酸化反応が起こる。このように放電には空気中の酸素を利用できることから空気電池の呼称が使われ、同じ理由で空気電池の正極は空気極とも呼ばれる。ただし、上記式(1)の反応で利用する酸素は必ずしも空気中の酸素である必要はなく、例えば高純度の酸素でもよい。
 また、上記のようなアルカリ水溶液を用いる空気電池の空気極の酸素還元反応は、電気分解で苛性ソーダと塩素を製造する食塩電解の酸素陰極における酸素還元反応と同じであり、これらには同じ酸素触媒を用いることができる。また、アルカリ形燃料電池の陰極でも発電時の反応は同じ酸素の還元であり、空気電池の空気極、食塩電解の酸素陰極及びアルカリ形燃料電池の陰極には同じ酸素触媒を利用することができる。さらに、空気二次電池の空気極における充電反応(上記式(2))は、アルカリ水電解における陽極の酸素発生反応と同じである。よって、これらには同じ酸素触媒を利用することができる。
 上記に示した空気電池、食塩電解、アルカリ形燃料電池、アルカリ水電解は、いずれもアルカリ水溶液を電解質としており、その作動温度は室温から90℃付近である。すなわち、アルカリ水溶液を電解質とする酸素反応は、このような温度範囲における酸素と水酸化物イオンの間の酸化反応や還元反応であり、本開示の酸素触媒とはこれらの反応に対する触媒である。なお、酸素の還元や酸素を発生させる電気化学反応は他にもある。例えば、固体酸化物形燃料電池(略称SOFC)の陰極での反応は、酸素から酸化物イオン(O2-)への還元反応である。また固体酸化物形水電解装置(略称SOEC)の陽極での反応は、酸化物イオンから酸素への酸化反応である。これらはいずれも600℃から1000℃付近の高温での反応である。酸素反応はこのように温度によって反応機構が異なるため、それに適した酸素触媒は当然異なり、このように反応機構が違うと触媒の作用機構や効果も大きく異なる。
 また、酸素触媒の活性だけでなく、その安定性も温度や反応機構によって大きく変化する。例えば、ある触媒について600℃以上のような高温で高い活性を有することが判っても、その触媒が100℃以下の温度で同様に高い触媒活性を持つとは限らない。このようなことを類推、推察することは当業者においても極めて困難である。また、電気化学反応の触媒は、より低い温度、例えば室温付近などの低い温度のほうが、高い温度に対して高い活性を発現することは難しく、使用する温度が低いほど高い活性を有する触媒を見出すことは難しい。
 ここで、アルカリ水溶液を電解質とする空気一次電池として、負極に亜鉛を用いる亜鉛空気一次電池が補聴器用電源として実用化されている。亜鉛以外にもマグネシウム、カルシウム、アルミニウム、鉄などの金属を負極に用いる類似の空気一次電池が開発され、アルカリ水溶液を電解質として負極にマグネシウムを用いる空気一次電池は非常用電源として商品化されている。一方、アルカリ水溶液を電解質とする空気二次電池については、負極や電解液を機械式(物理的)に交換して放電機能を再生する機械式充電型の亜鉛空気二次電池を除いて実用化されたものはまだない。そこで、機械式充電型ではない亜鉛空気二次電池や、負極に水素吸蔵合金を用いる水素/空気二次電池が開発されている。これらの二次電池では負極の反応は異なるが、正極(空気極)の反応は同じでいずれも上述の式(1)と式(2)の反応式で示される。なお、本発明者は水素/空気二次電池を特許文献1に開示している。
 上記のような空気電池の空気極に限らず、食塩電解の酸素陰極、アルカリ形燃料電池の陰極、アルカリ水電解の陽極における酸素触媒にこれまで利用又は検討された材料には、白金、銀、金などの貴金属又はその合金、白金族金属やその他の遷移金属元素及びそれを含む合金、種々の酸化物や硫化物、ドープ又は非ドープの炭素系材料(黒鉛、非晶質炭素、グラッシーカーボン、カーボンナノチューブ、カーボンナノファイバー、フラーレンなど種々の結晶構造、形態の炭素が含まれる)、種々の窒化物や炭化物や金属有機化合物など、数多くある。その中でも、酸化物ではパイロクロア、ペロブスカイト、スピネルと呼ばれる結晶構造の酸化物が酸素触媒として知られており、例えば特許文献1~4に開示されている。
 具体的には、特許文献1では、アルカリ性水溶液を電解質に用いる空気二次電池の正極であって、ニッケルよりも密度の小さいコア材料と、当該コア材料を被覆するニッケル及び/又はニッケル合金からなる被覆層とを含むニッケル被覆材料を備えたものが記載されており、このニッケル被覆材料と混合された、ビスマスイリジウム酸化物及び/又はビスマスルテニウム酸化物からなる触媒が開示されている。
 特許文献2には、LaxSr3-xFe2-yCoy7で示される原子比の金属空気電池の正極触媒が開示されている。この触媒では、Sr3Fe27のSrサイトの少なくとも一部がLaで置換されているか、Feサイトの少なくとも一部がCoで置換されていることにより、優れたアルカリ耐性や触媒活性を示すと記載されている。
 特許文献3には、負極と、空気極及び前記負極の間に介在する電解質層と、電極触媒とを有する空気電池が開示され、電極触媒は少なくとも酸素還元反応に対して活性な酸化物(酸化物電極触媒)を含んでおり、好ましい酸化物電極触媒として、鉄、コバルト、ニッケル、チタン、マンガン及び銅から選ばれる少なくとも1種の金属元素を含み、且つ、ペロブスカイト構造又はスピネル構造を有するものが挙げられている。
 特許文献4には、空気二次電池の空気極に用いる空気二次電池用触媒の製造方法として、パイロクロア型酸化物の前駆体を調製する前駆体調製工程と、当該前駆体を焼成し、パイロクロア型酸化物を形成する焼成工程と、当該焼成工程により得られたパイロクロア型酸化物を酸性水溶液に浸漬させ酸処理する酸処理工程と、を含んでいることが開示され、このようなパイロクロア型酸化物として、酸素欠損型のビスマスルテニウム酸化物が挙げられている。
ここでパイロクロア構造をとる酸化物の組成については、結晶構造中のAサイト元素(A)、Bサイト元素(B)、酸素(O)に対して、一般的な原子比でA227となる。ただし、実際の酸化物で分析結果から得られた原子比は、必ずしもこのような整数になるわけではないことも多数報告されている。
 例えば、Aサイトがビスマス(Bi)、Bサイトがルテニウム(Ru)であるパイロクロア構造のビスマスルテニウム酸化物(以下、BROと略す)には、
Bi2Ru27
Bi2Ru26.9
Bi2Ru26.92
Bi1.87Ru26.903
Bi1.88Ru26.906
Bi1.9Ru26.922
Bi1.9Ru26.928
Bi1.9Ru26.901
で示される原子比のBROが、国際回析データセンターのデータベースに登録されている。このようにBROは合成方法や合成条件によって原子比が異なることが知られており、組成が変化しやすい化合物である。
 一方、アルカリ水溶液を電解質とする酸素触媒には、強アルカリ性の環境下における化学的及び電気化学的な安定性と、酸素還元及び/又は酸素発生に対する高い触媒活性が同時に求められる。すなわち、強アルカリ性という腐食性の強い環境のもとで生じる強酸化性雰囲気を伴う酸素反応に対して、酸素触媒は自身の組成を一定に保ちながら、その表面において酸素触媒自身の酸素ではなく、大気中の酸素を還元し、及び/又は、電解質中の水酸化物イオンから酸素を発生させる必要がある。また、非水電解質を用いる酸素反応の場合には、酸素触媒は自身の組成を一定に保ちながら、O2 2-から酸素を発生させる必要がある。BROのように組成が変化しやすい化合物の場合、わずかな組成(原子比)の違いで高い触媒活性を発揮できる可能性がある一方で、酸素反応によって触媒自身の組成が変化し、触媒活性が劣化する可能性もあり、初期の触媒活性とその継続性が両立しない例が多くある。
 さらに、特許文献4では、酸素欠損型のBROを合成する際に生じる副生成物によって、空気二次電池の放電容量が比較的少ないサイクル数で低下するといった課題が指摘されている。さらに、この課題に対して合成して得られたBROを硝酸のような酸性溶液中に一定時間浸漬してからイオン交換水で洗浄し、乾燥すること(この操作は「酸処理」と記載されている)によって、Ruに対するBiの原子比が低下するとともに、このような酸処理をしないBROに対して充放電サイクルに対する放電容量の維持率が向上することなどが開示されている。
 ここで、パイロクロア構造の酸化物については、前述した一般的な原子比A227に対して、酸素の原子比が7より小さい場合は酸素欠損型、7より大きい場合は酸素過剰型と称される。
特開2016-152068号公報 特開2018-149518号公報 特開2015-046403号公報 特開2019-179592号公報
 BROはAサイトがビスマス(Bi)、Bサイトがルテニウム(Ru)で、これら2つの金属元素と酸素(O)の3元素でパイロクロア構造を形成しており、前述のように、アルカリ水溶液のような水溶液又は非水電解質のいずれの電解質を用いる酸素反応に対しても、酸素触媒として、酸素還元や酸素発生の両方に高い触媒活性が期待され、これらの両方が要求される空気二次電池の空気極の酸素触媒としても開発されてきた。しかし、BROは、その合成方法や合成条件によってBiとRuとOの原子比が変わる、すなわち組成が変化しやすい化合物であり、また合成時に生じる副生成物が反応を起こすことで、空気二次電池のサイクル特性を劣化させる。BROの組成不安定化の一つの要因は、Aサイト元素のBiの溶解である。また、サイクル特性の劣化には、BRO合成時におけるBiを含む副生成物の生成が要因となる。これに対して、特許文献4では合成したBROを酸処理する方法が開示されたが、一旦合成した後にさらに処理をするという2段階であり、酸素触媒を得る工程が増えるとともに、この処理でBROの組成や粒径(粒子径)が変化する。
 さらに、ナノ粒子よりも大きな粒子サイズでは、粒子の内部(バルク)と表面との物理化学的性質が異なっているが、ナノ粒子の場合にはこのような区別がつきにくくなり、バルクの安定性が表面では得られにくくなるが、酸素反応は酸素触媒の表面で生じることから、表面からバルクまでの組成安定性と均一性が酸素触媒のナノ粒子には求められるのに対して、BROを含めてこのような要求を満たす酸素触媒がない。
 また、上記の理由から、BROを酸素触媒に用いる電極では、BROの問題のため、電極で生じる酸素反応に対して高い触媒活性や安定性を維持することが難しいという問題があった。
 一方、酸素触媒の評価は、一般的に酸素触媒をディスク状の導電性基体表面に固定し、酸素触媒が固定された面を下向きにして回転円盤電極装置に取り付け、酸素触媒が電解液中に浸漬された状態で、回転円盤電極を一定の速度で回転させながら、サイクリックボルタメトリーやリニアスイープボルタメトリーと呼ばれる電気化学測定法により電位と電流の関係を記録して行われる。この際、導電性基体の材料には炭素がよく使われるが、炭素はそれ自体の表面でも酸素還元や酸素発生が起こるため、記録される電流には酸素触媒上での反応による電流と炭素上での反応による電流が重畳され、これらを区別することは困難で、炭素を導電性基体としてその表面に触媒が担持された電極では、酸素触媒単独の活性を評価できないという問題がある。また、酸素触媒が担持された導電性基体は、酸素触媒が担持されている面が電解液中で下に向いているため酸素触媒が脱落しやすいことから、これを防ぐために酸素触媒を導電性基体上に固定する際に樹脂粒子やイオノマーなどの固定化剤と一緒に塗布して固定することが一般的に行われている。しかし、このような樹脂やイオノマーによって酸素反応の反応物質である水酸化物イオンや酸素分子と酸素触媒との接触が阻害されたり、酸素触媒の一部が樹脂やイオノマーで被覆されたりすることで、利用されない酸素触媒が生じるために、酸素触媒の活性評価において重要である、実際に反応に関与している酸素触媒の重量や表面積を正確に決めることができないという問題がある。
 さらに、上記のような触媒活性評価における電極の課題から、酸素触媒のみの活性を評価できる電気化学測定法がないという問題がある。
 すなわち、酸素触媒として酸素反応に対する活性を維持するためには、より組成安定性がよい酸素触媒が望まれる。また、組成安定性の低下や長期維持性の低下のような従来の酸素触媒の問題を解決するためには、酸化物全体での陽イオンと陰イオンの電荷のバランスをとることが必要である。さらに、同じ組成でも単位重量当たりの触媒活性がより高くなるような小粒径化、特にナノ粒子レベルの小粒径化が望まれる。
 また、酸素触媒を用いる電極であって、酸素反応に対する高い活性と安定性を有する電極の提供が望まれる。
 また、酸素触媒のみの触媒活性を評価できる電気化学測定法の提供が望まれる。
 本発明は、かかる実状に鑑みて為されたものであって、その目的は、アルカリ水溶液を電解質とする系において、触媒活性と組成安定性に優れた酸素触媒の提供、当該酸素触媒を用いた高い活性と安定性を有する電極、並びに酸素触媒のみの触媒活性を評価できる電気化学測定法を提供することにある。
 上記の課題を解決するために、本開示の酸素触媒は以下の構成を有している。本開示の酸素触媒は、アルカリ水溶液を電解質とする酸素触媒であって、CuKα線を用いたX線回折測定における2θ=30.07°±1.00°、34.88°±1.00°、50.20°±1.00°及び59.65°±1.00°の位置にピークを有し、ビスマス、ルテニウム、ナトリウム及び酸素を構成元素とする酸化物で、ビスマスに対する酸素の原子比O/Biとルテニウムに対する酸素の原子比O/Ruがいずれも3.5よりも大きいことを特徴とする。なお、X線回折測定における2θとは、回折したX線の回折角のことであり、以下、この回折角を単に2θと記載する。また、本明細書でいう「ビスマス、ルテニウム、ナトリウム及び酸素を構成元素とする酸化物」とは、本開示の酸素触媒を製造する際に不可避的に発生する不純物を排除しない。
 この構成により、パイロクロア構造のBROとは異なり、ナトリウムが構成元素として含まれることで、まず電荷のバランスからみた組成の安定性が高くなる。同時にナノ粒子において内部から表面までの組成の均一性が良くなる。また、合成時における副生成物が抑制される。また、組成安定性が向上することで、BROとは異なり、本開示の酸素触媒ではBiが溶解して生じるような組成変化は抑制される。
 本開示で酸素触媒として利用される酸化物(以下、単に酸素触媒と記載する)は、後述する実施例にも示す通り、ビスマス、ルテニウムの各金属塩、例えば、金属硝酸塩や金属塩化物などを溶解した水溶液を調製し、これらを混合した溶液に水酸化ナトリウム水溶液を添加して撹拌混合した溶液中で金属水酸化物を沈殿させ、沈殿物を所定の温度で焼成することで得ることができる。この際、金属水酸化物中には、ビスマスイオンやルテニウムイオンとともにナトリウムイオンが含まれるように、ナトリウムイオンの金属水酸化物への導入を促進し、かつその状態の金属水酸化物の沈殿をナノサイズで安定化させる作用を有する、後述するような導入促進・安定化剤が上記の混合溶液には含まれている。このような方法で得られる酸素触媒は、CuKα線を用いるX線回折において2θ値が14.82°、30.07°、34.88°、38.17°、45.88°、50.20°、59.65°、62.61°、73.80°、81.68°及び84.28°に回折ピークを持つ。ただし、いずれの2θ値についても±1.00°程度の範囲を有する。これらの中でも、30.07°、34.88°、50.20°及び59.65°の回折ピークが他に比べて高い回折強度で生じる。すなわち、本開示の酸素触媒は上記に示したX線回折パターンの結晶構造を持ち、ビスマス、ルテニウム、ナトリウム及び酸素から構成される酸化物を用いたものである。
 本開示の酸素触媒は、前述のようにまず溶液中で金属水酸化物を析出・沈殿させ、その沈殿物を焼成する方法で得ることができるが、このような溶液プロセスの場合は、金属塩溶液にナトリウム塩溶液を加えて溶液の水素イオン指数(以下、pHと記載する)をアルカリ性とする。その際に金属塩溶液には金属水酸化物へのナトリウムの導入促進と安定化に作用する成分が含まれていることが必要である。すなわち、溶液中にビスマスイオンとルテニウムイオンとナトリウムイオンが存在し、その溶液のpHを単にアルカリ性にするだけでは、本開示の酸素触媒のようなビスマスとルテニウムとナトリウムから構成される金属酸化物を得ることは難しい。例えば、上記のようなナトリウムの導入促進・安定化剤がない場合には、BROを得ることはできても、構成元素としてビスマス、ルテニウム、酸素とともにナトリウムを含み、かつパイロクロア構造とは異なる構造を有する本開示の酸素触媒を得ることは困難である。
 仮に、ナトリウムの導入促進・安定化剤がない条件で得られた物質が、一般的に結晶構造解析に用いられるX線回折法による回折ピークの結果からBROであり、また一般的に元素の種類や組成の分析に用いられるエネルギー分散型X線分析法による分析結果から、ビスマス、ルテニウムとともに、ナトリウムを示す結果が得られたとしても、これはBROにナトリウムが含まれていることを意味しない。その理由は、ナトリウムの導入促進・安定化剤がない条件の場合、BiNaO3などのナトリウムを含む酸化物が副生成物として生じるからである。X線回折法による測定では、このような副生成物はその量が相対的に少ないと回折ピークが見えなくなり、一方でエネルギー分散型X線分析法ではX線回折法よりも高い感度で元素の検出が可能であり、X線回折法ではピークを生じないような少量の場合でも、対象物中に存在する元素がすべて検出されることから、BROとBiNaO3が混在する場合は、ビスマス、ルテニウムとともにナトリウムが検出される結果が得られる。しかし、これらは別の化合物であって一つの化合物ではない。したがって、ある一つの酸化物の結晶構造中にどのような元素が含まれているかは、より微細な領域で結晶構造を解析して初めて明らかになるものであり、例えば、後述するようなX線吸収微細構造分析(XAFS)によって明確となる。なお、ナトリウムの導入促進・安定化剤がある条件においても、金属塩溶液の混合・撹拌が不十分であったり、金属塩溶液量が多く混合・撹拌の時間がその溶液量に対して短い場合には、上述した本開示の酸素触媒のようなX線回折パターンの結晶構造を持ち、ビスマス、ルテニウム、ナトリウム及び酸素から構成される酸化物が得られないこともありえる。
 なお、金属水酸化物を焼成する際の温度は、金属水酸化物の沈殿を生じさせる際の溶液に用いられている溶媒の種類、使用する金属塩の種類及びその溶液中の濃度、沈殿した金属水酸化物の乾燥方法、及びその条件など、焼成時の温度以外の諸条件によって変化する。例えば上述のような水溶液を用いる方法では、焼成する温度が300℃よりも低い場合は、水酸化物の状態から酸化物への構造変化が十分に起きにくいため一般的に好ましくない。焼成する温度が800℃を超える場合は、酸化物が分解する可能性があるため好ましくない。また、後述の実施例のような場合、450℃~650℃の範囲が好適で、さらに550℃~600℃がより好適である。ただし、本開示の酸素触媒の製造法は上記の方法だけに限るものではなく、例えばゾルゲル法や、水熱合成法と呼ばれる方法や、ビスマス酸化物とルテニウム酸化物と酸化ナトリウムをあらかじめ調製してこれに機械的、熱的、電気的なエネルギーを加えて、固相反応や半固相反応により酸化物とする方法など、様々な製造方法を用いることができる。
 ここで、上記の方法におけるナトリウム塩溶液には、水酸化ナトリウム水溶液が代表例として挙げられるが、これに限定されるものではない。ただし、金属水酸化物の沈殿が生じるようにpHをアルカリ性にできることが必要であり、かつナトリウム塩の陰イオンが金属水酸化物へのナトリウムイオンの導入と安定化を阻害しないことが望ましい。
 本開示の酸素触媒は前述したX線回折パターンで示される結晶構造を有するが、後述するように、その結晶構造中のビスマスの位置は、A227で示される理論的なパイロクロア構造を参照して説明すると、Aサイト位置の近傍に相当し、ルテニウムの位置は同構造のBサイト位置にほぼ相当し、ナトリウムの位置はAサイト近傍又はBサイト近傍の位置に相当するものである。本開示の触媒はパイロクロア構造に類似しているが、別の構造であるため、ここではA227で示されるパイロクロア構造を使って「サイト近傍」の意味を説明すると、これはAサイトやBサイトのサイト中心からは、外れた位置であることを意味する。なお、ナトリウムの位置はAサイト近傍又はBサイト近傍と記しているが、後述するように、Aサイト近傍により存在する割合が高い。また、結晶構造中において、ナトリウムはビスマスやルテニウムとともに陽イオンで、後述するように、それぞれ+1価、+3価、+4価であり、陰イオンである酸化物イオン(-2価)と、陽イオンであるビスマスイオン、ルテニウムイオン、ナトリウムイオンが、酸化物全体で電荷のバランスがとれていることで、BROに比べて組成安定性、長期維持性が向上し、かつナノ粒子での均一性も向上すると考えられる。ここで、金属酸化物において「電荷のバランスがとれている」とは、一般的に陽イオンの電荷総数と陰イオンの電荷総数が同じになることであり、これが大きく異なると、上記のような組成安定性、長期維持性、もしくは均一性が低下する要因となる。すなわち、本開示の酸素触媒は、ビスマスイオン、ルテニウムイオン、酸化物イオンとともにナトリウムイオンを含み、かつ、電荷のバランスがよいことが、BROとは大きく異なる性質を生むことに寄与していると考えられる。
 本開示の酸素触媒における電荷のバランスについてさらに説明する。まず、前述のように、パイロクロア構造の酸化物は一般的な原子比A227で表されるが、ここでAサイト元素に対する酸素の原子比をO/Aとし、Bサイト元素に対する酸素の原子比をO/Bとすると、これらの原子比はいずれも3.5である。一方、前述の酸素欠損型のBROについて同様に考えれば、Ruに対する酸素の原子比O/Ruは3.5よりも小さくなる。
 しかし、本開示の酸素触媒では原子比O/Biと原子比O/Ruはいずれも3.5よりも大きい。また、本開示の酸素触媒は、この原子比O/Biと原子比O/Ruがいずれも4以下であることが好ましい。これは単純に見れば、一般的なパイロクロア構造の組成比に対して、陰イオンである酸化物イオン(イオン式はO2-)が多く、電荷のバランスとしては陽イオンが相対的に少ないこととなるが、本開示の酸素触媒はビスマスとルテニウムだけでなく、ナトリウムを含む。すなわち、これら3つの金属イオンと酸化物イオンとの間で電荷のバランスをとっていることになる。後述する実施例で示すように、これら3つの金属の陽イオンに対する電荷総数と、唯一の陰イオンである酸化物イオンの電荷総数はほぼ同じである。すなわち、(陰イオンの電荷総数)/(陽イオンの電荷総数)を総電荷比として定義すると、本開示の酸素触媒は、総電荷比が0.9以上1.1以下である。ここで、本開示の酸素触媒を構成する4元素でのビスマス、ルテニウム、ナトリウム、酸素の原子比をそれぞれK、L、M、Nとするとき、陰イオンの電荷総数は2N、陽イオンの電荷総数は(3K+4L+M)であらわされる値であり、総電荷比は2N/(3K+4L+M)であらわされる。
 さらに、本開示の酸素触媒においてビスマスイオンやルテニウムイオンとともに、ナトリウムイオンが結晶構造中に含まれることが、BROに比べて組成安定性、長期維持性が向上し、かつナノ粒子での均一性も向上する作用を有する理由を、陽イオンの配位数とイオン半径から説明する。
 BROのようなパイロクロア構造では、Aサイトの陽イオンの配位数は8である。ここで陽イオンの配位数が8であるとは、その陽イオンが最近接の8個の陰イオンで囲まれていることを意味する。また、Bサイトの陽イオンの配位数は6である。一般に固体結晶中のイオンの半径は、元素の種類、酸化数、配位数で異なり、そのデータは様々な著書、データブックなどで公開されている。一例をあげれば、ビスマスイオンは同じ+3価であっても配位数が5ではイオン半径は0.96Å、配位数6では1.03Å、配位数8では1.17Åである。BRO中のビスマスイオンは+3価で、Aサイトであるから上記の通り配位数は8であり、そのイオン半径は1.17Åである。また、ルテニウムイオンは+4価で、Bサイトであるため配位数は6であり、そのイオン半径は0.62Åである。一方、ナトリウムイオンの価数は+1価のみであるが、そのイオン半径は配位数4で0.99Å、配位数5で1.00Å、配位数6で1.02Å、配位数7で1.12Å、配位数8で1.18Å、配位数9で1.24Å、配位数12で1.39Åであり、4配位から12配位までの多様な配位数を取ることが可能である。ここでナトリウムイオンの配位数8でのイオン半径(1.18Å)はビスマスイオンの配位数8でのイオン半径(1.17Å)とその差が1%以下である。したがって、ナトリウムイオンは、イオン半径のみを考えれば、BROにおけるビスマスイオンの位置に入ることが可能と予測されるが、ナトリウムイオンは+1価、ビスマスイオンは+3価であるので、パイロクロア構造を維持したまま単純にビスマスイオンの一部をナトリウムイオンで置き換えたような構造とすることは困難であると推測される。すなわち、本開示の酸素触媒は、BROにおけるビスマスイオンの一部をナトリウムイオンに単純に置き換えたパイロクロア構造ではなく、パイロクロア構造に類似ではあるが、別の構造である。このようにナトリウムイオンはパイロクロアに類似する構造の形成において、構造的に、また電荷のバランス的に、得られる酸化物の安定化に寄与している。
 さらに、本開示の酸素触媒は、構成元素がビスマスとルテニウムと酸素に加えて、ナトリウムであることが重要である。ナトリウムと同じアルカリ金属元素に分類される他の元素を用いた場合には、本開示の酸素触媒のようなパイロクロア構造に類似する構造の酸素触媒を得ることは難しい。このことは後述する比較例において示すが、他のアルカリ金属元素では難しい理由は、イオン半径からも理解できる。例えば、アルカリ金属元素であるリチウムは+1価で配位数8でのイオン半径は0.92Å、カリウムは+1価で配位数8でのイオン半径が1.51Å、ルビジウムは+1価で配位数8でのイオン半径が1.61Å、セシウムは+1価で配位数8でのイオン半径は1.74Åである。すなわち、構造的には配位数8において+3価のビスマスイオンとイオン半径が近いのはナトリウムイオンだけであり、リチウムイオンでは+3価のビスマスイオンに比べてイオン半径が20%以上も小さく、他の+1価の陽イオンでは29%以上もイオン半径が大きく異なるため、安定した結晶構造をとることが非常に難しいと推測される。
 また、本開示の酸素触媒は、ルテニウムに対するナトリウムの原子比Na/Ruが0.285±0.015であることを特徴とする。原子比Na/Ruがこの値の範囲となることで、パイロクロアに類似した結晶構造中でビスマスイオンとイオン半径の近いナトリウムイオンがともに含まれることで生じる構造ひずみを抑えることができるという作用を有する。原子比Na/Ruは好ましくは0.286±0.013であり、さらに好ましくは0.275~0.297である。
 また、本開示の酸素触媒は、ビスマスとナトリウムの合計とルテニウムとの原子比(Bi+Na)/Ru(これを陽イオン原子比とする)が1.285±0.010であることを特徴とする。これによって、上記の構造ひずみをさらに抑制することができるという作用を有する。さらに、本開示の酸素触媒は、ビスマスの電荷総数とナトリウムの電荷総数の和(3Bi+Na)とルテニウムの電荷総数4Ruの比(3Bi+Na)/4Ru(これを陽イオン電荷比とする)が0.820±0.020であることを特徴とする。これによって、陽イオンの電荷総数と陰イオンの電荷総数のバランスがより1に近づき、結晶構造全体での電荷のバランスから見た構造安定性がより向上するという作用を有する。陽イオン電荷比(3Bi+Na)/4Ruは、好ましくは0.821±0.015であり、さらに好ましくは0.810~0.833である。
 また、本開示の電極は、本開示の酸素触媒を用いることを特徴とする。また、本開示の電極は、本開示の酸素触媒がチタンに担持されていることを特徴とする。チタンは酸素の還元や酸素の発生の電流が非常に小さいため、酸素触媒での酸素の反応電流と重畳することがなく、かつ固定化剤無しに酸素触媒を担持できる。さらに本開示の電極は、円柱状に形成されたチタンの底面に本開示の酸素触媒が担持されていることを特徴とする。また、本開示は、回転円盤電極法を用いる電気化学測定法であって、本開示の酸素触媒をチタンに担持させた電極を回転円盤電極に用いることを特徴とする電気化学測定法である。
 加えて、本開示の電極は、アルカリ水溶液を電解質とする、空気一次電池や空気二次電池の空気極、食塩電解の酸素陰極、アルカリ形燃料電池の陰極、アルカリ水電解の陽極のいずれかであって、本開示の酸素触媒を用いることを特徴とする。
 本開示の酸素触媒によれば、パイロクロア構造のBROとは異なり、ナトリウムが構成元素として含まれることで以下の効果を奏する。まず電荷のバランスからみた組成の安定性が高くなる。また、長期維持性が向上する。特に、酸素触媒をナノ粒子化した場合においても、内部から表面までの組成の均一性が良くなる。さらに、合成時における副生成物の生成が抑制される。また、これらとともに酸素の還元及び/又は酸素の発生に対して高い触媒活性を提供できる。
 組成安定性、その長期維持性、組成均一性が向上し、また副生成物の生成が抑制されることから、アルカリ水溶液を電解質とする酸素還元及び/又は酸素発生に対する触媒として、この触媒を利用する電極に対して、酸素還元及び/又は酸素発生に対する高い触媒活性と安定性を同時に与えることができる。これにより、空気電池の空気極や、食塩電解の酸素陰極や、アルカリ形燃料電池の陰極や、アルカリ水電解の陽極での反応過電圧が低減される。また、空気一次電池の放電電圧は高くなる。また、空気二次電池の放電電圧は高く、充電電圧は低くなる。また、食塩電解での電解電圧は低くなる。また、アルカリ形燃料電池の電圧は高くなる。また、アルカリ水電解での電解電圧は低くなる。そして、これらが維持される。
 また、空気一次電池における放電電圧が増加することで、空気電池のエネルギー密度や出力密度が向上する。また、空気二次電池における放電電圧の増加と充電電圧の低下により、エネルギー密度、出力密度、電圧効率、及びエネルギー効率が向上する。また、これらが維持される。
 また、食塩電解における電解電圧の低下により、製造される塩素や苛性ソーダの電力原単位や電力量原単位が小さくなり、製造における電力コストを削減できる。また、アルカリ形燃料電池では電圧が高くなることで、エネルギー密度や出力密度が向上する。また、アルカリ水電解では電解電圧が低くなることで、製造される水素の電力原単位や電力量原単位が小さくなり、製造における電力コストを削減できる。
 さらに、本開示の酸素触媒によれば、BRO合成を行った後に得られた合成物から副生成物を除去するために酸処理を行うといった、参考文献4に開示されているような後工程は不要である。これにより、BRO触媒を用いる空気電池の空気極、食塩電解の酸素陰極、燃料電池の陰極、もしくはアルカリ水電解の陽極に対して、空気一次電池や空気二次電池の製造コスト、食塩電解で製造する塩素や苛性ソーダの製造コスト、アルカリ形燃料電池の製造コスト、アルカリ水電解の水素の製造コストをより低減することができる。また、ビスマスやルテニウムに比べてナトリウムの価格は1/1000以下であり、BROに対して原料コストを大幅に下げることができる。
 さらに、本開示の電極によれば、チタン又は円柱状に形成されたチタンの底面に本開示の酸素触媒が担持されていることで、回転円盤電極での使用に適した電極を提供できる。また、固定化剤を用いずに酸素触媒が担持された電極を提供できる。また、酸素触媒の開発において比較対象の基準となる酸素触媒担持電極を提供できる。さらに、本開示の電極によれば、上記に述べたような高い触媒活性と安定性があり、かつ、低コストであって、アルカリ水溶液を電解質とする、空気一次電池や空気二次電池の空気極、食塩電解の酸素陰極、アルカリ形燃料電池の陰極、アルカリ水電解の陽極のいずれかを提供できる。
 また、本開示の電気化学測定法によれば、酸素触媒の活性評価において、従来の方法で課題であった導電性基体上での酸素還元や酸素発生が起こらない。そのため、記録される電流は酸素触媒上での反応電流のみとなる。また、酸素触媒を導電性基体上に固定する際に樹脂粒子やイオノマーなどの固定化剤を一切使用しないため、固定化剤によって酸素反応の反応物質である水酸化物イオンや酸素分子と酸素触媒との接触が阻害されたり、酸素触媒の一部が樹脂やイオノマーで被覆されたりすることで、利用されない酸素触媒が生じることもない。したがって、酸素触媒の活性評価において重要な、反応に関与する酸素触媒の表面積や重量を正確に決めることができなくなるという不都合を生じない。そのため、触媒活性の評価指標であるターフェル勾配や交換電流密度を正確に決めることができる。
実施例1及び実施例2の酸素触媒のX線回折測定の結果である。 比較例1の酸化物のX線回折測定の結果である。 実施例1の酸素触媒及び比較例2の酸化物のX線回折測定の結果である。 実施例1の酸素触媒の表面形態を示すSEM画像である。 実施例1の酸素触媒の一次粒径と頻度の関係図である。 電極の構造を説明する模式図である。 実施例1、実施例2及び比較例1の電極の酸素発生の比活性と電極電位の関係図である。 実施例1、実施例2及び比較例1の電極の酸素還元の比活性と電極電位の関係図である。
 以下、本発明の実施形態を実施例により具体的に説明するが、本発明はこれらの実施形態や実施例に限定されるものではない。
(実施例1)
 以下の手順で実施例1の酸素触媒として用いる酸化物(以下、単に酸素触媒と記載する場合がある)を合成した。まず、臭化テトラ-n-プロピルアンモニウム(略称;TPAB、純度98.0%)をビーカーに入れた蒸留水に溶解し、その後ホットスターラーで75℃の蒸留水に加えた。濃度は約9.0×10-1mol/Lとした。以下では、この溶液をTPAB溶液とする。TPABは前述の導入促進・安定化剤の役割を持つ。
 次に、塩化ルテニウム(III)-n―水和物(Ru含有率43.25%)と、硝酸ビスマス(III)五水和物(純度99.5%)を秤量し、それぞれ蒸留水に溶解した。いずれの溶液の濃度も約1.8×10-1mol/Lであった。なお、硝酸ビスマス(III)五水和物の溶液は5分程度の超音波撹拌を行った。以下、各溶液をRu溶液、Bi溶液とする。
 次に、TPAB溶液、Ru溶液、Bi溶液、蒸留水を75℃で所定量を混合し、全量を500mLとした金属塩溶液を調製した。この金属塩溶液中のRuの濃度及びBiの濃度はいずれも7.44×10-3mol/L、TPABの濃度は3.72×10-2mol/Lであった。この金属塩溶液を75℃で1時間撹拌混合した後に、別途調製した2mol/LのNaOH(水酸化ナトリウム)水溶液60mLを加えた。この後も75℃としたままで酸素を50mL/分で吹き込みながら(酸素バブリングしながら)24時間撹拌した。
 撹拌終了後、さらに24時間静置して沈殿物を得た。この沈殿物を取り出し、105℃の電気炉内で約2時間蒸発乾固させた。このようにして得られた乾固物を蒸発皿に移し、電気炉内で120℃、3時間乾燥した。乾燥後の物質をメノー乳鉢で粉砕した後、電気炉内で600℃、1時間保持して焼成した。焼成後に得られた物質は75℃の蒸留水とアスピレーター、濾紙を用いて吸引ろ過した。濾紙上の物質を回収し、電気炉内で120℃、3時間乾燥した。このようにして実施例1の酸素触媒(酸化物)を得た。
 なお、上記の操作においては、Ruの濃度、Biの濃度とTPABの濃度の関係は重要である。TPABはナトリウムに対する導入促進・安定化剤としての役割を持つが、RuやBiの濃度に対してTPABが多すぎても、少なすぎても好ましくない。TPABが多すぎると、ナトリウムの金属水酸化物への導入が阻害されるので好ましくない。一方、少なすぎると、ナトリウムを含む金属水酸化物の安定化が十分ではなく、また得られる酸素触媒の粒径が大きくなり、ナノレベルでの酸素触媒が得られにくくなるので好ましくない。実施例1の酸素触媒では、Ruの濃度に対してTPABの濃度が5倍となっているが、例えばこれが1倍であるとTPABが不足しており、また20倍を超えると過剰であり、いずれの場合も導入促進・安定化剤としての機能が果たせなくなるため好ましくない。なお、このような導入促進・安定化剤はTPABに限定されるものではなく、他の物質を用いてもよい。
(実施例2)
 実施例1の酸素触媒の合成において、TPAB溶液、Ru溶液、Bi溶液及び蒸留水を75℃で所定量を混合し、全量を500mLとした金属塩溶液におけるBiの濃度を7.44×10-3mol/Lから6.96×10-3mol/Lに変更したした以外は同じとして実施例2の酸素触媒を得た。
(比較例1)
 実施例1の酸素触媒の合成において、NaOH水溶液をLiOH(水酸化リチウム)水溶液に変更した以外は同じとして比較例1の酸化物を得た。
(比較例2)
 実施例1の酸素触媒に対して以下の酸処理を追加的に行った以外は実施例1と同じである。実施例1の酸素触媒0.145gと12mLの0.1mol/L硝酸溶液を容器に入れ、超音波撹拌を30分行い、超音波撹拌後、1時間静置した(酸処理)。このあと上澄み液を取り除き、洗浄のために、蒸留水を12mL加えて30分超音波撹拌してから1時間静置した。そののち上澄み液を取り除き、さらに洗浄のために再度同量の蒸留水を加えて同時間超音波撹拌した後、蒸留水でろ液のpHが7になるまで吸引濾過した。ここまでの操作は室温で行った。こののち濾紙上の物質を取り出し、120℃で3時間乾燥して比較例2の酸化物を得た。
(X線回折測定)
 実施例1及び実施例2の酸素触媒と、比較例1及び比較例2の酸化物について、CuKα線(波長 1.54Å)を用いたX線回折装置(リガク製、Ultima IV)で分析した。測定条件として、電圧40kV、電流40mA、回折角2θ(以下、単に2θと記載する場合がある)の範囲は10~90°、ステップ角は0.020°とした。実施例1と実施例2の結果を図1及び表1に、比較例1の結果を図2に、実施例1と比較例2の結果を比較して図3に示した。
 図1及び表1に示したように、実施例1及び実施例2の酸素触媒はCuKα線を用いたX線回折測定によって、2θ値の平均値(2θ平均値)が14.82°、30.07°、34.88°、38.17°、45.88°、50.20°、59.65°、62.61°、73.80°、81.68°及び84.28°に回折ピークを持つ酸化物であることが判った。なお、表1の2θ平均値は、実施例1と実施例2のそれぞれについて複数個の酸化物を合成し、それらの全てについて2θ値を決定し、実施例1と実施例2のそれぞれで2θ値の平均値を求め、さらにこれら2つの平均値の平均値を示したものである。つまり、表1の2θ平均値は実施例1と実施例2の平均値である。
 実施例1の酸素触媒、実施例2の酸素触媒はいずれも、上記の2θ値の中でも、30.07°、34.88°、50.20°及び59.65°の回折ピークが他に比べて高い回折強度で生じ、本実施形態に係る酸素触媒に特徴的なものである。なお、理論的にX線回折測定での回折強度は、対象物の粒径が小さくなるほど、特にナノレベルになると顕著に弱くなる傾向がある。よって、上記の特徴的な2θ値は、後述するように、数10ナノメートルの粒子であっても本実施形態に係る酸素触媒であることを特徴づけるものである。なお、図1の結果には本実施形態に係る酸素触媒以外に副生成物の存在を示すような回折ピークは見られなかった。
 次に、図2に示したように、比較例1の結果では、実施例1や実施例2の酸素触媒とは異なり、かつ、非常に多くの2θ値に回折線(回折ピーク)が検出されている。この検出結果より、比較例1の酸化物は本実施形態に係る酸素触媒とは構造が異なる化合物であることが判った。すなわち、実施例1での水酸化ナトリウム水溶液を、比較例1のように水酸化リチウム水溶液に変えると、本実施形態に係る酸素触媒は得られないことが判った。また、本実施形態に係る酸素触媒には結晶構造中にナトリウムが含まれることが示唆された。
 さらに、図3に示したように、比較例2の結果では、実施例1の結果と比較して、明らかに異なる、かつ非常に多くの2θ値に回折線が検出されている。この検出結果より、実施例1で得られた酸素触媒の結晶構造が、酸処理によって別の結晶構造に変化したことが判った。すなわち、本実施形態に係る酸素触媒に対しては、特許文献4に記載のような酸処理による不純物除去の効果はなく、かえって本実施形態に係る酸素触媒の構造を変える影響があることが判明した。このような違いからも本実施形態に係る酸素触媒は、特許文献4を含む複数の文献などで開示されているBROとは異なる化合物であることが明らかになった。
Figure JPOXMLDOC01-appb-T000001
(粒子観察)
 本実施形態に係る酸素触媒の粒径について、一例として実施例1の酸素触媒を走査型電子顕微鏡(略称SEM、ZEISS製、ULTRA 55)で観察し、そのSEM画像から各粒子の長径を画像処理によって決定し、この長径を実施例1の酸素触媒の一次粒子径と定義してその頻度分布を求めた。図4に粒径観察したSEM画像を示す。図5にこのようなSEM画像から求めた粒径の頻度分布解析結果を示す。なお、頻度分布の解析は少なくとも250個以上の粒子について行った。これより、実施例1の酸素触媒は、全体としては10~70nmの範囲に渡り、20~30nmの頻度が高くなる粒子径分布のナノ粒子として得られていた。なお、実施例2についても同様な観察と粒径解析を行ったが、実施例1とほぼ同じであった。
(エネルギー分散型X線元素分析:略称EDX)
 前述の走査型電子顕微鏡装置に付帯されたエネルギー分散型X線元素分析器(AMETEK製、Genesis APEX2)で、実施例1及び実施例2の酸素触媒について、ナトリウム、ビスマス、ルテニウムの原子比を求めた。この際、加速電圧は15kV、積算時間は装置上で設定できる最大時間である500秒間とした。
(ラザフォード後方散乱分析:略称RBS)
 ラザフォード後方散乱分析装置(National Electrostatics製、Pelletron 3SDH)により、実施例1及び実施例2の酸素触媒について、ビスマス、ルテニウム及び酸素の原子比を求めた。この際、ビスマスとルテニウムは、入射イオンとしてHeイオンを用いた測定結果から、また酸素はHイオンを用いた測定結果から解析した。これらの解析結果をもとにビスマスに対するルテニウムの原子比Ru/Bi、ビスマスに対する酸素の原子比O/Bi及びルテニウムに対する酸素の原子比O/Ruをそれぞれ求めた。このうち表2に原子比O/Biと原子比O/Ruを示した。
(4元素の原子比の解析)
 前述のEDXとRBSの結果から、ビスマス(Bi)、ルテニウム(Ru)、ナトリウム(Na)及び酸素(O)の4元素での原子比を求めるにあたって、以下では原子としてのビスマス、ルテニウム、ナトリウム及び酸素について、それぞれ、Bi、Ru、Na、Oと記載する場合がある。
 ここで、Oの原子比はBiに対する値としてRBSの結果で与えられ、Naの原子比はBiに対する値としてEDXの結果で与えられる。一方、BiとRuの原子比はEDXとRBSからそれぞれ与えられる。よって、4元素の原子比を求めるには、BiとRuの原子について、EDX又はRBSの結果のいずれを使うかで2通りある。よって、これら2通りの方法での原子比をそれぞれ算出し、その結果を表3に示した。表3のBi、Ru、Na及びOの原子比(4元素の原子比)において、BiとRuの原子比にEDXの結果を用いた場合をEDX、RBSの結果を用いた場合をRBSとして記した。また、これらの値を用いて算出した総電荷比、原子比Na/Ru、陽イオン原子比及び陽イオン電荷比を表4に示した。なお、本開示では表2の結果とともに、表3及び表4におけるRBSの結果に基づいて酸素触媒の評価を行う。すなわち表2から表4においていずれもRBSで求めた原子比に基づき酸素触媒の評価を行い、表3及び表4におけるEDXの結果は参考値として扱う。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (X線吸収微細構造分析)
 実施例1の酸素触媒について、X線吸収微細構造(XAFS)スペクトルを測定し、そのスペクトルにおける吸収端近傍構造(X-ray Absorption Near Edge Structure,略称XANES)からビスマス、ルテニウムの化学状態に関する情報を得た。測定は高エネルギー加速器研究機構(BL12C、NW10A)及びあいちシンクロトロン光センター(BL1N2)の装置を用いた。その結果、BiのL3端のXANESスペクトルの解析結果から+3価であること、RuのK端のXANESスペクトルの解析結果から+4価であることが判った。なお、Naの陽イオンの価数は+1価のみである。また、表4の総電荷比及び陽イオン電荷比は、上記の各元素の価数と表3に示した4元素の原子比を用いて算出したものである。
 次に、吸収端より約100eV以上高エネルギー側に現れる広域X線吸収微細構造(Extended X-ray Absorption Fine Structure,通称EXAFS)から、酸素触媒の局所構造に関する情報を得た。まず、BiのL3端のEXAFSスペクトルから求めたFT-EXAFSスペクトル(動径分布関数に相当し、結晶構造中における原子間距離を示す)と、A227構造においてBiがAサイトを占有しているとして理論的に求めたFT-EXAFSスペクトル(以下、理論的に求めたFT-EXAFSスペクトルを理論スペクトルと略す)を比較した結果、測定スペクトルは理論スペクトルよりもピーク強度が小さかった。このように理論スペクトルに対して測定スペクトルのピーク強度が小さくなる理由は、理論スペクトルを求めるにあたって仮定した結晶構造、すなわちA227構造に対して、実際の構造が異なるか、又は原子間距離に違いがあり、ひずみを生じている場合などである。一方、理論スペクトルにおける1.6~2.2Åの第1近接のBi-O成分に由来するピークに対して、測定スペクトルでは1.2~2.0Åに第1近接のBi-O成分に相当するピークがあった。これらの結果、実施例1の酸素触媒においてBiは、A227構造を仮定した場合のAサイト近傍ではあるが、そのサイト中心から離れた位置に存在していることが判った。
 同様に、RuのK端のFT-EXAFSスペクトルと、A227構造においてRuがBサイトを占有しているとして理論的に求めたFT-EXAFSスペクトルを比較した結果、測定スペクトルは理論スペクトルとほぼ同じ強度であった。また、理論スペクトルでは1.2~1.6Åに第1近接のRu-O成分に由来するピークがあり、これに対して測定スペクトルでも1.2~1.8Åに第1近接のBi-O成分に相当するピークがあった。また、これ以外の第2近接のRu-O-Ruと考えられるピーク位置もほぼ一致した。これらの結果、実施例1の酸素触媒においてRuは、A227構造を仮定した場合のBサイトに位置していることが判った。
 さらに、NaのK端のFT-EXAFSスペクトルと、A227構造においてNaがAサイト又はBサイトを占有しているとして、それぞれの場合で理論的に求めたFT-EXAFSスペクトル比較した。その結果、Aサイト占有の理論スペクトル及びBサイト占有の理論スペクトルのどちらに対しても、測定スペクトルのほうがピーク強度は小さかった。また、測定スペクトルには1.2~2.0Åにピーク(1)が見られ、またこれよりも長距離側の2.0~2.8Åにもピーク(2)が見られた。一方、Aサイト占有の理論スペクトルには第1近接のNa-O成分に由来するピークが1.6~2.6Åにありピーク(2)と相関がみられ、Bサイト占有の理論スペクトルには第1近接のNa-O成分に由来するピークが0.7~2.1Åにありピーク(1)と相関が見られた。これらの結果、実施例1の酸素触媒においてNaは、A227構造を想定した場合のAサイトに近い位置やBサイトに近い位置に存在していることが示された。なお、前述の通り、+3価のビスマスイオンと+1価のナトリウムイオンのイオン半径の高い類似性から考えれば、A227構造を想定した構造では、BサイトよりもAサイトの近傍により多く位置している可能性が高いと考えられる。
 なお、参照試料として測定したNaBiO3については、まずNaのK端のXANESスペクトルにおいて吸収端の立ち上がり、スペクトルの形状、メインピークの位置がいずれも本実施形態に係る触媒とは異なるものであった。また、NaBiO3に対するNaのK端のFT-EXAFSスペクトルには、上記のピーク(1)やピーク(2)のような2つのピークは見られなかった。以上から、本実施形態に係る触媒にはNaBiO3のようなナトリウムを含む副生成物があるのではなく、ナトリウムは結晶構造中に存在することがさらに支持された。
 以上の結果から、本実施形態に係る酸素触媒はBROのようなパイロクロア構造ではなく、パイロクロアに類似する構造であるが、ナトリウムがパイロクロアにおけるAサイト近傍やBサイト近傍に配置していると考えられ、BROとは異なる構造であることが明らかになった。さらに、実施例2の酸素触媒についても上記と同じ解析を行った結果、価数や原子間距離に関して実施例1と同じ傾向を示す結果が得られた。
(電極の作製)
 実施例1及び実施例2の酸素触媒と、比較例1の酸化物とを、以下の方法で導電材であるチタンディスクに担持した電極を作製した。まず、酸素触媒もしくは酸化物を乳鉢で粉砕した。そして、蒸留水を分散媒として、3.77g/Lとなるようにサンプル瓶内に粉砕した粉末を添加し、超音波発生装置で2時間超音波分散を行って懸濁液を得た。図6に示すように、円柱状に形成されたチタン製のディスク10(直径dは4.0mm、高さhは4.0mm、以下、チタンディスク10と記載する)をアセトンに入れて超音波洗浄した後、チタンディスクの片面11(円柱状における一方の底面)に上記の懸濁液を10μL滴下し、24時間自然乾燥することでチタンディスク10の片面11に均一な膜状で酸素触媒もしくは酸化物が担持された電極100を得た。図6では、膜状に担持された酸素触媒もしくは酸化物を酸化物層Cとして示している。なお、チタンディスク10に酸素触媒もしくは酸化物を固定する際には、固定化剤は一切用いなかった。
(電気化学測定)
 前述の電極を回転電極装置に取り付け、これを作用極とした。この作用極と白金板(面積は25cm2)を同じ容器内で0.1mol/Lの水酸化カリウム水溶液中に浸漬させた。水酸化カリウム水溶液のpHは13以上であった。また、別の容器には同じく0.1mol/Lの水酸化カリウム水溶液に浸漬させた市販の水銀/酸化水銀電極を用意した。これら2つの水酸化カリウム水溶液は、同じく0.1mol/Lの水酸化カリウム水溶液で満たした液絡で接続した。このような構成の三電極式電気化学セルを用いて、水溶液の温度を25℃に調節して電気化学測定を行った。測定には市販の電気化学測定装置と電気化学ソフトウェアを用い、リニアスイープボルタメトリーで行った。リニアスイープボルタメトリーとは作用極の電位を一定の走査速度で変化させながら、作用極に流れる電流を測定する方法である。この測定時に流れる電流は電極上に担持されている酸素触媒で起こる反応の電流である。すなわち、チタンディスクだけでは広い電位範囲で酸素の還元や酸素の発生が生じないため、上記の測定方法によれば酸化物層Cだけで生じる反応電流を測定できる。
 酸素還元電流の測定は、以下のようにして行った。まず作用極を浸漬している水溶液に、流量30mL/minで窒素を2時間以上通気し、溶存する酸素を除いてから、窒素を通気しながら測定を行った。その後同じ流量で酸素を2時間以上通気し、さらに通気を続けながら再び測定を行った。この後、酸素を通気しながら測定した電流から、窒素を通気しながら測定した電流を差し引いた値を酸素の還元電流とした。また、この酸素還元電流をチタンディスクの表面積で割った値を酸素還元電流密度とした。このようにして作用極の電位と酸素還元電流密度との関係を示す結果を得て、後述するターフェルプロットの作成に用いた。なお、上記の測定の際には作用極は1600rpm(min-1)で回転させて使用した。具体的には、チタンディスク10の酸素触媒が固定された面(片面11)を下向きにして回転円盤電極装置に取り付け(回転円盤電極の一例)、酸素触媒が電解液中に浸漬した状態で、これを一定の速度で回転させた。このような測定は回転円盤電極法又はRDE(Rotating Disk Electrode)法呼ばれる。また、単位時間当たりの電位の変化量を意味する走査速度は1mV/sとした。
 上述の酸素還元電流の測定を行った後に酸素発生電流を測定した。酸素発生電流の測定では窒素や酸素の通気は行わず、大気開放の条件で行った。酸素発生は水酸化物イオンから酸素が発生する反応であるため、窒素や酸素の通気には関係しない。なお、酸素発生電流の測定でも酸素還元電流と同じように1600rpmで回転させながら、1mV/sの走査速度で、リニアスイープボルタメトリーで行った。
(比活性)
 上記の方法で得られたリニアスイープボルタモグラム(リニアスイープボルタメトリーで得られた作用極の電位と電流の関係を示す結果)に対して、担持された酸素触媒量の違いによる影響を除くため、酸素還元時又は酸素発生時の電流値(A)を触媒重量(g)で割った値を比活性として用いた。比活性の単位はA/gである。なお、酸素触媒の担持量は35μg~43μgであった。このようにして作成した酸素発生に対する電極電位と比活性の結果を図7に示す。また、酸素還元に対する電極電位と比活性の結果を図8に示す。図7、図8中の短破線、実線、長破線はそれぞれ実施例1、実施例2、比較例1である。
 図7の結果から電極電位が0.6Vでの比活性を比較すると、比較例1に対して実施例1は14.5倍、実施例2は29.0倍であり、10倍以上も触媒活性が高いことが判った。また、同様に、図8の結果から電極電位が-0.1Vでの比活性を比較すると、比較例1に対して実施例1は6.6倍、実施例2は6.1倍であり、酸素還元でも6倍以上も触媒活性が高いことが判った。
 以上のように本実施形態に係る酸素触媒は酸素発生と酸素還元の両方に高い触媒活性を有することが判った。
(ターフェル勾配)
 前述のリニアスイープボルタモグラムから、定法にしたがって、酸素還元又は酸素発生の電流密度の常用対数を横軸に、電位を縦軸にして整理し(以下、このように整理した結果をターフェルプロットと呼ぶ)、ターフェルプロットで直線となる部分の傾き、すなわちターフェル勾配を求めた。ターフェル勾配とは、酸素の還元や酸素の発生のほか様々な電気化学反応に対して、電流が10倍増加するために必要な電位の変化量であり、通常はV/dec(decは10倍を意味するdecadeの略)を単位として表される。ここでターフェル勾配は酸化反応では正の値、還元反応では負の値となるが、いずれの場合もその絶対値が小さいほど触媒活性が高いことを意味する。以下ではターフェル勾配の大小は、その絶対値について記したものとする。
 一方、酸素発生や酸素還元の反応は電気化学反応のなかでもターフェル勾配が大きく、起こりにくい反応として知られている。例えば、触媒活性が高いことで知られている白金であっても、ターフェル勾配の絶対値は酸素発生、酸素還元のいずれも60mV/dec以上である。白金よりも小さなターフェル勾配を示す触媒は極めて少ない。ところが、実施例1の酸素触媒におけるターフェル勾配は、酸素発生が44mV/dec、酸素還元が-43mV/decであり、また実施例2の酸素触媒におけるターフェル勾配は酸素発生が39mV/dec、酸素還元が-41mV/decであった。実施例1及び実施例2の酸素触媒のターフェル勾配は白金のターフェル勾配に対して酸素発生、酸素還元ともに25%以上も低減されており、触媒活性が極めて高いことが示された。
 なお、実施例1及び実施例2の酸素触媒について、前述の酸素発生と酸素還元に対する電流の測定を10回程度繰り返し行ったが、測定結果に変化は見られなかった。しかし、比較例1の酸素触媒については、2~3回測定を繰り返すと電流が小さくなり、また測定に使用した水酸化カリウム水溶液に着色が見られたことから、比較例1の酸素触媒からの構成元素の溶解が示唆された。なお、図7及び図8に示した比較例1の結果は、いずれも初回の測定結果である。
 本実施形態に係る酸素触媒及び電極は、空気一次電池や空気二次電池の空気極、食塩電解の酸素陰極、アルカリ形燃料電池の陰極、アルカリ水電解の陽極のほか、アルカリ水溶液を電解質として酸素還元、酸素発生、又はその両方の反応を利用する電池、電解装置、センサにおいて、酸素発生、酸素還元、又はその両方の反応に対する触媒として用いることができる。また、本実施形態に係る電極は、電気化学測定や電気化学分析に用いる触媒活性評価の基準サンプルや比較参照用サンプルとしての電極や、電気化学分析や電気化学センサに用いる検知極などにも用いることができる。
10  :ディスク(チタンディスク、チタン)
11  :片面(表面)
100 :電極
C   :酸化物層(酸素触媒、酸化物)

Claims (11)

  1.  アルカリ水溶液を電解質とする酸素触媒であって、CuKα線を用いたX線回折測定における2θ=30.07°±1.00°、34.88°±1.00°、50.20°±1.00°及び59.65°±1.00°の位置にピークを有し、ビスマス、ルテニウム、ナトリウム及び酸素を構成元素とする酸化物で、前記ビスマスに対する前記酸素の原子比O/Biと、前記ルテニウムに対する前記酸素の原子比O/Ruがいずれも3.5よりも大きいことを特徴とする酸素触媒。
  2.  前記原子比O/Biと前記原子比O/Ruがいずれも4以下であることを特徴とする請求項1に記載の酸素触媒。
  3.  前記ビスマス、前記ルテニウム、前記ナトリウム、前記酸素について、次式で表される総電荷比が
     総電荷比=(陰イオンの電荷総数)/(陽イオンの電荷総数)
    0.9以上1.1以下であることを特徴とする請求項1又は2に記載の酸素触媒。
  4.  前記ナトリウムと前記ルテニウムの原子比Na/Ruが0.285±0.015であることを特徴とする請求項1から3のいずれか一項に記載の酸素触媒。
  5.  前記ビスマスと前記ナトリウムの合計と前記ルテニウムとの原子比(Bi+Na)/Ruが1.285±0.010であることを特徴とする請求項1から4のいずれか一項に記載の酸素触媒。
  6.  前記ビスマスの電荷総数と前記ナトリウムの電荷総数の和(3Bi+Na)と前記ルテニウムの電荷総数4Ruの比(3Bi+Na)/4Ruが、0.820±0.020であることを特徴とする請求項1から5のいずれか一項に記載の酸素触媒。
  7.  請求項1から6のいずれか一項に記載の酸素触媒を用いることを特徴とする電極。
  8.  請求項1から6のいずれか一項に記載の酸素触媒がチタンに担持されていることを特徴とする電極。
  9.  円柱状に形成された前記チタンの底面に前記酸素触媒が担持されていることを特徴とする請求項8に記載の電極。
  10.  空気一次電池の空気極、空気二次電池の空気極、食塩電解の酸素陰極、アルカリ形燃料電池の陰極、又は、アルカリ水電解の陽極のいずれかであることを特徴とする請求項7に記載の電極。
  11.  回転円盤電極を用いる電気化学測定法であって、請求項8又は9に記載の電極を回転円盤電極に用いることを特徴とする電気化学測定法。
PCT/JP2021/019061 2020-05-21 2021-05-19 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法 WO2021235497A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180036422.2A CN115668553B (zh) 2020-05-21 2021-05-19 氧催化剂、使用了该氧催化剂的电极和电化学测定方法
US17/999,425 US11777106B2 (en) 2020-05-21 2021-05-19 Oxygen catalyst, electrode using the same, and electrochemical measurement method
EP21808831.8A EP4156383A4 (en) 2020-05-21 2021-05-19 OXYGENATED CATALYST, ELECTRODE USING SAID OXYGENATED CATALYST AND ELECTROCHEMICAL MEASURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089223A JP6799346B1 (ja) 2020-05-21 2020-05-21 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法
JP2020-089223 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021235497A1 true WO2021235497A1 (ja) 2021-11-25

Family

ID=73741083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019061 WO2021235497A1 (ja) 2020-05-21 2021-05-19 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法

Country Status (5)

Country Link
US (1) US11777106B2 (ja)
EP (1) EP4156383A4 (ja)
JP (1) JP6799346B1 (ja)
CN (1) CN115668553B (ja)
WO (1) WO2021235497A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102618A1 (ja) * 2020-11-12 2022-05-19 学校法人同志社 電極及び該電極の作製方法、並びに該電極を用いた電気化学デバイス

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184824A (ja) * 2009-02-10 2010-08-26 Nippon Oil Corp パイロクロア型酸化物の調製方法、固体高分子形燃料電池、燃料電池システムおよび燃料電池用電極触媒の製造方法
JP2012049075A (ja) * 2010-08-30 2012-03-08 Jx Nippon Oil & Energy Corp パイロクロア型酸化物の調製方法および燃料電池用電極触媒の製造方法
WO2012111101A1 (ja) * 2011-02-16 2012-08-23 富士通株式会社 空気二次電池
JP2014504433A (ja) * 2010-12-16 2014-02-20 ジョンソン、マッセイ、フュエル、セルズ、リミテッド 触媒層
JP2014505321A (ja) * 2010-12-03 2014-02-27 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2014220111A (ja) * 2013-05-08 2014-11-20 Jx日鉱日石エネルギー株式会社 電極材料、膜電極接合体、燃料電池スタックおよび電極材料の製造方法
JP2015529945A (ja) * 2012-08-03 2015-10-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 金属空気電池用エアーブリージングカソード
JP2016152068A (ja) * 2015-02-16 2016-08-22 学校法人同志社 正極およびその製造方法、並びにその正極を用いた空気二次電池
JP2018503942A (ja) * 2014-12-15 2018-02-08 スリーエム イノベイティブ プロパティズ カンパニー 膜電極アセンブリ
JP2019195775A (ja) * 2018-05-10 2019-11-14 国立大学法人 大分大学 酸素発生反応及び酸素還元反応触媒

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089810A (en) * 1973-08-20 1978-05-16 Johnson, Matthey & Co., Limited Catalyst
JP5188005B2 (ja) * 2004-08-30 2013-04-24 旭化成ケミカルズ株式会社 金属酸化物触媒、及びその触媒の製造方法、並びにニトリルの製造方法
JP2013505993A (ja) * 2010-07-10 2013-02-21 住友化学株式会社 酸化オレフィンの製造方法
GB201322494D0 (en) * 2013-12-19 2014-02-05 Johnson Matthey Fuel Cells Ltd Catalyst layer
JP5782170B2 (ja) 2014-10-24 2015-09-24 トヨタ自動車株式会社 空気電池用空気極及び空気電池
KR20160150009A (ko) * 2015-06-18 2016-12-28 울산과학기술원 금속 공기 전지용 복합촉매, 이의 제조 방법, 및 이를 포함하는 금속 공기 전지용 공기극 및 금속 공기 전지
JP2018149518A (ja) 2017-03-14 2018-09-27 学校法人神奈川大学 触媒及び金属空気電池
JP7081762B2 (ja) 2018-03-30 2022-06-07 Fdk株式会社 空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池
JP7161376B2 (ja) * 2018-11-05 2022-10-26 Fdk株式会社 空気二次電池用の空気極及び空気二次電池
US20220085387A1 (en) * 2019-01-23 2022-03-17 The Doshisha Oxygen catalyst and electrode using said oxygen catalyst
JPWO2021161900A1 (ja) * 2020-02-12 2021-08-19
JP7517685B2 (ja) * 2020-10-06 2024-07-17 国立大学法人 大分大学 含ビスマスルテニウムパイロクロア金属酸化物の製造方法および酸素電極触媒の製造方法
JP2022172734A (ja) * 2021-05-07 2022-11-17 Fdk株式会社 空気極用触媒、この空気極用触媒を含む空気極及びこの空気極を含む空気二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184824A (ja) * 2009-02-10 2010-08-26 Nippon Oil Corp パイロクロア型酸化物の調製方法、固体高分子形燃料電池、燃料電池システムおよび燃料電池用電極触媒の製造方法
JP2012049075A (ja) * 2010-08-30 2012-03-08 Jx Nippon Oil & Energy Corp パイロクロア型酸化物の調製方法および燃料電池用電極触媒の製造方法
JP2014505321A (ja) * 2010-12-03 2014-02-27 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2017063020A (ja) * 2010-12-03 2017-03-30 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2014504433A (ja) * 2010-12-16 2014-02-20 ジョンソン、マッセイ、フュエル、セルズ、リミテッド 触媒層
WO2012111101A1 (ja) * 2011-02-16 2012-08-23 富士通株式会社 空気二次電池
JP2015529945A (ja) * 2012-08-03 2015-10-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 金属空気電池用エアーブリージングカソード
JP2014220111A (ja) * 2013-05-08 2014-11-20 Jx日鉱日石エネルギー株式会社 電極材料、膜電極接合体、燃料電池スタックおよび電極材料の製造方法
JP2018503942A (ja) * 2014-12-15 2018-02-08 スリーエム イノベイティブ プロパティズ カンパニー 膜電極アセンブリ
JP2016152068A (ja) * 2015-02-16 2016-08-22 学校法人同志社 正極およびその製造方法、並びにその正極を用いた空気二次電池
JP2019195775A (ja) * 2018-05-10 2019-11-14 国立大学法人 大分大学 酸素発生反応及び酸素還元反応触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156383A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102618A1 (ja) * 2020-11-12 2022-05-19 学校法人同志社 電極及び該電極の作製方法、並びに該電極を用いた電気化学デバイス

Also Published As

Publication number Publication date
CN115668553A (zh) 2023-01-31
US11777106B2 (en) 2023-10-03
JP2021184340A (ja) 2021-12-02
EP4156383A1 (en) 2023-03-29
JP6799346B1 (ja) 2020-12-16
EP4156383A4 (en) 2024-08-07
CN115668553B (zh) 2023-12-29
US20230197973A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
Wang et al. Hollow bimetallic cobalt-based selenide polyhedrons derived from metal–organic framework: an efficient bifunctional electrocatalyst for overall water splitting
JP6736123B1 (ja) 酸素触媒及び該酸素触媒を用いる電極
Feng et al. Carbon‐supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium
Fink et al. Bifunctional α‐MnO2 and Co3O4 Catalyst for Oxygen Electrocatalysis in Alkaline Solution
US20160260984A1 (en) Carbon-supported catalyst
Mahmudi et al. Manganese dioxide nanoparticles synthesized by electrochemical method and its catalytic activity towards oxygen reduction reaction
JP6773067B2 (ja) 燃料電池電極触媒
Pawłowska et al. Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance
WO2021235497A1 (ja) 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法
Mooni et al. Graphene oxide decorated bimetal (MnNi) oxide nanoflakes used as an electrocatalyst for enhanced oxygen evolution reaction in alkaline media
Li et al. Novel high-entropy layered double hydroxide microspheres as an effective and durable electrocatalyst for oxygen evolution
Njoku et al. Application of Sm 0.8 Sr 0.2 Fe 1-x Co x O 3-δ (x= 0.2, 0.5, 0.8) Perovskite for the Oxygen Evolution Reaction in Alkaline Media
Karimi et al. Study of the effect of calcination temperature on the morphology and activity of iridium oxide electrocatalyst supported on antimony tin oxide (ATO) for PEM electrolyser technology
Wu et al. Effect of preparation routes on activity of Ag-MnOx/C as electrocatalysts for oxygen reduction reaction in alkaline media
Jhajharia et al. Surface alteration driven bi-functional catalytic activity of alkali niobate-N doped graphene composite for exalted oxygen electrochemistry
Mohan et al. Morphology-oxygen evolution activity relationship of iridium (iv) oxide nanomaterials
Takeda et al. Polyol synthesis of Ni and Fe Co-incorporated tungsten oxide for highly efficient and durable oxygen evolution reaction
JP2014221448A (ja) コアシェル触媒粒子の製造方法及びコアシェル触媒粒子
WO2022102618A1 (ja) 電極及び該電極の作製方法、並びに該電極を用いた電気化学デバイス
WO2015151578A1 (ja) コアシェル触媒の製造方法
Akbayrak et al. The Utilization of Iridium Nanoparticles Impregnated on Metal Oxides (Ceria, Titania, and Zirconia) with a Simple and Ecologically Safe Synthesis Approach in Oxygen Evolution Reactions
JP7255769B2 (ja) 導電性材料
Kitano et al. Facile synthesis approach of bifunctional Co–Ni–Fe oxyhydroxide and spinel oxide composite electrocatalysts from hydroxide and layered double hydroxide composite precursors
JP2019112697A (ja) 触媒および陽極
WO2022071126A1 (ja) 水電解セルの電極触媒、水電解セル、及び水電解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021808831

Country of ref document: EP

Effective date: 20221221