WO2022210529A1 - ポリビニルアルコール系樹脂組成物及び射出成形物 - Google Patents

ポリビニルアルコール系樹脂組成物及び射出成形物 Download PDF

Info

Publication number
WO2022210529A1
WO2022210529A1 PCT/JP2022/014978 JP2022014978W WO2022210529A1 WO 2022210529 A1 WO2022210529 A1 WO 2022210529A1 JP 2022014978 W JP2022014978 W JP 2022014978W WO 2022210529 A1 WO2022210529 A1 WO 2022210529A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
based resin
resin composition
molding
vinyl
Prior art date
Application number
PCT/JP2022/014978
Other languages
English (en)
French (fr)
Inventor
泰広 平野
祐哉 金森
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2023511256A priority Critical patent/JPWO2022210529A1/ja
Publication of WO2022210529A1 publication Critical patent/WO2022210529A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to polyvinyl alcohol-based resin compositions and injection molded articles.
  • Vinyl alcohol-based resins such as polyvinyl alcohol-based resins (hereinafter also referred to as PVA-based resins) are excellent in solvent resistance, gas barrier properties, strength, transparency, etc., so they are used in various molded products such as food packaging containers. It is
  • melt molding examples include melt molding.
  • melt-molding methods include injection molding, extrusion molding such as T-die and inflation, compression molding, blow molding, vacuum molding, and press molding.
  • Patent Document 1 contains a PVA-based resin (A) and a multimeric aldehyde compound (B), and the content of the multimeric aldehyde compound (B) is 100 mass of the PVA-based resin (A).
  • a resin composition is described that is 0.5 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 parts by weight per part. It also describes that raw material pellets using such a resin composition can be melt-molded by an extrusion molding method or an injection molding method.
  • an object of the present invention is to provide a PVA-based resin composition that allows an injection-molded article to be easily removed from a mold during injection molding and has excellent releasability.
  • the molding shrinkage ratio in at least one of the MD (machine direction) direction and the TD (transverse direction) direction during injection molding of the PVA-based resin composition is a specific value or more, The present inventors have found that it is possible to suppress excessive adhesion between the PVA-based resin composition and the mold and improve releasability, thereby completing the present invention.
  • Alcohol-based resin composition 2.
  • the polyvinyl alcohol-based resin composition further contains a mold shrinkage rate modifier (B), 3.
  • the PVA-based resin composition of the present invention it is possible to provide a PVA-based resin composition that is easily removed from the mold during injection molding and has excellent releasability because the molding shrinkage ratio is adjusted to a specific range.
  • the polyvinyl alcohol-based resin composition (PVA-based resin composition) is a PVA-based resin composition containing polyvinyl alcohol-based resin (A) (PVA-based resin (A)).
  • the molding shrinkage in at least one of the MD direction and the TD direction is 0.4% or more. Adhesion between the PVA-based resin composition and the mold is suppressed by setting the molding shrinkage rate in at least one of the MD direction and the TD direction during injection molding of the PVA-based resin composition to 0.4% or more. This makes it easier for the injection-molded product to come off from the mold, improving mold releasability.
  • Such molding shrinkage is preferably 0.45% or more, more preferably 0.5% or more.
  • the molding shrinkage rate is preferably 1.0% or less, more preferably 0.9% or less, and even more preferably 0.8% or less. That is, the molding shrinkage rate in at least one of the MD direction and the TD direction during injection molding is 0.4% or more and 1.0% or less, so that the shape of the injection molded product is not impaired and the mold It is preferable because it becomes easier to come off.
  • the molding shrinkage ratio in at least one of the MD direction and the TD direction during injection molding is preferably within the above range, and the MD direction and the TD direction during injection molding. It is more preferable that the molding shrinkage ratios of both are within the above ranges.
  • the molding shrinkage rate in the MD direction during injection molding is preferably 0.4% or more, more preferably 0.45% or more, and more preferably 0.5% or more, from the viewpoint of improving the releasability of the injection molded product. More preferred.
  • the molding shrinkage rate in the MD direction during injection molding is preferably 1.0% or less, more preferably 0.9% or less, and further preferably 0.8% or less, from the viewpoint of not damaging the shape of the injection molded product. preferable.
  • the molding shrinkage rate in the TD direction during injection molding is preferably 0.4% or more, more preferably 0.45% or more, and even more preferably 0.5% or more, from the viewpoint of improving the releasability of the injection molded product. .
  • the molding shrinkage rate in the TD direction during injection molding is preferably 1.0% or less, more preferably 0.9% or less, and further preferably 0.8% or less, from the viewpoint of not damaging the shape of the injection molded product. preferable.
  • the mold shrinkage ratios in the MD direction and the TD direction during injection molding are both preferably 0.4% or more, more preferably 0.45% or more. 0.5% or more is more preferable.
  • the molding shrinkage ratios in the MD and TD directions during injection molding are both preferably 1.0% or less, more preferably 0.9% or less, and 0.9% or less. 8% or less is more preferable.
  • the MD direction during injection molding refers to the flow direction of the molten resin during injection molding
  • the TD direction refers to the direction perpendicular to the flow direction.
  • the molding shrinkage rates in the MD direction and the TD direction are values measured in accordance with JIS K-7152-4, and specifically refer to values measured by the method described in Examples.
  • “molding shrinkage in at least one of the MD direction and the TD direction during injection molding” may be simply referred to as “molding shrinkage.”
  • the PVA-based resin composition according to this embodiment contains the PVA-based resin (A).
  • the PVA-based resin composition according to the present embodiment preferably contains a PVA-based resin (A) and a mold shrinkage rate modifier (B).
  • the PVA-based resin (A) used in the present embodiment is a resin mainly composed of vinyl alcohol structural units, which is obtained by saponifying a polyvinyl ester-based resin obtained by polymerizing a vinyl ester-based monomer.
  • the PVA-based resin (A) has a vinyl alcohol structural unit corresponding to the degree of saponification and a vinyl ester structural unit of the unsaponified portion.
  • the PVA-based resin (A) used in the present embodiment may be unmodified PVA, or obtained by copolymerizing a vinyl ester-based monomer and various monomers during the production of a vinyl ester-based resin and saponifying this. and various post-modified PVA obtained by introducing various functional groups into unmodified PVA by post-modification. Such modification is preferably carried out to the extent that the water-solubility of the PVA-based resin (A) is not lost. In some cases, the modified PVA may be further post-modified.
  • monomers used for copolymerization with vinyl ester-based monomers include, for example, ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, and the like.
  • Olefins acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, unsaturated acids such as itaconic acid or salts thereof, mono- or dialkyl esters thereof; nitriles such as acrylonitrile and methacrylonitrile; amides such as methacrylamide; olefin sulfonic acids such as ethylenesulfonic acid, allylsulfonic acid, methallylsulfonic acid, or salts thereof; alkyl vinyl ethers; N-acrylamidomethyltrimethylammonium chloride; allyltrimethylammonium chloride; N-vinylpyrrolidone; vinyl chloride; vinylidene chloride; polyoxyalkylene (meth)allyl ether such as polyoxyethylene (meth)allyl ether and polyoxypropylene (meth)allyl ether; polyoxyethylene (meth)acrylate, polyoxypropylene (Meth) Polyoxyalkylene (me
  • such monomers include 3,4-dihydroxy-1-butene, 3,4-diacyloxy-1-butene, 3-acyloxy-4-hydroxy-1-butene, 4-acyloxy-3-hydroxy-1-butene, 3,4-diacyloxy-2-methyl-1-butene, 4,5-dihydroxy-1-pentene, 4,5-diacyloxy-1-pentene, 4,5-dihydroxy-3-methyl-1-pentene, 4, 5-diacyloxy-3-methyl-1-pentene, 5,6-dihydroxy-1-hexene, 5,6-diacyloxy-1-hexene, glycerin monoallyl ether, 2,3-diacetoxy-1-allyloxypropane, 2 -acetoxy-1-allyloxy-3-hydroxypropane, 3-acetoxy-1-allyloxy-2-hydroxypropane, glycerin monovinyl ether, glycerin monoisopropenyl ether, vinylethylene carbonate, 2,
  • the content of these monomers is preferably within a range that does not impair the water solubility of the PVA-based resin (A). is preferably 5 mol % or less.
  • Post-modified PVA into which a functional group has been introduced by post-modification includes, for example, those having acetoacetyl groups by reaction with diketene, those having polyalkylene oxide groups by reaction with ethylene oxide, and those having epoxy compounds and the like. Those having a hydroxyalkyl group by reaction, or those obtained by reacting an aldehyde compound having various functional groups with a PVA-based resin can be mentioned.
  • the PVA-based resin (A) is preferably a melt-molding PVA-based resin (A1) in consideration of application to various molded products.
  • the PVA-based resin for melt-molding is a PVA-based resin suitable for melt-molding capable of hot-melt molding.
  • the modified PVA-based resin includes a PVA-based resin containing a structural unit having a primary hydroxyl group in the side chain, or an ethylene-modified PVA-based resin. preferable.
  • a PVA-based resin containing a structural unit having a primary hydroxyl group in a side chain is preferable from the viewpoint of excellent melt moldability.
  • the number of primary hydroxyl groups in such a structural unit is, for example, preferably 1 to 5, more preferably 1 to 2, still more preferably 1.
  • the PVA-based resin containing a structural unit having a primary hydroxyl group in its side chain preferably has a secondary hydroxyl group in addition to the primary hydroxyl group in its side chain.
  • PVA-based resins containing structural units having primary hydroxyl groups in side chains include modified PVA-based resins having 1,2-diol structural units in side chains, and hydroxyalkyl group structural units in side chains.
  • a modified PVA-based resin and the like can be mentioned.
  • modified PVA-based resins containing 1,2-diol structural units in side chains are particularly represented by the following general formula (1): ) is preferably used.
  • the portions other than the 1,2-diol structural units are vinyl alcohol structural units and vinyl ester structural units of unsaponified portions, as in ordinary PVA-based resins.
  • R 1 to R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms, and X represents a single bond or a bond chain. show.
  • R 1 to R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms. All of R 1 to R 4 are desirably hydrogen atoms from the viewpoint of making the terminal of the side chain a primary hydroxyl group. There may be.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and tert-butyl group.
  • Examples of the substituent that the alkyl group may have include a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, a sulfonic acid group, and the like.
  • X is a single bond or a bond chain.
  • X is preferably a single bond in terms of thermal stability and stability under high temperature and acidic conditions.
  • the bonding chain is not particularly limited, and examples thereof include hydrocarbon groups such as alkylene groups, alkenylene groups, alkynylene groups, phenylene groups, and naphthylene groups. These hydrocarbon groups may be substituted with halogen groups such as fluorine, chlorine and bromine atoms.
  • the connecting chains include -O-, -(CH 2 O) m -, -(OCH 2 ) m -, -(CH 2 O) m CH 2 -, -CO-, -COCO-, - CO(CH 2 ) m CO-, -CO(C 6 H 4 )CO-, -S-, -CS-, -SO-, -SO 2 -, -NR-, -CONR-, -NRCO-, - CSNR-, -NRCS-, -NRNR-, -HPO4-, -Si(OR) 2- , -OSi(OR) 2- , -OSi(OR) 2O- , -Ti(OR)2 - ,- OTi(OR) 2 -, -OTi(OR) 2 O-, -Al(OR)-, -OAl(OR)-, -OAl(OR)O- and the like.
  • Each R is independently a hydrogen atom or an arbitrary substituent, preferably a hydrogen atom or an alkyl group, particularly preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • m is a natural number, preferably 1-10, particularly preferably 1-5.
  • X is a bond chain
  • X is preferably an alkylene group having 6 or less carbon atoms, more preferably a methylene group or -CH 2 OCH 2 -, from the viewpoints of viscosity stability and heat resistance during production.
  • a particularly preferred structure in the 1,2-diol structural unit represented by the general formula (1) is a structure in which R 1 to R 4 are all hydrogen atoms and X is a single bond.
  • the saponification degree of the PVA-based resin (A) used in this embodiment is preferably 60 to 100 mol %, for example.
  • saponification degree means the value measured based on JISK6726 here.
  • the preferred range of the degree of saponification varies depending on the modified species. It is preferably 70 to 90 mol %.
  • the degree of saponification is equal to or less than the above upper limit, it is possible to prevent the melting point from becoming too close to the decomposition temperature, thereby facilitating melt molding, which is preferable.
  • the degree of saponification is equal to or higher than the above lower limit, since a decrease in water solubility can be suppressed.
  • the degree of saponification of the modified PVA-based resin containing 1,2-diol structural units in side chains is, for example, preferably 60 to 99.9 mol%, more preferably 65 to 99.8 mol%, and particularly preferably 70. ⁇ 99.5 mol%. It is preferable that the degree of saponification is equal to or higher than the above lower limit, since a decrease in water solubility can be suppressed.
  • the degree of saponification of the ethylene-modified PVA-based resin modified with a small amount of ethylene is, for example, preferably 60 mol% or more, more preferably 70 to 95 mol%, and particularly preferably 71 to 90 mol%.
  • the degree of saponification is equal to or less than the above upper limit, it is possible to prevent the melting point from becoming too close to the decomposition temperature, thereby facilitating melt molding, which is preferable.
  • the degree of saponification is equal to or higher than the above lower limit, since a decrease in water solubility can be suppressed.
  • the modification rate in the modified PVA-based resin that is, the structural units derived from various monomers in the copolymer or the functional groups introduced by post-modification, although the content cannot be generalized because the properties vary greatly depending on the type of structural unit and functional group, it is preferably 0.1 to 20 mol %, for example.
  • the modification rate is, for example, preferably 0.1 to 20 mol%, more preferably 0.5 to 10 mol%. and particularly preferably 1 to 8 mol %. It is preferable that the modification rate is within the above range because it facilitates melt molding.
  • the content of 1,2-diol structural units in the PVA-based resin is the 1 H-NMR spectrum of the PVA-based resin with a degree of saponification of 100 mol% (solvent: DMSO-d 6 , internal standard: tetramethylsilane).
  • the modification rate is, for example, preferably 0.1 to 15 mol%, more preferably 0.5 to 10 mol%. , more preferably 1 to 10 mol %, particularly preferably 5 to 9 mol %. It is preferable that the modification rate is equal to or less than the above upper limit value, since a decrease in water solubility can be suppressed. In addition, it is preferable that the modification rate is equal to or higher than the above lower limit value because it facilitates melt molding.
  • the viscosity average degree of polymerization of the PVA-based resin (A) used in the present embodiment is, for example, preferably 100 to 3000, more preferably 150 to 2000, even more preferably 180 to 1000, and particularly preferably 200 to 800. is.
  • the viscosity-average degree of polymerization is equal to or less than the upper limit, it is possible to prevent the melt viscosity from becoming too high during melt-molding, thereby facilitating melt-molding.
  • the viscosity average degree of polymerization here refers to a value measured according to JIS K 6726.
  • the PVA-based resin (A) used in this embodiment may be of one type or a mixture of two or more types.
  • two or more types of PVA-based resins (A) for example, a combination of two or more types of unmodified PVA-based resins having different saponification degrees, viscosity-average degrees of polymerization, melting points, etc.; unmodified PVA-based resins and modified Combination with PVA-based resin: Combination of two or more modified PVA-based resins having different degrees of saponification, viscosity-average degree of polymerization, melting point, type of functional group, modification rate, etc., but saponification degree, viscosity
  • the average values of the average degree of polymerization, modification rate, etc. are preferably within the preferred ranges of the present embodiment.
  • the binding mode of the main chain of the PVA-based resin (A) used in the present embodiment is typically mainly 1,3-diol bonds, and the content of 1,2-diol bonds is, for example, 1.5 to 1 Although it can be about 7 mol %, the content of 1,2-diol bonds can be increased by increasing the polymerization temperature when polymerizing the vinyl ester monomer, and the content is reduced to 1.8 mol %. % or more, or even 2.0 to 3.5 mol %.
  • a method for producing the PVA-based resin (A) used in the present embodiment includes, for example, a method of polymerizing and saponifying a vinyl ester-based monomer such as vinyl acetate.
  • vinyl ester monomer examples include vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, Vinyl piperate, vinyl octylate, vinyl monochloroacetate, vinyl adipate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, vinyl trifluoroacetate and the like can be used.
  • vinyl ester-based monomer vinyl acetate is preferably used from the viewpoint of price and availability.
  • Polymerization of the vinyl ester monomer can be carried out by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, and the like. Among them, it is preferable to carry out solution polymerization under reflux because the heat of reaction can be removed efficiently.
  • Solvents for solution polymerization include, for example, alcohols, preferably lower alcohols having 1 to 3 carbon atoms.
  • the polymer is dissolved in alcohol or a mixed solvent of water and alcohol, and an alkali catalyst or an acid catalyst can be used.
  • an alkali catalyst for example, alkali metal hydroxides and alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate and lithium methylate can be used.
  • a transesterification reaction using an alkali catalyst in an anhydrous alcoholic solvent is preferably used in terms of the reaction rate and the ability to reduce impurities such as fatty acid salts.
  • the reaction temperature of the saponification reaction is preferably 20 to 60°C, for example.
  • the reaction temperature is above a certain level, the reaction rate does not become too low, so the reaction efficiency is less likely to decrease.
  • By keeping the reaction temperature below a certain level it is possible to prevent the reaction temperature from becoming equal to or higher than the boiling point of the reaction solvent, and it is easy to ensure safety in terms of production.
  • saponification is performed under high pressure using a column type continuous saponification tower with high pressure resistance, saponification can be performed at a higher temperature, for example, 80 to 150 ° C., and a small amount of saponification catalyst is used. Even when using, it is possible to obtain a product with a high degree of saponification in a short time.
  • the side chain 1,2-diol structural unit-containing modified PVA-based resin can be produced by a known production method.
  • it can be produced by the methods described in JP-A-2002-284818, JP-A-2004-285143, and JP-A-2006-95825.
  • the content of the PVA-based resin (A) in the PVA-based resin composition is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more. It is preferable that the content of the PVA-based resin (A) in the PVA-based resin composition is 60% by mass or more because the mechanical strength is maintained.
  • the upper limit of the content of the PVA-based resin (A) is not particularly limited as long as the molding shrinkage in at least one of the MD direction and the TD direction during injection molding can be 0.4% or more.
  • the PVA-based resin composition according to the present embodiment preferably contains a molding shrinkage rate modifier (B).
  • B a molding shrinkage rate modifier
  • the molding shrinkage rate of the PVA-based resin composition can be adjusted.
  • the molding shrinkage rate adjusting agent (B) a substance that can increase the molding shrinkage rate of the PVA-based resin composition compared to the case where the PVA-based resin (A) is used alone is used. It is preferable because it is easy to adjust the rate to a desired value.
  • a substance having a property of assisting the crystallization of the PVA-based resin (A) or expanding the shrinkage volume during crystallization is preferable.
  • the mold shrinkage rate adjuster (B) is preferably one or more selected from the group consisting of resins other than PVA-based resins, inorganic substances, elastomers and hydrophobic materials.
  • resins other than PVA-based resins include chemically synthesized biodegradable resins, microbial-produced resins, and thermoplastic elastomers. More specifically, for example, polybutylene adipate terephthalate, polybutylene succinate, polylactic acid, polybutylene succinate adipate, polyglycolic acid, polyethylene succinate, polycaprolactone, polyethylene terephthalate succinate, polybutylene sebacic acid-co-terephthalate , poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), polyhydroxyalkanoic acid, bacterial cellulose, poly 3-hydroxybutyrate, styrene/butadiene/block copolymer, styrene/butadiene/butylene block copolymer polymers, styrene/ethylene/butylene block copolymers, styrene/isoprene block copolymers, styrene/isobut
  • resins other than the PVA-based resin include polybutylene adipate terephthalate, polybutylene succinate, polylactic acid, polybutylene succinate adipate, polyglycolic acid, Polyethylene succinate, polycaprolactone, polyethylene terephthalate succinate, polybutylene sebacic acid-co-terephthalate, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), polyhydroxyalkanoic acid, bacterial cellulose, poly 3- Biodegradable resins such as hydroxybutyrate are preferably used.
  • the molding shrinkage rate adjuster (B) is more preferably capable of adjusting the molding shrinkage rate of the PVA-based resin composition and adjusting the hydrophilicity of the PVA-based resin composition.
  • the PVA-based resin has relatively high hydrophilicity. Therefore, by adjusting the mold shrinkage ratio to the above value with the mold shrinkage ratio adjuster (B) and further making the hydrophilicity of the PVA resin composition relatively small, the releasability of the PVA resin composition is improved. It is preferable because it is easier to improve.
  • the molding shrinkage rate modifier (B) is preferably a substance having relatively low hydrophilicity or a hydrophobic substance. succinate, polylactic acid, polycaprolactone, styrene/ethylene/butylene block copolymers, and the like.
  • the content of the resin other than the PVA-based resin with respect to the total amount of the PVA-based resin composition is adjusted according to the type of resin, etc. so that the desired molding shrinkage can be obtained. It may be adjusted as appropriate, and is not particularly limited.
  • the content is preferably 1% by mass or more, more preferably 5% by mass or more, from the viewpoint of improving releasability from the mold.
  • the content is preferably 40% by mass or less, more preferably 30% by mass or less, from the viewpoint of improving mechanical strength.
  • inorganic substances include layered inorganic compounds (layered inorganic minerals), and specific examples include talc, calcium carbonate, mica, zeolite, clay, mica, synthetic mica, bentonite, kaolinite (kaolin mineral), pyrophyllite, smectite, vermiculite, chlorite, septe chlorite, serpentine, stilpnomelane, montmorillonite, and the like.
  • the molding shrinkage rate adjusting agent (B) the molding shrinkage rate can be adjusted even if the amount added to the PVA-based resin composition is relatively small. It is hard to lose sexuality.
  • Talc and calcium carbonate are preferable inorganic substances from the viewpoint of excellent moldability.
  • the content of the inorganic substance with respect to the total amount of the PVA-based resin composition may be appropriately adjusted according to the type of the inorganic substance so as to obtain a desired molding shrinkage rate.
  • the content is preferably 100 ppm or more, more preferably 500 ppm or more, from the viewpoint of promoting crystallization of the PVA-based resin (A).
  • the content is preferably 20% by mass or less, more preferably 10% by mass or less, from the viewpoint of improving moldability.
  • ppm means mass ppm here.
  • the molding shrinkage rate adjusting agent (B) one type of substance may be used, or two or more types of substances may be used in combination.
  • the PVA-based resin composition according to this embodiment may contain other components such as a plasticizer in addition to the components described above.
  • plasticizers include compounds obtained by adding ethylene oxide to polyhydric alcohols such as aliphatic polyhydric alcohols such as ethylene glycol, hexanediol, glycerin, trimethylolpropane, and diglycerin; ethylene oxide, propylene oxide, and ethylene oxide; Various alkylene oxides such as mixed adducts of propylene oxide; sugars such as sorbitol, mannitol, pentaerythritol, xylol, arabinose and ribulose; phenol derivatives such as bisphenol A and bisphenol S; amide compounds such as N-methylpyrrolidone; -Glucosides such as D-glucoside;
  • the content of the plasticizer is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the PVA-based resin (A). 1 to 30 parts by mass, more preferably 2 to 20 parts by mass.
  • the content of the plasticizer is at least the above lower limit, melt moldability is likely to be improved, and when it is at most the above upper limit, properties such as gas barrier properties and water solubility of the PVA-based resin are less likely to be impaired, which is preferable.
  • thermoplastic resins e.g., polyethylene, polypropylene, polyester, etc.
  • fragrances e.g., polyethylene, polypropylene, polyester, etc.
  • foaming agents e.g., foaming agents, deodorants, extenders
  • fillers e.g., glass beads, glass fibers, silica, Inorganic fillers such as alumina, hydrotalcite, titanium oxide, zirconium oxide, boron nitride and aluminum nitride, organic fillers such as melamine-formalin resins
  • release agents e.g., UV absorbers, antioxidants, processing stabilizers, Weather resistance stabilizers, fungicides, preservatives and the like can be mentioned, and these additives can be blended as appropriate.
  • the PVA-based resin composition according to the present embodiment can be produced, for example, by a method of appropriately mixing each component constituting the PVA-based resin composition.
  • An example of the method for producing the PVA-based resin composition according to the present embodiment includes the following method, but the production method is not limited only to the following method.
  • the shape of the PVA-based resin composition according to the present embodiment is preferably cylindrical (pellet-shaped) or powdery, for example. Since the PVA-based resin (A) is generally obtained in the form of powder, it is melt-kneaded together with the molding shrinkage rate adjusting agent (B) to obtain cylindrical pellets made of the PVA-based resin composition according to the present embodiment. It is preferable to obtain raw material pellets.
  • Raw material pellets are generally used as raw materials for various melt moldings. ⁇ 2.5 mm. Also, the length of the raw material pellet is preferably 0.5 to 5 mm, more preferably 1 to 4 mm, and particularly preferably 1.5 to 3 mm.
  • an extruder to convert the PVA-based resin composition according to the present embodiment into raw material pellets.
  • the extruder a single-screw extruder or a twin-screw extruder can be used, but a twin-screw extruder is preferable because sufficient kneading can be obtained by moderate shearing.
  • the L/D (screw length/screw diameter) of the extruder is, for example, preferably 10-80, more preferably 15-70, and particularly preferably 20-60. If the L/D is too small, kneading will be insufficient and ejection will tend to be unstable. It tends to cause deterioration.
  • the screw rotation speed of the extruder is usually 10 to 1000 rpm, preferably 30 to 700 rpm, particularly preferably 50 to 500 rpm. If the number of revolutions is too low, the discharge tends to be unstable, and if it is too high, excessive shear heat generation tends to cause deterioration of the resin composition.
  • the temperature of the resin composition in the extruder cannot be generalized depending on the desired throughput and the like, but it is usually 140 to 280°C, preferably 150 to 260°C, particularly preferably 170 to 240°C. be done.
  • the method for adjusting the resin temperature is not particularly limited, but usually a method of appropriately setting the temperature of the cylinder in the extruder or a method of controlling the temperature by the number of revolutions of the extruder is used.
  • the PVA-based resin composition according to the present embodiment is suitable for moldings produced by melt molding such as injection molding and extrusion molding (T-die extrusion, inflation extrusion, blow molding, melt spinning, profile extrusion, etc.).
  • melt molding such as injection molding and extrusion molding (T-die extrusion, inflation extrusion, blow molding, melt spinning, profile extrusion, etc.).
  • the PVA-based resin composition according to the present embodiment is manufactured by an injection molding method because the molding shrinkage rate is adjusted to a specific value, so that the injection-molded product can be easily removed from the mold and has excellent releasability. It is particularly suitable for use in injection molded products.
  • the present invention relates to an injection-molded article containing the PVA-based resin composition according to this embodiment.
  • the method of injection molding is not particularly limited, for example, raw material pellets containing the PVA-based resin composition according to the present embodiment produced by the method described above can be melted and subjected to injection molding.
  • the cylinder temperature is preferably 150° C. or higher, more preferably 200° C. or higher, from the viewpoint of melting of the PVA-based resin composition.
  • the cylinder temperature is preferably 300° C. or lower, more preferably 250° C. or lower, from the viewpoint of suppressing resin deterioration.
  • the mold temperature is preferably 40°C or higher, more preferably 60°C or higher.
  • the mold temperature is preferably 100° C. or lower, more preferably 90° C. or lower, from the viewpoint of further improving mold releasability.
  • the injection molded article containing the PVA-based resin composition according to the present embodiment has a molding shrinkage rate of 0.4% or more in at least one of the MD direction and the TD direction during injection molding of the PVA-based resin composition. Since the PVA-based resin composition (injection-molded article) can be prevented from closely contacting the mold, it can be easily removed from the mold and has excellent releasability.
  • injection-molded articles containing the PVA-based resin composition according to the present embodiment include sheets, rods, plates, pipes, discs, rings, bottle-shaped articles, spheres, polygonal bodies, polygonal bodies, cones, and bicones. A wide variety of shapes such as bodies can be mentioned.
  • Such injection-molded products are specifically useful as various packaging materials for electronic components, foods, beverages (coffee capsules, etc.), cosmetics, pharmaceuticals, agricultural chemicals, industrial chemicals, drilling materials, water-soluble cores, and the like. is.
  • acetic acid for neutralization was added in an amount of 0.8 equivalent of sodium hydroxide, filtered, washed thoroughly with methanol, dried in a hot air dryer, and modified to contain a side chain 1,2-diol structural unit. A PVA was obtained.
  • the degree of saponification of the resulting modified PVA containing 1,2-diol structural units in the side chain is the amount of alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene structural units in the resin. Analysis showed 99 mol %. Also, the viscosity average degree of polymerization was 530 when analyzed according to JIS K6726.
  • the content (modified amount) of the 1,2-diol structural unit represented by the formula (1) in the modified PVA containing the 1,2-diol structural unit in the side chain is the integral measured by 1 H-NMR. When calculated from the value, it was 1 mol %.
  • the conditions for 1 H-NMR measurement were as follows. Conditions: 300 MHz proton NMR, d 6 -DMSO solution, internal standard substance; tetramethylsilane, 50°C
  • PVA-based resin compositions of Examples 1 to 6 and Comparative Example 1 were produced using PVA1 as the PVA-based resin (A).
  • Example 1 Talc (manufactured by Nippon Talc Co., Ltd., product number SG-95) was added to the PVA-based resin (A) as a molding shrinkage rate adjusting agent (B) so that the total amount of the PVA-based resin composition was 3000 ppm.
  • the mixture was melt-kneaded with a screw extruder (manufactured by Technobell Co., Ltd.), solidified by air cooling, and then cut by a strand cutting method using a cutter to obtain a PVA-based resin composition in the form of pellets.
  • Example 2 For the PVA resin (A), talc (manufactured by Nippon Talc Co., Ltd., product number SG-95) as a molding shrinkage rate adjusting agent (B) is 3000 ppm of the total amount of the PVA resin composition, polybutylene adipate terephthalate (PBAT) ( A pellet-shaped PVA-based resin composition was obtained in the same manner as in Example 1, except that ecoflex (registered trademark) manufactured by BASF was added to the total amount of the PVA-based resin composition in an amount of 10% by mass. .
  • ecoflex registered trademark
  • Example 3 Pellet-shaped pellets were obtained in the same manner as in Example 1, except that PBAT was added to the PVA-based resin (A) as a molding shrinkage rate adjusting agent (B) so as to be 5% by mass of the total amount of the PVA-based resin composition. A PVA-based resin composition was obtained.
  • Example 4 Pellet-shaped pellets were obtained in the same manner as in Example 1, except that PBAT was added to the PVA-based resin (A) as a molding shrinkage rate adjusting agent (B) so as to be 10% by mass of the total amount of the PVA-based resin composition. A PVA-based resin composition was obtained.
  • Example 5 Pellet-shaped pellets were obtained in the same manner as in Example 1 except that PBAT was added to the PVA-based resin (A) as a molding shrinkage rate modifier (B) so as to be 20% by mass of the total amount of the PVA-based resin composition. A PVA-based resin composition was obtained.
  • Example 6 Polybutylene succinate (PBS) (manufactured by Mitsubishi Chemical Corporation, product name: BioPBS) as a molding shrinkage rate adjusting agent (B) is added to the PVA resin (A) so that it becomes 10% by mass of the total amount of the PVA resin composition.
  • PBS Polybutylene succinate
  • B molding shrinkage rate adjusting agent
  • Example 1 A pellet-shaped PVA-based resin composition was obtained in the same manner as in Example 1, except that the PVA-based resin (A) was used alone.
  • injection molding The PVA-based resin compositions of Examples 1 to 6 and Comparative Example 1 were injection-molded under the following conditions to obtain injection-molded articles (test pieces).
  • Injection molding machine SE100DU-C250 type (manufactured by Sumitomo Heavy Industries, Ltd.) Mold: ISO-D2 (manufactured by Axxicon, mold of type D2 specified in ISO294-3) Size of test piece: length (corresponding to MD direction) 60 mm x width (corresponding to TD direction) 60 mm x thickness 2 mm
  • Cylinder temperature: Nozzle/H4/H3/H2/H1/HP 230/230/220/220/210/200°C Mold temperature: 75°C
  • the molding shrinkage rate was measured by the following method. After sampling the test pieces, each shot was placed in an aluminum bag and stored. This state was maintained at 23° C. for 24 hours for adjustment (treatment for measuring shrinkage). For the test piece after adjustment, using a caliper (1/100 accuracy, manufactured by Mitutoyo Co., Ltd.), the dimension in the MD direction (flow direction of molten resin during injection molding) and the dimension in the TD direction (perpendicular to the MD direction) was measured. From the measured values, the mold shrinkage in the MD direction and the mold shrinkage in the TD direction were calculated according to the following equations.
  • the molding shrinkage rate in the MD direction and the molding shrinkage rate in the TD direction of five test pieces were calculated, and the average values are shown in Table 1. Shown as shrinkage.
  • the PVA-based resin compositions of Examples have a mold shrinkage rate of 0.4% or more in at least one of the MD direction and the TD direction during injection molding, so that the mold release property of the injection molded product is excellent. rice field.
  • the PVA-based resin composition of the comparative example had a mold shrinkage rate of less than 0.4% in both the MD direction and the TD direction during injection molding, resulting in poor releasability of the injection molded product.

Abstract

本発明は、ポリビニルアルコール系樹脂(A)を含有するポリビニルアルコール系樹脂組成物であって、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上である、ポリビニルアルコール系樹脂組成物に関する。

Description

ポリビニルアルコール系樹脂組成物及び射出成形物
 本発明は、ポリビニルアルコール系樹脂組成物及び射出成形物に関する。
 ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう。)などのビニルアルコール系樹脂は、耐溶剤性、ガスバリア性、強度、透明性などに優れることから、食品の包装容器などの各種成形品に用いられている。
 PVA系樹脂を成形する方法としては、例えば溶融成形が挙げられる。溶融成形する方法としては例えば、射出成形法、Tダイ法やインフレーション法などの押出成形法、圧縮成形法、ブロー成形法、真空成形法およびプレス成形等が挙げられる。
 例えば、特許文献1には、PVA系樹脂(A)と、多量体アルデヒド化合物(B)とを含有し、前記多量体アルデヒド化合物(B)の含有量が、前記PVA系樹脂(A)100質量部に対して、0.5×10-4~100×10-4質量部である樹脂組成物が記載されている。そして、かかる樹脂組成物を用いた原料ペレットを押出成形法や射出成形法で溶融成形できることが記載されている。
国際公開第2019/049776号
 しかしながら、PVA系樹脂の射出成形においては、PVA系樹脂が親水性であることから、PVA系樹脂と金型とが密着しやすい。このため、射出成形物が金型から外れにくくなったり、射出成形物の一部が金型に残ったりしてしまう場合があり、PVA系樹脂においては射出成形時の離型性の向上が求められていた。
 上記の事情に鑑み、本発明は、射出成形時に射出成形物が金型から外れやすく、離型性に優れるPVA系樹脂組成物を提供することを課題とする。
 従来、樹脂の射出成形においては金型に対する成形収縮率は小さいほうがよいとされている。一方で本発明は、PVA系樹脂組成物の射出成形時のMD(Machine Direction)方向及びTD(Transverse Direction)方向のうちの少なくとも一方の方向の成形収縮率が特定の値以上であることで、PVA系樹脂組成物と金型とが密着し過ぎるのを抑制し、離型性を向上できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の態様を包含する。
1.ポリビニルアルコール系樹脂(A)を含有するポリビニルアルコール系樹脂組成物であって、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上である、ポリビニルアルコール系樹脂組成物。
2.前記成形収縮率が1.0%以下である、前記1に記載のポリビニルアルコール系樹脂組成物。
3.前記ポリビニルアルコール系樹脂組成物がさらに成形収縮率調整剤(B)を含み、
 前記成形収縮率調整剤(B)は、ポリビニルアルコール系樹脂以外の樹脂、無機物質、エラストマー及び疎水性材料からなる群から選択される1以上を含む、前記1又は2に記載のポリビニルアルコール系樹脂組成物。
4.前記1~3のいずれか1に記載のポリビニルアルコール系樹脂組成物からなるペレット。
5.前記1~3のいずれか1に記載のポリビニルアルコール系樹脂組成物を含む射出成形物。
 本発明のPVA系樹脂組成物によれば、成形収縮率が特定の範囲に調整されていることで、射出成形時に金型から外れやすく、離型性に優れるPVA系樹脂組成物を提供できる。
 以下、本発明のPVA系樹脂組成物について詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。
 本実施形態に係るポリビニルアルコール系樹脂組成物(PVA系樹脂組成物)は、ポリビニルアルコール系樹脂(A)(PVA系樹脂(A))を含有するPVA系樹脂組成物であって、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上である。PVA系樹脂組成物の射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率を0.4%以上とすることで、PVA系樹脂組成物と金型との密着を抑制でき、射出成形物が金型から外れやすくなり、離型性が向上する。かかる成形収縮率は0.45%以上であるのが好ましく、0.5%以上がより好ましい。
 上記の成形収縮率は、射出成形物の形状を損なわない観点から、1.0%以下であるのが好ましく、0.9%以下がより好ましく、0.8%以下がさらに好ましい。すなわち、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上1.0%以下であることで、射出成形物の形状を損なわず、かつ金型から外れやすくなるため好ましい。
 本実施形態に係るPVA系樹脂組成物において、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が上記範囲であることが好ましく、射出成形時のMD方向及びTD方向の両方の成形収縮率が上記範囲であることがより好ましい。
 すなわち、射出成形時のMD方向の成形収縮率は、射出成形物の離形性を向上する観点から、0.4%以上が好ましく、0.45%以上がより好ましく、0.5%以上がさらに好ましい。射出成形時のMD方向の成形収縮率は、射出成形物の形状を損なわない観点から、1.0%以下であるのが好ましく、0.9%以下がより好ましく、0.8%以下がさらに好ましい。
 射出成形時のTD方向の成形収縮率は、射出成形物の離形性を向上する観点から、0.4%以上が好ましく、0.45%以上がより好ましく、0.5%以上がさらに好ましい。射出成形時のTD方向の成形収縮率は、射出成形物の形状を損なわない観点から、1.0%以下であるのが好ましく、0.9%以下がより好ましく、0.8%以下がさらに好ましい。
 射出成形時のMD方向及びTD方向の成形収縮率は、射出成形物の離形性をより向上する観点から、ともに0.4%以上であるのが好ましく、0.45%以上がより好ましく、0.5%以上がさらに好ましい。射出成形時のMD方向及びTD方向の成形収縮率は、射出成形物の形状をより損なわない観点から、ともに1.0%以下であるのが好ましく、0.9%以下がより好ましく、0.8%以下がさらに好ましい。
 なお、ここで射出成形時のMD方向とは射出成形時の溶融樹脂の流れ方向のことをいい、TD方向とは流れ方向に垂直な方向のことをいう。また、MD方向とTD方向の成形収縮率はJIS K-7152-4に準拠して測定される値であり、具体的には実施例に記載の方法で測定される値をいう。なお、以降、「射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率」を単に「成形収縮率」という場合がある。
 本実施形態に係るPVA系樹脂組成物は、PVA系樹脂(A)を含む。本実施形態に係るPVA系樹脂組成物は、PVA系樹脂(A)と成形収縮率調整剤(B)とを含むことが好ましい。
 〔PVA系樹脂(A)〕
 本実施形態で用いられるPVA系樹脂(A)は、ビニルエステル系モノマーを重合して得られるポリビニルエステル系樹脂をケン化して得られる、ビニルアルコール構造単位を主体とする樹脂である。PVA系樹脂(A)は、ケン化度相当のビニルアルコール構造単位と未ケン化部分のビニルエステル構造単位を有するものである。
 本実施形態で用いられるPVA系樹脂(A)は、未変性PVAであってもよいし、ビニルエステル系樹脂の製造時にビニルエステル系モノマーと各種モノマーとを共重合させ、これをケン化して得られる共重合変性PVAや、未変性PVAに後変性によって各種官能基を導入した各種の後変性PVAであってもよい。かかる変性は、PVA系樹脂(A)の水溶性が失われない範囲で行うことが好ましい。また、場合によっては、変性PVAを更に後変性させてもよい。
 PVA系樹脂(A)が共重合変性PVAを含む場合、ビニルエステル系モノマーとの共重合に用いられるモノマーとしては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩、そのモノ又はジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル類;アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩;アルキルビニルエーテル類;N-アクリルアミドメチルトリメチルアンモニウムクロライド;アリルトリメチルアンモニウムクロライド;ジメチルアリルビニルケトン;N-ビニルピロリドン;塩化ビニル;塩化ビニリデン;ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート;ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド;ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル;ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等のポリオキシアルキレンビニルエーテル;ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン等のポリオキシアルキレンアリルアミン;ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等のポリオキシアルキレンビニルアミン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類あるいはそのアシル化物等の誘導体等が挙げられる。ここで、(メタ)アリルとはアリル又はメタリル、(メタ)アクリレートとはアクリレート又はメタクリレート、(メタ)アクリルとはアクリル又はメタクリルをそれぞれ意味する。
 また、かかるモノマーとして、3,4-ジヒドロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4,5-ジヒドロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、4,5-ジアシロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、グリセリンモノアリルエーテル、2,3-ジアセトキシ-1-アリルオキシプロパン、2-アセトキシ-1-アリルオキシ-3-ヒドロキシプロパン、3-アセトキシ-1-アリルオキシ-2-ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロペニルエーテル、ビニルエチレンカーボネート、2,2-ジメチル-4-ビニル-1,3-ジオキソラン等のジオールを有する化合物などが挙げられる。
 これらのモノマーの含有量は、PVA系樹脂(A)の水溶性を失わない範囲であることが好ましく、例えば、エチレンやプロピレン等のオレフィン類であれば、共重合変性PVAにおける上記モノマーの含有量は5モル%以下が好ましい。
 また、後変性によって官能基が導入された後変性PVAとしては、例えば、ジケテンとの反応によるアセトアセチル基を有するもの、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するもの、エポキシ化合物等との反応によるヒドロキシアルキル基を有するもの、あるいは各種官能基を有するアルデヒド化合物をPVA系樹脂と反応させて得られたもの等を挙げることができる。
 本発明においてPVA系樹脂(A)は、各種成形品への適用を考慮して、溶融成形用PVA系樹脂(A1)であることが好ましい。なお、溶融成形用PVA系樹脂とは、熱溶融成形が可能な溶融成形に適したPVA系樹脂である。
 溶融成形用PVA系樹脂(A1)として、変性PVA系樹脂を用いる場合には、変性PVA系樹脂としては側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂や、エチレン変性PVA系樹脂が好ましい。特に、溶融成形性に優れる点で、側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂が好ましい。かかる構造単位における一級水酸基の数は、例えば1~5個が好ましく、より好ましくは1~2個であり、さらに好ましくは1個である。また、側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂は、側鎖に一級水酸基以外にも二級水酸基を有することがより好ましい。
 このような側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂としては、例えば、側鎖に1,2-ジオール構造単位を有する変性PVA系樹脂、側鎖にヒドロキシアルキル基構造単位を有する変性PVA系樹脂等が挙げられる。中でも、特に下記一般式(1)で表される、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂(以下、「側鎖1,2-ジオール構造単位含有変性PVA系樹脂」と称することがある。)を用いることが好ましい。
 なお、1,2-ジオール構造単位以外の部分は、通常のPVA系樹脂と同様、ビニルアルコール構造単位と未ケン化部分のビニルエステル構造単位である。
Figure JPOXMLDOC01-appb-C000001
 (上記一般式(1)において、R~Rはそれぞれ独立して水素原子又は置換基を有していてもよい炭素数1~4のアルキル基を表し、Xは単結合又は結合鎖を表す。)
 上記一般式(1)において、R~Rはそれぞれ独立して水素原子又は置換基を有していてもよい炭素数1~4のアルキル基を表す。R~Rは、すべて水素原子であることが側鎖の末端を一級水酸基とする観点から望ましいが、樹脂特性を大幅に損なわない程度の量であれば炭素数1~4のアルキル基であってもよい。当該炭素数1~4のアルキル基としては特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。当該アルキル基が有していてもよい置換基としては、例えば、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等が挙げられる。
 上記一般式(1)中、Xは単結合又は結合鎖である。Xは、熱安定性の点や高温下や酸性条件下での安定性の点で、単結合であることが好ましい。
 上記結合鎖としては、特に限定されず、例えば、アルキレン基、アルケニレン基、アルキニレン基、フェニレン基、ナフチレン基等の炭化水素基が挙げられる。なおこれらの炭化水素基は、フッ素原子、塩素原子、臭素原子等のハロゲン基等で置換されていてもよい。加えて、上記結合鎖としては、-O-、-(CHO)-、-(OCH-、-(CHO)CH-、-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等が挙げられる。Rは各々独立して水素原子又は任意の置換基であり、水素原子又はアルキル基が好ましく、水素原子又は炭素数1~4のアルキル基が特に好ましい。またmは自然数であり、好ましくは1~10であり、特に好ましくは1~5である。
 Xが結合鎖の場合は、製造時の粘度安定性や耐熱性等の点で、Xは炭素数6以下のアルキレン基が好ましく、特にメチレン基、あるいは-CHOCH-が好ましい。
 上記一般式(1)で表される1,2-ジオール構造単位における特に好ましい構造は、R~Rがすべて水素原子であり、Xが単結合の構造である。
 本実施形態で用いられるPVA系樹脂(A)のケン化度は、例えば60~100モル%が好ましい。なお、ここでケン化度は、JIS K 6726に準拠して測定される値をいう。
 ケン化度の好ましい範囲は、変性種によって異なり、例えば、未変性PVA系樹脂の場合、ケン化度は例えば60~99.9モル%が好ましく、より好ましくは65~95モル%であり、特に好ましくは70~90モル%である。かかるケン化度が上記上限値以下であることで融点と分解温度が近くなりすぎるのを抑制でき、溶融成形しやすくなるため好ましい。また、ケン化度が上記下限値以上であることで、水溶性の低下を抑制できるため好ましい。
 また、側鎖1,2-ジオール構造単位含有変性PVA系樹脂のケン化度は、例えば60~99.9モル%が好ましく、より好ましくは65~99.8モル%であり、特に好ましくは70~99.5モル%である。ケン化度が上記下限値以上であることで、水溶性の低下を抑制できるため好ましい。
 更に、少量のエチレンで変性されたエチレン変性PVA系樹脂のケン化度は、例えば60モル%以上が好ましく、より好ましくは70~95モル%であり、特に好ましくは71~90モル%である。かかるケン化度が上記上限値以下であることで融点と分解温度が近くなりすぎるのを抑制でき、溶融成形しやすくなるため好ましい。また、ケン化度が上記下限値以上であることで、水溶性の低下を抑制できるため好ましい。
 また、PVA系樹脂(A)が変性PVA系樹脂である場合、かかる変性PVA系樹脂中の変性率、すなわち共重合体中の各種モノマーに由来する構成単位あるいは後変性によって導入された官能基の含有量は、構成単位や官能基の種類によって特性が大きく異なるため一概には言えないが、例えば0.1~20モル%が好ましい。
 PVA系樹脂(A)が側鎖1,2-ジオール構造単位含有変性PVA系樹脂である場合の変性率は、例えば0.1~20モル%が好ましく、より好ましくは0.5~10モル%であり、特に好ましくは1~8モル%である。かかる変性率が上記範囲内であることで、溶融成形しやすくなるため好ましい。
 なお、PVA系樹脂中の1,2-ジオール構造単位の含有率は、ケン化度100モル%のPVA系樹脂のH-NMRスペクトル(溶媒:DMSO-d、内部標準:テトラメチルシラン)から求めることができる。具体的には1,2-ジオール構造単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出することができる。
 PVA系樹脂(A)が少量のエチレンで変性されたエチレン変性PVA系樹脂である場合の変性率は、例えば0.1~15モル%が好ましく、より好ましくは0.5~10モル%であり、さらに好ましくは1~10モル%であり、特に好ましくは5~9モル%である。かかる変性率が上記上限値以下であることで水溶性の低下を抑制できるため好ましい。また、変性率が上記下限値以上であることで溶融成形しやすくなるため好ましい。
 本実施形態で用いられるPVA系樹脂(A)の粘度平均重合度は、例えば100~3000が好ましく、より好ましくは150~2000であり、さらに好ましくは180~1000であり、特に好ましくは200~800である。かかる粘度平均重合度が上記上限値以下であることで、溶融成形時の溶融粘度が高くなりすぎるのを抑制でき、溶融成形しやすくなるため好ましい。なお、ここで粘度平均重合度は、JIS K 6726に準拠して測定される値をいう。
 本実施形態で用いられるPVA系樹脂(A)は、一種類であっても、二種類以上の混合物であってもよい。PVA系樹脂(A)を二種類以上用いる場合としては、例えば、ケン化度、粘度平均重合度、融点などが互いに異なる二種以上の未変性PVA系樹脂の組み合わせ;未変性PVA系樹脂と変性PVA系樹脂との組み合わせ;ケン化度、粘度平均重合度、融点、官能基の種類や変性率などが互いに異なる二種以上の変性PVA系樹脂の組み合わせ等が挙げられるが、ケン化度、粘度平均重合度、変性率などの平均値は本実施形態の好ましい範囲内であることが好ましい。
 本実施形態で用いられるPVA系樹脂(A)の主鎖の結合様式は典型的には1,3-ジオール結合が主であり、1,2-ジオール結合の含有量は例えば1.5~1.7モル%程度であり得るが、ビニルエステル系モノマーを重合する際の重合温度を高温にすることによって1,2-ジオール結合の含有量を増やすことができ、その含有量を1.8モル%以上、更には2.0~3.5モル%に増やすことができる。
 本実施形態で用いられるPVA系樹脂(A)の製造方法としては、例えば酢酸ビニルなどのビニルエステル系モノマーを重合し、ケン化して製造する方法が挙げられる。
 上記ビニルエステル系モノマーとしては、例えば、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル、トリフロロ酢酸ビニル等を用いることができる。ビニルエステル系モノマーとしては、価格や入手の容易さの観点で、酢酸ビニルが好ましく用いられる。
 ビニルエステル系モノマーの重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。なかでも、反応熱を効率的に除去できる溶液重合を還流下で行うことが好ましい。溶液重合の溶媒としては、例えばアルコールが挙げられ、好ましくは炭素数1~3の低級アルコールが用いられる。
 得られた重合体のケン化についても、従来より行われている公知のケン化方法を採用することができる。すなわち、例えば重合体をアルコール、又は水及びアルコールの混合溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いて行うことができる。
 前記アルカリ触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等の、アルカリ金属の水酸化物やアルコラートを用いることができる。
 典型的には、無水アルコール系溶媒下での、アルカリ触媒を用いたエステル交換反応が反応速度の点や脂肪酸塩等の不純物を低減できるなどの点で好適に用いられる。
 ケン化反応の反応温度は、例えば20~60℃が好ましい。反応温度がある程度以上であることで、反応速度が小さくなりすぎないため、反応効率が低下しにくい。反応温度がある程度以下であることで、反応温度が反応溶媒の沸点以上となることを抑制でき、製造面における安全性を確保しやすい。なお、耐圧性の高い塔式連続ケン化塔などを用いて高圧下でケン化する場合には、より高温、例えば、80~150℃でケン化することが可能であり、少量のケン化触媒を用いる場合であってもでも短時間で高ケン化度のものを得ることが可能である。
 また、側鎖1,2-ジオール構造単位含有変性PVA系樹脂は、公知の製造方法により製造することができる。例えば、日本国特開2002-284818号公報、日本国特開2004-285143号公報、日本国特開2006-95825号公報に記載されている方法により製造することができる。
 PVA系樹脂(A)は、PVA系樹脂組成物中、60質量%以上含有するのが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。PVA系樹脂組成物中のPVA系樹脂(A)の含有量が60質量%以上であると、機械強度が保持されるため好ましい。また、PVA系樹脂(A)の含有量の上限は、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率を0.4%以上にできれば特に限定されない。
 〔成形収縮率調整剤(B)〕
 本実施形態に係るPVA系樹脂組成物は、成形収縮率調整剤(B)を含むことが好ましい。PVA系樹脂(A)に成形収縮率調整剤(B)を混合させることで、PVA系樹脂組成物の成形収縮率を調整できる。PVA系樹脂(A)を単独でPVA系樹脂組成物として使用する場合の成形収縮率は比較的小さくなりやすい。したがって、成形収縮率調整剤(B)としては、PVA系樹脂(A)を単独で使用する場合に比べてPVA系樹脂組成物の成形収縮率を大きくできるような物質を用いることで、成形収縮率を所望の値に調整しやすいため好ましい。このような物質としてはPVA系樹脂(A)の結晶化を補助又は結晶化時の収縮体積を拡充させる性質をもつ物質が好ましく、例えばPVA系樹脂以外の樹脂、無機物質、エラストマー及び疎水性材料等が挙げられる。成形収縮率調整剤(B)は、PVA系樹脂以外の樹脂、無機物質、エラストマー及び疎水性材料からなる群から選択される1以上であることが好ましい。
 PVA系樹脂以外の樹脂としては、例えば化学合成系生分解性樹脂、微生物産生系樹脂、熱可塑性エラストマー等が挙げられる。より具体的には例えば、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネート、ポリ乳酸、ポリブチレンサクシネートアジペート、ポリグリコール酸、ポリエチレンサクシネート、ポリカプロラクトン、ポリエチレンテレフタレートサクシネート、ポリブチレンセバシン酸-コ-テレフタレート、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリヒドロキシアルカン酸、バクテリアセルロース、ポリ3-ヒドロキシブチレート、スチレン/ブタジエン/ブロック共重合体、スチレン/ブタジエン/ブチレンブロック共重合体、スチレン/エチレン/ブチレンブロック共重合体、スチレン/イソプレンブロック共重合体、スチレン/イソブチレンブロック共重合体等が挙げられる。
 PVA系樹脂(A)の特長である生分解性を損なわない観点からは、PVA系樹脂以外の樹脂はポリブチレンアジペートテレフタレート、ポリブチレンサクシネート、ポリ乳酸、ポリブチレンサクシネートアジペート、ポリグリコール酸、ポリエチレンサクシネート、ポリカプロラクトン、ポリエチレンテレフタレートサクシネート、ポリブチレンセバシン酸-コ-テレフタレート、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリヒドロキシアルカン酸、バクテリアセルロース、ポリ3-ヒドロキシブチレート等の生分解性樹脂を用いるのが好ましい。
 また、成形収縮率調整剤(B)は、PVA系樹脂組成物の成形収縮率を調整でき、かつ、PVA系樹脂組成物の親水性を調整できるものがより好ましい。PVA系樹脂が射出成形時の金型と密着しやすい理由の1つに、PVA系樹脂の親水性が比較的大きいことが挙げられる。そのため、成形収縮率調整剤(B)により、成形収縮率を上述の値に調整し、さらにPVA系樹脂組成物の親水性を比較的小さくすることで、PVA系樹脂組成物の離型性がより向上しやすく好ましい。かかる観点からは、成形収縮率調整剤(B)は親水性が比較的小さいか、疎水性の物質が好ましく、このようなPVA系樹脂以外の樹脂としては上記した中でもポリブチレンアジペートテレフタレート、ポリブチレンサクシネート、ポリ乳酸、ポリカプロラクトン、スチレン/エチレン/ブチレンブロック共重合体等が挙げられる。
 PVA系樹脂組成物がPVA系樹脂以外の樹脂を含む場合、PVA系樹脂組成物の全量に対するPVA系樹脂以外の樹脂の含有量は樹脂の種類等に合わせて所望の成形収縮率が得られるよう適宜調節すればよく、特に限定されない。例えば、かかる含有量は金型からの型離れ性を向上する観点から1質量%以上が好ましく、5質量%以上がより好ましい。また、含有量は機械強度を向上する観点から40質量%以下が好ましく、30質量%以下がより好ましい。
 また、無機物質としては例えば層状無機化合物(層状無機鉱物)等が挙げられ、具体的には、タルク、炭酸カルシウム、マイカ、ゼオライト、クレイ、雲母、合成マイカ、ベントナイト、カオリナイト(カオリン鉱物)、パイロフィライト、スメクタイト、バーミキュライト、緑泥石、セプテ緑泥石、蛇紋石、スチルプノメレーン、モンモリロナイト等が挙げられる。成形収縮率調整剤(B)として無機物質を用いる場合、PVA系樹脂組成物への添加量が比較的少なくても成形収縮率を調整できるため、PVA系樹脂(A)の特長である生分解性を損ないにくい。
 成形加工性に優れる観点からは、無機物質はタルク、炭酸カルシウムが好ましい。
 PVA系樹脂組成物が無機物質を含む場合、PVA系樹脂組成物の全量に対する無機物質の含有量は無機物質の種類等に合わせて所望の成形収縮率が得られるよう適宜調節すればよく、特に限定されない。例えば、かかる含有量はPVA系樹脂(A)の結晶化促進の観点から100ppm以上が好ましく、500ppm以上がより好ましい。また、含有量は成形加工性を向上する観点から20質量%以下が好ましく、10質量%以下がより好ましい。なお、ここでppmとは質量ppmのことをいう。
 成形収縮率調整剤(B)としては、1種類の物質を用いてもよく、2種類以上の物質を組み合わせて使用してもよい。
〔その他の成分〕
 本実施形態に係るPVA系樹脂組成物は、上述の成分の他、可塑剤などの他の成分を含有していてもよい。
 可塑剤としては、例えば、エチレングリコール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジグリセリン等といった脂肪族多価アルコール等の多価アルコールにエチレンオキサイドを付加した化合物;エチレンオキサイド、プロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドの混合付加体等の各種アルキレンオキサイド;ソルビトール、マンニトール、ペンタエリスリトール、キシロール、アラビノース、リブロース等の糖類;ビスフェノールAやビスフェノールS等のフェノール誘導体;N-メチルピロリドン等のアミド化合物;α-メチル-D-グルコシド等のグルコシド類;等が挙げられる。
 本実施形態に係るPVA系樹脂組成物に可塑剤を含有させて用いる場合における可塑剤の含有量は、PVA系樹脂(A)100質量部に対して、好ましくは0.1~40質量部であり、特に好ましくは1~30質量部、更に好ましくは2~20質量部である。可塑剤の含有量が上記下限値以上であることで溶融成形性が向上しやすく、上記上限値以下であることでPVA系樹脂のガスバリア性、水溶性などといった特性が損なわれにくいため好ましい。
 また、さらに他の成分としては、例えば、熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリエステルなど)、香料、発泡剤、消臭剤、増量剤、充填剤(例えば、ガラスビーズ、ガラス繊維、シリカ、アルミナ、ハイドロタルサイト、酸化チタン、酸化ジルコニウム、窒化硼素、窒化アルミニウム等の無機充填剤、メラミン-ホルマリン系樹脂等の有機充填剤)、剥離剤、紫外線吸収剤、酸化防止剤、加工安定剤、耐候性安定剤、防かび剤、防腐剤等が挙げられ、これら添加剤を適宜配合することができる。
〔PVA系樹脂組成物の製造方法〕
 本実施形態に係るPVA系樹脂組成物は、例えばPVA系樹脂組成物を構成する各成分を適宜混合する方法で製造できる。本実施形態に係るPVA系樹脂組成物の製造方法の一例として、例えば以下の方法が挙げられるが、製造方法は以下の方法のみに限定されるものではない。
 本実施形態に係るPVA系樹脂組成物の形状は、例えば円柱状(ペレット状)又は粉末状が好ましい。PVA系樹脂(A)は、一般的に粉末状で得られるため、これを成形収縮率調整剤(B)と共に溶融混練し、円柱状として本実施形態に係るPVA系樹脂組成物からなるペレットを得て、原料ペレットにすることが好ましい。
 原料ペレットは、各種溶融成形の原料として一般的に用いられるものであり、かかる形状において、直径は、例えば0.5~4mmが好ましく、より好ましくは1~3mmであり、特に好ましくは1.5~2.5mmである。また、原料ペレットの長さは、例えば0.5~5mmが好ましく、より好ましくは1~4mmであり、特に好ましくは1.5~3mmである。
 本実施形態に係るPVA系樹脂組成物を原料ペレットにするためには、押出機を用いることが好ましい。
 押出機としては、単軸押出機や二軸押出機を用いることができるが、適度なせん断により充分な混練が得られる点で二軸押出機が好ましい。
 押出機のL/D(スクリュ長さ/スクリュ径)は、例えば10~80が好ましく、より好ましくは15~70であり、特に好ましくは20~60である。かかるL/Dが小さすぎると、混練が不充分で吐出が不安定となる傾向があり、逆に大きすぎると過度のせん断による発熱で、樹脂組成物の温度が高くなりすぎ、樹脂組成物の劣化の原因となる傾向がある。
 押出機のスクリュ回転数は、通常、10~1000rpmであり、好ましくは30~700rpm、特に好ましくは50~500rpmの範囲である。かかる回転数が小さすぎると吐出が不安定となる傾向があり、また、大きすぎると過度のせん断発熱によって樹脂組成物の劣化の原因となる傾向がある。
 押出機内における樹脂組成物の温度は、所望の処理量等によって一概にはいえないが、通常、140~280℃であり、好ましくは150~260℃、特に好ましくは170~240℃の範囲で用いられる。
 かかる樹脂温度が高すぎるとPVA系樹脂(A)が熱劣化し、着色しやすくなる傾向にあり、逆に樹脂温度が低すぎると樹脂の粘度が高くなり、押出機に負荷がかかったり、PVA系樹脂(A)が充分に溶融状態とならない傾向がある。
 かかる樹脂温度の調整方法は特に限定されないが、通常は、押出機内シリンダーの温度を適宜設定する方法や、押出機の回転数によって制御する方法が用いられる。
 本実施形態に係るPVA系樹脂組成物は、射出成形法、押出成形法(T-ダイ押出、インフレーション押出、ブロー成形、溶融紡糸、異型押出等)等の溶融成形により製造される成形物に好適に用いられる。本実施形態に係るPVA系樹脂組成物は、成形収縮率が特定の値に調整されていることで、射出成形物が金型から外れやすく、離型性に優れるため、射出成形法により製造される射出成形物に特に好適に用いられる。
 〔射出成形物〕
 すなわち、本発明は、本実施形態に係るPVA系樹脂組成物を含む射出成形物に関する。射出成形の方法は特に限定されないが、例えば、上述の方法等で製造される、本実施形態に係るPVA系樹脂組成物を含む原料ペレットを溶融して射出成形に供することができる。
 射出成形の条件は特に限定されないが、一例として、以下のような条件が好ましい。
 シリンダー温度はPVA系樹脂組成物の溶融の観点から150℃以上が好ましく、200℃以上がより好ましい。また、シリンダー温度は樹脂劣化を抑制する観点から300℃以下が好ましく、250℃以下がより好ましい。
 金型温度はPVA系樹脂(A)の結晶化温度を考慮すると40℃以上が好ましく、60℃以上がより好ましい。また、金型温度は離型性をより向上する観点から100℃以下が好ましく、90℃以下がより好ましい。
 本実施形態に係るPVA系樹脂組成物を含む射出成形物は、PVA系樹脂組成物の射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上であることで、PVA系樹脂組成物(射出成形物)と金型との密着を抑制できるため、金型から外れやすく、離型性に優れる。
 本実施形態に係るPVA系樹脂組成物を含む射出成形物としては、例えば、シート、棒状体、プレート、パイプ、円盤、リング、ボトル状物、球状、多角形体、多角面体、円錐体、双円錐体など多種多様の形状のものを挙げることができる。かかる射出成形物は、具体的には、電子部材、食品、飲料(コーヒーカプセル等)、化粧品、医薬品、農薬品、工業薬品等の各種の包装材、掘削材料、水溶性の中子等として有用である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお実施例中の「部」「%」は、特段の断りが無い限り質量基準である。
(PVA1の製造)
 還流冷却器、滴下装置、及び撹拌機を備えた反応缶に、酢酸ビニル20部(全体の20%を初期仕込みに使用)、メタノール32.5部、及び3,4-ジアセトキシ-1-ブテン0.8部(全体の20%を初期仕込みに使用)を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.093部投入し、重合を開始した。
 さらに、重合開始から0.4時間後に酢酸ビニル80部と3,4-ジアセトキシ-1-ブテン3.2部を11時間かけて等速で滴下した。酢酸ビニルの重合率が91%となった時点で、m-ジニトロベンゼンを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 ついで、上記溶液をメタノールで希釈し、固形分濃度を50%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して4.8ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して7.5ミリモル追加しケン化を行った。その所定時間後に中和用の酢酸を水酸化ナトリウムの0.8当量添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖1,2-ジオール構造単位含有変性PVAを得た。
 得られた側鎖1,2-ジオール構造単位含有変性PVAのケン化度は、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。また、粘度平均重合度は、JIS K6726に準じて分析を行ったところ、530であった。
 また、側鎖1,2-ジオール構造単位含有変性PVA中の前記式(1)で表される1,2-ジオール構造単位の含有量(変性量)は、H-NMRにて測定した積分値より算出したところ、1モル%であった。
 なお、H-NMR測定の条件は次の通りとした。
 条件:300MHz プロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃
 (PVA系樹脂組成物の製造)
 PVA1をPVA系樹脂(A)として、実施例1~6及び比較例1のPVA系樹脂組成物を製造した。
 (実施例1)
 PVA系樹脂(A)に対し、成形収縮率調整剤(B)としてタルク(日本タルク株式会社製、品番SG-95)をPVA系樹脂組成物の全量の3000ppmとなるように添加して、二軸押出機(株式会社テクノベル製)で溶融混練し、空冷させることにより凝固させた後、カッターを用いてストランドカッティング方式でカッティングしてペレット状のPVA系樹脂組成物を得た。
 (実施例2)
 PVA系樹脂(A)に対し、成形収縮率調整剤(B)としてタルク(日本タルク株式会社製、品番SG-95)がPVA系樹脂組成物の全量の3000ppm、ポリブチレンアジペートテレフタレート(PBAT)(BASF社製、ecoflex(登録商標))がPVA系樹脂組成物の全量の10質量%となるようにそれぞれ添加した以外は実施例1と同様にして、ペレット状のPVA系樹脂組成物を得た。
 (実施例3)
 PVA系樹脂(A)に対し、成形収縮率調整剤(B)としてPBATをPVA系樹脂組成物の全量の5質量%となるように添加した以外は実施例1と同様にして、ペレット状のPVA系樹脂組成物を得た。
 (実施例4)
 PVA系樹脂(A)に対し、成形収縮率調整剤(B)としてPBATをPVA系樹脂組成物の全量の10質量%となるように添加した以外は実施例1と同様にして、ペレット状のPVA系樹脂組成物を得た。
 (実施例5)
 PVA系樹脂(A)に対し、成形収縮率調整剤(B)としてPBATをPVA系樹脂組成物の全量の20質量%となるように添加した以外は実施例1と同様にして、ペレット状のPVA系樹脂組成物を得た。
 (実施例6)
 PVA系樹脂(A)に対し、成形収縮率調整剤(B)としてポリブチレンサクシネート(PBS)(三菱ケミカル株式会社製、品名BioPBS)をPVA系樹脂組成物の全量の10質量%となるように添加した以外は実施例1と同様にして、ペレット状のPVA系樹脂組成物を得た。
 (比較例1)
 PVA系樹脂(A)を単独で用いた以外は実施例1と同様にして、ペレット状のPVA系樹脂組成物を得た。
 (射出成形)
 実施例1~6及び比較例1のPVA系樹脂組成物について、以下の条件で射出成形を行い、射出成形物(試験片)を得た。
 射出成形機:SE100DU-C250型(住友重機械工業株式会社製)
 金型:ISO-D2(Axxicon社製、ISO294-3に規定されるタイプD2の金型)
 試験片の大きさ:長さ(MD方向に対応)60mm×幅(TD方向に対応)60mm×厚み2mm
 シリンダー温度:ノズル/H4/H3/H2/H1/HP=230/230/220/220/210/200℃
 金型温度:75℃
 (成形収縮率の測定)
 実施例1~6及び比較例1の各PVA系樹脂組成物を用いて得られた各射出成形物(試験片)について、以下の方法で成形収縮率を測定した。
 試験片をサンプリング後、1ショットごとにアルミ袋に入れて保管した。この状態で、23℃で24時間保持して調整した(収縮率を測定するための処理)。
 調整後の試験片について、ノギス(1/100精度、株式会社ミツトヨ製)を用いてMD方向(射出成形時の溶融樹脂の流れ方向)の寸法及びTD方向(MD方向に垂直な方向)の寸法を測定した。
 測定値から、以下の式によりMD方向の成形収縮率及びTD方向の成形収縮率を算出した。
 MD方向の成形収縮率(%)=〔(試験片の金型計測位置に対応したMD方向の試験片長さ(mm)-収縮率を測定するための処理終了後のMD方向の試験片長さ(mm))/(試験片の金型計測位置に対応したMD方向の試験片長さ(mm))〕×100
 TD方向の成形収縮率(%)=〔(試験片の金型計測位置に対応したTD方向の試験片長さ(mm)-収縮率を測定するための処理終了後のTD方向の試験片長さ(mm))/(試験片の金型計測位置に対応したTD方向試験片長さ(mm))〕×100
 各例のPVA系樹脂組成物について、5つの試験片のMD方向の成形収縮率及びTD方向の成形収縮率を算出し、その平均値を表1にMD方向の成形収縮率及びTD方向の成形収縮率として示す。
 (離型性評価)
 実施例1~6及び比較例1の各PVA系樹脂組成物を用いて得られた各射出成形物(試験片)について、以下の基準で離型性を目視で評価した。各例につき5つの試験片について評価した。評価結果を表1に示す。
 〇(可):5つ中全ての試験片において、金型に試験片の一部が付着して残ることがなかった。
 ×(不可):5つ中、1個以上の試験片において、金型に試験片の一部が付着して残った。
Figure JPOXMLDOC01-appb-T000002
 実施例のPVA系樹脂組成物は、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上であることで、射出成形物の離型性に優れた。一方で、比較例のPVA系樹脂組成物は射出成形時のMD方向及びTD方向の成形収縮率がいずれも0.4%未満であり、射出成形物の離型性も劣る結果となった。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2021年3月30日出願の日本特許出願(特願2021-057801)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (5)

  1.  ポリビニルアルコール系樹脂(A)を含有するポリビニルアルコール系樹脂組成物であって、射出成形時のMD方向及びTD方向のうちの少なくとも一方の方向の成形収縮率が0.4%以上である、ポリビニルアルコール系樹脂組成物。
  2.  前記成形収縮率が1.0%以下である、請求項1に記載のポリビニルアルコール系樹脂組成物。
  3.  前記ポリビニルアルコール系樹脂組成物がさらに成形収縮率調整剤(B)を含み、
     前記成形収縮率調整剤(B)は、ポリビニルアルコール系樹脂以外の樹脂、無機物質、エラストマー及び疎水性材料からなる群から選択される1以上を含む、請求項1又は2に記載のポリビニルアルコール系樹脂組成物。
  4.  請求項1~3のいずれか1項に記載のポリビニルアルコール系樹脂組成物からなるペレット。
  5.  請求項1~3のいずれか1項に記載のポリビニルアルコール系樹脂組成物を含む射出成形物。
PCT/JP2022/014978 2021-03-30 2022-03-28 ポリビニルアルコール系樹脂組成物及び射出成形物 WO2022210529A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511256A JPWO2022210529A1 (ja) 2021-03-30 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057801 2021-03-30
JP2021057801 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210529A1 true WO2022210529A1 (ja) 2022-10-06

Family

ID=83456359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014978 WO2022210529A1 (ja) 2021-03-30 2022-03-28 ポリビニルアルコール系樹脂組成物及び射出成形物

Country Status (2)

Country Link
JP (1) JPWO2022210529A1 (ja)
WO (1) WO2022210529A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151469A (ja) * 1994-11-25 1996-06-11 Nippon Synthetic Chem Ind Co Ltd:The 射出発泡用樹脂組成物及びその成形体
JPH11130929A (ja) * 1997-10-31 1999-05-18 Kyocera Corp ポリビニルアルコールゲルおよびその製造方法並びに人工関節軟骨
JP2000169649A (ja) * 1998-12-03 2000-06-20 Kuraray Co Ltd ポリビニルアルコール系樹脂成形物の製造方法
JP2004068913A (ja) * 2002-08-06 2004-03-04 Nsk Ltd 転がり軸受
JP2014118541A (ja) * 2012-12-19 2014-06-30 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物およびその成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151469A (ja) * 1994-11-25 1996-06-11 Nippon Synthetic Chem Ind Co Ltd:The 射出発泡用樹脂組成物及びその成形体
JPH11130929A (ja) * 1997-10-31 1999-05-18 Kyocera Corp ポリビニルアルコールゲルおよびその製造方法並びに人工関節軟骨
JP2000169649A (ja) * 1998-12-03 2000-06-20 Kuraray Co Ltd ポリビニルアルコール系樹脂成形物の製造方法
JP2004068913A (ja) * 2002-08-06 2004-03-04 Nsk Ltd 転がり軸受
JP2014118541A (ja) * 2012-12-19 2014-06-30 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物およびその成形品

Also Published As

Publication number Publication date
JPWO2022210529A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5940301B2 (ja) 熱成形用ポリビニルアセタール樹脂
US8883052B2 (en) Polyvinyl butyral resin pellet, and method for producing the same
EP3150362A1 (en) Support for laminate shaping and laminate shaped article using same, and method for manufacturing laminate shaped article
CN109642067B (zh) 树脂组合物和层叠造型用支承材
JP7167711B2 (ja) ポリビニルアルコール系樹脂組成物ペレット及び該ポリビニルアルコール系樹脂組成物ペレットの製造方法
WO2022210529A1 (ja) ポリビニルアルコール系樹脂組成物及び射出成形物
JP7131389B2 (ja) 樹脂組成物
JP2000178396A (ja) 溶融成形用ポリビニルアルコール系樹脂組成物
JP5979996B2 (ja) 多層延伸フィルムの製造方法
JP2002301715A (ja) ポリビニルアルコール系樹脂ペレットの製造方法
JP4117232B2 (ja) 樹脂組成物及びその製造方法
JP2017114931A (ja) 紫外線遮蔽フィルム
JP6203038B2 (ja) 成形品及びその製造方法
JP7359138B2 (ja) 樹脂組成物、成形品、及び樹脂組成物の製造方法
JP4526652B2 (ja) ビニルアルコール系重合体組成物および成形品
JP2019038944A (ja) 生分解性ポリエステル系樹脂及び積層体
CN113677496A (zh) 成型品和成型品的制造方法
WO2023190816A1 (ja) 変性エチレン-ビニルアルコール系共重合体組成物、ペレット、多層構造体、変性エチレン-ビニルアルコール系共重合体組成物の製造方法及び、多層構造体の製造方法
JPH04298535A (ja) ポリビニルアルコール系樹脂成型物の製造方法
JP2001019819A (ja) ポリビニルアルコール系樹脂組成物
JP2001226554A (ja) ポリビニルアルコール系樹脂組成物
JP2001164069A (ja) ビニルアルコール系重合体組成物および成形品
JP2002212371A (ja) ポリビニルアルコール系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780740

Country of ref document: EP

Kind code of ref document: A1