WO2018159420A1 - 導電性材料及び電極材料 - Google Patents

導電性材料及び電極材料 Download PDF

Info

Publication number
WO2018159420A1
WO2018159420A1 PCT/JP2018/006292 JP2018006292W WO2018159420A1 WO 2018159420 A1 WO2018159420 A1 WO 2018159420A1 JP 2018006292 W JP2018006292 W JP 2018006292W WO 2018159420 A1 WO2018159420 A1 WO 2018159420A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
conductive material
electrode
titanium
firing
Prior art date
Application number
PCT/JP2018/006292
Other languages
English (en)
French (fr)
Inventor
矢野 誠一
裕司 堤
美保 岸
啓宏 植村
麻友 太田
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to GB1909436.6A priority Critical patent/GB2574943B/en
Priority to CN201880015218.0A priority patent/CN110383394B/zh
Priority to DE112018001103.8T priority patent/DE112018001103T5/de
Priority to KR1020197022834A priority patent/KR102501563B1/ko
Priority to US16/476,502 priority patent/US11094944B2/en
Priority to CA3048980A priority patent/CA3048980A1/en
Publication of WO2018159420A1 publication Critical patent/WO2018159420A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/043Titanium sub-oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a conductive material and an electrode material. More specifically, the present invention relates to a conductive material, an electrode material and a fuel cell using the same, and a method for manufacturing the conductive material.
  • a fuel cell is a device that generates electric power by electrochemically reacting a fuel such as hydrogen or alcohol with oxygen, and depending on the electrolyte, operating temperature, etc., polymer electrolyte (PEFC), phosphoric acid (PAFC), It is divided into molten carbonate form (MCFC) and solid oxide form (SOFC).
  • PEFC polymer electrolyte
  • PAFC phosphoric acid
  • MCFC molten carbonate form
  • SOFC solid oxide form
  • solid polymer fuel cells are used in stationary power sources and fuel cell vehicle applications, and are required to maintain desired power generation performance over a long period of time.
  • a polymer electrolyte fuel cell is a fuel cell that uses an ion conductive polymer membrane (ion exchange membrane) as an electrolyte.
  • a catalyst in which platinum (Pt) is supported on carbon as a conductive material is used as an electrode. in use.
  • an oxidation reaction of carbon constituting the electrode catalyst C + 2H 2 O ⁇ CO 2
  • + 4H + + 4e ⁇ may proceed.
  • the cathode potential is 0.9 V or more, the oxidation reaction of carbon is likely to proceed.
  • Patent Document 1 A technique using single crystal Ti 4 O 7 has also been proposed (see Non-Patent Document 1).
  • carbon is generally used as the conductive material used for the electrode.
  • corrosion due to the progress of the oxidation reaction of carbon has been a problem.
  • the conductive material is required to have resistance to the strongly acidic environment.
  • no conductive material that can replace carbon and can withstand a high potential and a strong acidic environment has not been found so far.
  • titanium oxide having high resistance in a high potential and strong acidic environment, particularly titanium suboxide, particularly Ti 4 O 7 has high conductivity (also referred to as electronic conductivity), so that it can be used as an inexpensive carbon.
  • high conductivity also referred to as electronic conductivity
  • single crystal Ti 4 O 7 has the same conductivity as carbon (see Non-Patent Document 1).
  • a noble metal such as platinum on Ti 4 O 7
  • the specific surface area is set to 10 m 2 / g or more, the conductivity decreases. It was found that there was a problem (see Comparative Example 5 described later).
  • Patent Document 1 a metal is supported on low-order titanium oxide represented by a composition formula TiO x (x is in a range of 1.5 ⁇ x ⁇ 2) and having a specific surface area of 50 m 2 / g or more.
  • a catalyst is described. This catalyst is black particles. However, even this catalyst has insufficient conductivity, and no conductive material that can replace carbon has been found.
  • the present invention has been made in view of the above-described situation, and an object thereof is to provide a conductive material that is excellent in resistance to a high potential and strongly acidic environment and has high conductivity, an electrode material using the same, and a fuel cell. Another object of the present invention is to provide a production method for easily and easily obtaining such a conductive material.
  • the oxygen defects of the titanium suboxide powder are not necessarily uniform throughout the powder. That is, even if the average oxygen defect of the entire titanium suboxide granular material is sufficient, the oxygen defect on the very surface of the particle is insufficient. This may be due to the possibility that the outermost surface of particles in contact with air or moisture is reoxidized and has no oxygen defects. And what was made by a known method is based on the assumption that the oxygen deficiency on the surface is insufficient and the conductivity is lowered, and it is determined that both the surface and the inside of the granular material are constant. It has been found that those having an oxygen defect have a specific color tone and exhibit high conductivity.
  • a conductive material comprising a titanium suboxide granular material represented by a predetermined composition formula, having a rutile crystal phase as a main phase, and having a lightness L * in the L * a * b * color system in a predetermined range. Then, it has been found that it has high conductivity even under severe use conditions such as high potential and strong acid environment, and is useful as an alternative material for carbon.
  • such a conductive material includes a step of firing a raw material containing titanium oxide having a specific surface area of 20 m 2 / g or more in a reducing atmosphere and then firing at 500 ° C. or more in an ammonia atmosphere, or the raw material Has been found to be able to be easily and easily produced by a production method including a step of baking in a reducing atmosphere in which ammonia is present, and the present inventors have completed the present invention.
  • the present invention is a conductive material comprising titanium suboxide powder, and the titanium suboxide powder has a composition of TiO n (n is a number of 1.5 or more and 1.90 or less. And a rutile crystal phase as a main phase, and a lightness L * in the L * a * b * color system is 35 to 45.
  • the present invention is also a method for producing the conductive material, wherein the production method includes calcining a raw material containing titanium oxide having a specific surface area of 20 m 2 / g or more in a reducing atmosphere, and then in an ammonia atmosphere. It is also a method for producing a conductive material including a step of baking at 500 ° C. or higher, or a step of baking the raw material in a reducing atmosphere in which ammonia exists.
  • the present invention is also an electrode material having a structure in which a noble metal and / or an oxide thereof is supported on the conductive material.
  • the electrode material is preferably an electrode material for a polymer electrolyte fuel cell.
  • the present invention is also a fuel cell comprising an electrode composed of the above electrode material.
  • the conductive material of the present invention can sufficiently withstand a high potential and strong acid environment, and has high conductivity. Therefore, it is extremely useful as a conductive material used for fuel cells such as solid polymer fuel cells, electrodes for display devices such as solar cells, transistors and liquid crystals, antistatic agents, heat ray shielding materials and the like. An electrode material using this conductive material is also useful for various applications, and in particular, it is useful for a polymer electrolyte fuel cell. Since the method for producing a conductive material of the present invention can provide such a conductive material easily and simply, it can be said to be an industrially extremely advantageous technique.
  • FIG. 2 is a powder X-ray diffraction pattern of Powder 1 obtained in Example 1.
  • FIG. 2 is a powder X-ray diffraction pattern of Powder 2 obtained in Example 2.
  • FIG. 3 is a powder X-ray diffraction pattern of powder 3 obtained in Example 3.
  • FIG. 4 is a powder X-ray diffraction pattern of powder 4 obtained in Example 4.
  • FIG. 4 is a powder X-ray diffraction pattern of powder 5 obtained in Example 5.
  • 3 is a powder X-ray diffraction pattern of the powder c1 obtained in Comparative Example 1.
  • 4 is a powder X-ray diffraction pattern of powder c2 obtained in Comparative Example 2.
  • 4 is a powder X-ray diffraction pattern of powder c3 obtained in Comparative Example 3.
  • 4 is a powder X-ray diffraction pattern of powder c4 obtained in Comparative Example 4.
  • 7 is a powder X-ray diffraction pattern of powder c5 obtained in Comparative Example 5.
  • 7 is a powder X-ray diffraction pattern of powder c6 obtained in Comparative Example 6.
  • the conductive material of the present invention comprises titanium suboxide powder. That is, it is powdery and / or granular (particulate) titanium suboxide.
  • the titanium suboxide granular material has a composition represented by TiO n (n represents a number of 1.5 or more and 1.90 or less), and two types of titanium suboxide powder satisfying this composition are used.
  • the mixture containing the above may be sufficient. It is not until the synergistic effect of the titanium suboxide granular material that is expressed by such a composition and satisfies the crystal structure and the lightness L * value described later that the conductivity is remarkably improved, and a high potential and strong acid environment is achieved. The resistance is excellent.
  • n is a number that satisfies 1.5 ⁇ n ⁇ 1.90.
  • the conductivity may be remarkably lowered, and there is a possibility that it cannot sufficiently withstand a high potential and strong acid environment.
  • it is preferably 1.60 ⁇ n ⁇ 1.90, more preferably 1.70 ⁇ n ⁇ 1.85, and still more preferably 1.70 ⁇ n ⁇ 1.80.
  • the value of n in the composition TiO n of the titanium suboxide granular material can be calculated by measuring the weight change before and after the heat treatment of the granular material by the following procedure. That is, a predetermined amount of titanium suboxide powder is removed in advance by using a dryer (for example, Yamato Kagaku Co., Ltd., blown constant temperature thermostat, DKM600) for 1 hour at 100 ° C., and about 1 g Using an electronic balance (for example, Shimadzu Corporation, Analytical Balance, ATX224) in a magnetic crucible, weigh to the order of 0.1 mg, and further an electric furnace (for example, a tabletop electric furnace, NHK-120H, manufactured by Nippon Ceramic Science Co., Ltd.).
  • a dryer for example, Yamato Kagaku Co., Ltd., blown constant temperature thermostat, DKM600
  • an electronic balance for example, Shimadzu Corporation, Analytical Balance, ATX224
  • an electric furnace for example, a tabletop electric furnace, NHK-120H
  • the crucible after the heat treatment is transferred into a glass desiccator and allowed to cool to room temperature, and then weighed again to the order of 0.1 mg. Therefore, the weight increment before and after the heat treatment corresponds to the amount of oxygen defects from TiO 2 .
  • the titanium suboxide granular material has a rutile crystal phase as a main phase.
  • the main phase is an anatase type or brookite type crystal phase other than the rutile type
  • the powder physical properties may be changed due to a phase transition in a high potential and strong acid environment. That is, the rutile type crystal phase having a certain amount of oxygen defects has a stable crystal structure and the amount of oxygen defects in both the entire granular body and the surface is in an optimum range, so that it is high even when the specific surface area is relatively high. Since it has electrical conductivity and is excellent in durability in a high potential and strong acid environment, it is suitable for electrode materials and solid polymer fuel cell applications described later.
  • the titanium suboxide granular material has a lightness L * in the L * a * b * color system of 35 to 45.
  • L * is an index indicating the amount of oxygen defects on the surface of the granular material. If L * exceeds 45, it is considered that the amount of oxygen defects on the surface of the granular material is insufficient, and the conductivity is significantly reduced. There is a risk.
  • L * is smaller than 35, the rutile-type crystal phase cannot be maintained, and the conductivity may be lowered. There is also a possibility that it cannot sufficiently withstand a high potential and strong acid environment. From the viewpoint of further improving the conductivity, L * is preferably 35.0 or more and 43.0 or less, more preferably 35.0 or more and 41.0 or less.
  • the titanium suboxide granular material preferably has a content of metal elements other than Ti of less than 0.2% by mass. Thereby, the possibility that metal elements other than Ti are eluted when using the conductive material can be sufficiently eliminated, and the performance derived from the conductive material of the present invention is more exhibited.
  • metal elements other than Ti can be measured by XRF (fluorescence X-ray analysis) or ICP (inductively coupled plasma emission analysis).
  • the “metal element” includes a metalloid atom such as silicon.
  • the titanium suboxide granular material preferably has a volume resistance (also referred to as a volume resistivity) of 10.0 ⁇ ⁇ cm or less. It means that it is excellent in electroconductivity, so that volume resistance is low. More preferably, it is 1.0 ohm * cm or less, More preferably, it is 0.1 ohm * cm or less. In the present specification, the volume resistance can be obtained by the method described in Examples described later.
  • the titanium suboxide powder may be doped with nitrogen within a range in which the crystal structure does not change with baking in an ammonia atmosphere. Specifically, it is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the conductive material of the present invention is obtained by firing a raw material containing titanium oxide having a specific surface area of 20 m 2 / g or more in a reducing atmosphere and then firing at 500 ° C. or more in an ammonia atmosphere.
  • a manufacturing method including a step (also referred to as step (1-1)) or a step of firing the raw material in a reducing atmosphere in the presence of ammonia (also referred to as step (1-2)), it is easily and simply obtained. be able to.
  • This manufacturing method may further include one or more other steps that are employed during normal powder production, as necessary.
  • step (1-1) and step (1-2) a raw material containing titanium oxide having a specific surface area of 20 m 2 / g or more is used.
  • titanium oxide means titanium oxide (also referred to as titanium dioxide) distributed in the normal market. Specifically, in the qualitative test such as X-ray diffraction measurement, “titanium oxide”. ".
  • the raw material should just contain the said titanium oxide.
  • titanium oxide When titanium oxide is used, impurities contained in the production of the electrode material are reduced, and since it can be easily obtained, it is excellent in terms of stable supply.
  • the crystal structure of titanium oxide is not particularly limited, and examples include rutile titanium oxide and anatase titanium oxide.
  • the raw material may also contain a reducing aid.
  • the reducing aid include titanium metal, titanium hydride, sodium borohydride and the like, and among these, metal titanium or titanium hydride is preferable.
  • the content ratio of titanium metal and / or titanium hydride is 5 to 50 parts by weight in terms of metal titanium with respect to 100 parts by weight of the total amount of titanium oxide. Is preferred. More preferably, it is 8 to 40 parts by weight.
  • a mixture composed of two or more components
  • this can be obtained by mixing the respective components by an ordinary mixing method, but in that case, it is preferable to adopt a dry method. It is. That is, a dry mixture is preferable. In the case of the wet method, there is a risk that hydrogen gas is generated.
  • Each raw material component can be used alone or in combination of two or more.
  • step (1-1) the raw material is subjected to firing in a reducing atmosphere (also referred to as reduction firing). At that time, the raw material may be fired as it is, or when the raw material contains a solvent, it may be fired after removing the solvent.
  • a reducing atmosphere also referred to as reduction firing
  • the reducing atmosphere is not particularly limited, and examples thereof include a hydrogen (H 2 ) atmosphere, a carbon monoxide (CO) atmosphere, and a mixed gas atmosphere of hydrogen and an inert gas. Especially, since a titanium suboxide granular material can be manufactured efficiently, it is preferable that it is a hydrogen atmosphere.
  • the hydrogen concentration is preferably in the range of 5 to 100 vol%, more preferably 50 vol% or more, still more preferably 75 vol% or more, and particularly preferably 100 vol%.
  • the reducing atmosphere is preferably a state in which a reducing gas is continuously injected and flowing into a reaction field (also referred to as a system) in which reduction is performed.
  • the firing temperature is preferably 500 to 1100 ° C., for example, although it depends on the conditions of the reducing atmosphere such as the hydrogen concentration. This makes it possible to achieve both a high specific surface area and high conductivity in the obtained conductive material.
  • the firing temperature is more preferably 600 to 1050 ° C, still more preferably 650 to 900 ° C, particularly preferably 650 to 850 ° C. In the present specification, the firing temperature means the highest temperature reached in the firing step.
  • the firing time that is, the holding time at the above-mentioned firing temperature, also depends on the conditions of the reducing atmosphere such as the hydrogen concentration, but is preferably 5 minutes to 100 hours, for example.
  • the firing time is within this range, the reaction proceeds more sufficiently and the productivity is excellent. More preferably, it is 30 minutes to 24 hours, still more preferably 60 minutes to 10 hours, and particularly preferably 2 to 10 hours.
  • finish of baking you may carry out by mixing or substituting gas (for example, nitrogen gas) other than hydrogen.
  • step (1-1) the raw material is calcined in a reducing atmosphere and then calcined in an ammonia atmosphere (also referred to as ammonia calcining).
  • an ammonia atmosphere also referred to as ammonia calcining.
  • the ammonia concentration is preferably in the range of 5 to 100 vol%, more preferably 50 vol% or more, still more preferably 75 vol% or more, and particularly preferably 100 vol%.
  • step (1-1) when ammonia firing is performed after reduction firing, after completion of the reduction firing, ammonia may be introduced into the system while maintaining the reduction temperature and firing may be performed. After the temperature is lowered to the temperature, ammonia may be introduced into the system and fired. Furthermore, ammonia calcination may be performed after the temperature is lowered to room temperature.
  • the firing temperature in ammonia firing may be 500 ° C. or higher, but is preferably 500 to 1100 ° C. More preferably, it is 500 to 900 ° C, and further preferably 500 to 700 ° C.
  • the firing time that is, the holding time at the firing temperature is the same as the firing time described above for reduction firing (preferably firing in a hydrogen atmosphere).
  • the calcination temperature within the holding time may not be constant. For example, ammonia may be introduced into the system until the temperature is lowered to 500 ° C. after holding by reduction calcination (preferably hydrogen atmosphere calcination).
  • step (1-2) the raw material is baked in a reducing atmosphere in which ammonia is present.
  • the raw material may be fired as it is, or when the raw material contains a solvent, it may be fired after removing the solvent.
  • the reducing atmosphere is as described above.
  • a reducing gas such as hydrogen and ammonia may be simultaneously introduced into the system and fired, or a reducing gas such as hydrogen and ammonia may be fired. You may bake with the gas which mixed.
  • the firing temperature and firing time in the step (1-2) are the same as those in the ammonia firing described above.
  • Electrode Material The electrode material of the present invention has a structure in which a noble metal and / or an oxide thereof is supported on the conductive material of the present invention described above.
  • the noble metal and / or oxide thereof supported on the conductive material may be one kind or two or more kinds.
  • the noble metal is not particularly limited, but is preferably at least one metal selected from the group consisting of platinum, ruthenium, iridium, rhodium and palladium from the viewpoint of easily and stably performing the catalytic reaction of the electrode. Among these, platinum is more preferable.
  • a noble metal produces
  • the supported amount of the noble metal and / or oxide thereof is preferably 0.01 to 50 parts by weight in terms of the element of the noble metal with respect to 100 parts by weight of the conductive material (titanium oxide powder) (2 types) In the case of using the above, the total supported amount is preferably within this range). Thereby, a noble metal and / or its oxide are disperse
  • the amount is more preferably 0.1 to 30 parts by weight, still more preferably 1 to 15 parts by weight.
  • the amount of noble metal supported can be measured using, for example, XRF (fluorescence X-ray analysis) or ICP (inductively coupled plasma emission analysis).
  • the electrode material may further contain at least one metal selected from the group consisting of nickel, cobalt, iron, copper and manganese in addition to the noble metal and / or oxide thereof.
  • the electrode material of the present invention is excellent in resistance to a high potential and strong acid environment, and has high conductivity equal to or higher than that of a material in which platinum is generally supported on a conventionally used carbon carrier. It can be suitably used for electrode materials for display devices such as transistors and liquid crystals. Especially, it is suitable for the electrode material use for polymer electrolyte fuel cells (PEFC).
  • PEFC polymer electrolyte fuel cells
  • the embodiment in which the electrode material is an electrode material of a polymer electrolyte fuel cell is one of the preferred embodiments of the present invention, and a fuel cell including an electrode composed of the electrode material is included in the present invention. Is included.
  • Electrode material manufacturing method The electrode material of the present invention is, for example, (1) after firing a raw material containing titanium oxide having a specific surface area of 20 m 2 / g or more in a reducing atmosphere, and then in an ammonia atmosphere at 500 ° C. or more. Calcination step (1-1), or calcination of the raw material in a reducing atmosphere in the presence of ammonia (1-2), and (2) the conductive material and noble metal obtained in the step (1). And / or by using a mixed solution containing the water-soluble compound and a process for supporting a noble metal and / or oxide thereof, it can be obtained easily and simply.
  • This manufacturing method may further include one or two or more other steps employed during normal powder production, if necessary. Step (1) (that is, step (1-1) or (1-2)) is as described above.
  • Step (2) uses a mixed solution containing the conductive material (titanium suboxide powder) obtained in step (1) and a noble metal and / or a water-soluble compound thereof (hereinafter also referred to as a noble metal compound).
  • a noble metal compound a noble metal and / or a water-soluble compound thereof
  • Other steps are not particularly limited.
  • the mixed solution preferably further contains a solvent. It does not specifically limit as a solvent, For example, water, an acidic solvent, an organic solvent, and these mixtures are mentioned.
  • the solvent is preferably water, and more preferably ion-exchanged water.
  • the solution of the noble metal compound is not particularly limited as long as it is a solution containing a noble metal compound (that is, a noble metal and / or a water-soluble compound thereof).
  • a solution such as a platinum (II) solution is preferred.
  • the noble metal is as described above, and platinum is particularly preferable. Therefore, the chloroplatinic acid aqueous solution and the dinitrodiammine platinum nitric acid aqueous solution are particularly preferable as the noble metal solution, and the chloroplatinic acid aqueous solution is most preferable from the viewpoint of reactivity.
  • reduction treatment, surface treatment and / or neutralization treatment may be performed on the mixed solution as necessary.
  • a reduction process it is preferable to reduce a noble metal compound moderately by adding a reducing agent to a liquid mixture.
  • a surfactant it is preferable to add a surfactant to the mixed solution, whereby the surface of the titanium suboxide powder or the noble metal compound can be brought into an optimum state.
  • a neutralization process it is preferable to carry out by adding a basic solution to a liquid mixture.
  • the said reducing agent is not specifically limited, For example, hydrazine chloride, hydrazine, sodium borohydride etc. are mentioned, Preferably it is hydrazine chloride.
  • the addition amount is not particularly limited, but is preferably 0.1 to 1 times the molar equivalent of the noble metal contained in the mixed solution.
  • polydimethyl diallyl ammonium chloride polyvinyl alcohol, polyvinyl pyrrolidone etc.
  • the addition amount is not particularly limited, but is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5.0 parts by weight, based on 100 parts by weight of the total amount of titanium suboxide powder. .
  • the basic solution but is not particularly limited, aqueous NaOH, NH 3 aq, sodium carbonate aqueous solution and the like, preferably aqueous NaOH.
  • the neutralization temperature in the neutralization step is preferably 60 ° C to 100 ° C, more preferably 70 ° C to 100 ° C.
  • step (2) water and by-products (both by-products, as described above, which may be subjected to reduction treatment, surface treatment and / or neutralization treatment as necessary). Is preferably removed.
  • the removing means is not particularly limited, but it is preferable to remove moisture and by-products by, for example, filtration, washing with water, drying, evaporation under heating, and the like.
  • the step (2) is particularly preferably a step of baking the powder obtained by reducing and filtering and drying the mixed liquid containing the titanium suboxide granular material obtained in the step (1) and the noble metal compound. .
  • the electrode material of the present invention can be suitably used for an electrode material application for a fuel cell. Especially, it is suitable for the electrode material use for a polymer electrolyte fuel cell (PEFC). In particular, it is useful as an alternative material for a material in which platinum is supported on a carbon carrier that has been generally used.
  • PEFC polymer electrolyte fuel cell
  • Such an electrode material is suitable for both a positive electrode (also referred to as an air electrode) and a negative electrode (also referred to as a fuel electrode), and is suitable for both a cathode (anode) and an anode (cathode).
  • a polymer electrolyte fuel cell using the electrode material of the present invention is one of the preferred embodiments of the present invention.
  • X-ray diffraction pattern A powder X-ray diffraction pattern was measured using an X-ray diffractometer (trade name “RINT-TTR3” manufactured by Rigaku Corporation) under the following conditions.
  • volume resistance also called volume resistivity
  • a powder resistance measurement system MCP-PD51 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.
  • the powder resistance measurement system is composed of a powder press unit by hydraulic pressure, a four-point probe, and a high resistance measurement device (manufactured by the same company, Lorestar GX MCP-T700).
  • the value of volume resistance ( ⁇ ⁇ cm) was determined according to the following procedure. 1) Put the sample powder into a press jig (diameter 20 mm) equipped with a four-probe probe on the bottom, and set it in the pressurizing part of the powder resistance measurement system. Connect the probe and the high resistance measuring device with a cable.
  • the electrode with the measurement sample obtained above was used for the working electrode, and a platinum electrode and a reversible hydrogen electrode (RHE) electrode were used for the counter electrode and the reference electrode, respectively.
  • RHE reversible hydrogen electrode
  • argon gas was bubbled into the electrolyte (0.1 mol / l perchloric acid aqueous solution) for 30 minutes to sufficiently saturate the argon gas in the electrolytic cell.
  • cyclic voltammetry was performed at 25 ° C. with an electrolytic solution (0.1 mol / l perchloric acid aqueous solution) saturated with argon gas at a sweep rate of 50 mV / sec from 0.05 V to 1.2 V.
  • cyclic voltammetry was performed by changing the upper limit of the potential sweep to 1.4 V, 1.6 V, and 1.8 V.
  • the waveforms obtained at the time of the sweep were superimposed and plotted, and the change in the waveform at the time of the high potential sweep was visually confirmed to be a criterion for judging the high potential durability.
  • Electrochemical surface area (1) Production of Working Electrode A working electrode was produced in the same manner as the method shown in (4) of “4, High Potential Durability”. (2) Cyclic voltammetry measurement Cyclic voltammetry was performed in the same manner as the method described in (2) of “4, High Potential Durability” above. Then, the electrochemical effective specific surface area was calculated from the area of the hydrogen adsorption wave obtained during the sweep (charge amount at the time of hydrogen adsorption: QH ( ⁇ C)) using the following formula 2, and used as an index of electrochemical characteristics. In Formula 2, “210 ( ⁇ Ccm 2 )” is an adsorption charge amount per unit active area of platinum (Pt).
  • Example 1 Rutile titanium oxide (made by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g) and metal titanium (made by Wako Pure Chemical Industries, Ltd., trade name “Titanium, Powder”) After 0.525 g was dry-mixed, it was placed in an alumina boat and hydrogen gas (Iwatani Sangyo Co., Ltd., the same applies hereinafter) was circulated at 400 ml / min in an atmosphere firing furnace at a heating rate of 300 ° C./hr up to 730 ° C. The temperature was raised and held at 730 ° C. for 6 hours. Thereafter, the flow of hydrogen gas was stopped, and the temperature was lowered to 500 ° C.
  • hydrogen gas Iwatani Sangyo Co., Ltd., the same applies hereinafter
  • Example 2 Rutile type titanium oxide (product name “STR-100N” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 100 m 2 / g) and titanium metal (product name “titanium powder” manufactured by Wako Pure Chemical Industries, Ltd.) A powder 2 was obtained in the same manner as in Example 1 except that 1.965 g was dry-mixed.
  • Example 3 Rutile titanium oxide (made by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g) and metal titanium (made by Wako Pure Chemical Industries, Ltd., trade name “Titanium, Powder”) After 0.525g was dry-mixed, it was put in an alumina boat, heated to 760 ° C at a heating rate of 300 ° C / hr while flowing hydrogen gas at 400 ml / min in an atmosphere firing furnace, and kept at 760 ° C for 2 hours. did. Thereafter, the flow of hydrogen gas was stopped, and the temperature was lowered to 500 ° C.
  • Example 4 Rutile type titanium oxide (product name “STR-100N” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 100 m 2 / g) and titanium metal (product name “titanium powder” manufactured by Wako Pure Chemical Industries, Ltd.) After 1.965 g of dry mixing, put it in an alumina boat, raise the temperature to 750 ° C. at a heating rate of 300 ° C./hr while circulating hydrogen gas at 400 ml / min in an atmosphere firing furnace, and hold at 750 ° C. for 6 hours. did. Thereafter, the flow of hydrogen gas was stopped, and the temperature was lowered to 500 ° C.
  • Example 5 Anatase-type titanium oxide (trade name “SSP-25” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 270 m 2 / g) and metal titanium (trade name “titanium, powder” manufactured by Wako Pure Chemical Industries, Ltd.) After 0.3 g of dry mixing, put it in an alumina boat and heat it up to 750 ° C. at a heating rate of 300 ° C./hr while circulating hydrogen gas at 400 ml / min in an atmosphere firing furnace and hold it at 750 ° C. for 1 hour. After that, the temperature was decreased to 550 ° C. at a temperature decrease rate of 200 ° C./hr.
  • Comparative Example 1 20.0 g of rutile titanium oxide (Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g) is placed in an alumina boat and heated in a firing furnace to 920 ° C. in an air atmosphere. The temperature was raised at 300 ° C./hr, held at 920 ° C. for 1 hour, and then naturally cooled to room temperature. 3.5 g of the obtained powder is put into an alumina boat, and the temperature is raised to 600 ° C. at a heating rate of 300 ° C./hr while ammonia gas is circulated at 400 ml / min in an atmosphere firing furnace, and at 600 ° C. for 3 hours. Retained. Thereafter, the circulation of ammonia gas was stopped, and the mixture was naturally cooled to room temperature while flowing nitrogen at a rate of 400 ml / min, to obtain a powder c1.
  • rutile titanium oxide Si Chemical Industry Co., Ltd., trade name “STR-
  • Comparative Example 2 20.0 g of rutile titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g) is placed in an alumina boat and heated in a firing furnace to 920 ° C. in an air atmosphere. The temperature was raised at 300 ° C./hr, held at 920 ° C. for 1 hour, and then naturally cooled to room temperature. 1.0 g of the obtained powder was used and dry-mixed with 1.0 g of the powder obtained in Example 1 to obtain a powder c2.
  • rutile titanium oxide manufactured by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g
  • Comparative Example 3 20.0 g of rutile titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g) is placed in an alumina boat and heated in a firing furnace to 880 ° C. in an air atmosphere. The temperature was raised at 300 ° C./hr, held at 880 ° C. for 1 hour, and then naturally cooled to room temperature. 3.5 g of the obtained powder is put into an alumina boat, and heated up to 700 ° C. at a heating rate of 300 ° C./hr while flowing hydrogen gas at 400 ml / min in an atmosphere firing furnace, and at 700 ° C. for 2 hours. Retained. Then, it cooled naturally to 500 degreeC, stopped the distribution
  • rutile titanium oxide manufactured by Sakai Chemical Industry
  • Comparative Example 4 20.0 g of rutile titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g) is placed in an alumina boat and heated in a firing furnace to 920 ° C. in an air atmosphere. After heating up at 300 degreeC / hr and hold
  • rutile titanium oxide manufactured by Sakai Chemical Industry Co., Ltd., trade name “STR-100N”, specific surface area 100 m 2 / g
  • Reference example 1 Carbon powder (product name “Ketjen Black EC300J” manufactured by Lion Specialty Chemicals Co., Ltd.) was used (powder r1).
  • ITO powder (trade name “Indium tin oxide nanopowder, ⁇ 50 nm particle size” manufactured by Sigma Aldrich Japan Co., Ltd.) was used (powder r2).
  • rutile (main phase) means that the crystal structure has a rutile crystal phase as the main phase.
  • the structure of the powder c6 obtained in Comparative Example 6 was a mixed phase of a Magneli phase and a rutile TiO 2 . In Table 1, this is expressed as “Magnery, Rutile”.
  • the powders 1 to 5 obtained in Examples 1 to 5 have a composition represented by TiO n (n represents a number of 1.5 or more and 1.90 or less), a rutile crystal phase as a main phase, L * a * b * is a titanium suboxide granular material (conductive material) having a lightness L * of 35 to 45 in the color system.
  • the powder c1 is a point where the above n exceeds 1.90
  • the powder c2 is the point where the lightness L * exceeds 45
  • the powders c3 and c4 have the above n of 1.90
  • the brightness L * exceeds 45
  • the powder c5 has a crystal phase of Ti 4 O 7 and the brightness L * is less than 35.
  • the powder c6 has a rutile crystal structure as the main phase.
  • there is a peak attributed to Ti 4 O 7 showing 77% of the maximum peak intensity attributed to the rutile crystal structure. All of them are different from the conductive material of the present invention.
  • the powders 1 to 5 have remarkably lower volume resistivity than the powders c1 to c6 (titanium oxide or titanium suboxide).
  • the conductivity is equivalent to or better than ITO powder (powder r2), which is a conductive material generally used as an antistatic material.
  • the powders 2 to 5 have substantially the same level of conductivity as the carbon powder (powder r1) of a conductive material generally used as an electrode material (see Table 1). Therefore, it was found that the conductive material of the present invention has high conductivity.
  • FIG. 2 the result of the high potential durability test of the powder 2 obtained in Example 2 and the powder r1 of Reference Example 1 is shown.
  • Each graph shows voltage on the horizontal axis and current value on the vertical axis, and plots the current that flows when the voltage is swept in cyclic voltammetry measurement.
  • cyclic voltammetry was performed by sequentially changing the width of the voltage to be swept.
  • powder 2 even if the upper limit voltage is changed from 1.2 V to 1.8 V, the waveform does not change greatly.
  • powder r1 when the upper limit voltage is higher than 1.2 V, the fluctuation of the current value becomes very large. .
  • the conductive material of the present invention comprising the powder 2 and the titanium suboxide granular material does not undergo the above-described decomposition reaction even at a high potential. Therefore, when used as an electrode material for a polymer electrolyte fuel cell, It can be said that it is more stable than carbon. From the above results, the electrode material using the conductive material of the present invention such as the powder obtained in the above examples has high conductivity, and moreover than the material in which platinum is supported on a conventionally used carbon support. It was also found to have high resistance to high potential and strong acid environment.
  • Example 6 0.60 g of powder 2 and 128 g of ion-exchanged water were weighed and mixed in a beaker to obtain a slurry. In another beaker, 1.3 g of chloroplatinic acid aqueous solution (15.343% as platinum, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was diluted with 8.0 g of ion-exchanged water, and then hydrazine chloride (Tokyo Chemical Industry Co., Ltd., trade name) “Hydrazine Dihydrochloride”) 0.053 g was added and stirred and mixed (this was referred to as “mixed aqueous solution”).
  • chloroplatinic acid aqueous solution 15.343% as platinum, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
  • Reference example 3 50 mass% Pt-supported carbon powder (manufactured by N.E. Chemcat Co., Ltd.) was used (powder r3).
  • ECSA which is an index of electrochemical characteristics when used as an electrode material for a fuel cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明は、高電位かつ強酸性環境への耐性に優れ、高導電性を有する導電性材料、これを用いた電極材料及び燃料電池を提供する。また、このような導電性材料を簡便かつ容易に得るための製造方法も提供する。本発明は、亜酸化チタン粉粒体からなる導電性材料であって、該亜酸化チタン粉粒体は、組成がTiOn(nは、1.5以上、1.90以下の数を表す。)で表され、ルチル型結晶相を主相とし、L*a*b*表色系における明度L*が35~45である導電性材料である。

Description

導電性材料及び電極材料
本発明は、導電性材料及び電極材料に関する。より詳しくは、導電性材料、これを用いた電極材料及び燃料電池、並びに、導電性材料の製造方法に関する。
燃料電池は、水素やアルコール等の燃料を酸素と電気化学的に反応させて電力を発生させる装置であり、電解質や作動温度等によって、固体高分子形(PEFC)、リン酸形(PAFC)、溶融炭酸塩形(MCFC)、固体酸化物形(SOFC)等に分けられる。例えば、固体高分子形燃料電池は、定置型電源や燃料電池車用途で使用されており、長期にわたって所望の発電性能を維持することが求められている。
固体高分子形燃料電池は、電解質としてイオン伝導性を有する高分子膜(イオン交換膜)を用いる燃料電池であり、一般に、導電性材料であるカーボンに白金(Pt)を担持した触媒が電極に使用されている。しかし、このような固体高分子形燃料電池を、例えば自動車用途に使用した場合、起動停止等に起因する大きな負荷変動によって、電極用の触媒を構成するカーボンの酸化反応(C+2HO→CO+4H+4e)が進行することがある。例えばカソードの電位が0.9V以上ではカーボンの酸化反応が進行しやすく、この場合、カーボン上の白金の凝集や欠落が生じるため、電池性能が著しく低下する。そこで近年では、カーボンに代えて、チタン等を用いた触媒が提案されている(例えば、特許文献1参照)。また、単結晶のTiを用いた技術も提案されている(非特許文献1参照)。
国際公開第2013/141063号
J.R.SMITH、外2名、「Electrodes based on Magneli phase titanium oxides: the properties and applications of Ebonex(R) materials」、J.APPL.ELECTROCHEM、1998年10月、第28巻、第10号、p.1021-1033
上述のとおり電極に使用される導電性材料としては、一般にカーボンが使用されているが、高電位で使用した場合等、カーボンの酸化反応が進行することによる腐食が課題となっている。これに加えて、電極が使用される環境は、一般にpH1以下の強酸性にあることから、導電性材料には強酸性環境に対する耐性が要求される。だが、カーボンに代替可能で、かつ高電位及び強酸性環境に耐え得る導電性材料はこれまでに見いだされていないのが現状である。
代替技術としては、例えば、高電位及び強酸性環境での耐性が高い酸化チタン、中でも亜酸化チタン、特にTiは高い導電性(電子伝導性とも称す)を有するため、安価なカーボンに代替し得る可能性がある。確かに単結晶のTiはカーボン並みの導電性を有する(非特許文献1参照)。だが、本発明者が検討を進めたところ、Tiに白金等の貴金属を担持させるために、例えば比表面積を10m/g以上にした場合には、導電性が低下してしまうという課題があることを見いだした(後述の比較例5参照)。
特許文献1には、組成式TiO(xは1.5<x<2の範囲)で表され、かつ比表面積が50m/g以上である低次酸化チタンに、金属を担持してなる触媒が記載されている。この触媒は黒色粒子である。だが、この触媒でも導電性が充分でなく、カーボンに代替可能な導電性材料は見いだされていない。
本発明は、上記現状に鑑み、高電位かつ強酸性環境への耐性に優れ、高導電性を有する導電性材料、これを用いた電極材料及び燃料電池を提供することを目的とする。本発明はまた、このような導電性材料を簡便かつ容易に得るための製造方法を提供することも目的とする。
本発明者らは、カーボンに代替し得る導電性材料について鋭意検討を進めるうち、亜酸化チタン粉粒体の酸素欠陥は必ずしも粉粒体全体に均一にあるのではないことを見いだした。すなわち、亜酸化チタン粉粒体全体の平均的な酸素欠陥が充分であっても、粒子のごく表面の酸素欠陥が不足している状態等である。これは、大気や水分と接触する粒子最表面が再酸化されて酸素欠陥を有していない可能性が考えられる。そして、公知の方法で作成されたものはごく表面の酸素欠陥が不足しており導電性が低下しているとの推定を元に、鋭意検討し、粉粒体表面と内部の両方に一定の酸素欠陥を有するものは、特定の色調を有し高い導電性を発現することを見いだした。また、低次酸化チタンは、結晶相によっては過酷な使用条件で結晶構造を維持できず導電性が低下することも見いだした。つまりは、所定の組成式で表され、ルチル型結晶相を主相とし、かつL表色系における明度Lが所定範囲にある亜酸化チタン粉粒体からなる導電性材料であれば、高電位かつ強酸性環境のような過酷な使用条件下でも高導電性を有し、カーボンの代替材料として有用なものとなることを見いだした。また、このような導電性材料は、比表面積が20m/g以上である酸化チタンを含む原料を、還元雰囲気下で焼成した後、アンモニア雰囲気下500℃以上で焼成する工程、又は、該原料を、アンモニアが存在する還元雰囲気下で焼成する工程を含む製造方法によって容易かつ簡便に製造できることを見いだし、上記課題を解決することができることに想到し、本発明を完成するに至った。
すなわち本発明は、亜酸化チタン粉粒体からなる導電性材料であって、該亜酸化チタン粉粒体は、組成がTiO(nは、1.5以上、1.90以下の数を表す。)で表され、ルチル型結晶相を主相とし、L表色系における明度Lが35~45である導電性材料である。
本発明はまた、上記導電性材料を製造する方法であって、該製造方法は、比表面積が20m/g以上である酸化チタンを含む原料を、還元雰囲気下で焼成した後、アンモニア雰囲気下500℃以上で焼成する工程、又は、該原料を、アンモニアが存在する還元雰囲気下で焼成する工程を含む導電性材料の製造方法でもある。
本発明はまた、上記導電性材料に、貴金属及び/又はその酸化物が担持された構造を有する電極材料である。
上記電極材料は、固体高分子形燃料電池の電極材料であることが好ましい。
本発明は更に、上記電極材料から構成された電極を備える燃料電池でもある。
本発明の導電性材料は、高電位かつ強酸性環境にも充分に耐えることができ、高導電性を有するものである。従って、固体高分子形燃料電池等の燃料電池や、太陽電池、トランジスタ、液晶等の表示装置等の電極、帯電防止剤、熱線遮蔽材等に使用する導電性材料として極めて有用である。この導電性材料を用いた電極材料もまた、各種用途に有用であり、中でも特に、固体高分子形燃料電池に有用である。本発明の導電性材料の製造方法は、このような導電性材料を容易かつ簡便に与えることができるため、工業的に極めて有利な技術といえる。
実施例及び比較例で得た各粉粒体(粉末)の外観写真である。 実施例2及び参考例1で得た各粉粒体(粉末)の高電位耐久性試験の結果を示すグラフである。 実施例1で得た粉末1の粉末X線回折パターンである。 実施例2で得た粉末2の粉末X線回折パターンである。 実施例3で得た粉末3の粉末X線回折パターンである。 実施例4で得た粉末4の粉末X線回折パターンである。 実施例5で得た粉末5の粉末X線回折パターンである。 比較例1で得た粉末c1の粉末X線回折パターンである。 比較例2で得た粉末c2の粉末X線回折パターンである。 比較例3で得た粉末c3の粉末X線回折パターンである。 比較例4で得た粉末c4の粉末X線回折パターンである。 比較例5で得た粉末c5の粉末X線回折パターンである。 比較例6で得た粉末c6の粉末X線回折パターンである。
以下、本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
1、導電性材料
本発明の導電性材料は、亜酸化チタン粉粒体からなる。すなわち粉状及び/又は粒状(粒子状)の亜酸化チタンである。
亜酸化チタン粉粒体は、組成がTiO(nは、1.5以上、1.90以下の数を表す。)で表されるが、この組成を満たす亜酸化チタン粉粒体を2種以上含む混合物であってもよい。このような組成で表され、かつ後述する結晶構造及び明度L値を満たす亜酸化チタン粉粒体であることの相乗効果によって初めて、導電性が著しく向上するとともに、高電位かつ強酸性環境への耐性が優れたものとなる。
上記nは、1.5≦n≦1.90を満たす数である。nが1.90を超えるか又は1.5未満であると、導電性が著しく低下するおそれがあり、また、高電位かつ強酸性環境に充分に耐えることができないおそれもある。導電性を更に高める観点から、好ましくは1.60≦n≦1.90、より好ましくは1.70≦n≦1.85、更に好ましくは1.70≦n≦1.80である。
亜酸化チタン粉粒体の組成TiOにおけるnの値は、以下に示す手順で粉粒体の熱処理前後の重量変化を測定することにより算出できる。
すなわち、所定量の亜酸化チタン粉粒体を予め、乾燥機(例えばヤマト科学株式会社製、送風定温恒温器、DKM600)にて100℃で1時間、吸着水分を除去しておき、約1gを磁性るつぼに電子天秤(例えば株式会社島津製作所製、分析天秤、ATX224)を用いて0.1mgの桁まで秤量し、更に電気炉(例えば日陶科学株式会社製、卓上型電気炉、NHK-120H-II)を用いて大気雰囲気下、900℃で1時間、熱処理を行うことにより、完全なTiO(n=2.00)の状態に変化させる。熱処理後のるつぼをガラス製のデシケーター内に移して室温まで放冷したのち、再び0.1mgの桁まで秤量する。従って、熱処理前後の重量増分がTiOからの酸素欠陥量に相当する。
熱処理前の亜酸化チタン粉粒体の重量をW(g)、熱処理後の重量をW(g)、Tiの原子量をM、Oの原子量をMとしたとき、
 熱処理前のTiOのモル数=W/(M+nM
 熱処理後のTiOのモル数=W/(M+2M
熱処理前後でTiOとTiOのモル数は変化しないことから、
 W/(M+nM)=W/(M+2M
従って、nについて解くと、
 n=(W(M+2M)-W)/W
により計算することができる。
亜酸化チタン粉粒体は、ルチル型結晶相を主相とする。
ルチル型以外、例えばアナターゼ型やブルッカイト型の結晶相を主相とする場合、高電位、強酸性環境において、相転移を起こし粉体物性が変化するおそれがある。すなわち一定量の酸素欠陥を有するルチル型結晶相は、結晶構造が安定で、粉粒体全体及び表面の両方の酸素欠陥量が最適な範囲にあるため、比表面積が比較的高い状態においても高い導電性を有し、かつ高電位、強酸性環境での耐久性にも優れているため、後述する電極材料や固体高分子形燃料電池用途として好適である。
本明細書中、「ルチル型結晶相を主相とする」とは、亜酸化チタン粉粒体の粉末X線回折パターン(CuKα、2θ=10~60°の測角範囲)において、回折角2θ=27.4°、36.1°、54.3°のそれぞれ±2°の範囲に回折ピークを有し、かつ2θ=27.4°、36.1°、39.2°、41.2°、44.1°、54.3°、56.6°のそれぞれ±2°の範囲以外に、測角範囲内の最大ピーク強度の50%、好ましくは30%、より好ましくは25%を超える回折ピークが現れないことを意味する。粉末X線回折パターンの具体的な測定条件は、実施例において後述する。
なお、XRD測定データ全体にノイズが多い場合は、XRDに付属の解析ソフト(例えば、株式会社リガク製X線回折装置(RINT-TTR3)付属の粉末X線回折パターン総合解析ソフトウェアJADE7J)等を用いて、スムージング、バックグランド除去を実施してから判定を行ってもよい。
亜酸化チタン粉粒体は、L表色系における明度Lが35~45である。
は、粉粒体表面の酸素欠陥量を示す指標であり、Lが45を超えていると、粉粒体表面の酸素欠陥量が不足していると考えられ、導電性が著しく低下するおそれがある。一方、Lが35より小さい場合には、ルチル型結晶相を維持できず、導電性が低下する可能性がある。高電位かつ強酸性環境に充分に耐えることができないおそれもある。導電性を更に高める観点から、Lは、好ましくは35.0以上43.0以下、より好ましくは35.0以上41.0以下である。
亜酸化チタン粉粒体は、Ti以外の金属元素の含有量が0.2質量%未満であることが好ましい。これにより、Ti以外の金属元素が導電性材料使用時に溶出するおそれを充分に排除することができ、本発明の導電性材料に由来する性能がより発揮されることになる。
本明細書中、Ti以外の金属元素の含有量は、XRF(蛍光X線分析)やICP(誘導結合プラズマ発光分析)にて測定することができる。
なお、「金属元素」には、ケイ素等の半金属原子も包含するものとする。
亜酸化チタン粉粒体は、体積抵抗(体積固有抵抗とも称す)が10.0Ω・cm以下であることが好ましい。体積抵抗が低いほど導電性に優れることを意味する。より好ましくは1.0Ω・cm以下、更に好ましくは0.1Ω・cm以下である。
本明細書中、体積抵抗は、後述の実施例に記載の手法により求めることができる。
また亜酸化チタン粉粒体中には、アンモニア雰囲気焼成に伴い、結晶構造が変化しない範囲で、窒素がドープされてもよい。具体的には、10質量%以下であることが好ましく、より好ましくは5質量%以下である。
2、導電性材料の製造方法
本発明の導電性材料は、比表面積が20m/g以上である酸化チタンを含む原料を、還元雰囲気下で焼成した後、アンモニア雰囲気下500℃以上で焼成する工程(工程(1-1)とも称す)、又は、該原料を、アンモニアが存在する還元雰囲気下で焼成する工程(工程(1-2)とも称す)を含む製造方法により、容易かつ簡便に得ることができる。この製造方法は、必要に応じて、通常の粉体製造時に採用される1又は2以上のその他の工程を更に含んでもよい。
工程(1-1)及び工程(1-2)では、比表面積が20m/g以上である酸化チタンを含む原料を用いる。
本明細書中、「酸化チタン」とは、通常の市場で流通している酸化チタンに(二酸化チタンとも称す)を意味し、具体的には、X線回折測定等の定性試験で「酸化チタン」と称されるものをいう。
原料は、上記酸化チタンを含むものであればよい。酸化チタンを用いると、電極材料製造時に含まれる不純物が少なくなるうえ、容易に入手できるため、安定供給の点で優れている。酸化チタンの結晶構造は特に限定されず、ルチル型酸化チタンやアナターゼ型酸化チタン等が挙げられる。
原料はまた、還元助剤を含んでもよい。
還元助剤の例としては、金属チタン、水素化チタン、水素化ホウ素ナトリウム等が挙げられるが、中でも金属チタン又は水素化チタンが好ましい。金属チタン及び/又は水素化チタンを更に含む原料を焼成に供することで、亜酸化チタン粉粒体がより効率的に得られる。金属チタン及び/又は水素化チタンの含有割合(2種以上含む場合はその合計の含有量)は、上記酸化チタンの総量100重量部に対し、金属チタン換算で5~50重量部であることが好適である。より好ましくは8~40重量部である。
原料として2種以上の成分からなる混合物(原料混合物)を使用する場合、これは各成分を通常の混合方法で混合することで得ることができるが、その際、乾式法を採用することが好適である。すなわち乾式混合物であることが好ましい。湿式法の場合、水素ガスが発生する等、危険性を伴うことがある。
なお、各原料成分はそれぞれ1種又は2種以上使用することができる。
工程(1-1)では、上記原料を還元雰囲気下での焼成(還元焼成とも称す)に供する。その際、原料をそのまま焼成してもよいし、原料が溶媒を含む場合は、脱溶媒を行った後に焼成してもよい。
還元雰囲気としては特に限定されず、水素(H)雰囲気、一酸化炭素(CO)雰囲気、水素と不活性ガスとの混合ガス雰囲気等が挙げられる。中でも、効率よく亜酸化チタン粉粒体を製造できることから、水素雰囲気であることが好ましい。水素濃度は5~100vol%の範囲にあることが好ましく、より好ましくは50vol%以上、更に好ましくは75vol%以上、特に好ましくは100vol%である。また還元雰囲気としては、還元が行われている反応場(系とも称する)に還元用ガスが連続して注入され流れている状態であることが望ましい。
焼成温度は、水素濃度等の還元雰囲気の条件にもよるが、例えば500~1100℃とすることが好ましい。これにより、得られる導電性材料において高比表面積と高導電性とを両立することが可能になる。焼成温度は、より好ましくは600~1050℃、更に好ましくは650~900℃、特に好ましくは650~850℃である。
本明細書中、焼成温度とは、焼成工程での最高到達温度を意味する。
焼成時間、すなわち上記焼成温度での保持時間もまた、水素濃度等の還元雰囲気の条件にもよるが、例えば5分~100時間とすることが好ましい。焼成時間がこの範囲内にあると反応がより充分に進み、生産性に優れる。より好ましくは30分~24時間、更に好ましくは60分~10時間、特に好ましくは2~10時間である。
なお、焼成終了後に降温する場合は、水素以外のガス(例えば窒素ガス)を混合又は置換して行ってもよい。
工程(1-1)ではまた、上記原料を、還元雰囲気下で焼成した後、アンモニア雰囲気下で焼成(アンモニア焼成とも称す)する。アンモニア焼成を行った後に還元焼成を行うと、ルチル型結晶相を主相とする亜酸化チタン粉粒体を得ることができない。なお、アンモニアの濃度は5~100vol%の範囲にあることが好ましく、より好ましくは50vol%以上、更に好ましくは75vol%以上、特に好ましくは100vol%である。
工程(1-1)を行う場合(還元焼成した後にアンモニア焼成を行う場合)、還元焼成終了後、還元温度を維持したままアンモニアを系に導入して焼成してもよいし、例えば後述の焼成温度まで降温した後にアンモニアを系に導入して焼成してもよい。更には、室温まで降温してからアンモニア焼成を行ってもよい。
なお、アンモニア焼成での焼成温度は、500℃以上であればよいが、500~1100℃とすることが好ましい。より好ましくは500~900℃、更に好ましくは500~700℃である。また、焼成時間、すなわち上記焼成温度での保持時間は、還元焼成(好ましくは水素雰囲気焼成)について上述した焼成時間と同様である。保持時間内での焼成温度は一定でなくてもよく、例えば還元焼成(好ましくは水素雰囲気焼成)保持後に500℃まで降温するまでの間、アンモニアを系に導入してもよい。
工程(1-2)では、上記原料を、アンモニアが存在する還元雰囲気下で焼成する。その際、原料をそのまま焼成してもよいし、原料が溶媒を含む場合は、脱溶媒を行った後に焼成してもよい。還元雰囲気については上述したとおりであるが、工程(1-2)を行う場合、水素等の還元ガスとアンモニアとを系に同時に導入して焼成してもよいし、水素等の還元ガスとアンモニアとを混合したガスで焼成してもよい。
工程(1-2)の焼成温度及び焼成時間は、上述したアンモニア焼成でのこれらと同様である。
3、電極材料
本発明の電極材料は、上述した本発明の導電性材料に、貴金属及び/又はその酸化物が担持された構造を有する。
上記導電性材料に担持する貴金属及び/又はその酸化物は、1種であってもよいし2種以上であってもよい。貴金属は特に限定されないが、電極の触媒反応を容易かつ安定に行わせる観点から、白金、ルテニウム、イリジウム、ロジウム及びパラジウムからなる群より選択される少なくとも1種の金属であることが好適である。中でも、白金がより好ましい。なお、製造条件次第で貴金属は合金を生成するが、導電性、電気化学特性をより向上させる可能性があるため、貴金属の一部又は全体がチタンとの合金になっていてもよい。
貴金属及び/又はその酸化物の担持量は、上記導電性材料(亜酸化チタン粉粒体)100重量部に対し、貴金属の元素換算で0.01~50重量部であることが好ましい(2種以上用いる場合はその合計の担持量がこの範囲にあることが好ましい)。これにより、貴金属及び/又はその酸化物がより微細に分散され、電極材料としての性能がより向上する。より好ましくは0.1~30重量部、更に好ましくは1~15重量部である。
貴金属等の担持量は、例えばXRF(蛍光X線分析)やICP(誘導結合プラズマ発光分析)を用いて測定することができる。
上記電極材料は、貴金属及び/又はその酸化物に加え、更に、ニッケル、コバルト、鉄、銅及びマンガンからなる群より選択される少なくとも1種の金属を含んでもよい。
本発明の電極材料は、高電位かつ強酸性環境への耐性に優れるうえ、従来一般に使用されているカーボン担体に白金を担持した材料と同等以上の高導電性を有するため、燃料電池、太陽電池、トランジスタ、液晶等の表示装置の電極材料用途に好適に用いることができる。中でも、固体高分子形燃料電池(PEFC)用の電極材料用途に好適である。このように上記電極材料が固体高分子形燃料電池の電極材料である形態は、本発明の好適な形態の1つであり、上記電極材料から構成された電極を備える燃料電池は、本発明に包含される。
4、電極材料の製造方法
本発明の電極材料は、例えば、(1)比表面積が20m/g以上である酸化チタンを含む原料を、還元雰囲気下で焼成した後、アンモニア雰囲気下500℃以上で焼成する工程(1-1)、又は、該原料を、アンモニアが存在する還元雰囲気下で焼成する工程(1-2)と、(2)該工程(1)で得た導電性材料と貴金属及び/又はその水溶性化合物とを含む混合液を用いて、貴金属及び/又はその酸化物を担持する工程とを含む製造方法により、容易かつ簡便に得ることができる。この製造方法は、必要に応じ、通常の粉体製造時に採用される1又は2以上のその他の工程を更に含んでもよい。
工程(1)(すなわち工程(1-1)又は(1-2))については上述した通りである。
工程(2)は、工程(1)で得た導電性材料(亜酸化チタン粉粒体)と、貴金属及び/又はその水溶性化合物(以下、貴金属化合物とも総称する)とを含む混合液を用いて、貴金属及び/又はその酸化物を担持する工程である。
なお、上記工程(1)の後、工程(2)の前に、必要に応じて粉砕、水洗、分級等の1又は2以上のその他の工程を含んでもよい。その他の工程は特に限定されない。
上記混合液は、更に溶媒を含むことが好ましい。
溶媒としては特に限定されず、例えば、水、酸性溶媒、有機溶媒及びこれらの混合物が挙げられる。溶媒として好ましくは水であり、より好ましくはイオン交換水である。
上記貴金属化合物の溶液は、貴金属化合物(すなわち、貴金属及び/又はその水溶性化合物)を含む溶液であれば特に限定されないが、塩化物溶液、硝酸塩溶液、ジニトロジアンミン硝酸溶液、ビス(アセチルアセトナト)白金(II)溶液等の溶液であることが好ましい。貴金属については上述したとおりであり、白金が特に好ましい。従って、貴金属の溶液として特に好ましくは、塩化白金酸水溶液、ジニトロジアンミン白金硝酸水溶液であり、中でも反応性の観点から、塩化白金酸水溶液が最も好ましい。
工程(2)では、必要に応じ、上記混合液に対し還元処理、表面処理及び/又は中和処理を行ってもよい。例えば、還元処理を行う場合は、混合液に還元剤を添加して、貴金属化合物を適度に還元することが好ましい。表面処理を行う場合は、混合液に界面活性剤を添加して行うことが好ましく、これにより亜酸化チタン粉粒体や貴金属化合物の表面を最適な状態にすることができる。中和処理を行う場合は、混合液に塩基性溶液を添加して行うことが好ましい。なお、還元処理、表面処理及び中和処理のうち2以上の処理を行う場合、還元剤、界面活性剤、塩基性溶液は任意の順で別々に添加してよいし、まとめて添加してもよい。
上記還元剤は特に限定されるものではないが、例えば、塩化ヒドラジン、ヒドラジン、水素化ホウ素ナトリウム等が挙げられ、好ましくは塩化ヒドラジンである。添加量は特に限定されるものではないが、上記混合液に含まれる貴金属のモル当量の0.1~1倍量であることが好ましい。
上記界面活性剤としては特に限定されるものではないが、例えば、ポリジメチルジアリルアンモニウムクロライド、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。添加量は特に限定されないが、亜酸化チタン粉粒体の総量100重量部に対して、0.01~10重量部であることが好ましく、より好ましくは0.1~5.0重量部である。
上記塩基性溶液は特に限定されるものではないが、NaOH水溶液、NH水溶液、炭酸ナトリウム水溶液等が挙げられ、好ましくはNaOH水溶液である。中和工程での中和温度は、好ましくは60℃~100℃、より好ましくは70℃~100℃である。
工程(2)では、上記混合液(上述の通り、必要に応じて還元処理、表面処理及び/又は中和処理を行ったものであってもよい)から、水分及び副生物(副生成物とも称す)を除去することが好ましい。その除去手段は特に限定されないが、例えば、濾過、水洗、乾燥、加熱下での蒸発等により水分及び副生物を除去することが好ましい。
工程(2)として特に好ましくは、上記工程(1)で得た亜酸化チタン粉粒体と貴金属化合物とを含む混合液を還元した後、濾過、乾燥して得た粉末を焼成する工程である。
5、燃料電池
本発明の電極材料は、燃料電池用の電極材料用途に好適に用いることができる。中でも、固体高分子形燃料電池(PEFC)用の電極材料用途に特に好適である。特に、従来一般に使用されているカーボン担体上に白金を担持した材料の代替材料として有用である。このような電極材料は、正極(空気極とも称す)、負極(燃料極とも称す)のいずれにも好適であり、また、カソード(陽極)、アノード(陰極)のいずれにも好適である。本発明の電極材料を用いた固体高分子形燃料電池は、本発明の好適な実施形態の1つである。
本発明を詳細に説明するために以下に具体例を挙げるが、本発明はこれらの例のみに限定されるものではない。特に断りのない限り、「%」とは「重量%(質量%)」を意味する。
なお、各物性の測定方法は以下の通りである。
1、X線回折パターン
下記条件の下、X線回折装置(株式会社リガク製、商品名「RINT-TTR3」)を用いて、粉末X線回折パターンを測定した。
X線源:Cu-Kα線
測定範囲:2θ=10~60°
スキャンスピード:5°/min
電圧:50kV
電流:300mA
2、L表色系における明度L
測色計(日本電色工業株式会社製、商品名「SE2000」)を用いて、L表色系における明度Lを測定した。
3、体積抵抗(体積固有抵抗とも称す)
体積抵抗の測定には、株式会社三菱化学アナリテック製、粉体抵抗測定システム MCP-PD51型を用いた。粉体抵抗測定システムは、油圧による粉体プレス部と四探針プローブ、高抵抗測定装置(同社製、ロレスターGX MCP-T700)から構成される。
以下の手順に従い、体積抵抗(Ω・cm)の値を求めた。
1)四探針プローブを底面に備えたプレス冶具(直径20mm)にサンプル粉末を投入し、粉体抵抗測定システムの加圧部にセットする。プローブと高抵抗測定装置とをケーブルで接続する。
2)ハンドプレスを用いて、20kNまで加圧する。粉体厚みをデジタルノギスで測定、抵抗値を高抵抗測定装置で測定する。
3)粉体の底面積、厚み、抵抗値から、下記数式1に基づき体積固有抵抗(Ω・cm)を求める。
Figure JPOXMLDOC01-appb-M000001
4、高電位耐久性
(1)作用極の作製
測定対象のサンプルに、5重量%パーフルオロスルホン酸樹脂溶液(シグマアルドリッチジャパン株式会社製)、イソプロピルアルコール(和光純薬工業株式会社製)及び超純水を加え、超音波により分散させてペーストを調製した。ペーストを電極に塗布し、充分に乾燥した。乾燥後の電極を作用極とした。
(2)サイクリックボルタモグラムの測定
Automatic Polarization System(北斗電工株式会社製、商品名「HZ-7000」)に、作用極、対極、および参照極を接続した。作用極には、上記で得た測定サンプル付き電極を用い、対極と参照極には、それぞれ白金電極と可逆水素電極(RHE)電極を用いた。
25℃で、電解液(0.1mol/lの過塩素酸水溶液)にアルゴンガスを30分間バブリングし、アルゴンガスを電解槽に充分飽和させた。その後、25℃で、アルゴンガスを飽和させた電解液(0.1mol/l過塩素酸水溶液)で0.05Vから1.2Vまで掃引速度50mV/secでサイクリックボルタンメトリーを行った。
その後、電位掃引の上限を、1.4V、1.6V、1.8Vと変化させて、サイクリックボルタンメトリーを行った。
掃引時に得られる波形を重ねてプロットし、高電位掃引時の波形の変化を目視確認することにより、高電位耐久性の判断基準とした。
5、電気化学的有効比表面積(ECSA:Electrochemical Surface Area)
(1)作用極の作製
上記「4、高電位耐久性」の(1)に示す方法と同様の方法で、作用極を作製した。
(2)サイクリックボルタンメトリー測定
上記「4、高電位耐久性」の(2)に示す方法と同様の方法で、サイクリックボルタンメトリーを行った。
その後、掃引時に得られる水素吸着波の面積(水素吸着時の電荷量:QH(μC))から、下記数式2を用いて電気化学的有効比表面積を算出し、電気化学特性の指標とした。なお、数式2中、「210(μCcm)」は、白金(Pt)の単位活性面積あたりの吸着電化量である。
Figure JPOXMLDOC01-appb-M000002
6、白金担持量
走査型蛍光X線分析装置ZSX PrimusII(株式会社リガク製)を用いて、試料中の白金含有量を測定し、白金担持量を算出した。
7、チタン以外の金属元素の測定方法
走査型蛍光X線分析装置ZSX PrimusII(株式会社リガク製)を用いて金属含有量を測定した。
実施例1
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)3.5gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)0.525gを乾式混合した後、アルミナボートに入れ、雰囲気焼成炉にて水素ガス(岩谷産業株式会社製、以下同様)を400ml/分で流通しながら730℃まで昇温速度300℃/hrで昇温し、730℃で6時間保持した。その後、水素ガスの流通を止め、アンモニアガス(東横化学株式会社製、以下同様)を400ml/分で流通しながら500℃まで降温速度200℃/hrで降温させた。その後、アンモニアガスの流通を止め、窒素ガス(エアー・ウォーター株式会社製、以下同様)を400ml/分で流通しながら、500℃から室温まで自然冷却し、粉末1を得た。
実施例2
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)13.1gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)1.965gを乾式混合した他は、実施例1と同様にして、粉末2を得た。
実施例3
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)3.5gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)0.525gを乾式混合した後、アルミナボートに入れ、雰囲気焼成炉にて水素ガスを400ml/分で流通しながら760℃まで昇温速度300℃/hrで昇温し、760℃で2時間保持した。その後、水素ガスの流通を止め、アンモニアガスを400ml/分で流通しながら、500℃まで降温速度200℃/hrで降温させた。その後、アンモニアガスの流通を止め、窒素ガスを400ml/分で流通しながら500℃から室温まで自然冷却し、粉末3を得た。
実施例4
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)13.1gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)1.965gを乾式混合した後、アルミナボートに入れ、雰囲気焼成炉にて水素ガスを400ml/分で流通しながら750℃まで昇温速度300℃/hrで昇温し、750℃で6時間保持した。その後、水素ガスの流通を止め、アンモニアガスを400ml/分で流通しながら500℃まで降温速度200℃/hrで降温させた。その後、アンモニアガスの流通を止め、窒素ガスを400ml/分で流通しながら、500℃から室温まで自然冷却し、粉末4を得た。
実施例5
アナタース型酸化チタン(堺化学工業株式会社製、商品名「SSP-25」、比表面積270m/g)2.0gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)0.3gを乾式混合した後、アルミナボートに入れ、雰囲気焼成炉にて水素ガスを400ml/分で流通しながら750℃まで昇温速度300℃/hrで昇温し、750℃で1時間保持した後、550℃まで降温速度200℃/hrで降温させた。その後、水素の流通を止め、アンモニアガスを400ml/分で流通しながら、550℃で1時間保持した。その後、アンモニアガスの流通を止め、窒素ガスを400ml/分で流通しながら、550℃から室温まで自然冷却し、粉末5を得た。
比較例1
ルチル型酸化チタン(堺化学工業社株式会社、商品名「STR-100N」、比表面積100m/g)20.0gをアルミナボートに入れ、焼成炉にて大気雰囲気下、920℃まで昇温速度300℃/hrで昇温し、920℃で1時間保持した後、室温まで自然冷却した。得られた粉末から3.5gをアルミナボートに入れ、雰囲気焼成炉にてアンモニアガスを400ml/分で流通しながら、600℃まで昇温速度300℃/hrで昇温し、600℃で3時間保持した。その後、アンモニアガスの流通を止め、窒素を400ml/分で流通しながら、室温まで自然冷却し、粉末c1を得た。
比較例2
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)20.0gをアルミナボートに入れ、焼成炉にて大気雰囲気下、920℃まで昇温速度300℃/hrで昇温し、920℃で1時間保持した後、室温まで自然冷却した。得られた粉末から1.0gを使用し、実施例1で得られた粉末1.0gと乾式混合し、粉末c2を得た。
比較例3
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)20.0gをアルミナボートに入れ、焼成炉にて大気雰囲気下、880℃まで昇温速度300℃/hrで昇温し、880℃で1時間保持した後、室温まで自然冷却した。得られた粉末から3.5gをアルミナボートに入れ、雰囲気焼成炉にて水素ガスを400ml/分で流通しながら、700℃まで昇温速度300℃/hrで昇温し、700℃で2時間保持した。その後、500℃まで自然冷却し、水素ガスの流通を止め、更に100vol%窒素ガスを400ml/分で流通しながら室温まで自然冷却し、粉末c3を得た。
比較例4
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)20.0gをアルミナボートに入れ、焼成炉にて大気雰囲気下、920℃まで昇温速度300℃/hrで昇温し、920℃で1時間保持した後、室温まで自然冷却し、粉末c4を得た。
比較例5
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)3.5gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)0.3gを乾式混合した後、アルミナボートに入れ、雰囲気焼成炉にて水素ガスを400ml/分で流通しながら725℃まで昇温速度300℃/hrで昇温し、725℃で6時間保持した。その後、500℃まで自然冷却し、水素ガスの流通を止め、更に窒素ガスを400ml/分で流通しながら室温まで自然冷却し、粉末c5を得た。
比較例6
ルチル型酸化チタン(堺化学工業株式会社製、商品名「STR-100N」、比表面積100m/g)2.0gと金属チタン(和光純薬工業株式会社製、商品名「チタン,粉末」)0.3gを乾式混合した後、アルミナボートに入れ、雰囲気焼成炉にて水素ガスを400ml/分で流通しながら700℃まで昇温速度300℃/hrで昇温し、700℃で2時間保持した。その後、450℃まで降温速度200℃/hrで降温させ、水素の流通を止め、アンモニアガスを400ml/分で流通しながら、450℃で3分保持した。その後、アンモニアガスの流通を止め、窒素を400ml/分で流通しながら室温まで自然冷却し、粉末c6を得た。
参考例1
カーボン粉末(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名「ケッチェンブラックEC300J」)を用いた(粉末r1)。
参考例2
ITO粉末(シグマアルドリッチジャパン株式会社製、商品名「Indium tin oxide nanopowder、<50nm particle size」)を用いた(粉末r2)。
上記実施例等で得た各粉体(試料)につき、上述した分析及び評価を行った。結果を表1に示す。また、各粉体の外観の撮影写真を図1に、実施例2、参考例1の高電位耐久性試験の結果を図2に示す。
Figure JPOXMLDOC01-appb-T000003
表1中、「ルチル(主相)」とは、結晶構造がルチル型結晶相を主相とするものであることを意味する。また、比較例6で得た粉体c6の構造は、マグネリ相とルチル型TiOとの混合相であった。これを表1では「マグネリ、ルチル」と表記した。
実施例及び比較例の結果より、以下のことを確認した。
実施例1~5で得た粉末1~5は、組成がTiO(nは、1.5以上、1.90以下の数を表す。)で表され、ルチル型結晶相を主相とし、L表色系における明度Lが35~45である亜酸化チタン粉粒体(導電性材料)である。
これに対し、比較例で得た粉末は、粉末c1は上記nが1.90を超える点で、粉末c2は明度Lが45を超える点で、粉末c3、c4は上記nが1.90を超え、かつ明度Lが45を超える点で、粉末c5は結晶相がTiであり、かつ明度Lが35を下回る点で、粉末c6は、ルチル型結晶構造が主相となっておらず、粉末X線回折パターン(CuKα、2θ=10~60°の測角範囲)において、ルチル型結晶構造に帰属する最大ピーク強度の77%を示すTiに帰属するピークが存在する点で、いずれも本発明の導電性材料とは相違する。
このような相違の下、導電性を示す体積抵抗を対比すると、粉末1~5は、粉末c1~c6(酸化チタン又は亜酸化チタン)に比較して著しく体積固有抵抗が低く、熱線遮蔽材や帯電防止材として一般的に使用される導電性材料のITO粉末(粉末r2)と同等以上の導電性であることが分かる。特に粉末2~5については、電極材料として一般的に使用される導電性材料のカーボン粉末(粉末r1)とほぼ同等レベルの導電性であることが分かる(表1参照)。従って、本発明の導電性材料は高導電性を有することが分かった。
なお、Tiは、粒子全体がTi組成の場合、理論上は上記nが1.75となるが、比較例5(粉末c5)ではXRDによる結晶構造がTi単一相であるにもかかわらず、nが1.82となっている(表1参照)。これは、粒子最表面が酸化を受け、内部よりも酸素欠陥が少ない状態になっていることを示唆しており、このため導電性が不充分であるものと推測される。
上記表には示していないが、実施例1、5で得た粉末1、5について、Ti以外の金属元素の含有を分析したところ、当該金属元素の含有量が0.2質量%未満であることも確認した。具体的には、粉末1は、Nb元素が0.074質量%、Si元素が0.079質量%検出された。粉末5は、Nb元素が0.098質量%、Si元素が0.019質量%検出された。
図2には、実施例2で得た粉末2と、参考例1の粉末r1との高電位耐久性試験の結果を示している。各々のグラフは、横軸に電圧、縦軸に電流値を示しており、サイクリックボルタンメトリー測定において電圧を掃引したときに流れる電流をプロットしたものである。それぞれにおいて、掃引する電圧の幅を順次変化させてサイクリックボルタンメトリーを行った。粉末2においては、上限電圧を1.2Vから1.8Vまで変化させても波形に大きな変化がないが、粉末r1では上限電圧を1.2Vより高くすると電流値の変動が非常に大きくなった。これは粉末r1において1.2V以上の高電位領域では酸化電流が発生している、すなわちC+2HO→CO+4H+4eで表される分解反応が起こっていることを示している。一方、粉末2をはじめ、亜酸化チタン粉粒体よりなる本発明の導電性材料は、高電位においても上述の分解反応が起こらないため、固体高分子形燃料電池の電極材料として用いた場合に、カーボンに比べて安定であるといえる。
以上の結果から、上記実施例で得た粉末等の本発明の導電性材料を用いた電極材料は、高導電性を有する他、従来一般に使用されているカーボン担体に白金を担持した材料よりも、高電位かつ強酸性環境への耐性が高いものであることも分かった。
実施例6
粉末2を0.60gと、イオン交換水128gをビーカーに計量して撹拌混合し、スラリーを得た。
別のビーカーにて塩化白金酸水溶液(白金として15.343%、田中貴金属工業株式会社製)1.3gをイオン交換水8.0gで希釈した後、塩化ヒドラジン(東京化成工業株式会社、商品名「Hydrazine Dihydrochloride」)0.053gを添加し、撹拌混合したものを準備した(これを「混合水溶液」と称す)。
上記スラリーを攪拌しながら、別のビーカーにて準備した上記の混合水溶液全量を添加し、その後、液温70℃に加熱保持しながら撹拌混合した。更に、1Nの水酸化ナトリウム水溶液7.0mlを添加し撹拌混合して、液温70℃に1時間加熱保持した後、濾過、水洗、乾燥して水分を全て蒸発させた。得られた粉末0.5gを水素雰囲気下、560℃まで600℃/hrで昇温し、560℃で1時間保持した後、室温まで自然冷却して、Pt担持粉末6を得た。このときのPt担持量は、9.15質量%であった。
参考例3
50質量%Pt担持カーボン粉末(エヌ・イー ケムキャット株式会社製)を用いた(粉末r3)。
上記実施例6及び参考例3で得た各粉体(試料)につき、上述した方法にて、燃料電池の電極材料等に用いた場合の電気化学特性の指標となるECSAを測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
表2より、粉末6及び粉末r3のECSAを対比すると、粉末6は、粉末r3よりもESCAが高いことが分かる。従って、本発明の導電性材料に貴金属及び/又はその酸化物が担持された構造を有する電極材料を使用した場合、高い電気化学特性を有することが分かった。

Claims (5)

  1. 亜酸化チタン粉粒体からなる導電性材料であって、
    該亜酸化チタン粉粒体は、
    組成がTiO(nは、1.5以上、1.90以下の数を表す。)で表され、
    ルチル型結晶相を主相とし、
    表色系における明度Lが35~45である
    ことを特徴とする導電性材料。
  2. 請求項1に記載の導電性材料に、貴金属及び/又はその酸化物が担持された構造を有する
    ことを特徴とする電極材料。
  3. 固体高分子形燃料電池の電極材料である
    ことを特徴とする請求項2に記載の電極材料。
  4. 請求項2に記載の電極材料から構成された電極を備える
    ことを特徴とする燃料電池。
  5. 請求項1に記載の導電性材料を製造する方法であって、
    該製造方法は、
    比表面積が20m/g以上である酸化チタンを含む原料を、還元雰囲気下で焼成した後、アンモニア雰囲気下500℃以上で焼成する工程、又は、該原料を、アンモニアが存在する還元雰囲気下で焼成する工程を含む
    ことを特徴とする導電性材料の製造方法。
PCT/JP2018/006292 2017-03-01 2018-02-21 導電性材料及び電極材料 WO2018159420A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB1909436.6A GB2574943B (en) 2017-03-01 2018-02-21 Electrically conductive material and electrode material
CN201880015218.0A CN110383394B (zh) 2017-03-01 2018-02-21 导电性材料和电极材料
DE112018001103.8T DE112018001103T5 (de) 2017-03-01 2018-02-21 Elektrisch leitendes material und elektrodenmaterial
KR1020197022834A KR102501563B1 (ko) 2017-03-01 2018-02-21 도전성 재료 및 전극 재료
US16/476,502 US11094944B2 (en) 2017-03-01 2018-02-21 Electrically conductive material and electrode material
CA3048980A CA3048980A1 (en) 2017-03-01 2018-02-21 Electrically conductive material and electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038277A JP6841088B2 (ja) 2017-03-01 2017-03-01 導電性材料及び電極材料
JP2017-038277 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159420A1 true WO2018159420A1 (ja) 2018-09-07

Family

ID=63371370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006292 WO2018159420A1 (ja) 2017-03-01 2018-02-21 導電性材料及び電極材料

Country Status (9)

Country Link
US (1) US11094944B2 (ja)
JP (1) JP6841088B2 (ja)
KR (1) KR102501563B1 (ja)
CN (1) CN110383394B (ja)
CA (1) CA3048980A1 (ja)
DE (1) DE112018001103T5 (ja)
GB (1) GB2574943B (ja)
TW (1) TWI740006B (ja)
WO (1) WO2018159420A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455166B2 (ja) * 2015-01-16 2019-01-23 富士電機株式会社 半導体ウエハおよび半導体チップの製造方法
JP2020064786A (ja) * 2018-10-18 2020-04-23 株式会社グラヴィトン 固体高分子形燃料電池
WO2022014404A1 (ja) * 2020-07-16 2022-01-20 堺化学工業株式会社 エネルギー吸放出材
WO2022210700A1 (ja) * 2021-03-31 2022-10-06 堺化学工業株式会社 導電性材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891037A (ja) * 1981-11-27 1983-05-30 Mitsubishi Metal Corp 酸化チタン粉末の製造法
JPS61106414A (ja) * 1984-07-10 1986-05-24 Ishihara Sangyo Kaisha Ltd 導電性低次酸化チタン微粉末及びその製造方法
JPS6472922A (en) * 1987-09-16 1989-03-17 Sumitomo Cement Co Superfine titanium oxide powder and facing material obtained by blending same
JPH11292536A (ja) * 1998-04-08 1999-10-26 Mitsubishi Materials Corp 低抵抗黒色酸化チタンとその製造方法
JP2005089213A (ja) * 2003-09-16 2005-04-07 Tayca Corp 酸化チタンの製造方法
JP2006210135A (ja) * 2005-01-28 2006-08-10 Sony Corp 触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに電気化学デバイス
JP2008150240A (ja) * 2006-12-15 2008-07-03 Ishihara Sangyo Kaisha Ltd 酸化チタン及びその製造方法
WO2013141063A1 (ja) * 2012-03-23 2013-09-26 株式会社クラレ 触媒およびこれを備える燃料電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3014533B2 (ja) * 1992-04-10 2000-02-28 帝人株式会社 金属板貼合せ用二軸配向ポリエステルフイルム
CN101278422B (zh) 2005-05-16 2012-05-30 通用汽车环球科技运作公司 用于燃料电池电极的催化剂
US20100043871A1 (en) * 2008-04-14 2010-02-25 Bp Corporation North America Inc. Thermal Conducting Materials for Solar Panel Components
JP5224073B2 (ja) 2010-03-26 2013-07-03 住友金属鉱山株式会社 酸化物蒸着材とその製造方法
CN102820497A (zh) 2011-06-10 2012-12-12 上海市七宝中学 一种二氧化钛催化的电池、及其制备方法和应用
KR101500069B1 (ko) * 2013-04-11 2015-03-06 현대자동차주식회사 연료전지용 촉매전극을 위한 티타늄 서브옥사이드 지지체와 이의 저온 합성방법
MX2015017041A (es) 2013-06-17 2016-04-21 Merck Patent Gmbh Pigmentos transparentes, electricamente semiconductores de interferencia que tienen alta intensidad de color.
EP3062323B1 (en) 2013-09-29 2018-11-21 Shanghai Institute of Ceramics, Chinese Academy of Sciences Titanium oxide-based supercapacitor electrode material and method of manufacturing same
FR3012153B1 (fr) * 2013-10-21 2016-03-04 Arjo Wiggins Fine Papers Ltd Papier destine en particulier a l'impression d'une couche electro-conductrice
JP6566268B2 (ja) * 2014-06-17 2019-08-28 石原産業株式会社 二酸化チタン顔料及びその製造方法並びにそれを配合した組成物
EP3166724A1 (en) 2014-07-10 2017-05-17 SABIC Global Technologies B.V. Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
CN104658768B (zh) 2014-12-11 2017-12-22 湖北大学 钛氧化物的制备方法及其超级电容器
KR101734820B1 (ko) * 2015-12-24 2017-05-12 한국세라믹기술원 주황색 무기안료

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891037A (ja) * 1981-11-27 1983-05-30 Mitsubishi Metal Corp 酸化チタン粉末の製造法
JPS61106414A (ja) * 1984-07-10 1986-05-24 Ishihara Sangyo Kaisha Ltd 導電性低次酸化チタン微粉末及びその製造方法
JPS6472922A (en) * 1987-09-16 1989-03-17 Sumitomo Cement Co Superfine titanium oxide powder and facing material obtained by blending same
JPH11292536A (ja) * 1998-04-08 1999-10-26 Mitsubishi Materials Corp 低抵抗黒色酸化チタンとその製造方法
JP2005089213A (ja) * 2003-09-16 2005-04-07 Tayca Corp 酸化チタンの製造方法
JP2006210135A (ja) * 2005-01-28 2006-08-10 Sony Corp 触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに電気化学デバイス
JP2008150240A (ja) * 2006-12-15 2008-07-03 Ishihara Sangyo Kaisha Ltd 酸化チタン及びその製造方法
WO2013141063A1 (ja) * 2012-03-23 2013-09-26 株式会社クラレ 触媒およびこれを備える燃料電池

Also Published As

Publication number Publication date
GB2574943A (en) 2019-12-25
CA3048980A1 (en) 2018-09-07
CN110383394B (zh) 2021-03-26
GB201909436D0 (en) 2019-08-14
KR20190126058A (ko) 2019-11-08
GB2574943B (en) 2022-02-16
CN110383394A (zh) 2019-10-25
US20200058945A1 (en) 2020-02-20
JP2018147569A (ja) 2018-09-20
KR102501563B1 (ko) 2023-02-17
TW201840047A (zh) 2018-11-01
US11094944B2 (en) 2021-08-17
DE112018001103T5 (de) 2020-01-02
JP6841088B2 (ja) 2021-03-10
TWI740006B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
Kim et al. Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction
KR102569084B1 (ko) 산화 주석 상에 지지된 귀금속 산화물을 포함하는 전기촉매 조성물
KR101864967B1 (ko) 연료 전지용 전극 촉매 및 연료 전지용 전극 촉매의 제조 방법
WO2018159420A1 (ja) 導電性材料及び電極材料
CN109952675B (zh) 电极材料及其制造方法
Salgado et al. Characterization and performance evaluation of Pt–Ru electrocatalysts supported on different carbon materials for direct methanol fuel cells
EP2744024B1 (en) Method for producing electrode catalyst for fuel cells
Esfahani et al. Exceptionally durable Pt/TOMS catalysts for fuel cells
JP5302468B2 (ja) 酸素還元触媒およびその製造方法、並びに固体高分子形燃料電池
EP2608298A1 (de) Elektrokatalysator für Brennstoffzellen sowie Verfahren zu seiner Herstellung
Yang et al. Synthesis and characterization of an IrO 2–Fe 2 O 3 electrocatalyst for the hydrogen evolution reaction in acidic water electrolysis
US11557767B2 (en) Fuel cell catalyst support based on doped titanium sub oxides
JP2017016853A (ja) 電極用担体材料及びその製造方法
TW201841684A (zh) 電極材料及其用途
Rodríguez-García et al. NdMn1. 5Ru0. 5O5, a high-performance electrocatalyst with low Ru content for acidic oxygen evolution reaction
Wang et al. SC-IrO 2 NR-carbon hybrid: a catalyst with high electrochemical stability for oxygen reduction
Fuentes et al. Bimetallic electrocatalysts supported on TiO2 for PEM water electrolyzer
JPWO2020175114A1 (ja) 電極材料及びそれを用いた電極
JP7528812B2 (ja) 電極材料、電極及び電池
WO2020209195A1 (ja) 燃料電池アノード用水電解触媒、アノード触媒組成物及び膜電極接合体
JP2019171331A (ja) 貴金属触媒の製造方法及び貴金属触媒
KR20240140711A (ko) 금속 나노구조체 및 이의 제조 방법
KR20240140710A (ko) 촉매 및 이의 제조 방법
Fuentesa et al. Bimetallic Electrocatalysts supported on TiO2 for PEM Water Electrolyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3048980

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 201909436

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180221

ENP Entry into the national phase

Ref document number: 20197022834

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18760776

Country of ref document: EP

Kind code of ref document: A1