WO2013141063A1 - 触媒およびこれを備える燃料電池 - Google Patents

触媒およびこれを備える燃料電池 Download PDF

Info

Publication number
WO2013141063A1
WO2013141063A1 PCT/JP2013/056683 JP2013056683W WO2013141063A1 WO 2013141063 A1 WO2013141063 A1 WO 2013141063A1 JP 2013056683 W JP2013056683 W JP 2013056683W WO 2013141063 A1 WO2013141063 A1 WO 2013141063A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium oxide
low
order titanium
metal
Prior art date
Application number
PCT/JP2013/056683
Other languages
English (en)
French (fr)
Inventor
稔 稲葉
恭幸 弘田
安田 佳明
岩崎 秀治
Original Assignee
株式会社クラレ
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, 学校法人同志社 filed Critical 株式会社クラレ
Priority to JP2014506145A priority Critical patent/JP6086258B2/ja
Publication of WO2013141063A1 publication Critical patent/WO2013141063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst and a fuel cell including the catalyst.
  • the carriers aggregate to increase the particle size.
  • the carriers agglomerate to increase the particle size.
  • the carrier has a large particle size, so that the specific surface area becomes small and it is difficult to improve the performance.
  • an object of the present invention is to provide a catalyst using a carbon alternative carrier having an increased specific surface area and a fuel cell provided with the catalyst.
  • the object is [1]
  • a metal is supported on low-order titanium oxide represented by the composition formula TiO x (where x is in the range of 1.5 ⁇ x ⁇ 2) and the specific surface area is 50 m 2 / g or more.
  • a catalyst comprising: [2] The catalyst according to [1], wherein the metal contains at least one selected from the group consisting of platinum, gold, palladium, silver, iridium, rhodium and ruthenium, and has an average particle size of 0.1 to 10 nm; [3] The catalyst according to [1] or [2], wherein the supported amount of the metal is 1 to 40% by mass; [4] This is achieved by providing a fuel cell comprising the catalyst according to any one of [1] to [3] as an electrode catalyst.
  • the catalyst of the present invention supports low-order titanium oxide represented by a composition formula TiO x (where x is in the range of 1.5 ⁇ x ⁇ 2) and a specific surface area of 50 m 2 / g or more.
  • TiO x where x is in the range of 1.5 ⁇ x ⁇ 2
  • specific surface area 50 m 2 / g or more.
  • 2 is an X-ray diffraction spectrum of low-order titanium oxide obtained in Reference Example 1.
  • 4 is a TEM photograph of low-order titanium oxide obtained in Reference Example 1.
  • 3 is an adsorption isotherm of nitrogen gas of low-order titanium oxide obtained in Reference Example 1.
  • 3 is an X-ray diffraction spectrum of low-order titanium oxide obtained in Reference Example 2.
  • 4 is an adsorption isotherm of nitrogen gas of low-order titanium oxide obtained in Reference Example 2.
  • 2 is an X-ray diffraction spectrum of catalyst 1 obtained in Example 1.
  • FIG. 2 is a TEM photograph of catalyst 1 obtained in Example 1.
  • 3 is a CV measurement result of the catalyst 1 obtained in Example 1.
  • 2 is a measurement result of oxygen reduction reaction of catalyst 1 obtained in Example 1.
  • FIG. 3 is a CV measurement result of catalyst 2 obtained in Example 2.
  • 3 is a measurement result of oxygen reduction reaction of catalyst 2 obtained in Example 2.
  • FIG. 3 is an X-ray diffraction spectrum of catalyst 3 obtained in Comparative Example 2.
  • 4 is a TEM photograph of catalyst 3 obtained in Comparative Example 2.
  • 4 is a CV measurement result of catalyst 3 obtained in Comparative Example 2.
  • 4 is a measurement result of oxygen reduction reaction of catalyst 3 obtained in Comparative Example 2.
  • 4 is a TEM photograph of catalyst 4 obtained in Comparative Example 3. In the figure, it is considered that platinum is not sufficiently dispersed at the locations indicated in circles.
  • the catalyst of the present invention is represented by a composition formula TiO x (wherein x is in the range of 1.5 ⁇ x ⁇ 2 and preferably in the range of 1.6 ⁇ x ⁇ 1.9).
  • Low-order titanium oxide (hereinafter referred to as “low-order titanium oxide”) is used as the carrier. Note that x is oxidized to titanium dioxide by sufficiently drying low-order titanium oxide and then putting it in a thermogravimetric analyzer and raising the temperature to 1000 ° C. at a rate of 5 ° C./min in the atmosphere. It is calculated
  • the low-order titanium oxide is preferably a particulate composition.
  • the low-order titanium oxide used in the present invention has a specific surface area of 50 m 2 / g or more, preferably 70 m 2 / g or more, more preferably 90 m 2 / g or more.
  • the upper limit of the specific surface area is not particularly limited, but the specific surface area is usually 250 m 2 / g or less, more typically 200 m 2 / g or less.
  • the specific surface area of the low-order titanium oxide is determined by measuring the specific surface area of the low-order titanium oxide before the metal is supported on the low-order titanium oxide.
  • the specific surface area of the low-order titanium oxide is measured by analyzing the adsorption isotherm by the BET method using 0.001 g or more, preferably 0.01 g or more of low-order titanium oxide sampled at random. .
  • the low-order titanium oxide used in the present invention can be produced by plasma discharge from the two electrodes to the aqueous medium while flowing the aqueous medium between two electrodes, at least one of which is a titanium-containing electrode.
  • the mechanism of low-order titanium oxide generation by plasma discharge is that the titanium in the electrode melted by the plasma generated by applying a voltage exceeding the breakdown voltage between the electrodes facing each other across the aqueous medium is diffused into the aqueous medium, It is presumed that the diffused titanium reacts with water and is rapidly cooled to produce low-order titanium oxide.
  • the generated low-order titanium oxide is dispersed in the aqueous medium and quickly discharged from the discharge field.
  • the specific surface area of the low-order titanium oxide in the catalyst of the present invention is 50 m 2 / g or more.
  • the material of the titanium-containing electrode examples include metal titanium, titanium alloy, and titanium oxide.
  • at least one electrode material is a titanium alloy containing a dissimilar metal such as a typical metal such as silicon or tin; a transition metal such as zirconium or tungsten; Can be contained.
  • the shape of the electrode is not particularly limited, and examples thereof include a rod shape, a wire shape, a plate shape, and a shape having a hollow portion. Especially, it is preferable that at least one is a shape which has hollow parts, such as a tube shape, from a viewpoint of distribute
  • the shapes and sizes of the two electrodes may be different from each other.
  • the direction in which the aqueous medium is circulated is not particularly limited, but may be circulated in one direction between the two electrodes in order to prevent the low-order titanium oxide discharged by the aqueous medium from returning to the discharge field.
  • At least one of the electrodes is used as an electrode having a hollow shape such as a tube (hereinafter referred to as “hollow electrode”), and the aqueous medium is injected through the hollow portion of the hollow electrode. And / or suction.
  • the aqueous medium is injected from the outside through the hollow part of the hollow electrode installed in the reactor, or the aqueous medium in the reactor is sucked through the hollow part of the hollow electrode and discharged out of the system, so that the hollow electrode is the center. A radial flow can be generated.
  • the two hollow electrodes may be used to supply the aqueous medium through the hollow portion of one hollow electrode, suck the aqueous medium through the hollow portion of the other hollow electrode, and discharge the aqueous medium out of the system.
  • the speed of circulating the aqueous medium is not particularly limited as long as the generated low-order titanium oxide does not stay in the reaction field.
  • the shortest distance between the discharge portions of the two electrodes is 0.1 to 2 mm, A range of 1 to 200 ml / min is preferable, and a range of 10 to 150 ml / min is more preferable.
  • the aqueous medium that circulates between the two electrodes and forms a discharge field for performing plasma discharge contains 50% by mass or more of water.
  • water alone or a mixture of water and a water-soluble organic solvent is used.
  • the water-soluble organic solvent include alkylene glycols such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,4-butanediol; diethylene glycol, tetraethylene glycol, polyethylene And polyalkylene glycols such as glycol; and monoalkyl ethers (for example, monomethyl ether, monoethyl ether) of the alkylene glycol or polyalkylene glycol.
  • ion-exchanged water is preferably used as the water.
  • the aqueous medium may contain components other than the water-soluble organic solvent as long as the object of the present invention is not impaired.
  • the composition of the low-order titanium oxide obtained can be controlled by the addition of hydrogen peroxide and the temperature of the aqueous medium.
  • the amount of aqueous medium used is not particularly limited, but is preferably an amount that can control heat generation.
  • the two electrodes are preferably arranged so that the two electrodes are closest to each other at the plasma discharge position (discharge portion), and the shortest distance between the discharge portions of the two electrodes is usually 0.01 to 3 mm, preferably 0.1 to 2 mm. Further, such discharge parts are arranged so as to be in the aqueous medium.
  • the current applied between the electrodes for plasma discharge may be either a direct current or an alternating current, but it is preferable to use a direct current from the viewpoint of operability and production stability. When an alternating current is used, rectification may be performed using a diode.
  • the current for plasma discharge between the two electrodes is not limited and is preferably in the range of 1 to 200 A, more preferably in the range of 2 to 150 A, from the viewpoint of the amount of low-order titanium oxide produced and energy efficiency, in the range of 5 to 120 A. Is more preferable.
  • the voltage applied between the two electrodes is not particularly limited, but is preferably in the range of 20 to 600 V, more preferably in the range of 60 to 500 V, and still more preferably in the range of 80 to 400 V from the viewpoint of industrial productivity.
  • the plasma discharge method may be continuous plasma discharge or pulsed plasma discharge. Since the environment of the generated plasma differs depending on the plasma discharge method, the composition distribution, particle size distribution, and crystal form of the resulting low-order titanium oxide change.
  • the discharge interval is not particularly limited, but is usually preferably 0.01 microseconds to 100 milliseconds, more preferably 0.1 microseconds to 50 milliseconds. If the pulse interval is too short, the distribution of the low-order titanium oxide produced tends to vary. Moreover, when the discharge interval is too long, the amount of low-order titanium oxide produced tends to be remarkably reduced.
  • the discharge duration per pulse plasma discharge varies depending on the voltage and current, but is usually preferably in the range of 1 to 2000 microseconds, and more preferably in the range of 2 to 1000 microseconds from the viewpoint of energy efficiency.
  • the pulse shape in the pulse plasma discharge there are a sine wave, a rectangular wave, a triangular wave, etc., and a rectangular wave is preferable from the viewpoint of energy efficiency.
  • the temperature of the aqueous medium during plasma discharge is preferably in the range of 10 to 100 ° C.
  • the temperature is higher than 100 ° C.
  • the vapor pressure of the aqueous medium increases and plasma discharge may be difficult.
  • the temperature is lower than 10 ° C., the viscosity of the aqueous medium increases and the reactivity decreases, and the diffusibility of the low-order titanium oxide produced may decrease.
  • the above-described method for producing low-order titanium oxide can be carried out in any state of reduced pressure, increased pressure, and normal pressure. From the viewpoint of safety and operability, it is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
  • the low-order titanium oxide produced by the above production method is obtained as a dispersion dispersed in an aqueous medium
  • the dispersion can be used in the present invention by, for example, filtration, centrifugation, washing with water, and drying. Titanium suboxide can be isolated.
  • the metal supported on the low-order titanium oxide preferably contains at least one selected from the group consisting of platinum, gold, palladium, silver, iridium, rhodium and ruthenium.
  • the metal may be an alloy, and more preferably contains platinum from the viewpoint of oxygen reduction activity, and examples thereof include platinum, a platinum-ruthenium alloy, and a platinum-iron alloy.
  • the metal supported on the low-order titanium oxide preferably has an average particle size of 0.1 to 10 nm, more preferably 1 to 3 nm.
  • the average particle size is less than 0.1 nm, desorption from low-order titanium oxide is facilitated, and the stability of the catalyst tends to be low.
  • it exceeds 10 nm the surface area of the metal is reduced, the catalytic activity is reduced, and the power generation amount is reduced.
  • the average particle diameter of the metal is measured from a captured image of a transmission electron microscope (TEM).
  • the average particle size preferably does not exceed 15 nm, and the average particle size is preferably not less than 0.1 nm.
  • the low-order titanium oxide carries a metal in a range of usually 1 to 40% by mass, preferably 1.5 to 30% by mass.
  • the loading is less than 1% by mass, the amount of power generation per mass of low-order titanium oxide tends to decrease when used as an electrode catalyst for a fuel cell.
  • it exceeds 40% by mass the catalytic activity is likely to be lowered due to the metal desorption from the low-order titanium oxide.
  • Examples of the method for supporting the metal on the low-order titanium oxide as the carrier include a gas phase chemical reduction method, a liquid phase chemical reduction method, an impregnation-reduction pyrolysis method, a surface-modified colloid pyrolysis reduction method, and the like. From the viewpoint of production, the liquid phase chemical reduction method is preferred.
  • Examples of the metal compound used as a raw material for the liquid phase chemical reduction method include metal mineral acid salts such as hydrochloride, nitrate, and sulfate; organic organic acid salts such as formate, acetate, and butyrate; acetylacetonate Metal complexes having organic ligands such as chloroplatinic acid hexahydrate (H 2 PtCl 6 .6H 2 O) and dinitrodiamine platinum (Pt (NH 3 ) 2 (NO 2 ) 2 ) Is preferably used.
  • metal mineral acid salts such as hydrochloride, nitrate, and sulfate
  • organic organic acid salts such as formate, acetate, and butyrate
  • acetylacetonate Metal complexes having organic ligands such as chloroplatinic acid hexahydrate (H 2 PtCl 6 .6H 2 O) and dinitrodiamine platinum (Pt (NH 3 ) 2 (NO 2 ) 2
  • the reducing agent used in the liquid phase chemical reduction method is not particularly limited, but from the viewpoint of avoiding the addition of extra elements on the low-order titanium oxide, methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, diethylene glycol, 1, 2 Alcohols such as propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol; methylamine, ethylamine, propylamine, 2-propylamine, butylamine, dimethylamine, diethylamine, dipropyl Amines such as amines, dibutylamine, hydrazine, ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane; amines such as hydroxylamine, 2-aminoethanol, 3-aminopropanol Roh alcohol is preferred.
  • the amount of the reducing agent to be used is preferably 1 to 10000 mol times, more preferably 1 to 8000 mol times, still more preferably 1 to 5000 mol times with respect to the metal compound as a raw material.
  • the liquid phase chemical reduction method may be performed in a reducing agent without a solvent or in a mixed solution of water and a reducing agent.
  • the catalyst of the present invention may be heat-treated as necessary from the viewpoint of improving the binding force between the metal and the low-order titanium oxide.
  • the heat treatment may be performed in any of an inert atmosphere, an oxidizing atmosphere, and a reducing atmosphere. From the viewpoint of suppressing low-order titanium oxide oxidation and metal sintering, the heat treatment is usually performed in an inert atmosphere or Perform under reducing atmosphere.
  • the reducing atmosphere is usually carried out in the presence of hydrogen and usually mixed with 0.1 to 50% by volume of hydrogen as an inert gas. In consideration of safety, it is more preferable to carry out in the presence of 0.1 to 20% by volume of hydrogen.
  • the heat treatment temperature is preferably in the range of 100 to 1000 ° C, more preferably in the range of 200 to 800 ° C, and still more preferably in the range of 250 to 700 ° C.
  • the catalyst of the present invention may be used by mixing with a conductive carbon material within the range not impairing the effects of the present invention for the purpose of enhancing the conductivity.
  • a conductive carbon material include acetylene black and ketjen black.
  • the amount is usually in the range of 0.1 to 100% by mass, preferably 10 to 70% by mass with respect to the catalyst of the present invention.
  • the fuel cell equipped with the catalyst of the present invention can be produced according to a known method for producing a fuel cell using a known fuel cell material except that the catalyst of the present invention is used.
  • the value of x in the composition formula TiO x of the low-order titanium oxide is determined by sufficiently drying the low-order titanium oxide and then putting it in a thermogravimetric analyzer at a temperature rising rate of 5 ° C./min in the atmosphere. It was oxidized to titanium dioxide by raising the temperature to 1000 ° C., and obtained from the increase in mass accompanying such oxidation.
  • the specific surface area of the low-order titanium oxide was determined by measuring the adsorption isotherm of nitrogen gas and analyzing it by the BET method. Specifically, the sample tube containing about 0.1 g of the sample was dried under reduced pressure at 200 ° C. for 12 hours, and the mass after drying was measured.
  • the sample was mounted on a specific surface area meter (BELSORP-miniII, manufactured by Nippon Bell Co., Ltd.) and immersed in liquid nitrogen, and after completion of cooling, an adsorption isotherm was measured using nitrogen as an adsorption gas.
  • the obtained adsorption isotherm was converted into a BET isotherm, and the specific surface area was calculated from the slope and mass of the approximate straight line of the BET isotherm.
  • the average particle size of the supported metal was determined from a photograph taken with a transmission electron microscope (TEM). Specifically, the particle diameter of 20 supported metals was measured and the average was calculated. The diameter of the metal in the photograph was the diameter of the particle, and the average diameter of the short diameter and the long diameter was the particle diameter of the elliptical shape.
  • a plate electrode (width 15 mm, length 100 mm, thickness 1 mm) of titanium metal (purity 99% or more) was fixed to the bottom of the reactor (width 150 mm, depth 70 mm, height 50 mm).
  • a hollow electrode (outer diameter 6 mm, inner diameter 4 mm, length 100 mm) of titanium metal (purity 99% or more) was installed at a position 0.5 mm above the plate electrode. Water at 80 ° C. was poured into the reactor so that the liquid level was at least 20 mm above the upper end surface of the plate electrode. The reactor was immersed in a constant temperature bath, and the water temperature was kept at 80 ° C. Water pre-heated to 80 ° C.
  • the recovered black particles were placed in a 100 ml beaker containing 70 ml of water, dispersed using an ultrasonic disperser, and allowed to stand for 30 minutes, and the precipitated large particles were removed by decantation.
  • the suspended black particles were collected by filtration and dried with hot air at 60 ° C. for 3 hours to obtain 1.32 g of black particles.
  • FIG. 1 a peak characteristic of titanium was observed, and a TEM photograph of the obtained low-order titanium oxide is shown in Fig. 2.
  • the obtained low-order titanium oxide had a particle size of 5 to 20 nm.
  • Shows the nitrogen gas adsorption isotherm of the low-order titanium oxide (the vertical axis represents the amount of nitrogen adsorbed (volume occupied by the amount of nitrogen adsorbed in the standard state (0 ° C., 1 atm) (cm 3 (STP) g ⁇ 1 ))
  • the horizontal axis is the relative pressure (P / P 0 ) obtained by dividing the equilibrium pressure by the saturated vapor pressure.)
  • the specific surface area was 92 m 2 / g.
  • a plate electrode (width 15 mm, length 100 mm, thickness 1 mm) of titanium metal (purity 99% or more) was fixed to the bottom of the reactor (width 150 mm, depth 70 mm, height 50 mm).
  • a hollow electrode (outer diameter 6 mm, inner diameter 4 mm, length 100 mm) of titanium metal (purity 99% or more) was placed on the plate-shaped electrode. Water at 25 ° C. was poured into the reactor so that the liquid level was at least 20 mm above the upper end surface of the plate electrode. The reactor was immersed in a constant temperature bath and the water temperature was kept at 25 ° C. Water adjusted in advance to 25 ° C.
  • the recovered black particles were placed in a 100 ml beaker containing 70 ml of water, dispersed using an ultrasonic disperser, and allowed to stand for 30 minutes, and the precipitated large particles were removed by decantation.
  • the floating black particles were collected by filtration and dried with hot air at 60 ° C. for 3 hours to obtain 1.67 g of black particles.
  • the crystallite diameter of Pt was 7.8 nm. From the TEM image of catalyst 1 shown in FIG. 7, the average particle size of the supported Pt was 5 to 10 nm.
  • electrode 1 This was dried at room temperature for 10 minutes to obtain an electrode (hereinafter referred to as “electrode 1”).
  • the catalytic activity of the electrode 1 obtained above was measured by a cyclic voltammetry (CV) method using a rotating electrode. Using a 0.1 mol / l perchloric acid aqueous solution as the electrolyte, a platinum wire as the counter electrode, and a standard hydrogen electrode as the reference electrode, a potential in the range of 0.045 to 1.2 V at 0.05 V / sec. Scanned. The measurement result of the CV method is shown in FIG.
  • the vertical axis is the current amount
  • the horizontal axis is the potential of the electrode 1 with respect to the potential of the standard hydrogen electrode (hereinafter referred to as “relative potential”)).
  • the effective specific surface area of Pt in the electrode 1 obtained from the peak area resulting from hydrogen desorption at 0.045 V to 0.4 V was 2.1 m 2 / g.
  • the measurement result of the oxygen reduction current value scanned in the range of 0.045 V to 1 V is shown in FIG. 9 (the vertical axis is the current amount, and the horizontal axis is the relative potential).
  • the oxygen reduction current value (specific activity) at 0.9 V per effective specific surface area of Pt is 1.2 mA / cm 2
  • the oxygen reduction current value (mass activity) at 0.9 V per unit mass of the catalyst 1 is 0.026 A. / Mg
  • Example 2 Manufacture of catalyst 70% by mass of ketjen black was mixed with the catalyst 1 obtained in (2) of Example 1 (hereinafter referred to as “catalyst 2”). The catalytic activity was measured in the same manner as (2) of Example 1 except that the catalyst 2 was used instead of the catalyst 1.
  • the measurement result of the CV method is shown in FIG. 10 (the vertical axis is the current amount and the horizontal axis is the relative potential), and the measurement result of the oxygen reduction reaction is shown in FIG. 11 (the vertical axis is the current amount and the horizontal axis is the relative potential).
  • the effective specific surface area of Pt was 10.4 m 2 / g, the specific activity was 1.4 mA / cm 2 , and the mass activity was 0.15 A / mg.
  • the conductivity was improved by the addition of carbon, and the activity was higher than that of commercially available Pt 50 mass% supported carbon.
  • Catalytic activity as an electrode for a fuel cell was obtained in the same manner as (2) of Example 1 except that Pt 50% by mass supported carbon (manufactured by Tanaka Kikinzoku Co., Ltd., specific surface area 800 m 2 / g) was used instead of catalyst 1. It was measured. As a result, the specific activity was 0.20 mA / cm 2 and the mass activity was 0.13 A / mg. This indicates that high specific activity can be obtained by using low-order titanium oxide as a carrier.
  • the average particle diameter of the supported Pt determined from the TEM photograph of the catalyst 3 shown in FIG. 13 was 5 to 10 nm.
  • the catalytic activity of the catalyst 3 was measured by the same method as (2) of Example 1. The results of CV measurement are shown in FIG. 14 (the vertical axis is the current amount and the horizontal axis is the relative potential), and the oxygen reduction reaction measurement results are shown in FIG. 15 (the vertical axis is the current amount and the horizontal axis is the relative potential).
  • the effective specific surface area of Pt was 1.0 m 2 / g, the specific activity was 0.80 mA / cm 2 , and the mass activity was 0.008 A / mg.
  • the plasma output was 0.6 kW, the mist that passed through the plasma was passed through ion-exchanged water, and the powder in the mist was collected in the ion-exchanged water.
  • the ion-exchanged water that collected the powder was filtered to obtain 1.02 g of powder.
  • the obtained powder was reduced in hydrogen at 1100 ° C. to obtain 0.89 g of a solid.
  • 54.5 mg of the obtained low-order titanium oxide was placed in 2.5 ml of diphenyl ether and mixed for 30 minutes with an ultrasonic disperser to prepare the above-mentioned low-order titanium oxide dispersion.
  • 50.6 mg of platinum acetylacetonate and 260 mg of hexadecanediol were placed in 10 ml of diphenyl ether and mixed in a nitrogen stream at 110 ° C. for 30 minutes to prepare a solution containing a platinum complex.
  • 85 ml of oleic acid and 80 ml of oleylamic acid are added as surfactants, mixed in a nitrogen stream at 220 ° C.
  • Catalyst 4 Pt-supported low-order titanium oxide
  • the primary particle size of the low-order titanium oxide was about 60 nm and was aggregated with an aggregate size of about 15 to 30 ⁇ m.
  • the particle size of platinum was about 140 nm.
  • the catalytic activity of the catalyst 4 was measured by the same method as in (2) of Example 1.
  • the effective specific surface area of Pt was 3.0 m 2 / g, the specific activity was 0.079 mA / cm 2 , and the mass activity was 0.0008 A / mg.
  • a catalyst having excellent oxidation stability and high conductivity when used as an electrode catalyst for a fuel cell, and a fuel cell including the same can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

 本発明の課題は、酸化安定性が高く、導電性が高い担体に金属触媒を担持させた触媒と、これを備える燃料電池を提供することである。 組成式TiO(式中、xは1.5<x<2の範囲である)で表され、かつ比表面積が50m/g以上である低次酸化チタンに、金属を担持してなる触媒。

Description

触媒およびこれを備える燃料電池
 本発明は、触媒およびこれを備える燃料電池に関する。
 従来、燃料電池の電極用触媒として比表面積が100m/g以上の導電性を有する炭素担体に白金または白金合金(例えば、白金-ルテニウム、白金-鉄)等の金属を担持させた触媒が用いられている(特許文献1、2参照)。
 近年、燃料電池は自動車用途での開発が進んでおり、走行中の加速および減速に対応できるように頻繁な起動と停止が求められている。しかしながら、燃料電池の起動と停止を繰り返すことにより、電極用の触媒を構成する炭素担体が酸化されるため、燃料電池の劣化が懸念される。かかる観点から炭素担体に代えて、チタン等の金属の窒化物または酸化物からなる炭素代替担体を用いた触媒が提案されている(特許文献3、非特許文献1、非特許文献2参照)。
特開2001-015121号公報 特開2006-127979号公報 特開2010-272248号公報
エレクトロケミストリー コミュニケーションズ(Electrochemistry Communications), 第7巻, 183-188頁(2005年) ジャーナル オブ ザ エレクトロケミカル ソサエティ(Journal of The Electrochemical Society), 第155巻(4号), B321-B326頁 (2008年)
 特許文献3の触媒は、金属を担持させる際に例えば270℃といった高温での処理を必要とするため、担体同士が凝集して大粒径化する。また、非特許文献1、2では、例えば1050℃と言った高温下での二酸化チタンの還元を必要とするため、同様に担体同士が凝集して大粒径化する。このように、従来知られている炭素代替担体を用いて触媒を製造する場合、担体が大粒径化するため比表面積が小さくなり、性能の向上が困難であった。
 したがって本発明の目的は、比表面積を高めた炭素代替担体を用いた触媒と、これを備える燃料電池を提供することである。
 本発明によれば、上記目的は、
[1]組成式TiO(式中のxは1.5<x<2の範囲である。)で表され、かつ比表面積が50m/g以上である低次酸化チタンに、金属を担持してなる触媒;
[2]前記金属が白金、金、パラジウム、銀、イリジウム、ロジウム及びルテニウムからなる群より選ばれる少なくとも1種を含有し、平均粒子径が0.1~10nmである[1]の触媒;
[3]前記金属の担持量が1~40質量%である[1]または[2]の触媒;
[4]前記[1]~[3]のいずれかの触媒を電極用触媒として備える燃料電池
を提供することにより達成される。
 本発明の触媒は、組成式TiO(式中のxは1.5<x<2の範囲である。)で表され、かつ比表面積が50m/g以上である低次酸化チタンを担体とすることで、燃料電池の電極用触媒として用いた場合に酸化安定性に優れ、また導電性が高い。
参考例1で得られた低次酸化チタンのX線回折スペクトルである。 参考例1で得られた低次酸化チタンのTEM写真である。 参考例1で得られた低次酸化チタンの窒素ガスの吸着等温線である。 参考例2で得られた低次酸化チタンのX線回折スペクトルである。 参考例2で得られた低次酸化チタンの窒素ガスの吸着等温線である。 実施例1で得られた触媒1のX線回折スペクトルである。 実施例1で得られた触媒1のTEM写真である。 実施例1で得られた触媒1のCV測定結果である。 実施例1で得られた触媒1の酸素還元反応測定結果である。 実施例2で得られた触媒2のCV測定結果である。 実施例2で得られた触媒2の酸素還元反応測定結果である。 比較例2で得られた触媒3のX線回折スペクトルである。 比較例2で得られた触媒3のTEM写真である。 比較例2で得られた触媒3のCV測定結果である。 比較例2で得られた触媒3の酸素還元反応測定結果である。 比較例3で得られた触媒4のTEM写真である。図中、円内で示す箇所などで白金の分散が不十分であると考えられる。
 本発明の触媒は、組成式TiO(式中、xは、1.5<x<2の範囲であり、1.6<x<1.9の範囲であるのが好ましい)で表される低次酸化チタン(以下、「低次酸化チタン」と称する)を、担体として用いる。なお、xは低次酸化チタンを充分に乾燥した後、熱重量分析装置に入れ、大気中で5℃/分の昇温速度で1000℃まで昇温することで二酸化チタンに酸化し、かかる酸化に伴う質量増加から求められる。また、低次酸化チタンは粒子状の組成物であることが好ましい。
 本発明で用いる低次酸化チタンは、比表面積が50m/g以上であり、好ましくは70m/g以上であり、より好ましくは90m/g以上である。比表面積が50m/g未満であると、金属の担持性能が不十分となる。比表面積の上限値は特に制限されないが、比表面積は通常250m/g以下であり、より典型的には200m/g以下である。低次酸化チタンの比表面積は、低次酸化チタンに金属を担持させる前に、低次酸化チタンの比表面積を測定することにより求められる。なお、低次酸化チタンの比表面積は、無作為にサンプリングした0.001g以上、好ましくは0.01g以上の低次酸化チタンを用いて、吸着等温線をBET法によって解析することにより測定される。
 本発明で用いる低次酸化チタンは、少なくとも一方がチタン含有電極である二つの電極間に水系媒体を流通させつつ、前記二つの電極から前記水系媒体にプラズマ放電することにより製造できる。プラズマ放電による低次酸化チタン生成のメカニズムは、水系媒体を挟んで対向した電極間に絶縁破壊電圧を超える電圧を印加することにより生じるプラズマにより溶融した電極中のチタンが、水系媒体に放散し、放散したチタンが水と反応すると同時に急冷されて低次酸化チタンが生成すると推定される。二つの電極間に水系媒体を流通させつつ、前記二つの電極から前記水系媒体にプラズマ放電することにより、生成した低次酸化チタンは、水系媒体に分散されて放電場より速やかに排出されるので、小粒径となり、この結果、本発明の触媒中の低次酸化チタンの比表面積が50m/g以上となる。
 チタン含有電極の材料としては、金属チタン、チタン合金、酸化チタンが挙げられる。なお、少なくとも一方の電極材料を、シリコン、錫などの典型金属;ジルコニウム、タングステンなどの遷移金属;などの異種金属を含むチタン合金とすると、得られる低次酸化チタンに前記異種金属またはその酸化物を含有させることができる。
 電極の形状に特に制限はなく、例えば棒状、針金状、板状、または中空部を有する形状などが挙げられる。中でも、二つ電極間に水系媒体を流通させる観点から、少なくとも一方がチューブ状などの中空部を有する形状であることが好ましい。二つの電極の形状や大きさは互いに異なっていてもよい。
 水系媒体を流通させる方向は特に制限されないが、水系媒体により排出された低次酸化チタンが放電場に戻ることを抑制するために、二つの電極間を一方向に向けて流通させてもよい。
 また、水系媒体を流通させる方法としては、少なくとも一方の電極を、チューブ状などの中空部を有する形状の電極(以下、「中空電極」と称する)として、水系媒体を中空電極の中空部を通じて注入及び/又は吸引することが好ましい。反応器内に設置した中空電極の中空部を通じて外部から水系媒体を注入するか、反応器内の水系媒体を中空電極の中空部を通じて吸引し系外に放出することで、中空電極を中心とした放射状の流れを発生させることができる。また二つの中空電極を用いて、一方の中空電極の中空部を通じて水系媒体を供給し、他方の中空電極の中空部を通じて水系媒体を吸引し、系外に放出してもよい。反応場に低次酸化チタンを残留させない観点から、中空電極の中空部を通じて水系媒体を吸引し、系外に放出することが好ましい。
 水系媒体を流通させる速度は、生成した低次酸化チタンが反応場に滞留しなければ、特に制限はなく、例えば、二つの電極の放電部の最短距離が0.1~2mmである場合は、1~200ml/分の範囲が好ましく、10~150ml/分の範囲がより好ましい。
 二つの電極間を流通させ、またプラズマ放電を行う放電場を形成する水系媒体は、水を50質量%以上含むことが好ましい。通常、水単独又は水と水溶性有機溶媒との混合液を使用する。水溶性有機溶媒としては、例えばエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオールなどのアルキレングリコール;ジエチレングリコール、テトラエチレングリコール、ポリエチレングリコールなどのポリアルキレングリコール;および前記アルキレングリコールまたはポリアルキレングリコールのモノアルキルエーテル(例えばモノメチルエーテル、モノエチルエーテル)等が挙げられる。水は、例えば、イオン交換水等を用いるのが好ましい。水系媒体は、本発明の目的を損なわない範囲であれば水溶性有機溶媒以外の成分を含有していてもよい。例えば、過酸化水素の添加や、水系媒体の温度により、得られる低次酸化チタンの組成を制御することができる。
 水系媒体の使用量に特に制限はないが、発熱を制御できる量であることが好ましい。
 二つの電極はプラズマ放電する位置(放電部)において二つの電極が最も近接するように配置することが好ましく、二つの電極の放電部の最短距離は、通常0.01~3mmであり、好ましくは0.1~2mmである。またかかる放電部はいずれも水系媒体中にあるように配置する。プラズマ放電のため電極間に印加する電流は、直流電流または交流電流のどちらでもよいが、操作性及び生産安定性の観点から、直流電流を用いることが好ましい。交流電流を用いる場合は、ダイオードを用いて整流してもよい。
 二つの電極間でプラズマ放電する電流に制限はなく、1~200Aの範囲が好ましく、低次酸化チタンの生成量、エネルギー効率の観点から、2~150Aの範囲がより好ましく、5~120Aの範囲がさらに好ましい。二つの電極間に印加する電圧に特に制限はないが、20~600Vの範囲が好ましく、工業生産性の観点から、60~500Vの範囲がより好ましく、80~400Vの範囲がさらに好ましい。
 プラズマ放電の方式は、連続プラズマ放電であってもパルスプラズマ放電であっても構わない。プラズマ放電の方式により、生成するプラズマの環境が異なるため、得られる低次酸化チタンの組成分布、粒径分布、結晶形態に変化が起こる。
 パルスプラズマ放電を与える場合、放電間隔に特に制限はないが、通常、0.01マイクロ秒~100ミリ秒が好ましく、0.1マイクロ秒~50ミリ秒がより好ましい。パルス間隔が短すぎると、生成する低次酸化チタンの分布がばらつく傾向となる。また、長すぎる放電間隔では、低次酸化チタンの生成量が著しく小さくなる傾向となる。
 パルスプラズマ放電1回あたりの放電持続時間は、電圧および電流によっても異なるが、通常1~2000マイクロ秒の範囲が好ましく、エネルギー効率の観点から、2~1000マイクロ秒の範囲がより好ましい。
 パルスプラズマ放電におけるパルス形状としては、正弦波、矩形波、三角波などが挙げられ、エネルギー効率の関連から、矩形波であるのが好ましい。
 プラズマ放電させる際の水系媒体の温度は、10~100℃の範囲が好ましい。100℃より高いと、水系媒体の蒸気圧が上がり、プラズマ放電が困難となる場合がある。また10℃より低いと、水系媒体の粘度が上昇して、反応性が下がるだけでなく、生成する低次酸化チタンの拡散性が低下する場合がある。
 上記した低次酸化チタンの製造方法は、減圧下、加圧下、常圧下のいずれの状態でも実施できる。安全性、操作性の観点から、窒素、アルゴンなどの不活性ガス雰囲気下で実施することが好ましい。
 上記の製造方法により生成する低次酸化チタンは、水性媒体中に分散した分散体として得られるので、当該分散体を、例えば、ろ過、遠心分離、水洗、乾燥することで、本発明で用いる低次酸化チタンを単離できる。
 本発明の触媒において、低次酸化チタンに担持している金属は、白金、金、パラジウム、銀、イリジウム、ロジウム及びルテニウムからなる群より選ばれる少なくとも1種を含有することが好ましい。該金属は合金であってもよく、酸素還元活性などの観点から、白金を含むことがより好ましく、例えば、白金、白金-ルテニウム合金、白金-鉄合金等が挙げられる。
 本発明の触媒において、低次酸化チタンに担持している金属は平均粒子径が0.1~10nmであることが好ましく、1~3nmであることがより好ましい。平均粒子径が0.1nm未満であると、低次酸化チタンからの脱離が容易となり、触媒の安定性が低くなる傾向がある。一方、10nmを超えると、金属の表面積が小さくなり、触媒活性が低下し、発電量が低下する原因となる。金属の平均粒子径は、透過型電子顕微鏡(TEM)の撮影像から測定される。平均粒子径は15nmを超えないことが好ましく、また、平均粒子径は0.1nm未満でないことが好ましい。
 低次酸化チタンは、金属を、通常1~40質量%の範囲で、好ましくは1.5~30質量%の範囲で担持する。担持量が1質量%未満であると、燃料電池の電極用触媒として用いた場合に低次酸化チタン質量あたりの発電量が低下する傾向がある。一方、40質量%を超えると、低次酸化チタンからの金属の脱離に伴う触媒活性の低下が起こりやすくなる。
 担体である低次酸化チタンに、金属を担持させる方法としては、例えば気相化学還元法、液相化学還元法、含浸-還元熱分解法、表面修飾コロイド熱分解還元法等が挙げられ、工業生産上の観点から、液相化学還元法が好ましい。液相化学還元法の原料となる金属化合物としては、例えば、塩酸塩、硝酸塩、硫酸塩などの金属の鉱酸塩;蟻酸塩、酢酸塩、酪酸塩などの金属の有機酸塩;アセチルアセトネートなどの有機配位子を有する金属錯体;などが挙げられ、塩化白金酸六水和物(HPtCl・6HO)やジニトロジアミン白金(Pt(NH(NO)を用いることが好ましい。
 液相化学還元法で用いる還元剤は特に制限されないが、低次酸化チタン上に余分な元素の添着を回避する観点から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオールなどのアルコール;メチルアミン、エチルアミン、プロピルアミン、2-プロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ヒドラジン、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタンなどのアミン;ヒドロキシルアミン、2-アミノエタノール、3-アミノプロパノールなどのアミノアルコールが好ましい。これらは1種を単独で用いても、複数種を併用してもよい。上記還元剤の使用量は、原料となる金属化合物に対して、好ましくは1~10000モル倍、より好ましくは1~8000モル倍、さらに好ましくは1~5000モル倍を使用する。
 液相化学還元法は、無溶媒で還元剤中で行っても、水及び還元剤の混合液中で行なってもよい。
 本発明の触媒は、金属と低次酸化チタンとの結着力を向上させる観点から、必要に応じて、熱処理を行なってもよい。熱処理は、不活性雰囲気下、酸化性雰囲気下、還元性雰囲気下のいずれで行なってもよいが、低次酸化チタンの酸化、金属のシンタリングを抑制する観点から、通常、不活性雰囲気下または還元性雰囲気下で行う。還元性雰囲気下としては、通常水素存在下に行い、通常不活性ガスの0.1~50体積%の水素を混合して行う。安全性を考慮して、0.1~20体積%の水素存在下に行うことがより好ましい。熱処理の温度は、100~1000℃の範囲が好ましく、200~800℃の範囲がより好ましく、250~700℃の範囲がさらに好ましい。
 本発明の触媒は、導電性を高める目的で、本発明の効果を損なわない範囲で導電性の炭素材料と混合して用いてもよい。導電性の炭素材料としては、例えば、アセチレンブラック、ケッチェンブラックなどが挙げられる。導電性の炭素材料を混合する場合、その量は通常、本発明の触媒に対して0.1~100質量%、好ましくは10~70質量%の範囲である。
 本発明の触媒を備えた燃料電池は、本発明の触媒を用いる以外は、公知の燃料電池の材料を用い、公知の燃料電池の製造方法に準じて製造できる。
 以下に実施例を挙げて、本発明をより詳細に説明するが、本発明は以下の実施例に限定されない。
 なお参考例において、低次酸化チタンの組成式TiOにおけるxの値は、低次酸化チタンを充分に乾燥した後、熱重量分析装置に入れ、大気中で5℃/分の昇温速度で1000℃まで昇温することで二酸化チタンに酸化し、かかる酸化に伴う質量増加から求めた。
 低次酸化チタンの比表面積は、窒素ガスの吸着等温線を測定し、BET法で解析することにより求めた。具体的には、約0.1gの試料を入れたサンプル管を、減圧下、200℃、12時間乾燥させ、乾燥後の質量を測定した。次いで試料を比表面積計(日本ベル(株)製、BELSORP-miniII)に装着して液体窒素に浸漬し、冷却完了後、吸着ガスとして窒素を用いて吸着等温線を測定した。得られた吸着等温線をBET等温線に変換し、BET等温線の近似直線の傾きと質量から比表面積を算出した。
 担持した金属の平均粒子径は透過型電子顕微鏡(TEM)による写真から求めた。具体的には、担持した20個の金属の粒子径を測定し、その平均を算出した。なお、粒子径は、写真における金属の形状が円形のものはその直径を粒子径とし、楕円形のものは短径と長径の平均値を粒子径とした。
(参考例1)
 反応器(幅150mm、奥行き70mm、高さ50mm)の底部にチタン金属(純度99%以上)の板状電極(幅15mm、長さ100mm、厚み1mm)を固定した。板状電極の上部0.5mmの位置にチタン金属(純度99%以上)の中空電極(外径6mm、内径4mm、長さ100mm)を設置した。板状電極の上部端面から少なくとも20mm上が液面になるように反応器に80℃の水をいれた。反応器を恒温バスに浸漬し、水温を80℃で保持した。あらかじめ80℃に予熱した水を反応器に20ml/分で供給し、一方、中空電極からは20ml/分(液線速15.9mm/分)で反応器内の水を吸引し、放電場の水を置換できるようにした。
 電極間に320Vの矩形のパルス電圧を印加し、放電時間2マイクロ秒、放電間隔1024マイクロ秒、放電電流5Aでパルスプラズマ放電させた。放電開始後、中空電極から吸引した水に黒色粒子が含まれることを確認した。パルスプラズマ放電を2時間行い、得られた黒色粒子を含む水をろ過し、黒色粒子を回収した。
 水70mlを入れた100mlビーカーに回収した黒色粒子を入れ、超音波分散器を用いて分散させた後、30分間静置し、沈殿した大きな粒子をデカンテーションで取り除いた。浮遊していた黒色粒子をろ過で回収し、60℃にて3時間熱風乾燥し、黒色粒子1.32gを得た。
 得られた黒色粒子の熱重量分析を行ったところ、低次酸化チタン(組成式:TiOx(x=1.76)であることが確認できた。図1に示すX線回折スペクトルでは、亜酸化チタンに特徴的なピークが観察された。得られた低次酸化チタンのTEM写真を図2に示す。得られた低次酸化チタンは粒子径が5~20nmであった。図3に得られた低次酸化チタンの窒素ガスの吸着等温線を示す(縦軸は窒素の吸着量(標準状態(0℃、1atm)において吸着した量の窒素が占める体積(cm(STP)g-1))、横軸は平衡圧力を飽和蒸気圧で割った相対圧(P/P0)である)。この吸着等温線をBET法で解析した結果、比表面積は92m/gであった。
(参考例2)
 反応器(幅150mm、奥行き70mm、高さ50mm)の底部にチタン金属(純度99%以上)の板状電極(幅15mm、長さ100mm、厚み1mm)を固定した。板状電極の上部にチタン金属(純度99%以上)の中空電極(外径6mm、内径4mm、長さ100mm)を設置した。板状電極の上部端面から少なくとも20mm上が液面になるように反応器に25℃の水をいれた。反応器を恒温バスに浸漬し、水温を25℃で保持した。あらかじめ25℃に調整した水を、反応器に12ml/分で供給し、一方、中空電極からは12ml/分で反応器内の水を吸引し、放電場の水を置換できるようにした。
 電極間に320Vの矩形のパルス電圧を印加し、放電時間1024マイクロ秒、放電間隔1024マイクロ秒、放電電流は5Aでパルスプラズマ放電させた。放電開始後、中空電極から吸引した水に黒色粒子が含まれることを確認した。パルスプラズマ放電を2時間行い、得られた黒色粒子を含む水をろ過し、黒色粒子を回収した。水70mlを入れた100mlビーカーに回収した黒色粒子を入れ、超音波分散器を用いて分散させた後、30分間静置し、沈殿した大きな粒子をデカンテーションで取り除いた。浮遊する黒色粒子をろ過で回収し、60℃にて3時間熱風乾燥し、黒色粒子1.67gを得た。
 得られた黒色粒子の熱重量分析を行ったところ、低次酸化チタン(組成式:TiOx(x=1.88)であることが確認できた。図4に示すX線回折スペクトルでは亜酸化チタンに特徴的なピークが観察された。図5に得られた低次酸化チタンの窒素ガスの吸着等温線を示す(縦軸は窒素の吸着量(標準状態(0℃、1atm)において吸着した量の窒素が占める体積(cm(STP)g-1))、横軸は平衡圧力を飽和蒸気圧で割った相対圧(P/P0)である)。この吸着等温線をBET法で解析した結果、比表面積は60m/gであった。
[実施例1]
(1) 塩化白金酸(2質量%水溶液)8mlおよび水82mlをガラス製の反応器に入れて混合した。次いで、水10ml中に超音波分散器を用いて分散させた低次酸化チタン(組成式TiOx(x=1.88))150mg(比表面積60m/g)を添加し撹拌した。この混合液にメタノール100mlを添加した後、ラバーヒーターを用いて70℃に加熱して3時間撹拌した。この反応液をろ過して、回収した粒子を水に分散させた後、ろ過する操作を数回行って洗浄した。次いで、熱風乾燥機にて60℃、1時間乾燥し、白金(Pt)担持低次酸化チタン(以下、「触媒1」と称する)を得た。
 得られた触媒1のPt担持量を誘導結合プラズマ法ICP発光分析で測定した。10mgの触媒1を10mlの王水に添加しPtを溶解させ、この溶液をICP発光分析装置に導入し、溶液中のPt濃度を測定した。溶解させた触媒1の重量と得られたPt濃度の比から求めたPt担持量は30質量%であった。
 触媒1のX線回折スペクトルを図6に示す(縦軸は強度、横軸は2θである)。45°付近のPt由来のピークをシェラーの式に適用した結果、Ptの結晶子径は7.8nmであった。図7に示した触媒1のTEMイメージから、担持されたPtの平均粒子径は5~10nmであった。
(2) Pt重量が4mgになるように秤量した触媒1をヘキサノール10mlに添加し、これを氷浴で30分分散させた液をグラッシーカーボン上に10マイクロリットル滴下した。滴下後、室温で10時間乾燥、さらに10分間減圧乾燥した。乾燥後、0.1wt%ナフィオン―エタノール分散液7マイクロリットルを触媒の滴下位置に滴下した。これを室温で10分乾燥して電極(以下、「電極1」と称する)を得た。回転電極を用いたサイクリックボルタンメトリ(CV)法で、上記で得られた電極1の触媒活性を測定した。電解液として0.1mol/lの過塩素酸水溶液を用い、対極に白金線を、参照極に標準水素電極を用いて0.045~1.2Vの範囲の電位を、0.05V/秒で走査した。CV法の測定結果を図8に示す(縦軸は電流量、横軸は標準水素電極の電位に対する電極1の電位(以下、「相対電位」と称する)である)。0.045V~0.4Vにおける水素脱着に起因するピーク面積から求めた電極1におけるPtの有効比表面積は2.1m/gであった。0.045V~1Vの範囲で走査した酸素還元電流値の測定結果を図9に示す(縦軸は電流量、横軸は相対電位である)。Ptの有効比表面積あたりの0.9Vにおける酸素還元電流値(比活性)が1.2mA/cm、触媒1の単位質量あたりの0.9Vにおける酸素還元電流値(質量活性)が0.026A/mgであった
[実施例2]
(触媒の製造)
 実施例1の(2)で得られた触媒1に対して70質量%のケッチェンブラックを混合した(以下「触媒2」と称する)。触媒1に代えて触媒2を使用した以外は、実施例1の(2)と同様に触媒活性を測定した。CV法の測定結果を図10(縦軸は電流量、横軸は相対電位である)、酸素還元反応の測定結果を図11(縦軸は電流量、横軸は相対電位である)に示す。Ptの有効比表面積は10.4m/g、比活性は1.4mA/cm、質量活性が0.15A/mgであった。炭素の添加で導電性が向上し、市販のPt50質量%担持炭素よりも高い活性を示した。
[比較例1]
 触媒1に代えてPt50質量%担持炭素(田中貴金属社製、比表面積800m/g)を使用した以外は実施例1の(2)と同様にして、燃料電池用の電極としての触媒活性を測定した。この結果、比活性は0.20mA/cm、質量活性は0.13A/mgであった。このことは、低次酸化チタンを担体として用いることで高い比活性が得られることを示している。
[比較例2]
(1) 比表面積が0.3m/gであるATRAVERDA社製低次酸化チタン(組成式TiOx(x=1.75))を用い、実施例1の(1)と同様にしてPt担持低次酸化チタン(以下、「触媒3」と称する)を得た。
 触媒3のPt担持量は誘導結合プラズマ法で確認したところ、30質量%であった。X線回折スペクトルを図12に示す(縦軸は強度、横軸は2θである)。45°付近のPt由来のピークをシェラーの式に適用した結果、Ptの結晶子径は7.8nmであった。また図13に示した触媒3のTEM写真から求めた、担持されたPtの平均粒子径は5~10nmであった。
(2) 実施例1の(2)と同様の方法で触媒3の触媒活性を測定した。CV測定の結果を図14(縦軸は電流量、横軸は相対電位である)、酸素還元反応の測定結果を図15(縦軸は電流量、横軸は相対電位である)に示す。Ptの有効比表面積は1.0m/g、比活性は0.80mA/cm、質量活性は0.008A/mgであった。
[比較例3]
(1) 100mlのフラスコにて、2.78gの硫酸チタンを水に溶解させて、24質量%の水溶液を調製したのち、29.5mlの水でさらに希釈した。該希釈した水溶液を入れたフラスコを、水を張った超音波噴霧器を備えたトレー内に設置し、フラスコに超音波を照射してフラスコ内の水溶液からミストを発生させた。上記フラスコ内にアルゴンガスを流し、上記ミストを熱プラズマ反応炉(日本電子製、HF-HS97019)内に導入した。プラズマの出力は0.6kWとし、プラズマ内を通過したミストをイオン交換水に通し、ミスト内の粉末を上記イオン交換水内に捕集した。粉末を捕集したイオン交換水をろ過して、粉末1.02gを得た。得られた粉末を水素中1100℃にて還元し、0.89gの固体を得た。得られた固体をX線構造解析し、構造式:Ti(組成式:TiOx、x=1.75)で示される低次酸化チタンであることを確認した。得られた低次酸化チタン54.5mgをジフェニルエーテル2.5mlに入れ、超音波分散機にて30分間混合し、上記低次酸化チタンの分散液を調製した。
 また、白金アセチルアセトナート50.6mg及びヘキサデカンジオール260mgをジフェニルエーテル10mlに入れ、110℃窒素気流中で30分間混合し、白金錯体を含む溶液を調製した。かかる溶液に界面活性剤として85mlのオレイン酸及び80mlのオレイルアミン酸を加え、窒素気流中で220℃にて30分間混合したのち、1mlの水素化トリエチルホウ素リチウムテトラヒドロフラン溶液をさらに加え、窒素気流中で270℃にて30分間混合し、白金微粒子の分散液を調製した。
 得られた白金微粒子の分散液を200℃まで徐冷し、上記した低次酸化チタンの分散液を混合したのち、再び270℃まで昇温し、窒素気流中で30分間混合した。かかる混合液を室温にてろ過し、得られた粉末をエタノールで洗浄した。かかる粉末を60℃にて乾燥後、電気炉にて400℃にて加熱処理によって有機物を除去して、Pt担持低次酸化チタン(以下、「触媒4」と称する)を得た。
 触媒4をTEM観察したところ、低次酸化チタンの一次粒径は60nm程度であり、15~30μm程度の凝集径で凝集していた。また、白金の粒径は140nm程度であった。
(2) 実施例1の(2)と同様の方法で触媒4の触媒活性を測定した。Ptの有効比表面積は3.0m/g、比活性は0.079mA/cm、質量活性は0.0008A/mgであった。
 本発明によれば、燃料電池用の電極用触媒として用いた場合の、酸化安定性に優れ、導電性が高い触媒と、これを備える燃料電池を提供できる。
 本出願は、日本で出願された特願2012-68346(出願日:2012年3月23日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (4)

  1.  組成式TiO(式中のxは1.5<x<2の範囲である)で表され、かつ比表面積が50m/g以上である低次酸化チタンに、金属を担持してなる触媒。
  2.  前記金属が白金、金、パラジウム、銀、イリジウム、ロジウム及びルテニウムからなる群より選ばれる少なくとも1種を含有し、平均粒子径が0.1~10nmである請求項1に記載の触媒。
  3.  前記金属の担持量が1~40質量%である請求項1または2に記載の触媒。
  4.  請求項1~3のいずれか1項に記載の触媒を電極用触媒として備える燃料電池。
PCT/JP2013/056683 2012-03-23 2013-03-11 触媒およびこれを備える燃料電池 WO2013141063A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014506145A JP6086258B2 (ja) 2012-03-23 2013-03-11 触媒およびこれを備える燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-068346 2012-03-23
JP2012068346 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141063A1 true WO2013141063A1 (ja) 2013-09-26

Family

ID=49222523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056683 WO2013141063A1 (ja) 2012-03-23 2013-03-11 触媒およびこれを備える燃料電池

Country Status (2)

Country Link
JP (1) JP6086258B2 (ja)
WO (1) WO2013141063A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146490A1 (ja) * 2014-03-25 2015-10-01 国立大学法人横浜国立大学 酸素還元触媒及びその製造方法
CN107073466A (zh) * 2014-11-28 2017-08-18 昭和电工株式会社 催化剂载体及其制造方法
WO2018096851A1 (ja) * 2016-11-22 2018-05-31 堺化学工業株式会社 電極材料及びその製造方法
WO2018159420A1 (ja) * 2017-03-01 2018-09-07 堺化学工業株式会社 導電性材料及び電極材料
WO2019003788A1 (ja) * 2017-06-30 2019-01-03 三井金属鉱業株式会社 担体付き触媒及びその製造方法
JP2019171331A (ja) * 2018-03-29 2019-10-10 堺化学工業株式会社 貴金属触媒の製造方法及び貴金属触媒
CN112064084A (zh) * 2020-08-06 2020-12-11 陕西科技大学 金属单原子亚氧化钛电极的制备方法
WO2021172059A1 (ja) 2020-02-27 2021-09-02 三井金属鉱業株式会社 燃料電池用電極触媒層及び該電極触媒層を備えた固体高分子形燃料電池
WO2021235240A1 (ja) * 2020-05-19 2021-11-25 堺化学工業株式会社 アンモニア合成触媒及びアンモニアの製造方法
JPWO2022210700A1 (ja) * 2021-03-31 2022-10-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082399B (zh) * 2016-06-01 2018-12-25 深圳市大净环保科技有限公司 一种电化学高级氧化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502980A (ja) * 1988-11-17 1992-05-28 フィジカル サイエンシーズ インコーポレーテッド 電気触媒、その製造方法、それから製造される電極及びそれらの使用方法
JP2002255554A (ja) * 2000-01-31 2002-09-11 Kankyo Device Kenkyusho:Kk 可視光応答材料及びその製造方法
JP2004137087A (ja) * 2002-10-15 2004-05-13 Japan Science & Technology Agency 新規な低次酸化チタンおよびその製造方法
WO2005102521A1 (ja) * 2004-04-20 2005-11-03 Sumitomo Metal Industries, Ltd. 酸化チタン系光触媒とその製造方法、およびその利用
JP2008077999A (ja) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd 電気化学電極に用いる触媒ならびにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502980A (ja) * 1988-11-17 1992-05-28 フィジカル サイエンシーズ インコーポレーテッド 電気触媒、その製造方法、それから製造される電極及びそれらの使用方法
JP2002255554A (ja) * 2000-01-31 2002-09-11 Kankyo Device Kenkyusho:Kk 可視光応答材料及びその製造方法
JP2004137087A (ja) * 2002-10-15 2004-05-13 Japan Science & Technology Agency 新規な低次酸化チタンおよびその製造方法
WO2005102521A1 (ja) * 2004-04-20 2005-11-03 Sumitomo Metal Industries, Ltd. 酸化チタン系光触媒とその製造方法、およびその利用
JP2008077999A (ja) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd 電気化学電極に用いる触媒ならびにその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. CHEN ET AL.: "Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 149, no. 8, pages A1092 - A1099 *
TSUTOMU IOROI ET AL.: "Sanso Kessongata Titanium Sankabutsukei Tantai o Mochiita PEFC Cathode Shokubai", 2011 NEN ABSTRACTS OF AUTUMN MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 9 September 2011 (2011-09-09), pages 55 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146490A1 (ja) * 2014-03-25 2017-04-13 国立大学法人横浜国立大学 酸素還元触媒及びその製造方法
US10050282B2 (en) 2014-03-25 2018-08-14 National University Corporation Yokohama National University Oxygen reduction catalyst and production method therefor
WO2015146490A1 (ja) * 2014-03-25 2015-10-01 国立大学法人横浜国立大学 酸素還元触媒及びその製造方法
CN107073466A (zh) * 2014-11-28 2017-08-18 昭和电工株式会社 催化剂载体及其制造方法
JPWO2018096851A1 (ja) * 2016-11-22 2019-10-17 堺化学工業株式会社 電極材料及びその製造方法
WO2018096851A1 (ja) * 2016-11-22 2018-05-31 堺化学工業株式会社 電極材料及びその製造方法
CN109952675B (zh) * 2016-11-22 2022-08-26 堺化学工业株式会社 电极材料及其制造方法
GB2570590B (en) * 2016-11-22 2022-03-16 Sakai Chemical Industry Co Electrode material and method for producing same
CN109952675A (zh) * 2016-11-22 2019-06-28 堺化学工业株式会社 电极材料及其制造方法
GB2570590A (en) * 2016-11-22 2019-07-31 Sakai Chemical Industry Co Electrode material and method for producing same
CN110383394A (zh) * 2017-03-01 2019-10-25 堺化学工业株式会社 导电性材料和电极材料
KR20190126058A (ko) 2017-03-01 2019-11-08 사카이 가가쿠 고교 가부시키가이샤 도전성 재료 및 전극 재료
DE112018001103T5 (de) 2017-03-01 2020-01-02 Sakai Chemical Industry Co., Ltd. Elektrisch leitendes material und elektrodenmaterial
US11094944B2 (en) 2017-03-01 2021-08-17 Sakai Chemical Industry Co., Ltd. Electrically conductive material and electrode material
JP2018147569A (ja) * 2017-03-01 2018-09-20 堺化学工業株式会社 導電性材料及び電極材料
WO2018159420A1 (ja) * 2017-03-01 2018-09-07 堺化学工業株式会社 導電性材料及び電極材料
JP7183158B2 (ja) 2017-06-30 2022-12-05 三井金属鉱業株式会社 担体付き触媒及びその製造方法
WO2019003788A1 (ja) * 2017-06-30 2019-01-03 三井金属鉱業株式会社 担体付き触媒及びその製造方法
JPWO2019003788A1 (ja) * 2017-06-30 2020-04-30 三井金属鉱業株式会社 担体付き触媒及びその製造方法
JP7222179B2 (ja) 2018-03-29 2023-02-15 堺化学工業株式会社 貴金属触媒の製造方法及び貴金属触媒
JP2019171331A (ja) * 2018-03-29 2019-10-10 堺化学工業株式会社 貴金属触媒の製造方法及び貴金属触媒
WO2021172059A1 (ja) 2020-02-27 2021-09-02 三井金属鉱業株式会社 燃料電池用電極触媒層及び該電極触媒層を備えた固体高分子形燃料電池
WO2021235240A1 (ja) * 2020-05-19 2021-11-25 堺化学工業株式会社 アンモニア合成触媒及びアンモニアの製造方法
CN112064084B (zh) * 2020-08-06 2022-10-25 陕西科技大学 金属单原子亚氧化钛电极的制备方法
CN112064084A (zh) * 2020-08-06 2020-12-11 陕西科技大学 金属单原子亚氧化钛电极的制备方法
JPWO2022210700A1 (ja) * 2021-03-31 2022-10-06
JP7255769B2 (ja) 2021-03-31 2023-04-11 堺化学工業株式会社 導電性材料

Also Published As

Publication number Publication date
JP6086258B2 (ja) 2017-03-01
JPWO2013141063A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6086258B2 (ja) 触媒およびこれを備える燃料電池
JP6352955B2 (ja) 燃料電池用電極触媒、及び燃料電池用電極触媒の製造方法
Guo et al. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology
Gao et al. One-pot synthesis of branched palladium nanodendrites with superior electrocatalytic performance
Mezni et al. Cathodically activated Au/TiO2 nanocomposite synthesized by a new facile solvothermal method: an efficient electrocatalyst with Pt-like activity for hydrogen generation
El-Deeb et al. Microwave-assisted polyol synthesis of PtCu/carbon nanotube catalysts for electrocatalytic oxygen reduction
WO2018159644A1 (ja) PdRu固溶体ナノ粒子、その製造方法及び触媒、PtRu固溶体ナノ粒子の結晶構造を制御する方法、並びにAuRu固溶体ナノ粒子及びその製造方法
JP5451083B2 (ja) 白金ブラック粉末及び白金ブラックのコロイド並びにそれらの製造方法
Kim et al. The plasma-assisted formation of Ag@ Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction
Ghosh et al. Shape-regulated high yield synthesis of electrocatalytically active branched Pt nanostructures for oxygen reduction and methanol oxidation reactions
Hong et al. Scalable synthesis of Cu-based ultrathin nanowire networks and their electrocatalytic properties
CN111465447B (zh) 制备负载型铂颗粒的方法
JP2008049336A (ja) 金属担持触媒の製法
Reddy et al. Halide-aided controlled fabrication of Pt–Pd/graphene bimetallic nanocomposites for methanol electrooxidation
Xu et al. Surface plasmon enhanced ethylene glycol electrooxidation based on hollow platinum-silver nanodendrites structures
JP4852751B2 (ja) 金属ナノワイヤーの製造方法
JP2024037730A (ja) ケトン類およびカルボン酸類の製造方法、燃料電池、並びにエネルギー回収システム
EP3942636B1 (en) Method for preparation of a supported noble metal-metal alloy composite, and the obtained supported noble metal-metal alloy composite
KR20190130124A (ko) 전극 재료 및 그 용도
US20140038811A1 (en) Metal oxide-platinum compound catalyst and method for producing same
JPWO2015146454A1 (ja) 電極触媒および電極触媒の製造方法
EP3730212A1 (en) Precious metal and precious metal alloy nanoparticles having a bimodal size distribution
RU2428769C1 (ru) Способ приготовления биметаллического катализатора (варианты) и его применение для топливных элементов
JPWO2014069208A1 (ja) 白金コアシェル触媒、その製造方法及びそれを用いた燃料電池
Inwatia et al. Single step aqueous synthesis of unsupported PtNi nanoalloys using flower extract as reducing agent and their compositional role to enhance electrocatalytic activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764455

Country of ref document: EP

Kind code of ref document: A1