WO2022209158A1 - 電解液およびリチウムイオン二次電池 - Google Patents

電解液およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022209158A1
WO2022209158A1 PCT/JP2022/001511 JP2022001511W WO2022209158A1 WO 2022209158 A1 WO2022209158 A1 WO 2022209158A1 JP 2022001511 W JP2022001511 W JP 2022001511W WO 2022209158 A1 WO2022209158 A1 WO 2022209158A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
active material
secondary battery
lithium ion
electrode active
Prior art date
Application number
PCT/JP2022/001511
Other languages
English (en)
French (fr)
Inventor
智之 河合
裕樹 市川
寛 岩田
聡美 横地
敬介 夏井
雄飛 佐藤
玖美子 小島
希世奈 吉田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to EP22779390.8A priority Critical patent/EP4318718A1/en
Priority to US18/284,376 priority patent/US20240170725A1/en
Priority to CN202280026650.6A priority patent/CN117099238A/zh
Priority to KR1020237020273A priority patent/KR20230109691A/ko
Publication of WO2022209158A1 publication Critical patent/WO2022209158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte that can be used in lithium ion secondary batteries, and a lithium ion secondary battery using the electrolyte.
  • Lithium-ion secondary batteries which have excellent capacity, are used as power sources for mobile terminals, personal computers, and electric vehicles.
  • decarbonization In recent years, there has been an increasing demand for decarbonization, and many efforts are being made to electrify the drive sources of various devices. Along with this, there is a demand for further improvement in the characteristics of lithium ion secondary batteries.
  • the inventors of the present invention aimed to improve the characteristics of lithium-ion secondary batteries by optimizing the electrolyte of the lithium-ion secondary batteries.
  • Patent Document 1 introduces an electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 mol/L in a mixed non-aqueous solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3:7.
  • Patent Document 2 introduces an electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 mol/L in a mixed non-aqueous solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 3:2:5. .
  • chain carbonate is used as the main solvent of the electrolytic solution in the above patent documents.
  • the inventor of the present invention found that an alkylene cyclic carbonate and methyl propionate were used in combination as a non-aqueous solvent for the electrolytic solution.
  • An application for an ion secondary battery has already been filed (Japanese Patent Application No. 2020-026926).
  • the electrolytic solution described above can contribute to improving the characteristics of the lithium ion secondary battery.
  • the inventor of the present invention was not satisfied with this, and conducted extensive research to further improve the characteristics.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an electrolytic solution capable of imparting excellent characteristics to a lithium ion secondary battery, and a lithium ion secondary battery exhibiting excellent characteristics. do.
  • the inventors of the present invention found that lithium It was found that the characteristics of the ion secondary battery are further improved.
  • the inventors of the present invention completed the electrolytic solution of the present invention based on such findings.
  • the applicant of the present invention has developed a structure of an electric storage cell and an electric storage device capable of suppressing a decrease in sealing performance as part of efforts to improve the durability of an electric storage device including a lithium ion secondary battery, and has already filed an application.
  • Japanese Patent Application No. 2021-003409 Japanese Patent Application No. 2021-003409
  • the inventors of the present invention also conducted various studies on the electrolytic solution in order to further improve the sealing performance of the storage cell in the lithium ion secondary battery having the structure. In the process, it was found that by combining the structure with the electrolytic solution of the present invention described above, the sealing property of the storage cell in the lithium ion secondary battery can be further improved, and the lithium ion secondary battery of the present invention completed.
  • the electrolytic solution of the present invention that solves the above problems is having an electrolyte comprising a lithium salt and a non-aqueous solvent comprising an alkylene cyclic carbonate and methyl propionate;
  • the electrolyte contains 30 mol% or more of a lithium salt other than LiPF 6 with respect to the total lithium salt,
  • the nonaqueous solvent is an electrolytic solution containing 75% by volume or more of the methyl propionate.
  • the lithium ion secondary battery of the present invention for solving the above problems is a positive electrode having a first current collector and a positive electrode active material layer provided on one surface of the first current collector; It has a second current collector and a negative electrode active material layer provided on one side of the second current collector, and is stacked on the positive electrode while facing the positive electrode active material layer. a negative electrode; a separator disposed between the positive electrode active material layer and the negative electrode active material layer; disposed between the first current collector and the second current collector to surround the positive electrode active material layer and the negative electrode active material layer; and a sealing portion that seals the electrolytic solution in the space between It is a lithium ion secondary battery using the electrolyte solution of the present invention described above as the electrolyte solution.
  • the electrolyte solution of the present invention excellent characteristics can be imparted to lithium ion secondary batteries. Moreover, the lithium ion secondary battery of the present invention exhibits excellent characteristics, particularly excellent structural durability.
  • FIG. 10 is a graph showing changes over time in CC discharge capacity in each lithium ion secondary battery of Example 8 and Comparative Example 11.
  • FIG. 10 is a graph showing changes over time in CC discharge capacity in each lithium ion secondary battery of Example 8 and Comparative Examples 8 to 10.
  • FIG. 11 is an explanatory diagram schematically showing a lithium ion secondary battery of Example 9;
  • FIG. 11 is an explanatory diagram schematically showing a lithium-ion secondary battery of Example 10;
  • FIG. 11 is an explanatory diagram for explaining measurement positions of the natural peel length in Evaluation Example 9;
  • 10 is a graph showing the natural peel length of each test piece in Evaluation Example 9.
  • the numerical range "x to y" described in this specification includes the lower limit x and the upper limit y.
  • a new numerical range can be formed by arbitrarily combining these upper and lower limits and the numerical values listed in the examples.
  • numerical values arbitrarily selected from any of the above numerical ranges can be used as upper and lower numerical values of the new numerical range.
  • the electrolytic solution of the present invention can improve the characteristics of lithium ion secondary batteries by providing all of the following (1) to (3).
  • the non-aqueous solvent contains 75% by volume or more of methyl propionate.
  • the above (1) can contribute particularly to improving the structural durability.
  • the above (2) can contribute to smooth charging and discharging among the characteristics of the lithium ion secondary battery. Specifically, it is derived from alkylene cyclic carbonate, and lithium ions are smoothly generated and inserted into and detached from the negative electrode, and the disadvantages of alkylene cyclic carbonate such as high viscosity and high melting point are compensated by methyl propionate.
  • the above (3) can contribute to the improvement of the capacity retention rate, output, and the like among the characteristics of the lithium ion secondary battery. It can be said that the electrolytic solution of the present invention can improve the characteristics of the lithium-ion secondary battery by these cooperation.
  • the structural durability of the lithium ion secondary battery of the present invention can be improved by providing both (4) and (5) below.
  • a positive electrode having a first current collector and a positive electrode active material layer provided on one surface of the first current collector; It has a second current collector and a negative electrode active material layer provided on one side of the second current collector, and is stacked on the positive electrode while facing the positive electrode active material layer.
  • a negative electrode a separator disposed between the positive electrode active material layer and the negative electrode active material layer; disposed between the first current collector and the second current collector to surround the positive electrode active material layer and the negative electrode active material layer; and a sealing portion that seals the electrolytic solution in the space between (5)
  • the electrolytic solution of the present invention described above is used.
  • the above (4) can contribute to suppressing deterioration of the sealing performance among the characteristics of the lithium ion secondary battery.
  • the above (5) can further contribute to the improvement of structural durability among the characteristics of the lithium ion secondary battery provided with the above (4), specifically, the improvement of sealing performance.
  • the lithium-ion secondary battery of the present invention can realize improvement in its characteristics through these cooperation.
  • the electrolytic solution and the lithium ion secondary battery of the present invention will be described below for each component.
  • the lithium ion concentration in the electrolytic solution of the present invention is preferably in the range of 0.8 to 1.8 mol / L, more preferably in the range of 0.9 to 1.5 mol / L, from the viewpoint of ionic conductivity.
  • the range of 0 to 1.4 mol/L is more preferable, and the range of 1.1 to 1.3 mol/L is particularly preferable.
  • the electrolyte used in the electrolytic solution of the present invention contains a lithium salt, and contains 30 mol % or more of the lithium salt other than LiPF 6 with respect to the total lithium salt.
  • the electrolytic solution of the present invention may contain LiPF 6 as a lithium salt or may not contain LiPF 6 .
  • LiPF 6 is widely used as an electrolyte for electrolyte solutions for lithium ion secondary batteries, and is relatively inexpensive.
  • the reason why the electrolytic solution of the present invention uses a lithium salt other than LiPF 6 is as follows.
  • LiPF 6 It is known that the reaction of LiPF 6 with water produces hydrogen fluoride. Since a small amount of water is present in the electrolyte of a general lithium ion secondary battery, hydrogen fluoride may be contained in the electrolyte in the lithium ion secondary battery containing LiPF 6 in the electrolyte. It is also known that LiPF 6 is thermally unstable, forming PF 5 at temperatures above 60° C., for example. The PF5 can react with water to produce hydrogen fluoride.
  • the inventors of the present invention have studied the composition of the electrolytic solution in order to improve the characteristics of the lithium ion secondary battery.
  • hydrogen fluoride and PF 5 present in the electrolyte may corrode the electrodes and containers of the lithium-ion secondary battery, and corrosion of the electrodes and containers may reduce the durability of the lithium-ion secondary battery.
  • the lithium ion secondary battery has a structure having a sealing portion between two current collectors as disclosed in Japanese Patent Application No.
  • the surface of the metal portion contained in the current collectors corrodes ( Specifically, when fluorinated, the bonding strength between the sealing portion and the current collector is weakened, structurally deteriorating the battery, and the sealing performance of the sealing portion is likely to be reduced. This problem is particularly pronounced when the current collector contains aluminum.
  • the inventors of the present invention aimed to suppress the above-mentioned problems caused by LiPF 6 in order to improve the structural durability of lithium ion secondary batteries. They have also found that the above problem is suppressed when the electrolyte contains a lithium salt other than LiPF 6 in an amount of 30 mol % or more with respect to the total lithium salt. Although details will be described in the section of Examples described later, as a result of actual tests by the inventors of the present invention, in a lithium ion secondary battery having a sealing portion between two current collectors, electrolytes other than LiPF 6 When the lithium salt of 30 mol % or more of the total lithium salt is contained, the durability is improved as compared with the case where only LiPF 6 is contained as the electrolyte.
  • lithium salts other than LiPF 6 those represented by the following general formula (1) are particularly preferred. Lithium salts of this type are less likely to produce hydrogen fluoride and PF5 .
  • R1X1 )( R2SO2 )NLi General formula ( 1 )
  • R 1 is hydrogen, halogen, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted unsaturated alkyl group, a substituent
  • R 2 is hydrogen, halogen, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted unsaturated alkyl group, or a substituent; optionally substituted unsaturated cycloalkyl group, optionally substituted aromatic group, optionally substituted heterocyclic group, optionally substituted alkoxy group, optionally substituted unsaturated alkoxy group, optionally substituted thioalkoxy group, optionally substituted unsaturated thioalkoxy group, CN, SCN, OCN be. Also, R 1 and R 2 may combine with each other to form a ring.
  • R a and R b each independently represent hydrogen, halogen, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, or an optionally substituted unsubstituted group.
  • R a and R b may combine with R 1 or R 2 to form a ring.
  • an optionally substituted alkyl group means an alkyl group in which one or more of the hydrogen atoms in the alkyl group is substituted with a substituent, or an unsubstituted alkyl group. do.
  • substituents in the phrase "optionally substituted” include alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, unsaturated cycloalkyl groups, aromatic groups, heterocyclic groups, halogens, OH , SH, CN, SCN, OCN, nitro group, alkoxy group, unsaturated alkoxy group, amino group, alkylamino group, dialkylamino group, aryloxy group, acyl group, alkoxycarbonyl group, acyloxy group, aryloxycarbonyl group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, sulfonyl group, sulfinyl group, ureido group, phosphoramide group, sulfo group,
  • the lithium salt is preferably represented by the following general formula (1-1).
  • R 13 and R 14 are each independently C n Ha F b Cl c Br d I e (CN) f (SCN ) g (OCN) h .
  • R c and R d each independently represent hydrogen, halogen, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, or an optionally substituted unsubstituted group.
  • R c and R d may combine with R 23 or R 24 to form a ring.
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2.
  • n is preferably an integer of 1 to 8, and 1 to 7 is more preferred, and integers from 1 to 3 are particularly preferred.
  • the lithium salt is represented by the following general formula (1-2).
  • R 15 SO 2 (R 16 SO 2 )NLi
  • R 15 and R 16 are each independently C n Ha F b Cl c Br d Ie .
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2.
  • n is preferably an integer of 1 to 8, and 1 to 7 is more preferred, and integers from 1 to 3 are particularly preferred.
  • the lithium salts represented by the general formula (1), (1-1) or (1-2) are (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, (C 2 F 5 SO 2 ) at least one imide salt selected from 2NLi , FSO2 ( CF3SO2 ) NLi , ( SO2CF2CF2SO2 ) NLi , or ( SO2CF2CF2CF2SO2 ) NLi ; It is preferable to have Of these, (FSO 2 ) 2 NLi improves the output and durability of the lithium ion secondary battery. This is probably because the use of (FSO 2 ) 2 NLi reduces the viscosity of the electrolytic solution and forms a good film on the surfaces of the negative electrode and the positive electrode.
  • the amount of the lithium salt other than LiPF 6 contained in the electrolytic solution of the present invention may be 30 mol% or more with respect to the total lithium salt, but the preferred range is 50 mol% with respect to the total lithium salt. As mentioned above, each range of 75 mol% or more and 90 mol% or more can be exemplified.
  • the electrolytic solution of the present invention contains an alkylene cyclic carbonate and methyl propionate as a non-aqueous solvent.
  • Alkylene cyclic carbonate is a non-aqueous solvent with a high dielectric constant, and is thought to contribute to dissolution and ion dissociation of the lithium salt. Further, it is generally known that an SEI (Solid Electrolyte Interphase) film is formed on the surface of the negative electrode by reductive decomposition of the alkylene cyclic carbonate during charging of the lithium ion secondary battery. It is believed that the presence of such an SEI coating enables reversible insertion and extraction of lithium ions into and from a negative electrode comprising graphite.
  • the electrolytic solution of the present invention may use only one type of alkylene cyclic carbonate, or may use a plurality of types of alkylene cyclic carbonates in combination. Examples of alkylene cyclic carbonates include ethylene carbonate and propylene carbonate, with ethylene carbonate being particularly preferred.
  • alkylene cyclic carbonates are useful as non-aqueous solvents for electrolytic solutions, they have high viscosity. Therefore, if the ratio of the alkylene cyclic carbonate is too high, the ionic conductivity of the electrolyte and the diffusion of lithium ions in the electrolyte may be adversely affected. In addition, since the alkylene cyclic carbonate has a relatively high melting point, if the proportion of the alkylene cyclic carbonate is too high, the electrolytic solution may solidify under low temperature conditions.
  • methyl propionate is a non-aqueous solvent with low dielectric constant, low viscosity and low melting point.
  • the coexistence of alkylene cyclic carbonate and methyl propionate offsets the disadvantage of alkylene cyclic carbonate with methyl propionate. That is, methyl propionate is considered to contribute to lowering the viscosity of the electrolytic solution, optimizing the ionic conductivity, optimizing the diffusion coefficient of lithium ions, and preventing solidification under low-temperature conditions.
  • methyl acetate, ethyl acetate, ethyl propionate, methyl butyrate, and ethyl butyrate exist as esters having a chemical structure similar to that of methyl propionate.
  • methyl ester is superior to ethyl ester in terms of physical properties of the electrolyte and battery characteristics.
  • the melting points and boiling points of the methyl esters methyl propionate, methyl acetate, and methyl butyrate are as follows.
  • Methyl propionate Melting point -88°C, boiling point 80°C Methyl acetate Melting point -98°C, boiling point 57°C Methyl butyrate Melting point -95°C, boiling point 102°C
  • the non-aqueous solvent contained in the electrolytic solution preferably has a boiling point of 60°C or higher. From the point of view of the production environment, it is preferable that the boiling point of the non-aqueous solvent to be used is high.
  • the number of carbon atoms in the ester increases, the lipophilicity of the ester increases, which is disadvantageous for dissolving and dissociating the lithium salt. Therefore, the number of carbon atoms in the ester is preferably as small as possible.
  • the non-aqueous solvent in the electrolytic solution of the present invention contains 75% by volume or more of methyl propionate.
  • the electrolytic solution of the present invention can improve both the charge/discharge capacity of the positive electrode and the charge/discharge capacity of the negative electrode in the lithium ion secondary battery. is possible.
  • methyl propionate is preferably contained in the non-aqueous solvent in an amount of 85% by volume or less, more preferably 80% by volume or less.
  • the non-aqueous solvent in the electrolytic solution of the present invention may contain other non-aqueous solvents in addition to the alkylene cyclic carbonate and methyl propionate, or may consist of alkylene cyclic carbonate and methyl propionate.
  • the electrolytic solution of the present invention should contain 75% by volume or more of methyl propionate when the total non-aqueous solvent is taken as 100% by volume.
  • 100% by volume of the entire non-aqueous solvent means the sum of the volumes of the non-aqueous solvents at normal temperature of 25° C. and normal pressure before mixing.
  • the ratio of methyl propionate to the total volume of alkylene cyclic carbonate and methyl propionate is preferably in the range of 72 to 95% by volume, more preferably in the range of 75 to 90% by volume. is more preferred, most preferably in the range of 75 to 85% by volume.
  • the ratio of the alkylene cyclic carbonate to the total volume of the alkylene cyclic carbonate and methyl propionate is preferably within the range of 5 to 28% by volume, more preferably within the range of 10 to 25% by volume, Most preferably it is in the range of 15-25% by volume.
  • non-aqueous solvents mentioned above include fluorine-containing cyclic carbonates and unsaturated cyclic carbonates. These may be used alone or in combination. By using these non-aqueous solvents together with the alkylene cyclic carbonate and methyl propionate, the performance of the lithium ion secondary battery can be improved.
  • Fluorine-containing cyclic carbonates include fluoroethylene carbonate, 4-(trifluoromethyl)-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-4 -methyl-1,3-dioxolan-2-one, 4-(fluoromethyl)-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, 4-fluoro- Examples include 5-methyl-1,3-dioxolan-2-one and 4,5-difluoro-4,5-dimethyl-1,3-dioxolan-2-one.
  • unsaturated cyclic carbonates include vinylene carbonate, fluorovinylene carbonate, methyl vinylene carbonate, fluoromethyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, butyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, dipropyl vinylene carbonate, trifluoro Examples include methyl vinylene carbonate and vinyl ethylene carbonate. Particularly preferably, the electrolytic solution of the present invention contains vinylene carbonate.
  • the amount of fluorine-containing cyclic carbonate and/or unsaturated cyclic carbonate added to the electrolytic solution of the present invention is in the range of 0.1 to 5% by mass, 0.3 to 4% by mass with respect to the total mass other than these. Within the range, within the range of 0.5 to 3% by mass, and within the range of 1 to 2% by mass can be exemplified.
  • the electrolytic solution of the present invention may contain additives.
  • the additive it is preferable to select an additive that initiates reductive decomposition at a potential higher than the potential at which other components of the electrolytic solution, specifically, alkylene cyclic carbonate and methyl propionate, initiate reductive decomposition.
  • specific examples of additives include cyclic sulfates, oxalate borates, and dihalogenated phosphates. These additives may be used alone or in combination of multiple types.
  • a cyclic sulfate is a compound represented by the following chemical formula.
  • R--O--SO 2 --OR Two R's are alkyl groups and are bonded together to form a ring together with --O--S--O--.
  • Examples of cyclic sulfate esters include 5- to 9-membered rings, 5- to 8-membered rings, and 5- to 7-membered rings. 4 can be exemplified.
  • Lithium salts are preferred as oxalate borates.
  • LiB(C 2 O 4 ) 2 and LiB(C 2 O 4 )X 2 (X is a halogen selected from F, Cl, Br and I) can be exemplified as specific oxalate borate salts.
  • the borate oxalate is LiB(C 2 O 4 ) 2 , lithium bis(oxalate)borate and/or LiB(C 2 O 4 )F 2 , lithium difluoro(oxalate)borate.
  • LiPO 2 X 2 (X is a halogen selected from F, Cl, Br and I) can be exemplified as a specific dihalogenated phosphate.
  • the amount of the additive added to the electrolytic solution of the present invention is within the range of 0.1 to 5% by mass, within the range of 0.3 to 4% by mass, and 0.3% by mass to the total mass other than the additive. Within the range of 5 to 3% by mass and within the range of 1 to 2% by mass can be exemplified.
  • the lithium ion secondary battery of the present invention using the electrolytic solution of the present invention will be described below.
  • the lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, a separator, a sealing portion and an electrolytic solution.
  • the electrolytic solution is as described above.
  • the positive electrode has a first current collector and a positive electrode active material layer provided on one surface of the first current collector.
  • the negative electrode has a second current collector and a negative electrode active material layer provided on one surface of the second current collector.
  • the negative electrode is stacked on the positive electrode with the negative electrode active material layer facing the positive electrode active material layer of the positive electrode.
  • the first current collector and the second current collector are collectively referred to.
  • the positive electrode active material and the negative electrode active material shall be collectively referred to, and when referring to the electrode active material layer, the positive electrode active material and the negative electrode active material shall be collectively referred to.
  • a current collector is a chemically inactive electronic conductor that keeps current flowing through an electrode during discharging or charging of a lithium-ion secondary battery.
  • metal materials such as The effect of improving durability, which is the effect of the lithium ion secondary battery of the present invention, is particularly remarkable when the first current collector, which is the current collector for the positive electrode, is made of aluminum. That is, it is particularly preferable that the first current collector is made of aluminum.
  • the current collector may be covered with a known protective layer.
  • a current collector whose surface has been treated by a known method may be used as the current collector.
  • the current collector can be in the form of foil, sheet, film, wire, rod, mesh, etc. Therefore, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be preferably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material should be capable of intercalating and deintercalating lithium ions .
  • D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir , Hf, Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P, V, 1.7 ⁇ f ⁇ 3)
  • Lithium composite metal oxide represented by and Li 2 MnO 3 can be mentioned.
  • a spinel-structured metal oxide such as LiMn 2 O 4
  • a solid solution composed of a mixture of a spinel-structured metal oxide and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 in the formula is selected from at least one of Co, Ni, Mn and Fe.
  • positive electrode active materials include taborite compounds represented by LiMPO 4 F (M is a transition metal) such as LiFePO 4 F, and borate compounds represented by LiMBO 3 (M is a transition metal) such as LiFeBO 3 . be able to.
  • Any metal oxide used as a positive electrode active material may have the above compositional formula as a basic composition, and those in which the metal elements contained in the basic composition are replaced with other metal elements can also be used. Only one type of these positive electrode active materials may be used, or a plurality of types may be used in combination.
  • positive electrode active materials having an olivine structure are suitable as positive electrode active materials for lithium ion secondary batteries because of their excellent thermal stability.
  • a commercially available product may be purchased, or the method described in the following literature may be used as a reference.
  • the positive electrode active material having an olivine structure one coated with carbon is preferable.
  • LiaMbPO4 ( M is Mn , Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al; is at least one element selected from Si, B, Te, and Mo. a satisfies 0.9 ⁇ a ⁇ 1.2, and b satisfies 0.6 ⁇ b ⁇ 1.1).
  • Examples of the range of a include 0.95 ⁇ a ⁇ 1.1 and 0.97 ⁇ a ⁇ 1.05.
  • M in LiaMbPO4 is preferably at least one element selected from Mn, Fe, Co, Ni, Mg, V, and Te, and M is composed of two or more elements. is more preferred. More preferably M is selected from Mn, Fe and V. b preferably satisfies 0.95 ⁇ b ⁇ 1.05.
  • the ranges of x and y are 0.5 ⁇ x ⁇ 0.9, 0.1 ⁇ y ⁇ 0.5, 0.6 ⁇ x ⁇ 0.8, 0.2 ⁇ y ⁇ 0.4, and Examples include 0.7 ⁇ x ⁇ 0.8 and 0.2 ⁇ y ⁇ 0.3.
  • LiFePO 4 is widely used as a positive electrode active material having an olivine structure, but LiMn x Fe y PO 4 in which Mn and Fe coexist is known to have a higher reaction potential than LiFePO 4 .
  • the positive electrode active material layer may contain additives such as a conductive aid, a binder, and a dispersant in addition to the positive electrode active material.
  • additives such as a conductive aid, a binder, and a dispersant in addition to the positive electrode active material. Examples of the proportion of the positive electrode active material in the positive electrode active material layer are within the range of 70 to 99% by mass, within the range of 80 to 98% by mass, and within the range of 90 to 97% by mass.
  • a conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive aid may be added arbitrarily when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive aid may be any chemically inactive electron conductor, and examples include carbon black, graphite, vapor grown carbon fiber, carbon nanotube, and various metal particles, which are carbonaceous fine particles. be done. Examples of carbon black include acetylene black, Ketjenblack (registered trademark), furnace black, and channel black. These conductive aids can be added to the positive electrode active material layer singly or in combination of two or more.
  • the blending amount of the conductive aid is not particularly limited.
  • the proportion of the conductive aid in the positive electrode active material layer is preferably in the range of 1 to 7% by mass, more preferably in the range of 2 to 6% by mass, and even more preferably in the range of 3 to 5% by mass.
  • Binders serve to bind the positive electrode active material and conductive aid to the surface of the current collector.
  • Binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber; thermoplastic resins such as polypropylene and polyethylene; imide resins such as polyimide and polyamideimide; alkoxysilyl group-containing resins; Examples include meth)acrylate resins, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose, and styrene-butadiene rubber.
  • the blending amount of the binder is not particularly limited.
  • the proportion of the binder in the positive electrode active material layer is preferably in the range of 0.5 to 7% by mass, more preferably in the range of 1 to 5% by mass, and even more preferably in the range of 2 to 4% by mass.
  • additives such as dispersants other than conductive aids and binders can be used.
  • a material that can store and release charge carriers can be used as the negative electrode active material. Therefore, there is no particular limitation as long as it is a simple substance, alloy or compound that can occlude and release charge carriers such as lithium ions.
  • the negative electrode active material Li, carbon, silicon, germanium, group 14 elements such as tin, aluminum, group 13 elements such as indium, zinc, group 12 elements such as cadmium, antimony, group 15 elements such as bismuth, magnesium , alkaline earth metals such as calcium, and Group 11 elements such as silver and gold may be used singly.
  • alloys or compounds include tin-based materials such as Ag--Sn alloys, Cu--Sn alloys and Co--Sn alloys, carbon-based materials such as various types of graphite, and SiO x ( 0.3 ⁇ x ⁇ 1.6), silicon alone, or a composite of a silicon-based material and a carbon-based material.
  • the ratio of the negative electrode active material in the negative electrode active material layer is in the range of 70 to 99% by mass, in the range of 80 to 98.5% by mass, in the range of 90 to 98% by mass, and in the range of 95 to 97.5% by mass.
  • the inside can be exemplified.
  • the negative electrode active material layer may contain additives such as binders and dispersants in addition to the negative electrode active material.
  • additives such as binders and dispersants in addition to the negative electrode active material.
  • the binder the one described for the positive electrode may be appropriately adopted.
  • additives such as dispersants can be employed.
  • the blending amount of the binder is not particularly limited.
  • the proportion of the binder in the negative electrode active material layer is preferably in the range of 0.5 to 7% by mass, more preferably in the range of 1 to 5% by mass, and even more preferably in the range of 2 to 4% by mass.
  • a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, etc. is used to form a current collector.
  • the active material may be applied to the surface of the body. Specifically, an active material, a solvent, and, if necessary, a binder and a conductive aid are mixed to produce a slurry composition for forming an active material layer, and the composition for forming an active material layer is collected. After coating on the surface of the electric body, it is dried.
  • solvents include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, it may be compressed after drying.
  • the active material layer may be formed using a manufacturing method disclosed in Japanese Patent Application Laid-Open No. 2015-201318. Specifically, a wet granule is obtained by granulating a mixture containing an active material, a binder, and a solvent. An aggregate of the granules is placed in a predetermined mold to obtain a flat molded body. After that, a transfer roll is used to adhere a flat plate-like molded body to the surface of the current collector, thereby forming an active material layer.
  • an olivine structure can be selected as the positive electrode active material, and graphite can be selected as the negative electrode active material.
  • a lithium ion secondary battery comprising a positive electrode comprising a positive electrode active material having an olivine structure and a negative electrode comprising graphite as a negative electrode active material can be said to have excellent thermal stability, but the capacity per unit volume of the electrode is low.
  • the mass of the positive electrode active material layer existing on the area of 1 square centimeter on one side of the current collector foil of the positive electrode (hereinafter referred to as "positive weight basis weight )
  • the mass of the negative electrode active material layer present on the area of 1 square centimeter on one side of the current collector foil of the negative electrode (hereinafter sometimes referred to as “the basis weight of the negative electrode”) increases. .
  • the basis weight of the positive electrode is preferably 20 mg/cm 2 or more. Suitable positive electrode weight per unit area is 30 to 200 mg/cm 2 , 35 to 150 mg/cm 2 , 40 to 120 mg/cm 2 , and 50 to 100 mg/cm 2 . .
  • the basis weight of the negative electrode is preferably 10 mg/cm 2 or more.
  • suitable coating weight of the negative electrode are 15 to 100 mg/cm 2 , 17 to 75 mg/cm 2 , 20 to 60 mg/cm 2 , and 25 to 50 mg/cm 2 . .
  • the charge / discharge capacity at a high rate is higher than the charge / discharge capacity at a low rate. If it becomes insufficient, a rate characteristic deterioration phenomenon occurs.
  • the phenomenon of rate deterioration is believed to be related to the diffusion resistance of lithium ions in the lithium ion secondary battery, and the diffusion resistance of lithium ions is believed to be related to the viscosity of the electrolyte and the diffusion coefficient of lithium ions in the electrolyte. .
  • the electrolytic solution of the present invention has a low viscosity due to the presence of methyl propionate, and is designed in consideration of the diffusion coefficient of lithium ions. Therefore, in the lithium ion secondary battery of the present invention, for example, the positive electrode is in the range of 30 to 200 mg/cm 2 and the negative electrode is in the range of 15 to 100 mg/cm 2 . The property deterioration phenomenon is suppressed to some extent.
  • the lithium ion secondary battery of the present invention is not a so-called wound type lithium ion secondary battery in which the electrodes are wound and stored in a container, but a so-called cell stack type lithium ion secondary battery in which the electrodes are maintained in a stacked state without being wound.
  • the lithium ion secondary battery is suitable as a lithium ion secondary battery having thick electrodes.
  • a positive electrode active material layer is provided on one side of the first current collector, and a negative electrode active material is provided on one side of the second current collector.
  • a positive electrode active material layer or a negative electrode active material layer may be provided on the other surface of the first current collector.
  • a positive electrode active material layer or a negative electrode active material layer may be provided on the other surface of the second current collector.
  • the other surface of the first current collector having one surface provided with the positive electrode active material layer and the other surface of the second current collector having one surface provided with the negative electrode active material layer were superimposed to integrate them.
  • the first current collector and the second current collector in this case can be regarded as a current collector having a multilayer structure, which will be described later.
  • the positive electrode active material layer is provided on one side (or the other side) of the two-layer current collector in which the first current collector and the second current collector are integrated, and the other side (or one side) is provided with a negative electrode active material layer.
  • the electrode in the lithium ion secondary battery of the present invention has the same type of active material layer on each of both sides of the current collector, that is, the positive electrode active material layer and the positive electrode active material layer, or the negative electrode active material layer and the negative electrode active material layer. It may be an electrode provided with a layer.
  • the electrode in the lithium ion secondary battery of the present invention is a bipolar electrode in which different active material layers, that is, a positive electrode active material layer and a negative electrode active material layer are provided on both sides of a current collector. It can be.
  • the positive electrode and the negative electrode are stacked with the negative electrode active material layer facing the positive electrode active material layer, and in the direction in which the negative electrode active material layer and the positive electrode active material layer face each other (hereinafter referred to as the facing direction), A separator is arranged between the positive electrode active material layer and the negative electrode active material layer.
  • Each of the first current collector and the second current collector may have a single-layer structure composed of a single metal, or may have a multi-layer structure composed of a plurality of dissimilar metals. Also, a multilayer structure in which the first current collector and the second current collector are laminated and integrated may be formed.
  • the first current collector and the second current collector have the multilayer structure, for example, the first current collector (or the second current collector) is plated with the second current collector (or the first current collector).
  • the second current collector (or the first current collector) may be roll-bonded to the first current collector (or the second current collector).
  • the separately molded first current collector and second current collector may be joined together with a conductive adhesive or the like to be integrated.
  • a metal foil obtained by plating an aluminum foil with copper or nickel is exemplified.
  • the separator has a function of separating the positive electrode and the negative electrode and allowing lithium ions to pass therethrough while preventing a short circuit due to contact between the two electrodes.
  • a known one may be adopted, and synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (aromatic polyamide), polyester, polyacrylonitrile, polysaccharides such as cellulose and amylose, and fibroin. , natural polymers such as keratin, lignin and suberin, and porous bodies, non-woven fabrics, and woven fabrics using one or a plurality of electrically insulating materials such as ceramics.
  • the separator may have a multilayer structure.
  • the positive electrode active material layer and the negative electrode active material layer face each other.
  • the positive electrode active material layer is formed on one surface of the first current collector
  • the negative electrode active material layer is formed on one surface of the second current collector. disposed between the body and the second current collector.
  • the lithium-ion secondary battery of the present invention includes a sealing portion between the first current collector and the second current collector in the facing direction. The sealing portion surrounds the positive electrode active material layer and the negative electrode active material layer, and has a function of sealing the electrolytic solution in the space between the first current collector and the second current collector.
  • the lithium ion secondary battery of the present invention a storage cell having a positive electrode active material layer, a separator, a negative electrode active material layer and an electrolytic solution between a pair of first and second current collectors. is formed, and the storage cell is separated from the outside world by the seal.
  • the lithium ion secondary battery of the present invention may include only one storage cell, or may include a plurality of storage cells.
  • the lithium-ion secondary battery of the present invention having the structure described above can reduce the size and weight of the container, and reduce wiring such as lead wires. As a result, the lithium-ion secondary battery of the present invention having the structure described above has an improved energy density per unit volume and weight.
  • the lithium ion secondary battery of the present invention having this structure is suitable for being embodied as a cell stack type lithium ion secondary battery, and can have thick electrodes as described above.
  • the sealing portion functions as a sealing material for enclosing the electrolytic solution inside the storage cell, and is a spacer for electrically isolating the first current collector and the second current collector that constitute the same storage cell. also functions as The sealing portion that exhibits such a function may have a shape capable of accommodating the positive electrode active material layer and the negative electrode active material layer on the inner peripheral side, specifically, a ring shape or a cylindrical shape.
  • the material for the sealing portion a material that can exhibit the above functions may be used, and a resin material is suitable.
  • Olefins and acid-modified olefins are suitable as the material for the sealing portion, and specific examples thereof include polyethylene, polypropylene, acid-modified polyethylene, and acid-modified polypropylene.
  • the sealing portion is preferably fixed to the first current collector and the second current collector by a general method such as adhesion or welding.
  • the electrolyte solution is highly reliably sealed between the first current collector and the second current collector that constitute the same cell, and the relative position of the first current collector and the second current collector and the positive electrode This is for appropriately maintaining the relative positions of the active material layer, the separator, and the negative electrode active material layer.
  • the method of fixing the sealing portion to the first current collector and the second current collector is not particularly limited, but methods such as adhesion, welding, and fusion bonding can be exemplified.
  • the sealing portion may surround the positive electrode active material layer and the negative electrode active material layer, and may be in contact with or apart from the outer edge portion of the positive electrode active material layer and the outer edge portion of the negative electrode active material layer.
  • the sealing portion should be the outer edge of the positive electrode active material layer and the negative electrode active material layer. It is preferably spaced from the outer edge of the material layer.
  • a specific method for manufacturing a lithium ion secondary battery will be described.
  • a positive electrode in which a positive electrode active material layer is formed on one side of a first current collector and a negative electrode in which a negative electrode active material layer is formed on one side of a second current collector are combined into a positive electrode active material layer and a negative electrode active material layer. face each other through a separator.
  • a sealing portion is arranged between the first current collector and the second current collector so as to surround the positive electrode active material layer and the negative electrode active material layer, and the sealing portion serves as the first current collector. adheres to the body and the second current collector.
  • the electrolytic solution is sealed inside the sealing portion.
  • the first sealing portion is arranged between the first current collector and the separator, and the second sealing portion is arranged between the separator and the second current collector. Then, the first sealing portion and the second sealing portion may be integrated by a method such as adhesion.
  • the lithium-ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be any vehicle that uses electrical energy from a lithium-ion secondary battery as a power source in whole or in part, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, it is preferable to connect a plurality of lithium ion secondary batteries in series to form an assembled battery.
  • Devices equipped with lithium ion secondary batteries include, in addition to vehicles, personal computers, mobile communication devices, various home electric appliances driven by batteries, office equipment, industrial equipment, and the like.
  • the lithium ion secondary battery of the present invention is used for wind power generation, solar power generation, hydraulic power generation, and other power storage devices and power smoothing devices for power systems, power sources for ships and/or auxiliary equipment, aircraft, power source for spacecraft and/or auxiliary equipment, auxiliary power source for vehicles that do not use electricity as a power source, power source for mobile home robots, power source for system backup, power source for uninterruptible power supply, It may be used as a power storage device that temporarily stores electric power required for charging in a charging station for an electric vehicle.
  • Electrolyte solutions 1 to 3 were prepared by dissolving (FSO 2 ) 2 NLi and LiPF 6 in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 30:70 at the ratios shown in Table 1 below.
  • the viscosities of electrolyte solutions 1 to 3 were measured under the following conditions. Table 1 shows the results.
  • ⁇ Viscosity> The viscosity of each electrolytic solution was measured at 25° C. with a Brookfield viscometer (Brookfield, DV2T) using a cone-shaped spindle. Note that the rotational speed of the cone-shaped spindle was 60 rpm.
  • Electrolytes were produced using propyl propionate, methyl butyrate, and ethyl butyrate as esters with similar chemical structures to methyl propionate, and the effects of these esters on battery characteristics were investigated.
  • a mother liquor was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85.
  • LiDFOB Lithium difluoro (oxalate) borate
  • LiDFOB is one aspect of oxalate borate) and an amount equivalent to 1% by mass of the mother liquor
  • Electrolytic solution 4 was produced by adding and dissolving vinylene carbonate.
  • PP ethylene carbonate and propyl propionate
  • LiPF6 was dissolved at a concentration of 1.2 mol/L to obtain a mother liquor.
  • Electrolytic solution 5 was prepared by adding LiDFOB in an amount corresponding to 1% by mass and vinylene carbonate in an amount corresponding to 1% by mass to the mother liquor and dissolving them.
  • LiPF 6 was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl butyrate (hereinafter sometimes abbreviated as MB) at a volume ratio of 15:85 to obtain a mother liquor.
  • Electrolytic solution 6 was prepared by adding and dissolving LiDFOB in an amount corresponding to 1% by mass and vinylene carbonate in an amount corresponding to 1% by mass with respect to the mother liquor.
  • EB a mixed solvent of ethylene carbonate and ethyl butyrate
  • Electrolytic solution 7 was prepared by adding LiDFOB in an amount corresponding to 1% by mass and vinylene carbonate in an amount corresponding to 1% by mass to the mother liquor and dissolving them.
  • - Ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate were mixed at a volume ratio of 30:30:40 to prepare a mixed solvent.
  • LiPF 6 was dissolved in the mixed solvent to prepare a mother liquor having a LiPF 6 concentration of 1 mol/L.
  • Electrolytic solution 8 was prepared by adding LiDFOB in an amount corresponding to 0.2 mol/L and vinylene carbonate in an amount corresponding to 1% by mass to the mother liquor and dissolving them.
  • LiFePO 4 having an olivine structure coated with carbon as the positive electrode active material, acetylene black as the conductive aid, and polyvinylidene fluoride as the binder, the mass ratio of the positive electrode active material, conductive aid, and binder being 90:5: 5, and N-methyl-2-pyrrolidone was added as a solvent to prepare a composition for forming a positive electrode active material layer in slurry form.
  • An aluminum foil was prepared as a positive electrode current collector.
  • a positive electrode active material layer is formed on the surface of the aluminum foil by pressing the positive electrode precursor produced by applying the composition for forming the positive electrode active material layer in the form of a film on the surface of the aluminum foil and then removing the solvent, in the thickness direction. was formed on the positive electrode.
  • the target weight of the positive electrode was 13.9 mg/cm 2 .
  • Graphite as a negative electrode active material, carboxymethyl cellulose and styrene-butadiene rubber as binders were mixed so that the mass ratio of graphite, carboxymethyl cellulose and styrene-butadiene rubber was 97:0.8:2.2, and water was used as a solvent. It was added to prepare a slurry composition for forming a negative electrode active material layer.
  • a copper foil was prepared as a current collector for the negative electrode.
  • a negative electrode active material layer is formed on the surface of the copper foil by pressing the negative electrode precursor produced by applying the negative electrode active material layer forming composition to the surface of the copper foil in the form of a film and then removing the solvent, in the thickness direction. was formed on the negative electrode.
  • the target weight of the negative electrode was 6.3 mg/cm 2 .
  • a polypropylene porous membrane was prepared as a separator.
  • An electrode body was formed by sandwiching a separator between the positive electrode and the negative electrode.
  • the lithium ion secondary battery 4 was manufactured by putting this electrode body together with the electrolytic solution 4 in a bag-like laminate film and sealing it. Lithium ion secondary batteries 5 to 8 were similarly produced using electrolyte solutions 5 to 8.
  • Lithium ion secondary batteries 4 to 8 were CC-CV charged to 4.0 V at a rate of 0.4 C, and the charge capacity at this time was used as a reference (SOC 100%).
  • a storage test was performed by storing each lithium ion secondary battery at 40° C. for 11 days in the state of SOC 100. Capacity confirmation was performed before and after the storage test. Specifically, CC-CV charging was performed at a rate of 0.4C to 4.0V. Then, CC-CV discharge was performed at a rate of 1C to 2.5V. Thereby, the discharge capacity of each lithium ion secondary battery was confirmed.
  • the percentage of the discharge capacity after the storage test to the discharge capacity before the storage test was defined as the capacity retention rate of each lithium ion secondary battery. Further, after the storage test, each lithium ion secondary battery adjusted to SOC 60% was discharged at a constant current rate for 5 seconds at 25° C., and the amount of voltage change was measured. The measurements were performed under multiple conditions with varying current rates. From the obtained results, the constant current (mA) at which the discharge time to a voltage of 2.5 V is 10 seconds was calculated for each lithium ion secondary battery with an SOC of 60%. A value obtained by multiplying the amount of voltage change from SOC 60% to 2.5 V by the calculated constant current was taken as the output. Table 2 shows the results of the above storage test.
  • the lithium ion secondary battery 4 using methyl propionate as the non-aqueous solvent of the electrolyte is excellent in both capacity retention rate and output, and in particular in output, carbonate-based non-aqueous solvent It greatly exceeds the lithium ion secondary battery 8 using . This result supports the usefulness of selecting methyl propionate as the non-aqueous solvent.
  • Example 1 The electrolytic solution and lithium ion secondary battery of Example 1 are described below.
  • the lithium ion secondary battery of Example 1 has a general structure, unlike the lithium ion secondary battery of the present invention described above, except that the electrodes are thick.
  • Graphite as a negative electrode active material, and carboxymethyl cellulose and styrene-butadiene rubber as binders were mixed so that the mass ratio of graphite, carboxymethyl cellulose, and styrene-butadiene rubber was 94.8:0.8:4.4.
  • Water was added to prepare a slurry composition for forming a negative electrode active material layer.
  • a copper foil was prepared as a current collector for the negative electrode.
  • a negative electrode active material layer is formed on the surface of the copper foil by pressing the negative electrode precursor produced by applying the negative electrode active material layer forming composition to the surface of the copper foil in the form of a film and then removing the solvent, in the thickness direction. was formed on the negative electrode.
  • the weight of the negative electrode was 26.5 mg/cm 2 .
  • LiFePO 4 having an olivine structure coated with carbon as the positive electrode active material layer, acetylene black as the conductive aid, and polyvinylidene fluoride as the binder, the mass ratio of the positive electrode active material, conductive aid, and binder being 88.8. :5.1:6.1, and N-methyl-2-pyrrolidone was added as a solvent to prepare a composition for forming a positive electrode active material layer in slurry form.
  • An aluminum foil was prepared as a positive electrode current collector.
  • a positive electrode active material layer is formed on the surface of the aluminum foil by pressing the positive electrode precursor produced by applying the composition for forming the positive electrode active material layer in the form of a film on the surface of the aluminum foil and then removing the solvent, in the thickness direction. was formed on the positive electrode.
  • the basis weight of the positive electrode was 55.5 mg/cm 2 .
  • a polypropylene porous membrane was prepared as a separator.
  • An electrode body was formed by sandwiching a separator between the positive electrode and the negative electrode.
  • the lithium ion secondary battery of Example 1 was manufactured by putting this electrode body together with the electrolytic solution of Example 1 into a bag-like laminate film and sealing it.
  • Example 2 The electrolytic solution of Example 2 is the same as the electrolytic solution of Example 1 except for the volume ratio of ethylene carbonate and methyl propionate. Specifically, in Example 2, (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent in which ethylene carbonate and methyl propionate were mixed at a volume ratio of 25:75, and the mixture was used as the mother liquor. did. An electrolytic solution of Example 2 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1% by mass with respect to the mother liquor.
  • the lithium ion secondary battery of Example 2 is the same as the lithium ion secondary battery of Example 1 except that the electrolyte solution of Example 2 is used.
  • Comparative Example 1 The electrolytic solution of Comparative Example 1 is the same as the electrolytic solution of Example 1 except for the volume ratio of ethylene carbonate and methyl propionate. Specifically, in Comparative Example 1, (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent in which ethylene carbonate and methyl propionate were mixed at a volume ratio of 30:70. did. An electrolytic solution of Comparative Example 1 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1% by mass with respect to the mother liquor. The lithium ion secondary battery of Comparative Example 1 is the same as the lithium ion secondary battery of Example 1 except that the electrolyte solution of Comparative Example 1 is used.
  • Comparative example 2 The electrolytic solution of Comparative Example 2 is the same as the electrolytic solution of Example 1 except for the volume ratio of ethylene carbonate and methyl propionate. Specifically, in Comparative Example 2, (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent in which ethylene carbonate and methyl propionate were mixed at a volume ratio of 50:50. did. An electrolytic solution of Comparative Example 2 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1% by mass with respect to the mother liquor. The lithium ion secondary battery of Comparative Example 2 is the same as the lithium ion secondary battery of Example 1 except that the electrolyte solution of Comparative Example 2 is used.
  • the lithium-ion secondary batteries of Examples 1 and 2 have all C rates of 0.4C to 4.0C compared to the lithium-ion secondary batteries of Comparative Examples 1 and 2. and exhibits excellent discharge characteristics. This is probably because the electrolyte in the lithium ion secondary batteries of Examples 1 and 2 contained 75% by volume or more of methyl propionate in the non-aqueous solvent.
  • the lithium ion secondary battery of Example 1 has a structure different from that of the lithium ion secondary battery of the present invention described above, but needless to say, the effect of the electrolytic solution of Example 1 is the same as that of the lithium ion secondary battery of the present invention. The same effect is exhibited in the next battery. The same applies to each of the following examples.
  • Example 3 The electrolytic solution and lithium ion secondary battery of Example 3 are described below.
  • [Electrolyte] (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor.
  • 1,3,2-dioxathiolane-2,2-dioxide hereinafter sometimes abbreviated as DTD.
  • DTD is one aspect of a cyclic sulfate ester) in an amount equivalent to 0.5% by mass relative to the mother liquor. was added and dissolved to prepare an electrolytic solution of Example 3.
  • Graphite as a negative electrode active material, carboxymethyl cellulose and styrene-butadiene rubber as binders were mixed so that the mass ratio of graphite, carboxymethyl cellulose and styrene-butadiene rubber was 97:0.8:2.2, and water was used as a solvent. It was added to prepare a slurry composition for forming a negative electrode active material layer.
  • a copper foil was prepared as a current collector for the negative electrode.
  • a negative electrode active material layer is formed on the surface of the copper foil by pressing the negative electrode precursor produced by applying the negative electrode active material layer forming composition to the surface of the copper foil in the form of a film and then removing the solvent, in the thickness direction. was formed on the negative electrode.
  • the weight of the negative electrode was 6.7 mg/cm 2 .
  • LiFePO 4 having an olivine structure coated with carbon as the positive electrode active material layer, acetylene black as the conductive aid, and polyvinylidene fluoride as the binder, the mass ratio of the positive electrode active material, conductive aid and binder being 94:3. : 3, and N-methyl-2-pyrrolidone was added as a solvent to prepare a composition for forming a positive electrode active material layer in slurry form.
  • An aluminum foil was prepared as a positive electrode current collector.
  • a positive electrode active material layer is formed on the surface of the aluminum foil by pressing the positive electrode precursor produced by applying the composition for forming the positive electrode active material layer in the form of a film on the surface of the aluminum foil and then removing the solvent, in the thickness direction. was formed on the positive electrode.
  • the basis weight of the positive electrode was 13.9 mg/cm 2 .
  • a lithium-ion secondary battery of Example 3 was manufactured in the same manner as in Example 1 using the above positive electrode and negative electrode.
  • Example 4 The electrolytic solution of Example 4 is the same as the electrolytic solution of Example 3 except that (FSO 2 ) 2 NLi and LiPF 6 are used as lithium salts. Specifically, in Example 4, (FSO 2 ) 2 NLi at a concentration of 0.6 mol/L and LiPF 6 at a concentration of 0.6 mol/L were added to a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 It was dissolved at 0.6 mol/L to obtain a mother liquor. An electrolytic solution of Example 4 was produced by adding and dissolving DTD in an amount corresponding to 0.5% by mass with respect to the mother liquor.
  • the lithium ion secondary battery of Example 4 is the same as the lithium ion secondary battery of Example 3 except that the electrolyte solution of Example 4 is used.
  • Comparative Example 3 The electrolytic solution of Comparative Example 3 is the same as the electrolytic solution of Example 3 except that (FSO 2 ) 2 NLi and LiPF 6 are used as lithium salts. Specifically, in Comparative Example 3, LiPF 6 was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor. By adding (FSO 2 ) 2 NLi in an amount corresponding to 0.5% by mass and DTD in an amount corresponding to 0.5% by mass to the mother liquor and dissolving, the electrolytic solution of Comparative Example 3 was obtained. manufactured.
  • the amount of (FSO 2 ) 2 NLi in the electrolytic solution of Comparative Example 3 was 0.03 mol/L, and the amount of (FSO 2 ) 2 NLi was the sum of (FSO 2 ) 2 NLi and LiPF 6 was 2.4 mol % with respect to
  • the lithium ion secondary battery of Comparative Example 3 is the same as the lithium ion secondary battery of Example 3 except that the electrolytic solution of Comparative Example 3 was used.
  • Comparative Example 4 The electrolytic solution of Comparative Example 3 is the same as the electrolytic solution of Example 3 except that only LiPF 6 was used as the lithium salt. Specifically, in Comparative Example 3, LiPF 6 was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor. An electrolytic solution of Comparative Example 4 was produced by adding and dissolving DTD in an amount corresponding to 0.5% by mass with respect to the mother liquor. The lithium ion secondary battery of Comparative Example 4 is the same as the lithium ion secondary battery of Example 3 except that the electrolyte solution of Comparative Example 4 is used.
  • each lithium ion secondary battery adjusted to SOC 60% was discharged at a constant current rate for 10 seconds at 25° C., and the amount of change in voltage was measured. The measurements were performed under multiple conditions with varying current rates. From the obtained results, the constant current (mA) at which the discharge time to a voltage of 2.5 V is 10 seconds was calculated for each lithium ion secondary battery with an SOC of 60%. The initial output was obtained by multiplying the amount of voltage change from SOC 60% to 2.5 V by the calculated constant current (mA). Multiple tests of initial output were also performed. The percentage of the output value of each lithium ion secondary battery relative to the output value of the lithium ion secondary battery of Comparative Example 4 was calculated, and the value obtained by subtracting 100 (%) from the percentage was defined as the initial output increase rate (%). .
  • Table 4 shows the initial output of each lithium ion secondary battery
  • Example 4 compared to the lithium ion secondary battery of Comparative Example 4 in which LiPF 6 was used alone as the lithium salt, Comparative Example 3, Example 3 and Example 3 containing (FSO 2 ) 2 NLi as the lithium salt
  • the lithium ion secondary battery of Example 4 is excellent in initial output.
  • the (FSO 2 ) 2 NLi content is 30 mol % or more
  • the (FSO 2 ) 2 NLi content is less than 30 mol %.
  • the initial output is significantly increased.
  • the lithium-ion secondary battery of Comparative Example 3 was comparable to Comparative Example 4 in charge-discharge cycle durability at high temperatures.
  • the lithium ion secondary batteries of Comparative Examples 3 and 4 were also superior in charge/discharge cycle durability at high temperatures. From these results, (FSO 2 ) 2 NLi, that is, using an electrolytic solution containing 30 mol % or more of a lithium salt other than LiPF 6 with respect to the total lithium salt, the endurance of the lithium ion secondary battery, especially at high temperatures, was improved. It is confirmed that the quality is improved.
  • the lithium ion secondary batteries of Examples 3 and 4 are superior to the lithium ion secondary batteries of Comparative Examples 3 and 4 in durability during storage at 40°C. was This result also confirms that the durability of lithium-ion secondary batteries, especially at high temperatures, is improved by using an electrolytic solution containing 30 mol% or more of a lithium salt other than LiPF 6 with respect to the total lithium salt. .
  • Example 5 Using the same electrolytic solution of Example 5 as the electrolytic solution of Example 3, a lithium ion secondary battery of Example 5 was manufactured as follows.
  • the electrolytic solution of Example 5 was prepared by dissolving (FSO 2 ) 2 NLi at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85. , and DTD in an amount corresponding to 0.5% by mass of the mother liquor is added and dissolved.
  • Graphite as a negative electrode active material, carboxymethyl cellulose and styrene-butadiene rubber as binders were mixed so that the mass ratio of graphite, carboxymethyl cellulose and styrene-butadiene rubber was 97:0.8:2.2, and water was used as a solvent. It was added to prepare a slurry composition for forming a negative electrode active material layer.
  • a copper foil was prepared as a current collector for the negative electrode.
  • a negative electrode active material layer is formed on the surface of the copper foil by pressing the negative electrode precursor produced by applying the negative electrode active material layer forming composition to the surface of the copper foil in the form of a film and then removing the solvent, in the thickness direction. was formed on the negative electrode.
  • the weight of the negative electrode was 6.24 mg/cm 2 .
  • An aluminum foil was prepared as a positive electrode current collector.
  • a positive electrode active material layer is formed on the surface of the aluminum foil by pressing the positive electrode precursor produced by applying the composition for forming the positive electrode active material layer in the form of a film on the surface of the aluminum foil and then removing the solvent, in the thickness direction. was formed on the positive electrode.
  • the basis weight of the positive electrode was 13.87 mg/cm 2 .
  • a lithium-ion secondary battery of Example 5 was manufactured in the same manner as in Example 1 using the above positive electrode and negative electrode.
  • Comparative Example 5 A lithium ion secondary battery of Comparative Example 5 was manufactured in the same manner as in Example 5 using the same electrolytic solution of Comparative Example 5 as the electrolytic solution of Comparative Example 4.
  • the electrolytic solution of Comparative Example 5 was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor. DTD was added and dissolved in an amount corresponding to 0.5% by mass with respect to the
  • Example 4 Evaluation of gas generation>
  • the lithium ion secondary batteries of Example 5 and Comparative Example 5 were activated by charging at 0.05 C to 4.0 V and holding at 60° C. for 20 hours.
  • the volume of each lithium ion secondary battery before and after activation was measured by the Archimedes method, and the amount of gas ( ⁇ L) generated by activation was calculated from the volume change of each lithium ion secondary battery before and after activation.
  • the amount of gas generated in the lithium ion secondary battery of Example 5 is smaller than that in the lithium ion secondary battery of Comparative Example 5. From this result, it can be seen that gas generated during charging and discharging of the lithium ion secondary battery can be suppressed by using an electrolytic solution containing 30 mol % or more of lithium salt other than LiPF 6 with respect to the total lithium salt. In a lithium ion secondary battery using graphite for the negative electrode, it is considered that gas is generated by decomposition of the electrolytic solution at the negative electrode. In the lithium ion secondary battery of Example 5, (FSO 2 ) 2 NLi contained in the electrolytic solution is decomposed, so that a good film is formed on the surface of the negative electrode.
  • Example 6 A lithium ion secondary battery of Example 6 was manufactured in the same manner as in Example 3 using the same electrolyte solution of Example 6 as that of Example 3.
  • the electrolytic solution of Example 6 was prepared by dissolving (FSO 2 ) 2 NLi at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85. , and DTD in an amount corresponding to 0.5% by mass of the mother liquor is added and dissolved.
  • Example 7 A lithium ion secondary battery of Example 7 was manufactured in the same manner as in Example 3 using the same electrolyte solution of Example 7 as that of Example 4.
  • the electrolytic solution of Example 7 was prepared by adding (FSO 2 ) 2 NLi at a concentration of 0.6 mol/L and LiPF 6 to a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85. It was dissolved at a concentration of 0.6 mol/L to obtain a mother liquor, and DTD was added and dissolved in an amount corresponding to 0.5% by mass with respect to the mother liquor.
  • Comparative Example 6 A lithium ion secondary battery of Comparative Example 6 was manufactured in the same manner as in Example 3 using the same electrolytic solution of Comparative Example 6 as the electrolytic solution of Comparative Example 3.
  • the electrolytic solution of Comparative Example 6 was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor.
  • FSO 2 ) 2 NLi in an amount corresponding to 0.5% by mass and DTD in an amount corresponding to 0.5% by mass are added and dissolved.
  • the amount of (FSO 2 ) 2 NLi in the electrolytic solution of Comparative Example 6 is 0.03 mol/L, and the amount of (FSO 2 ) 2 NLi is the total of (FSO 2 ) 2 NLi and LiPF 6 It was 2.4 mol %.
  • Comparative Example 7 A lithium ion secondary battery of Comparative Example 7 was manufactured in the same manner as in Example 3 using the same electrolytic solution of Comparative Example 7 as that of Comparative Example 4.
  • the electrolytic solution of Comparative Example 7 was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor. DTD was added and dissolved in an amount corresponding to 0.5% by mass with respect to the
  • the lithium ion secondary batteries of Examples 6 and 7 were superior to the lithium ion secondary batteries of Comparative Examples 6 and 7 in capacity retention rate. This result also confirms that the durability of lithium-ion secondary batteries, especially at high temperatures, is improved by using an electrolytic solution containing 30 mol% or more of a lithium salt other than LiPF 6 with respect to the total lithium salt. .
  • the lithium ion secondary batteries of Examples 6 and 7 were superior to the lithium ion secondary batteries of Comparative Examples 6 and 7 in capacity retention rate, and after the start of the storage test, The difference was more pronounced as the number of days elapsed was longer. This result also confirms that the durability of lithium-ion secondary batteries, especially at high temperatures, is improved by using an electrolytic solution containing 30 mol% or more of a lithium salt other than LiPF 6 with respect to the total lithium salt. .
  • Example 8 (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 to obtain a mother liquor.
  • An electrolytic solution of Example 8 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1.94% by mass with respect to the mother liquor.
  • a lithium ion secondary battery of Example 8 was manufactured in the same manner as in Example 1 using the electrolyte solution of Example 8.
  • Comparative Example 8 (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 15:85 to obtain a mother liquor.
  • An electrolytic solution of Comparative Example 8 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1.94% by mass with respect to the mother liquor.
  • a lithium ion secondary battery of Comparative Example 8 was manufactured in the same manner as in Example 1 using the electrolytic solution of Comparative Example 8.
  • Comparative Example 9 (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a volume ratio of 15:65:20 to obtain a mother liquor.
  • An electrolytic solution of Comparative Example 9 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1.94% by mass with respect to the mother liquor.
  • a lithium ion secondary battery of Comparative Example 9 was manufactured in the same manner as in Example 1 using the electrolytic solution of Comparative Example 9.
  • Comparative Example 10 (FSO 2 ) 2 NLi was dissolved at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate at a volume ratio of 15:45:40 to obtain a mother liquor.
  • An electrolytic solution of Comparative Example 10 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1.94% by mass with respect to the mother liquor.
  • a lithium ion secondary battery of Comparative Example 10 was manufactured in the same manner as in Example 1 using the electrolytic solution of Comparative Example 10.
  • Comparative Example 11 A mother liquor was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/L in a mixed solvent in which ethylene carbonate and methyl propionate were mixed at a volume ratio of 15:85.
  • An electrolytic solution of Comparative Example 11 was produced by adding and dissolving vinylene carbonate in an amount corresponding to 1% by mass and LiDFOB in an amount corresponding to 1% by mass with respect to the mother liquor.
  • a lithium ion secondary battery of Comparative Example 8 was produced in the same manner as in Example 1.
  • Example 7 Long-Term Discharge Test 1>
  • FIG. 1 is a graph showing changes in CC discharge capacity over time in each of the lithium ion secondary batteries of Example 8 and Comparative Example 11.
  • Table 10 shows the rate % of each lithium ion secondary battery of Example 8 and Comparative Example 11.
  • the lithium ion secondary battery of Example 8 has a significantly higher capacity at the end of discharge than the ion secondary battery of Comparative Example 11, and can be said to be excellent in long-term discharge characteristics. Further, as shown in Table 10, the lithium ion secondary battery of Example 8 is significantly superior to the lithium ion secondary battery of Comparative Example 11 in rate % at the end of discharge.
  • FIG. 2 shows a graph showing changes in CC discharge capacity over time in each of the lithium-ion secondary batteries of Example 8 and Comparative Examples 8-10.
  • Table 11 shows the rate % of each lithium ion secondary battery of Example 8 and Comparative Examples 8-10.
  • the lithium ion secondary battery of Example 8 has a significantly higher capacity at the end of discharge than the lithium ion secondary batteries of Comparative Examples 8 to 10, and has excellent long-term discharge characteristics. It can be said that there is
  • the lithium ion secondary battery of Example 8 is also significantly superior to the lithium ion secondary batteries of Comparative Examples 8 to 10 in terms of rate % at the end of discharge. This result also reveals that the lithium ion secondary battery of Example 8 is excellent in long-term discharge characteristics.
  • the reason why the lithium ion secondary battery of Example 8 is superior to the lithium ion secondary batteries of Comparative Examples 8 to 10 in long-term discharge characteristics is considered to be the composition of the non-aqueous electrolyte. This result further clarifies the usefulness of using methyl propionate in the non-aqueous electrolyte. Furthermore, from the results of Evaluation Examples 7 and 8, it was found that by using (FSO 2 ) 2 NLi as a lithium salt in combination with methyl propionate as a non-aqueous solvent, the battery characteristics for a lithium ion secondary battery were improved. It can be said that an electrolytic solution that can contribute to improvement is obtained.
  • Example 9 The lithium ion secondary battery of Example 9 is the lithium ion secondary battery of the present invention.
  • FIG. 3 shows an explanatory view schematically showing the lithium ion secondary battery of Example 9. As shown in FIG. The lithium ion secondary battery of Example 9 will be described below with reference to FIG.
  • the lithium ion secondary battery 1 of Example 9 is obtained by stacking two storage cells 10 .
  • Each storage cell 10 has a positive electrode 2 , a negative electrode 3 , a separator 4 , a sealing portion 5 and an electrolytic solution 6 .
  • the positive electrode 2 has a first current collector 20 and a positive electrode active material layer 21 .
  • the first current collector 20 is an aluminum foil and has one side 20a and the other side 20b.
  • the one surface 20a and the other surface 20b are in a back-to-back relationship.
  • the positive electrode active material layer 21 is the same as the positive electrode active material layer in the lithium ion secondary battery of Example 1, and is laminated on the central portion of the one surface 20 a of the first current collector 20 .
  • the negative electrode 3 has a second current collector 30 and a negative electrode active material layer 31 .
  • the second current collector 30 is a copper foil and has one side 30a and the other side 30b. The one surface 30a and the other surface 30b are in a back-to-back relationship.
  • the negative electrode active material layer 31 is the same as the negative electrode active material layer in the lithium ion secondary battery of Example 1, and is laminated on the central portion of the one surface 30 a of the second current collector 30 .
  • the negative electrode 3 is stacked on the positive electrode 2 in a state in which the negative electrode active material layer 31 faces the positive electrode active material layer 21 and the separator 4 is sandwiched between the negative electrode active material layer 31 and the positive electrode active material layer 21 .
  • the negative electrode active material layer 31, the separator 4, and the positive electrode active material layer 21 are arranged between the first current collector 20 and the second current collector 30 that constitute the same storage cell 10 in the facing direction described above. is sandwiched.
  • the separator 4 is the same as the separator in the lithium ion secondary battery of Example 1.
  • the sealing part 5 is made of acid-modified olefin and has a substantially short cylindrical shape. Between the first current collector 20 and the second current collector 30, the sealing portion 5 is arranged to extend around the laminate of the negative electrode active material layer 31, the separator 4, and the positive electrode active material layer 21 in the circumferential direction of the laminate. It surrounds all around. The surface of the sealing portion 5 on the side of the first current collector 20 is heat-sealed to the first current collector 20, and the surface on the side of the second current collector 30 is heat-sealed to the second current collector 30. ing. Thereby, the sealing portion 5 liquid-tightly seals between the first current collector 20 and the second current collector 30 . The sealing portion 5 also functions as a spacer for maintaining the distance between the first current collector 20 and the second current collector 30 and breaking the direct electrical connection between the two.
  • the electrolytic solution 6 is sealed in the space defined by the sealing portion 5 , the first current collector 20 and the second current collector 30 .
  • the electrolytic solution 6 is the same as the electrolytic solution of the first embodiment.
  • the lithium-ion secondary battery 1 of Example 9 has two storage cells 10 connected in series. Also, the first current collector 20x of one storage cell 10x and the second current collector 30y of the adjacent storage cell 10y are overlapped and directly electrically connected. Therefore, the first current collector 20x and the second current collector 30y can be regarded as one current collector having a two-layer structure, and the current collector has a cathode active material layer 21x on each of both surfaces thereof. and the negative electrode active material layer 31y can be regarded as a bipolar electrode.
  • the positive electrode 2 and the negative electrode 3 are manufactured by the method described in Example 1.
  • the sealing portion 5 is integrated with one of the positive electrode 2 and the negative electrode 3 .
  • the sealing portion 5 is heat-sealed to one of the first current collector 20 and the second current collector 30 using an impulse sealing machine.
  • the sealing portion 5 is integrated with the first current collector 20 or the second current collector 30 in a box shape, and the electrolytic solution 6 can be accommodated therein.
  • the electrolytic solution 6 is injected into the inside of the sealing portion 5, and the other of the positive electrode 2 and the negative electrode 3 is integrated with this.
  • the positive electrode active material layer 21 and the negative electrode active material layer 31 face each other and are stacked while sandwiching the separator 4 and the sealing portion 5 therebetween. Then, the sealing portion 5 is heat-sealed to the other of the first current collector 20 and the second current collector 30 using an impulse sealing machine.
  • the storage cell 10 in the lithium ion secondary battery 1 of Example 9 was obtained. Two storage cells 10 are prepared, and a first current collector 20x of the first storage cell 10x, which is one of the storage cells 10, and a second current collector 30y of the second storage cell 10y, which is the other of the storage cells 10. are superimposed in the facing direction to stack the first current collector 20x and the second current collector 30y.
  • the two stacked storage cells 10 are restrained by a restraining member (not shown), and a predetermined restraining load is applied to each storage cell 10 in the facing direction. Thereby, the first storage cell 10x and the second storage cell 10y can be maintained in a stacked state. Further, terminals (not shown) are fixed to the storage cells 10x and 10y. Thus, a lithium ion secondary battery of Example 9 was obtained.
  • the sealing portion 5 is fixed to the first current collector 20 and the second current collector 30 . Therefore, each storage cell 10 can stably hold the electrolytic solution 6 therein.
  • the lithium ion secondary battery of Example 10 is the lithium ion secondary battery of the present invention, and is substantially the same as the lithium ion secondary battery of Example 9 except for the structures of the first current collector and the second current collector. be.
  • FIG. 4 is an explanatory view schematically showing the lithium ion secondary battery of Example 10. As shown in FIG. The lithium ion secondary battery of Example 10 will be described below with reference to FIG.
  • the first current collector 20 of the positive electrode 2 and the second current collector 30 of the negative electrode 3 in the lithium ion secondary battery of Example 10 are integrally formed.
  • the first current collector 20 is an aluminum foil
  • the second current collector 30 is a copper-plated layer formed on the first current collector 20 .
  • the lithium ion secondary battery of Example 10 also has excellent durability.
  • Example 11 An electrolytic solution of Example 11 was prepared by dissolving (FSO 2 ) 2 NLi at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 30:70.
  • Example 12 (FSO 2 ) 2 NLi at a concentration of 1 mol/L and LiPF 6 at a concentration of 0.2 mol/L were dissolved in a mixed solvent in which ethylene carbonate and methyl propionate were mixed at a volume ratio of 30:70. A liquid was produced.
  • the amount of (FSO 2 ) 2 NLi with respect to the total lithium salt is about 83.3 mol %.
  • Example 13 (FSO 2 ) 2 NLi at a concentration of 0.8 mol/L and LiPF 6 at a concentration of 0.4 mol/L were dissolved in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 30:70. was manufactured.
  • the amount of (FSO 2 ) 2 NLi with respect to the total lithium salt is about 66.7 mol %.
  • Example 14 (FSO 2 ) 2 NLi at a concentration of 0.6 mol/L and LiPF 6 at a concentration of 0.6 mol/L were dissolved in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 30:70. was manufactured.
  • the amount of (FSO 2 ) 2 NLi with respect to the total lithium salt is about 50 mol %.
  • Example 15 (FSO 2 ) 2 NLi at a concentration of 0.4 mol/L and LiPF 6 at a concentration of 0.8 mol/L were dissolved in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 30:70. was manufactured.
  • the amount of (FSO 2 ) 2 NLi with respect to the total lithium salt is about 33.3 mol %.
  • Comparative Example 13 An electrolytic solution of Comparative Example 13 was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 30:70.
  • a test piece was prepared by heat-sealing an aluminum foil and a copper foil with a sealing material.
  • the test piece was immersed in each of the electrolytic solutions of Examples 11 to 15 and Comparative Examples 12 and 13 to evaluate peeling.
  • the dimensions of each test piece were 15 mm x 65 mm and the seal width was 18 mm.
  • the sealing material is an acid-modified olefin-based material, and more specifically contains polyethylene resin with a low melting point.
  • An impulse sealer was used for heat sealing, and the heating temperature was 110°C.
  • An aluminum laminate film was made into a bag shape of 60 mm ⁇ 100 mm, 1 mL of electrolytic solution was injected into the bag, and a test piece was immersed therein.
  • test piece and the electrolytic solution were sealed inside the bag. This was stored at 60°C for 72 hours. After that, the test piece taken out of the bag was washed with ethanol, and the natural peel length generated on the test piece was measured. A groove micrometer was used for the measurement.
  • the length from the starting point of peeling between the resin 72 and the aluminum foil 70 to the terminal end of the resin 72 is defined as the natural peeling length L1 at the interface between the aluminum foil 70 and the resin 72 .
  • the length from the starting point of peeling between the resin 72 and the copper foil 71 to the terminal end of the resin 72 was defined as the natural peeling length L2 at the interface between the copper foil 71 and the resin 72 .
  • L1 and L2 were measured at a plurality of points, the average was calculated, and this was used as the natural peel length of the test piece for each electrolytic solution. The results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リチウム塩を含む電解質と、アルキレン環状カーボネートおよびプロピオン酸メチルを含む非水溶媒と、を有し、 前記電解質は、LiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含み、 前記非水溶媒は、前記プロピオン酸メチルを75体積%以上含む電解液。

Description

電解液およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池に使用可能な電解液、及び、当該電解液を用いたリチウムイオン二次電池に関する。
 携帯端末、パーソナルコンピュータ、電気自動車などの電源として、容量に優れるリチウムイオン二次電池が使用されている。近年、脱炭素の要求が高まっており、様々な装置の駆動源を電動化する取り組みが盛んに行われている。そして、これに伴い、リチウムイオン二次電池の更なる特性の向上が望まれている。
 本発明の発明者は、リチウムイオン二次電池の電解液を最適化することにより、リチウムイオン二次電池の特性向上を図ることを志向した。
 従来のリチウムイオン二次電池における電解液としては、エチレンカーボネートなどのアルキレン環状カーボネート、及び、ジメチルカーボネートやエチルメチルカーボネートなどの鎖状カーボネートを混合した混合非水溶媒に、LiPF6を1mol/L程度の濃度で溶解したものが一般的である。
 例えば、特許文献1には、エチレンカーボネートとエチルメチルカーボネートを体積比3:7で混合した混合非水溶媒に、LiPF6を1mol/Lの濃度で溶解した電解液が紹介されている。
 特許文献2には、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを体積比3:2:5で混合した混合非水溶媒に、LiPF6を1mol/Lの濃度で溶解した電解液が紹介されている。
特開2010-123300号公報 特開2013-140734号公報
 ここで、上記の特許文献において電解液の主溶媒として用いられているのは、鎖状カーボネートである。
 本発明の発明者は、リチウムイオン二次電池の特性の向上を図る過程において、電解液の非水溶媒にアルキレン環状カーボネートとプロピオン酸メチルとを併用することを見出し、当該電解液を用いたリチウムイオン二次電池を既に出願した(特願2020-026926)。
 上記の電解液はリチウムイオン二次電池の特性向上に寄与し得る。しかし、本発明者はこれに満足することなく、更なる特性の向上を実現すべく鋭意研究を重ねた。
 本発明はかかる事情に鑑みて為されたものであり、リチウムイオン二次電池に優れた特性を付与し得る電解液、および、優れた特性を示すリチウムイオン二次電池を提供することを課題とする。
 種々の実験の結果、本発明の発明者は、非水溶媒としてアルキレン環状カーボネートとプロピオン酸メチルとを併用した電解液において、さらに、非水溶媒およびリチウム塩を特定の配合とすることで、リチウムイオン二次電池の特性がさらに向上することを知見した。本発明の発明者は、かかる知見に基づいて本発明の電解液を完成した。
 さらに、本発明の出願人は、リチウムイオン二次電池を含む蓄電装置の耐久性向上を図る一環として、その封止性の低下を抑制し得る蓄電セルおよび蓄電装置の構造を開発し、既に出願した(特願2021-003409)。本発明の発明者は、当該構造を有するリチウムイオン二次電池において、蓄電セルの封止性をさらに向上させるべく、電解液についても各種の検討を行った。その過程で、当該構造を上記した本発明の電解液と組み合わせることで、リチウムイオン二次電池における蓄電セルの封止性をさらに向上させ得ることを知見し、本発明のリチウムイオン二次電池を完成した。
 上記課題を解決する本発明の電解液は、
 リチウム塩を含む電解質と、アルキレン環状カーボネートおよびプロピオン酸メチルを含む非水溶媒と、を有し、
 前記電解質は、LiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含み、
 前記非水溶媒は、前記プロピオン酸メチルを75体積%以上含む、電解液である。
 また、上記課題を解決する本発明のリチウムイオン二次電池は、
 第1集電体と、前記第1集電体の一方面に設けられた正極活物質層と、を有する正極と、
 第2集電体と、前記第2集電体の一方面に設けられた負極活物質層と、を有し、前記負極活物質層を前記正極活物質層に対面させつつ前記正極に重ねられた負極と、
 前記正極活物質層と前記負極活物質層との間に配置されたセパレータと、
 前記第1集電体と前記第2集電体との間に配置され、前記正極活物質層及び前記負極活物質層の周囲を取り囲み、前記第1集電体と前記第2集電体との間の空間に電解液を封止する封止部と、を有し、
 前記電解液として、上記した本発明の電解液を用いる、リチウムイオン二次電池である。
 本発明の電解液によると、リチウムイオン二次電池に優れた特性を付与することができる。また本発明のリチウムイオン二次電池は、優れた特性を示すものであり、特に、構造的な耐久性に優れる。
実施例8および比較例11の各リチウムイオン二次電池におけるCC放電容量の経時変化を表すグラフである。 実施例8および比較例8~10の各リチウムイオン二次電池におけるCC放電容量の経時変化を表すグラフである。 実施例9のリチウムイオン二次電池を模式的に表す説明図である。 実施例10のリチウムイオン二次電池を模式的に表す説明図である。 評価例9における自然剥離長の測定位置を説明する説明図である。 評価例9における各テストピースの自然剥離長を表すグラフである。
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限x及び上限yをその範囲に含む。そして、これらの上限値及び下限値、並びに実施例中に列記した数値も含めてそれらを任意に組み合わせることで新たな数値範囲を構成し得る。更に、上記の何れかの数値範囲内から任意に選択した数値を新たな数値範囲の上限、下限の数値とすることができる。
 本発明の電解液は、下記(1)~(3)の全てを備えることにより、リチウムイオン二次電池の特性を向上させ得る。
(1)
   電解質としてLiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含む、
(2)
   非水溶媒にアルキレン環状カーボネートおよびプロピオン酸メチルを含む、
(3)
   非水溶媒はプロピオン酸メチルを75体積%以上含む。
 上記(1)はリチウムイオン二次電池の特性のうち特に構造的な耐久性向上に寄与し得る。
 また、上記(2)はリチウムイオン二次電池の特性のうち円滑な充放電に寄与し得る。具体的には、アルキレン環状カーボネートに由来してリチウムイオンの生成や負極への挿入及び脱離が円滑に行なわれ、かつ、高粘度や高融点等のアルキレン環状カーボネートの短所がプロピオン酸メチルによって補われる。
 さらに、上記(3)はリチウムイオン二次電池の特性のうち容量維持率や出力等の向上に寄与し得る。
 本発明の電解液は、これらの協働により、リチウムイオン二次電池の特性を向上させることが可能といえる。
 本発明のリチウムイオン二次電池の構造的な耐久性は、下記(4)および(5)の両方を備えることにより向上し得る。
(4)
   第1集電体と、前記第1集電体の一方面に設けられた正極活物質層と、を有する正極と、
   第2集電体と、前記第2集電体の一方面に設けられた負極活物質層と、を有し、前記負極活物質層を前記正極活物質層に対面させつつ前記正極に重ねられた負極と、
   前記正極活物質層と前記負極活物質層との間に配置されたセパレータと、
   前記第1集電体と前記第2集電体との間に配置され、前記正極活物質層及び前記負極活物質層の周囲を取り囲み、前記第1集電体と前記第2集電体との間の空間に電解液を封止する封止部と、を有する、
(5)
   前記電解液として、上記した本発明の電解液を用いる。
 上記(4)は、既述した特願2021-003409でも詳説しているように、リチウムイオン二次電池の特性のうち封止性の低下抑制に寄与し得る。
 上記(5)は、さらに、上記(4)を備えるリチウムイオン二次電池の特性のうち構造的な耐久性の向上、具体的には封止性の向上に寄与し得る。
 本発明のリチウムイオン二次電池は、これらの協働により、その特性の向上を実現し得る。
 以下、本発明の電解液及びリチウムイオン二次電池をその構成要素ごとに説明する。
 先ず本発明の電解液について説明する。
 本発明の電解液におけるリチウムイオン濃度は、イオン伝導度の点から、0.8~1.8mol/Lの範囲内が好ましく、0.9~1.5mol/Lの範囲内がより好ましく、1.0~1.4mol/Lの範囲内がさらに好ましく、1.1~1.3mol/Lの範囲内が特に好ましい。
 本発明の電解液に用いる電解質は、リチウム塩を含み、LiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含む。本発明の電解液は、リチウム塩としてLiPF6を含んでも良いしLiPF6を含まなくても良い。
 ここで、LiPF6は電解質としてリチウムイオン二次電池用の電解液に広く使用されており、比較的安価である。本発明の電解液が、リチウム塩としてこのようなLiPF6以外のものを使用する理由は以下のとおりである。
 LiPF6と水との反応によりフッ化水素が生じることが知られている。一般的なリチウムイオン二次電池の電解液には微量の水が存在するために、電解液にLiPF6を含むリチウムイオン二次電池においては、当該電解液中にフッ化水素を含み得る。
 また、LiPF6は熱的に不安定であり、例えば60℃を超える温度下で、PF5を生じることも知られている。当該PF5は水と反応してフッ化水素を生じ得る。
 本発明の発明者は、リチウムイオン二次電池の特性を向上させるべく、電解液の組成について検討を重ねた。その過程で、電解液に存在するフッ化水素やPF5により、リチウムイオン二次電池の電極や容器が腐食される虞があること、電極や容器の腐食によりリチウムイオン二次電池の耐久性が損なわれる虞があること、を知見した。特に、リチウムイオン二次電池が、特願2021-003409に開示するように二つの集電体の間に封止部を有する構造である場合、集電体に含まれる金属部分の表面が腐食(具体的にはフッ化)されると、封止部と集電体との結合力が弱まり電池が構造的に劣化し、封止部による封止性が低下し易くなると考えられる。この問題は集電体にアルミニウムが含まれる場合に特に顕著である。
 本発明の発明者は、リチウムイオン二次電池の構造的耐久性を向上させるために、LiPF6に因る上記の不具合を抑制することを志向した。そして、電解質にLiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含む場合に、上記の不具合が抑制されることを見出した。
 後述する実施例の欄で詳細を説明するが、本発明の発明者が実際に試験した結果、二つの集電体の間に封止部を有するリチウムイオン二次電池において、電解質としてLiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含む場合には、電解質としてLiPF6のみを含む場合に比較して、その耐久性が向上した。
 本発明の電解液に用い得る具体的なリチウム塩としては、LiPF6、LiClO4、LiAsF6、LiBF4、FSO3Li、CF3SO3Li、C25SO3Li、C37SO3Li、C49SO3Li、C511SO3Li、C613SO3Li、CH3SO3Li、C25SO3Li、C37SO3Li、CF3CH2SO3Li、CF324SO3Li、(FSO22NLi、(CF3SO22NLi、(C25SO22NLi、FSO2(CF3SO2)NLi、FSO2(C25SO2)NLi、(SO2CF2CF2SO2)NLi、(SO2CF2CF2CF2SO2)NLi、FSO2(CH3SO2)NLi、FSO2(C25SO2)NLi、LiPO22、LiBF2(C24)、LiB(C242を例示できる。LiPF6以外のリチウム塩は、一種のみを用いても良いし、二種以上を併用しても良い。
 LiPF6以外のリチウム塩としては、特に、下記一般式(1)で表されるものが好ましい。この種のリチウム塩は、フッ化水素やPF5を生じ難い。
 (R11)(R2SO2)NLi             一般式(1)
 (R1は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 R2は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 また、R1とR2は、互いに結合して環を形成しても良い。
 X1は、SO2、C=O、C=S、RaP=O、RbP=S、S=O、Si=Oから選択される。
 Ra、Rbは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。また、Ra、Rbは、R1又はR2と結合して環を形成しても良い。)
 上記一般式(1)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、又は、置換基を有さないアルキル基を意味する。
 「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基等が挙げられる。これらの置換基はさらに置換基で置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。
 リチウム塩は下記一般式(1-1)で表されるものが好ましい。
 (R132)(R14SO2)NLi     一般式(1-1)(R13、R14は、それぞれ独立に、CnabClcBrde(CN)f(SCN)g(OCN)hである。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 また、R23とR24は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
 X2は、SO2、C=O、C=S、RcP=O、RdP=S、S=O、Si=Oから選択される。
 Rc、Rdは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、Rc、Rdは、R23又はR24と結合して環を形成しても良い。)
 上記一般式(1-1)で表される化学構造における、「置換基で置換されていても良い」との文言の意味は、上記一般式(1)で説明したのと同義である。
 上記一般式(1-1)で表される化学構造において、nは0~6の整数が好ましく、0~4の整数がより好ましく、0~2の整数が特に好ましい。なお、上記一般式(1-1)で表される化学構造の、R13とR14が結合して環を形成している場合には、nは1~8の整数が好ましく、1~7の整数がより好ましく、1~3の整数が特に好ましい。
 リチウム塩は、下記一般式(1-2)で表されるものがさらに好ましい。
 (R15SO2)(R16SO2)NLi     一般式(1-2)(R15、R16は、それぞれ独立に、CnabClcBrdeである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
 また、R15とR16は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
 上記一般式(1-2)で表される化学構造において、nは0~6の整数が好ましく、0~4の整数がより好ましく、0~2の整数が特に好ましい。なお、上記一般式(1-2)で表される化学構造の、R15とR16が結合して環を形成している場合には、nは1~8の整数が好ましく、1~7の整数がより好ましく、1~3の整数が特に好ましい。
 また、上記一般式(1-2)で表される化学構造において、a、c、d、eが0のものが好ましい。
 さらに、上記一般式(1)、(1-1)または(1-2)で表されるリチウム塩は、(CF3SO22NLi、(FSO22NLi、(C25SO22NLi、FSO2(CF3SO2)NLi、(SO2CF2CF2SO2)NLi、又は(SO2CF2CF2CF2SO2)NLiから選ばれるイミド塩の少なくとも一種であるのが好ましい。
 このうち(FSO22NLiを用いる場合には、リチウムイオン二次電池の出力や耐久性が向上する。これは、(FSO22NLiを用いることで電解液の粘度が低下したり、負極や正極の表面に良好な被膜が形成されたりすることに由来すると考えられる。
 本発明の電解液に含まれるLiPF6以外のリチウム塩の量は、リチウム塩の合計に対して30モル%以上であれば良いが、その好ましい範囲として、リチウム塩の合計に対して50モル%以上、75モル%以上、90モル%以上の各範囲を例示できる。
 本発明の電解液は、非水溶媒にアルキレン環状カーボネートおよびプロピオン酸メチルを含む。
 アルキレン環状カーボネートは高誘電率の非水溶媒であり、リチウム塩の溶解及びイオン解離に寄与すると考えられる。
 また、一般に、アルキレン環状カーボネートがリチウムイオン二次電池の充電時に還元分解されることにより、負極表面にSEI(Solid Electrolyte Interphase)被膜が形成されることが知られている。かかるSEI被膜の存在に因り、黒鉛を備える負極に対して、リチウムイオンの可逆的な挿入及び離脱が可能になると考えられている。
 本発明の電解液は、一種のみのアルキレン環状カーボネートを用いても良いし複数種のアルキレン環状カーボネートを併用しても良い。アルキレン環状カーボネートとしては、エチレンカーボネートやプロピレンカーボネートを例示でき、このうちエチレンカーボネートは特に好適である。
 ところで、アルキレン環状カーボネートは電解液の非水溶媒として有益ではあるものの、高粘度である。そのため、アルキレン環状カーボネートの割合が高すぎると、電解液のイオン伝導度や電解液中でのリチウムイオンの拡散に悪影響を及ぼす場合がある。また、アルキレン環状カーボネートは融点が比較的高いため、アルキレン環状カーボネートの割合が高すぎると、低温条件下にて、電解液が固化するおそれがある。
 他方、プロピオン酸メチルは低誘電率、低粘度、かつ、融点が低い非水溶媒である。
 本発明の電解液においては、アルキレン環状カーボネートとプロピオン酸メチルが共存することで、アルキレン環状カーボネートの不利な点をプロピオン酸メチルが相殺する。すなわち、プロピオン酸メチルは、電解液の低粘度化、イオン伝導度の好適化、リチウムイオンの拡散係数の好適化及び低温条件下での固化防止に寄与していると考えられる。
 なお、プロピオン酸メチルと化学構造が類似するエステルとして、酢酸メチル、酢酸エチル、プロピオン酸エチル、酪酸メチル及び酪酸エチルが存在する。
 ここで、特願2020-026926に開示するように、本発明の発明者は、メチルエステルはエチルエステルよりも電解液の物性及び電池特性の点で優れていることを知見した。
 また、メチルエステルであるプロピオン酸メチル、酢酸メチル、酪酸メチルについて、これらの融点及び沸点は、以下のとおりである。
 プロピオン酸メチル 融点-88℃、沸点80℃
 酢酸メチル     融点-98℃、沸点57℃
 酪酸メチル     融点-95℃、沸点102℃
 リチウムイオン二次電池の動作環境は60℃程度になり得ると想定されるので、電解液に含まれる非水溶媒としては、沸点が60℃以上のものが好ましい。製造環境の点からみても、使用する非水溶媒の沸点は高い方が好ましい。また、エステルの炭素数が多いほどエステルの親油性が増加してリチウム塩の溶解や解離に不利になるので、エステルの炭素数は少ないほうが好ましい。
 以上の事項を総合すると、エステルとしてプロピオン酸メチルが最も適切であるといえる。これは、後述する基礎検討2の結果によっても裏付けられる。
 本発明の電解液における非水溶媒は、プロピオン酸メチルを75体積%以上含む。このようにアルキレン環状カーボネートに対するプロピオン酸メチルの量を十分に多く含むことで、本発明の電解液は、リチウムイオン二次電池における正極の充放電容量と負極の充放電容量とをともに向上させることが可能である。
 プロピオン酸メチルの量についての上限は特になく、非水溶媒に100体積%未満で含まれれば良い。正極および負極の充放電容量を高い水準で両立させるためには、プロピオン酸メチルは、非水溶媒に85体積%以下含まれるのが好ましく、80体積%以下含まれるのがより好ましい。
 本発明の電解液における非水溶媒は、アルキレン環状カーボネート及びプロピオン酸メチルに加えてその他の非水溶媒を含んでも良いし、アルキレン環状カーボネート及びプロピオン酸メチルからなっても良い。何れの場合にも、本発明の電解液は、非水溶媒全体を100体積%としたときに75体積%以上のプロピオン酸メチルを含めば良い。なお、非水溶媒全体を100体積%とする、とは、混合前における25℃の常温、常圧下での各非水溶媒の体積の和を意味する。
 本発明の電解液において、アルキレン環状カーボネート及びプロピオン酸メチルの合計体積に対するプロピオン酸メチルの割合は、72~95体積%の範囲内であるのが好ましく、75~90体積%の範囲内であるのがより好ましく、75~85体積%の範囲内であるのが最も好ましい。
 同様に、アルキレン環状カーボネート及びプロピオン酸メチルの合計体積に対するアルキレン環状カーボネートの割合は、5~28体積%の範囲内であるのが好ましく、10~25体積%の範囲内であるのがより好ましく、15~25体積%の範囲内であるのが最も好ましい。
 上記したその他の非水溶媒としては、フッ素含有環状カーボネートおよび不飽和環状カーボネートを例示できる。これらは単独で用いても良いし併用しても良い。アルキレン環状カーボネートおよびプロピオン酸メチルにこれらの非水溶媒を併用することで、リチウムイオン二次電池の性能を向上させ得る。
 フッ素含有環状カーボネートとしては、フルオロエチレンカーボネート、4-(トリフルオロメチル)-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-4-メチル-1,3-ジオキソラン-2-オン、4-(フルオロメチル)-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-4,5-ジメチル-1,3-ジオキソラン-2-オンを例示できる。
 不飽和環状カーボネートとしては、ビニレンカーボネート、フルオロビニレンカーボネート、メチルビニレンカーボネート、フルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、トリフルオロメチルビニレンカーボネート、ビニルエチレンカーボネートを例示できる。
 特に好ましくは、本発明の電解液はビニレンカーボネートを含有するのが良い。
 本発明の電解液におけるフッ素含有環状カーボネート及び/又は不飽和環状カーボネートの添加量としては、これら以外の合計質量に対して0.1~5質量%の範囲内、0.3~4質量%の範囲内、0.5~3質量%の範囲内、1~2質量%の範囲内を例示できる。
 本発明の電解液は、添加剤を含み得る。添加剤としては、電解液の他の構成成分、具体的には、アルキレン環状カーボネート及びプロピオン酸メチルが還元分解を開始する電位よりも高い電位で還元分解を開始するものを選択するのが好ましい。
 具体的な添加剤としては、環状硫酸エステル、オキサレート硼酸塩、ジハロゲン化リン酸塩を例示できる。これらの添加剤は、1種のみを用いても良いし複数種を併用しても良い。
 環状硫酸エステルとは、以下の化学式で表される化合物である。
 R-O-SO2-O-R(2つのRはアルキル基であり、互いに結合して、-O-S-O-と共に環を形成している。)
 環状硫酸エステルとしては、5~9員環、5~8員環、5~7員環のものを例示でき、また、環状硫酸エステルの炭素数としては、2~6、2~5、2~4を例示できる。
 オキサレート硼酸塩としてはリチウム塩が好ましい。具体的なオキサレート硼酸塩として、LiB(C242、LiB(C24)X2(XはF、Cl、Br、Iから選択されるハロゲンである。)を例示できる。
 好ましくは、オキサレート硼酸塩はLiB(C242すなわちリチウムビス(オキサラート)ボラート及び/又はLiB(C24)F2すなわちリチウムジフルオロ(オキサラート)ボラートであるのが良い。
 ジハロゲン化リン酸塩としてはリチウム塩が好ましい。具体的なジハロゲン化リン酸塩として、LiPO22(XはF、Cl、Br、Iから選択されるハロゲンである。)を例示できる。
 本発明の電解液における上記の添加剤の添加量としては、当該添加剤以外の合計質量に対して0.1~5質量%の範囲内、0.3~4質量%の範囲内、0.5~3質量%の範囲内、1~2質量%の範囲内を例示できる。
 以下、本発明の電解液を用いた本発明のリチウムイオン二次電池について説明する。
 本発明のリチウムイオン二次電池は、正極、負極、セパレータ、封止部および電解液を有する。このうち電解液については既述したとおりである。
 正極は、第1集電体と、当該第1集電体の一方面に設けられた正極活物質層と、を有する。
 負極は、第2集電体と、当該第2集電体の一方面に設けられた負極活物質層とを有する。負極は、負極活物質層を正極の正極活物質層に対面させつつ、当該正極に重ねられる。
 本明細書において、単に集電体という場合には第1集電体と第2集電体とを総称するものとする。また、電極活物質という場合には正極活物質と負極活物質とを総称するものとし、電極活物質層という場合には正極活物質と負極活物質とを総称するものとする。
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。本発明のリチウムイオン二次電池の効果である耐久性向上の効果は、特に、正極用の集電体である第1集電体がアルミニウムである場合に顕著である。つまり、第1集電体はアルミニウム製であるのが特に好ましい。
 集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。箔状の集電体(以下、集電箔という。)の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 正極活物質は、リチウムイオンを吸蔵及び放出可能であれば良く、例えば、層状岩塩構造の一般式:LiaNibCocMndef(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物、Li2MnO3を挙げることができる。また、正極活物質として、LiMn24等のスピネル構造の金属酸化物、スピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO4、LiMVO4又はLi2MSiO4(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePO4FなどのLiMPO4F(Mは遷移金属)で表されるタボライト系化合物、LiFeBO3などのLiMBO3(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。これらの正極活物質は、一種のみを用いても良いし複数種を併用しても良い。
 このうちオリビン構造の正極活物質は、熱安定性に優れるために、リチウムイオン二次電池用の正極活物質として好適である。
 オリビン構造の正極活物質を準備するには、市販のものを購入してもよいし、以下の文献などに記載された方法を参考に製造してもよい。オリビン構造の正極活物質としては、炭素で被覆されているものが好ましい。
 特開平11-25983号公報
 特開2002-198050号公報
 特表2005-522009号公報
 特開2012-79554号公報
 オリビン構造の正極活物質を化学式で表した1例として、LiabPO4(MはMn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B、Te、Moから選ばれる少なくとも1の元素である。aは0.9≦a≦1.2、bは0.6≦b≦1.1を満足する。)を例示できる。
 aの範囲としては0.95≦a≦1.1、0.97≦a≦1.05を例示できる。
 LiabPO4におけるMは、Mn、Fe、Co、Ni、Mg、V、Teから選ばれる少なくとも1の元素であるのが好ましく、また、Mが2種類以上の元素で構成されるのがさらに好ましい。Mは、Mn、Fe及びVから選択されるのがより好ましい。bは0.95≦b≦1.05を満足するのが好ましい。
 LiabPO4としては、Mn及びFeが必須の構成元素であるLiMnxFeyPO4(x、yは、x+y=1、0<x<1、0<y<1を満足する。)で表されるものが、さらに好ましい。x及びyの範囲として、0.5≦x≦0.9、0.1≦y≦0.5や、0.6≦x≦0.8、0.2≦y≦0.4、更には0.7≦x≦0.8、0.2≦y≦0.3を例示できる。
 オリビン構造の正極活物質としてはLiFePO4が汎用されているが、Mn及びFeが共存するLiMnxFeyPO4は、LiFePO4よりも反応電位が高いことが知られている。
 正極活物質層は、正極活物質以外に、導電助剤、結着剤、分散剤などの添加剤を含み得る。
 正極活物質層における正極活物質の割合として、70~99質量%の範囲内、80~98質量%の範囲内、90~97質量%の範囲内を例示できる。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。
 導電助剤は化学的に不活性な電子伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、カーボンナノチューブ、及び各種金属粒子等が例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック等が例示される。これらの導電助剤を単独又は二種以上組み合わせて正極活物質層に添加することができる。
 導電助剤の配合量は特に限定されない。正極活物質層における導電助剤の割合は、1~7質量%の範囲内が好ましく、2~6質量%の範囲内がより好ましく、3~5質量%の範囲内がさらに好ましい。
 結着剤は、正極活物質や導電助剤を集電体の表面に繋ぎ止める役割をするものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリレート系樹脂、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロース、スチレンブタジエンゴムを例示できる。
 結着剤の配合量は特に限定されない。正極活物質層における結着剤の割合は、0.5~7質量%の範囲内が好ましく、1~5質量%の範囲内がより好ましく、2~4質量%の範囲内がさらに好ましい。
 導電助剤及び結着剤以外の分散剤などの添加剤は、公知のものを採用することができる。
 負極活物質としては、電荷担体を吸蔵及び放出し得る材料を使用可能である。したがって、リチウムイオンなどの電荷担体を吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。合金又は化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiOx(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb25、TiO2、Li4Ti512、WO2、MoO2、Fe23等の酸化物、又は、Li3-xxN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。
 負極活物質層における負極活物質の割合として、70~99質量%の範囲内、80~98.5質量%の範囲内、90~98質量%の範囲内、95~97.5質量%の範囲内を例示できる。
 負極活物質層は負極活物質以外に、結着剤、分散剤などの添加剤を含み得る。結着剤は、正極で説明したものを適宜適切に採用すればよい。分散剤などの添加剤は公知のものを採用することができる。
 結着剤の配合量は特に限定されない。負極活物質層における結着剤の割合は、0.5~7質量%の範囲内が好ましく、1~5質量%の範囲内がより好ましく、2~4質量%の範囲内がさらに好ましい。
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び導電助剤を混合してスラリー状の活物質層形成用組成物を製造し、当該活物質層形成用組成物を集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
 また、特開2015-201318号等に開示される製造方法を用いて活物質層を形成してもよい。
 具体的には、活物質と結着剤と溶媒とを含む合剤を造粒することで湿潤状態の造粒体を得る。当該造粒体の集合物を予め定められた型枠に入れ、平板状の成形体を得る。その後、転写ロールを用いて平板状の成形体を集電体の表面に付着させることで活物質層を形成する方法である。
 本発明のリチウムイオン二次電池において、正極活物質としてオリビン構造のものを選択でき、負極活物質として黒鉛を選択できる。オリビン構造の正極活物質を備える正極及び負極活物質として黒鉛を備える負極を具備するリチウムイオン二次電池は、熱安定性に優れるといえるが、電極の単位体積当たりの容量は低い。
 産業界からは、高容量のリチウムイオン二次電池が求められている。その要求に応える手段としては、電極あたりの正極活物質及び負極活物質の量を増加する手段、具体的には、集電箔に対する正極活物質層及び負極活物質層の塗布量を増加する手段が考えられる。集電箔に対する正極活物質層及び負極活物質層の塗布量を増加する手段により、正極の集電箔の片面1平方センチメートルの面積上に存在する正極活物質層の質量(以下、「正極の目付け量」ということがある。)、及び、負極の集電箔の片面1平方センチメートルの面積上に存在する負極活物質層の質量(以下、「負極の目付け量」ということがある。)は増加する。
 正極の目付け量としては、20mg/cm2以上が好ましい。好適な正極の目付け量として、30~200mg/cm2の範囲内、35~150mg/cm2の範囲内、40~120mg/cm2の範囲内、50~100mg/cm2の範囲内を例示できる。
 負極の目付け量としては、10mg/cm2以上が好ましい。好適な負極の目付け量として、15~100mg/cm2の範囲内、17~75mg/cm2の範囲内、20~60mg/cm2の範囲内、25~50mg/cm2の範囲内を例示できる。
 一般的に、目付け量が多く活物質層の厚みが厚い厚目付の電極を具備するリチウムイオン二次電池においては、低レートでの充放電容量と比較して、高レートでの充放電容量が不十分になるとのレート特性悪化現象が生じる。レート特性悪化現象は、リチウムイオン二次電池におけるリチウムイオンの拡散抵抗に関連すると考えられ、そして、リチウムイオンの拡散抵抗は、電解液の粘度及び電解液におけるリチウムイオンの拡散係数に関連すると考えられる。
 本発明の電解液はプロピオン酸メチルの存在に因り低粘度化されており、また、リチウムイオンの拡散係数に配慮して設計されている。したがって、本発明のリチウムイオン二次電池においては、例えば正極であれば30~200mg/cm2の範囲内、負極であれば15~100mg/cm2の範囲内という厚目付であっても、レート特性悪化現象がある程度抑制される。
 さらに、本発明のリチウムイオン二次電池が電極を巻回して容器に収める所謂巻回型のリチウムイオン二次電池でなく、電極を巻回せずに積層した状態で維持する所謂セルスタック型のリチウムイオン二次電池である場合には、巻回時における電極活物質層の破損を考慮する必要がない。従って、当該リチウムイオン二次電池は厚目付の電極を有するリチウムイオン二次電池として好適である。
 本発明のリチウムイオン二次電池において、第1集電体の一方面に正極活物質層が設けられ、第2集電体の一方面には負極活物質が設けられる。第1集電体の他方面には正極活物質層を設けても良いし負極活物質層を設けても良い。同様に、第2集電体の他方面には正極活物質層を設けても良いし負極活物質層を設けても良い。更には、一方面に正極活物質層を設けた第1集電体の他方面と、一方面に負極活物質層を設けた第2集電体の他方面とを重ねて、これらを一体化しても良い。この場合の第1集電体および第2集電体は、後述する多層構造の集電体とみなし得る。なお、この場合には、第1集電体と第2集電体とが一体化した2層型の集電体の一方面(または他方面)に正極活物質層が設けられ他方面(または一方面)に負極活物質層が設けられる。
 つまり、本発明のリチウムイオン二次電池における電極は、集電体の両面の各々に同種の活物質層、すなわち、正極活物質層および正極活物質層、または、負極活物質層および負極活物質層が設けられた電極であっても良い。または、本発明のリチウムイオン二次電池における電極は、集電体の両面の各々に異種の活物質層、すなわち、正極活物質層および負極活物質層が設けられた双極型(バイポーラ)電極であっても良い。
 何れの場合にも、正極と負極とは負極活物質層を正極活物質層に対面させつつ重ねられ、負極活物質層と正極活物質層とが対面する方向(以下、対面方向という)において、正極活物質層と負極活物質層との間にはセパレータが配置される。
 第1集電体および第2集電体は、各々、単一の金属からなる一層構造であっても良いし、複数の異種金属で構成された多層構造であっても良い。また、第1集電体と第2集電体とが積層されかつ一体化された多層構造をなしても良い。第1集電体および第2集電体が当該多層構造をなす場合、例えば、第1集電体(または第2集電体)に第2集電体(または第1集電体)をメッキ形成したり、第1集電体(または第2集電体)に第2集電体(または第1集電体)を圧延接合させたりすれば良い。または、別々に成形した第1集電体および第2集電体を、導電性を有する接着剤等で接合し一体化しても良い。多層構造をなす第1集電体および第2集電体として、具体的には、アルミニウム箔に銅メッキやニッケルメッキが施された金属箔が例示される。
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させる機能を有する。
 セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。具体的には、電極とセパレータ間の高い接着性を実現するためにセパレータに接着層を設けた接着型のセパレータや、セパレータに無機フィラー等を含むコーティング膜を形成することで高温耐熱性を高めた塗布型セパレータなどを挙げることができる。
 本発明のリチウムイオン二次電池では、既述したように、正極活物質層および負極活物質層が対面する。正極活物質層は第1集電体の一方面に形成され、負極活物質層は第2集電体の一方面に形成されるため、正極活物質層および負極活物質層は第1集電体と第2集電体との間に配置される。
 本発明のリチウムイオン二次電池は、対面方向において、第1集電体と第2集電体の間に封止部を備える。当該封止部は、正極活物質層および負極活物質層の周囲を取り囲み、第1集電体と第2集電体との間の空間に電解液を封止する機能を有する。換言すると、本発明のリチウムイオン二次電池においては、一対の第1集電体と第2集電体との間に、正極活物質層、セパレータ、負極活物質層および電解液を有する蓄電セルが形成され、当該蓄電セルは封止部によって外界から区画される。なお、本発明のリチウムイオン二次電池は、当該蓄電セルを1つのみ備えても良いし、複数備えても良い。
 本発明のリチウムイオン二次電池は、上記の構造を有することにより、容器を小型化、軽量化でき、かつリード線等の配線を低減できる。これにより、上記構造を有する本発明のリチウムイオン二次電池では体積、重量あたりのエネルギー密度が向上する。さらに、当該構造を有する本発明のリチウムイオン二次電池は、セルスタック型のリチウムイオン二次電池として具現化するのに好適であり、既述したように、厚目付の電極を有し得る。
 封止部は、蓄電セルの内部に電解液を封じ込めるためのシール材として機能するとともに、同じ蓄電セルを構成する第1集電体と第2集電体とを電気的に隔離するためのスペーサとしても機能する。このような機能を発揮する封止部は、内周側に正極活物質層および負極活物質層を収容し得る形状、具体的には、環状または筒状をなせば良い。
 封止部の材料としては、上記の機能を発揮し得るものを用いれば良く、樹脂材料が好適である。封止部の材料としては、オレフィンや酸変性オレフィンが好適であり、具体的には、ポリエチレン、ポリプロピレン、酸変性ポリエチレン、酸変性ポリプロピレンを例示できる。
 封止部は、接着や溶着等の一般的な方法で第1集電体および第2集電体に固着するのが好ましい。同じセルを構成する第1集電体と第2集電体との間に電解液を信頼性高く封止し、かつ、当該第1集電体と第2集電体との相対位置や正極活物質層、セパレータおよび負極活物質層の相対位置を適切に維持するためである。封止部を第1集電体および第2集電体に固着する方法は特に限定しないが、接着、溶着、融着等の方法を例示できる。
 なお、封止部は、正極活物質層および負極活物質層の周囲を取り囲めば良く、正極活物質層の外縁部や負極活物質層の外縁部に接触しても良いしこれらと離れていても良い。リチウムイオン二次電池の耐久性向上を目的とし、当該リチウムイオン二次電池の使用時におけるセルの膨張・収縮に対応するためには、封止部は、正極活物質層の外縁部や負極活物質層の外縁部と離れているのが好ましい。
 リチウムイオン二次電池の具体的な製造方法について説明する。
 例えば、第1集電体の一方面に正極活物質層を形成した正極と、第2集電体の一方面に負極活物質層を形成した負極とを、正極活物質層および負極活物質層がセパレータを介して対面させる。このときさらに、第1集電体と第2集電体との間には、正極活物質層および負極活物質層を取り囲むように封止部を配置し、当該封止部を第1集電体および第2集電体に固着する。またこのとき封止部の内部に電解液を封入する。これによりリチウムイオン二次電池を製造することができる。
 なお、セパレータの構造によっては、第1集電体とセパレータとの間に第1の封止部を配置し、かつ、セパレータと第2集電体との間に第2の封止部を配置して、第1の封止部と第2の封止部とを接着等の方法で一体化しても良い。
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以上、本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、基礎検討、実施例及び比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
<基礎検討1 電解液の粘度評価>
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、下記の表1の割合で(FSO22NLiおよびLiPF6を溶解し、電解液1~3を製造した。
 電解液1~3につき、粘度を以下の条件で測定した。結果を表1に示す。
<粘度>
B型粘度計(Brookfield社、DV2T)にて、コーン型スピンドルを用いて25℃における各電解液の粘度を測定した。なお、コーン型スピンドルの回転速度は60rpmとした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、リチウム塩の合計に対する(FSO22NLiの量が30モル%以上であれば、電解液の粘度は低下する。そして、これにより電解液のイオン伝導度もまた向上すると考えられる。この結果から、粘度およびイオン伝導度の面からは、リチウム塩として(FSO22NLiを用いる場合には当該(FSO22NLiの量はリチウム塩の合計に対して30モル%以上であるのが好ましいといえる。
<基礎検討2 電解液におけるエステルの検討>
 プロピオン酸メチルと化学構造が類似するエステルとして、プロピオン酸プロピル、酪酸メチルおよび酪酸エチルを用いた電解液を製造し、これらのエステルによる電池特性への影響を検討した。
  〔電解液〕
・エチレンカーボネートとプロピオン酸メチルを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。母液に対して、1質量%に相当する量のリチウムジフルオロ(オキサラート)ボラート(以下、LiDFOBと略すことがある。LiDFOBはオキサレート硼酸塩の一態様である。)及び1質量%に相当する量のビニレンカーボネートを加えて溶解することで、電解液4を製造した。
・エチレンカーボネートとプロピオン酸プロピル(以下、PPと略すことがある。)を体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。母液に対して1質量%に相当する量のLiDFOBと1質量%に相当する量のビニレンカーボネートとを加えて溶解することで、電解液5を製造した。
・エチレンカーボネートと酪酸メチル(以下、MBと略すことがある。)を体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。母液に対して1質量%に相当する量のLiDFOBと1質量%に相当する量のビニレンカーボネートとを加えて溶解することで、電解液6を製造した。
・エチレンカーボネートと酪酸エチル(以下、EBと略すことがある。)を体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。母液に対して1質量%に相当する量のLiDFOBと1質量%に相当する量のビニレンカーボネートとを加えて溶解することで、電解液7を製造した。
・エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートを体積比30:30:40で混合して、混合溶媒とした。混合溶媒にLiPF6を溶解して、LiPF6の濃度が1mol/Lである母液を製造した。母液に対して0.2mol/Lに相当する量のLiDFOBと1質量%に相当する量のビニレンカーボネートとを加えて溶解することで、電解液8を製造した。
  〔リチウムイオン二次電池〕
 電解液4~8を用い、以下のようにリチウムイオン二次電池を製造した。
 正極活物質として炭素で被覆されたオリビン構造のLiFePO4、導電助剤としてアセチレンブラック及び結着剤としてポリフッ化ビニリデンを、正極活物質と導電助剤と結着剤の質量比が90:5:5となるように混合し、溶剤としてN-メチル-2-ピロリドンを添加してスラリー状の正極活物質層形成用組成物とした。正極用集電体としてアルミニウム箔を準備した。アルミニウム箔の表面に正極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された正極前駆体を、厚み方向にプレスすることで、アルミニウム箔の表面に正極活物質層が形成された正極を製造した。
 なお、正極の製造において、正極の目付け量13.9mg/cm2を目標とした。
 負極活物質として黒鉛、結着剤としてカルボキシメチルセルロース及びスチレンブタジエンゴムを、黒鉛とカルボキシメチルセルロースとスチレンブタジエンゴムの質量比が97:0.8:2.2となるように混合し、溶剤として水を添加してスラリー状の負極活物質層形成用組成物とした。負極用集電体として銅箔を準備した。銅箔の表面に負極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された負極前駆体を、厚み方向にプレスすることで、銅箔の表面に負極活物質層が形成された負極を製造した。
 なお、負極の製造において、負極の目付け量6.3mg/cm2を目標とした。
 セパレータとしてポリプロピレン製の多孔質膜を準備した。正極と負極でセパレータを挟持して電極体とした。この電極体を電解液4と共に、袋状のラミネートフィルムに入れて密閉することで、リチウムイオン二次電池4を製造した。同様に、電解液5~8を用いてリチウムイオン二次電池5~8を製造した。
  〔保存試験〕
 リチウムイオン二次電池4~8につき、0.4Cレートで4.0VまでCC-CV充電を行い、このときの充電容量を基準(SOC100%)とした。当該SOC100の状態で、各リチウムイオン二次電池を40℃で11日間保存することで、保存試験を行った。
 保存試験の前後に容量確認を行った。具体的には、0.4Cレートで4.0VまでCC-CV充電を行った。次いで、1Cレートで2.5VまでCC-CV放電を行った。これにより、各リチウムイオン二次電池の放電容量を確認した。保存試験前の放電容量に対する、保存試験後の放電容量の百分率を、各リチウムイオン二次電池の容量維持率とした。
 また、保存試験後、SOC60%に調整した各リチウムイオン二次電池に対して、25℃の条件下、一定電流レートで5秒間放電させた場合の電圧変化量を測定した。当該測定を、電流レートを変えた複数の条件下で行った。得られた結果から、SOC60%の各リチウムイオン二次電池につき、電圧2.5Vまでの放電時間が10秒となる一定電流(mA)を算出した。SOC60%から2.5Vまでの電圧変化量に算出された一定電流を乗じた値を出力とした。
 以上の保存試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、電解液の非水溶媒としてプロピオン酸メチルを用いたリチウムイオン二次電池4は、容量維持率と出力の両方に優れ、特に出力においては非水溶媒としてカーボネート系のものを用いたリチウムイオン二次電池8を大きく上回っている。この結果から、非水溶媒としてプロピオン酸メチルを選択することの有用性が裏付けられる。
 (実施例1)
 実施例1の電解液およびリチウムイオン二次電池を以下に説明する。なお、実施例1のリチウムイオン二次電池は、既述した本発明のリチウムイオン二次電池とは異なり、電極が厚目付であること以外は一般的な構造を有するものである。
  〔電解液〕
 エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1質量%に相当する量のビニレンカーボネートを加えて溶解することで、実施例1の電解液を製造した。
  〔リチウムイオン二次電池〕
 負極活物質として黒鉛、結着剤としてカルボキシメチルセルロース及びスチレンブタジエンゴムを、黒鉛とカルボキシメチルセルロースとスチレンブタジエンゴムの質量比が94.8:0.8:4.4となるように混合し、溶剤として水を添加してスラリー状の負極活物質層形成用組成物とした。負極用集電体として銅箔を準備した。銅箔の表面に負極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された負極前駆体を、厚み方向にプレスすることで、銅箔の表面に負極活物質層が形成された負極を製造した。
 なお、負極の目付け量は26.5mg/cm2であった。
 正極活物質層として炭素で被覆されたオリビン構造のLiFePO4、導電助剤としてアセチレンブラック及び結着剤としてポリフッ化ビニリデンを、正極活物質と導電助剤と結着剤の質量比が88.8:5.1:6.1となるように混合し、溶剤としてN-メチル-2-ピロリドンを添加してスラリー状の正極活物質層形成用組成物とした。正極用集電体としてアルミニウム箔を準備した。アルミニウム箔の表面に正極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された正極前駆体を、厚み方向にプレスすることで、アルミニウム箔の表面に正極活物質層が形成された正極を製造した。
 なお、正極の目付け量は55.5mg/cm2であった。
 セパレータとしてポリプロピレン製の多孔質膜を準備した。正極と負極でセパレータを挟持して電極体とした。この電極体を実施例1の電解液と共に、袋状のラミネートフィルムに入れて密閉することで、実施例1のリチウムイオン二次電池を製造した。
 (実施例2)
 実施例2の電解液は、エチレンカーボネートとプロピオン酸メチルとの体積比以外は実施例1の電解液と同じものである。
 具体的には、実施例2においては、エチレンカーボネートとプロピオン酸メチルとを体積比25:75で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1質量%に相当する量のビニレンカーボネートを加えて溶解することで、実施例2の電解液を製造した。
 実施例2のリチウムイオン二次電池は、実施例2の電解液を用いたこと以外は実施例1のリチウムイオン二次電池と同じものである。
 (比較例1)
 比較例1の電解液は、エチレンカーボネートとプロピオン酸メチルとの体積比以外は実施例1の電解液と同じものである。
 具体的には、比較例1においては、エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1質量%に相当する量のビニレンカーボネートを加えて溶解することで、比較例1の電解液を製造した。
 比較例1のリチウムイオン二次電池は、比較例1の電解液を用いたこと以外は実施例1のリチウムイオン二次電池と同じものである。
 (比較例2)
 比較例2の電解液は、エチレンカーボネートとプロピオン酸メチルとの体積比以外は実施例1の電解液と同じものである。
 具体的には、比較例2においては、エチレンカーボネートとプロピオン酸メチルとを体積比50:50で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1質量%に相当する量のビニレンカーボネートを加えて溶解することで、比較例2の電解液を製造した。
 比較例2のリチウムイオン二次電池は、比較例2の電解液を用いたこと以外は実施例1のリチウムイオン二次電池と同じものである。
 <評価例1 レート特性評価>
 実施例1、2および比較例1、2のリチウムイオン二次電池につき、0.4C、1.0C、2.0Cおよび4.0の4通りの放電レートで、SOC95%から電圧2.3Vとなるまで放電を行った。そして、放電レート毎に、各リチウムイオン二次電池の放電終止時の容量すなわちレート容量を比較することで、実施例1、2および比較例1、2のリチウムイオン二次電池のレート特性を評価した。なお、レート特性評価試験は、各Cレートにつきn=2で行い、その平均値を比較した。
 各リチウムイオン二次電池につき、0.4Cレートで4.0VまでCC-CV充電を行ったときの充電容量をSOC100%とした。レート容量は、上記のSOC100%に対する百分率で表した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1および実施例2のリチウムイオン二次電池は、比較例1および比較例2のリチウムイオン二次電池に比べて0.4C~4.0Cの全てのCレートで優れた放電特性を発揮する。これは、実施例1および実施例2のリチウムイオン二次電池における電解液が、非水溶媒にプロピオン酸メチルを75体積%以上含むことによるものと考えられる。
 なお、実施例1のリチウムイオン二次電池は、既述した本発明のリチウムイオン二次電池とは異なる構造であるが、言うまでもなく、実施例1の電解液による効果は本発明のリチウムイオン二次電池においても同様に発揮される。以下の各実施例についても同様である。
 (実施例3)
 実施例3の電解液およびリチウムイオン二次電池を以下に説明する。
  〔電解液〕
 エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して0.5質量%に相当する量の1,3,2-ジオキサチオラン-2,2-ジオキシド(以下、DTDと略すことがある。DTDは環状硫酸エステルの一態様である。)を加えて溶解することで、実施例3の電解液を製造した。
  〔リチウムイオン二次電池〕
 負極活物質として黒鉛、結着剤としてカルボキシメチルセルロース及びスチレンブタジエンゴムを、黒鉛とカルボキシメチルセルロースとスチレンブタジエンゴムの質量比が97:0.8:2.2となるように混合し、溶剤として水を添加してスラリー状の負極活物質層形成用組成物とした。負極用集電体として銅箔を準備した。銅箔の表面に負極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された負極前駆体を、厚み方向にプレスすることで、銅箔の表面に負極活物質層が形成された負極を製造した。
 なお、負極の目付け量は6.7mg/cm2であった。
 正極活物質層として炭素で被覆されたオリビン構造のLiFePO4、導電助剤としてアセチレンブラック及び結着剤としてポリフッ化ビニリデンを、正極活物質と導電助剤と結着剤の質量比が94:3:3となるように混合し、溶剤としてN-メチル-2-ピロリドンを添加してスラリー状の正極活物質層形成用組成物とした。正極用集電体としてアルミニウム箔を準備した。アルミニウム箔の表面に正極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された正極前駆体を、厚み方向にプレスすることで、アルミニウム箔の表面に正極活物質層が形成された正極を製造した。
 なお、正極の目付け量は13.9mg/cm2であった。
 上記の正極および負極を用いて、実施例1と同様にして実施例3のリチウムイオン二次電池を製造した。
 (実施例4)
 実施例4の電解液は、リチウム塩として(FSO22NLiおよびLiPF6を用いたこと以外は実施例3の電解液と同じである。
 具体的には、実施例4においては、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度0.6mol/LでおよびLiPF6を濃度0.6mol/Lで溶解して母液とした。当該母液に対して0.5質量%に相当する量のDTDを加えて溶解することで、実施例4の電解液を製造した。
 実施例4のリチウムイオン二次電池は、実施例4の電解液を用いたこと以外は実施例3のリチウムイオン二次電池と同じものである。
 (比較例3)
 比較例3の電解液は、リチウム塩として(FSO22NLiおよびLiPF6を用いたこと以外は実施例3の電解液と同じである。
 具体的には、比較例3においては、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。当該母液に対して0.5質量%に相当する量の(FSO22NLi、および、0.5質量%に相当する量のDTDを加えて溶解することで、比較例3の電解液を製造した。なお、比較例3の電解液における(FSO22NLiの量は、0.03mol/Lであり、当該(FSO22NLiの量は、(FSO22NLiとLiPF6との合計に対して2.4モル%であった。
 比較例3のリチウムイオン二次電池は、比較例3の電解液を用いたこと以外は実施例3のリチウムイオン二次電池と同じものである。
 (比較例4)
 比較例3の電解液は、リチウム塩としてLiPF6のみを用いたこと以外は実施例3の電解液と同じである。
 具体的には、比較例3においては、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。当該母液に対して0.5質量%に相当する量のDTDを加えて溶解することで、比較例4の電解液を製造した。
 比較例4のリチウムイオン二次電池は、比較例4の電解液を用いたこと以外は実施例3のリチウムイオン二次電池と同じものである。
 <評価例2 高温充放電サイクル試験>
 実施例3、4および比較例3、4のリチウムイオン二次電池に対して、高温充放電サイクル試験を行った。
〔出力確認〕
 まず、SOC60%に調整した各リチウムイオン二次電池に対して、25℃の条件下、一定電流レートで10秒間放電させた場合の電圧の変化量を測定した。当該測定を、電流レートを変えた複数の条件下で行った。得られた結果から、SOC60%の各リチウムイオン二次電池につき、電圧2.5Vまでの放電時間が10秒となる一定電流(mA)を算出した。SOC60%から2.5Vまでの電圧変化量に、算出された上記一定電流(mA)を乗じた値を、初期出力とした。初期出力の試験も複数回行った。
 比較例4のリチウムイオン二次電池の出力値に対する各リチウムイオン二次電池の出力値の百分率を算出し、当該百分率から100(%)を引いた値を、初期出力増加率(%)とした。
〔高温充放電サイクル〕
 その後、60℃で、1Cレートで4VまでCC-CV充電し、1CレートでSOD90%となるまでCC放電する高温充放電サイクルを100回繰り返した。なお、ここでいう充電とは、負極から正極にリチウムイオンが移動し正極と負極との電位差が大きくなることを意味する。
 100回目の充放電終了後、上記の出力確認と同様に各リチウムイオン二次電池の出力確認を行った。比較例4のリチウムイオン二次電池の出力値に対する各リチウムイオン二次電池の出力値の百分率を算出し、当該百分率から100(%)を引いた値を、100サイクル後出力増加率(%)とした。
 各リチウムイオン二次電池の初期出力を表4に示し、各リチウムイオン二次電池の100サイクル後の出力を表5に示す。なお、出力確認についてはn=4で、高温充放電サイクルについてはn=2で行い、表4および表5にはこれらの平均値を示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、リチウム塩としてLiPF6を単独で用いた比較例4のリチウムイオン二次電池に比べて、リチウム塩として(FSO22NLiを含む比較例3、実施例3および実施例4のリチウムイオン二次電池は初期出力に優れる。特に、(FSO22NLiの含有量が30モル%以上である実施例3および実施例4のリチウムイオン二次電池においては、(FSO22NLiの含有量が30モル%未満である比較例3のリチウムイオン二次電池に対しても、初期出力が大幅に増大している。
 さらに、表5に示すように、比較例3のリチウムイオン二次電池は高温下での充放電サイクル耐久性においては比較例4と同程度であったのに対し、実施例3および実施例4のリチウムイオン二次電池は、比較例3および比較例4のリチウムイオン二次電池に比べて高温下での充放電サイクル耐久性においても優れていた。
 これらの結果から、(FSO22NLi、すなわちLiPF6以外のリチウム塩をリチウム塩全体に対して30モル%以上含む電解液を用いることで、リチウムイオン二次電池における特に高温下での耐久性が向上することが裏付けられる。
 <評価例3 保存試験>
 実施例3、4および比較例3、4のリチウムイオン二次電池につき、0.4Cレートで4.0VまでCC-CV充電を行い、このときの充電容量を基準(SOC100%)とした。当該SOC100の状態で、各リチウムイオン二次電池を40℃で12日間保存することで、保存試験を行った。
 保存試験の前後に評価例2と同様に出力確認を行い、保存試験後の出力値につき、比較例4のリチウムイオン二次電池の出力値に対する各リチウムイオン二次電池の出力値の百分率を算出し、当該百分率から100(%)を引いた値を、保存後出力増加率(%)とした。
 各リチウムイオン二次電池の100サイクル後の保存後の出力を表6に示す。なお、試験はn=2で行い、表6にはその平均値を示した。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例3および実施例4のリチウムイオン二次電池は、比較例3および比較例4のリチウムイオン二次電池に比べて40℃での保存時における耐久性にも優れていた。この結果からも、LiPF6以外のリチウム塩をリチウム塩全体に対して30モル%以上含む電解液を用いることで、リチウムイオン二次電池における特に高温下での耐久性が向上することが裏付けられる。
 (実施例5)
 実施例3の電解液と同じ実施例5の電解液を用い、以下のように実施例5のリチウムイオン二次電池を製造した。参考までに、実施例5の電解液は、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とし、当該母液に対して0.5質量%に相当する量のDTDを加えて溶解したものである。
  〔リチウムイオン二次電池〕
 負極活物質として黒鉛、結着剤としてカルボキシメチルセルロース及びスチレンブタジエンゴムを、黒鉛とカルボキシメチルセルロースとスチレンブタジエンゴムの質量比が97:0.8:2.2となるように混合し、溶剤として水を添加してスラリー状の負極活物質層形成用組成物とした。負極用集電体として銅箔を準備した。銅箔の表面に負極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された負極前駆体を、厚み方向にプレスすることで、銅箔の表面に負極活物質層が形成された負極を製造した。
 なお、負極の目付け量は6.24mg/cm2であった。
 正極活物質層として炭素で被覆されたオリビン構造のLiFePO4、導電助剤としてアセチレンブラック及び結着剤としてポリフッ化ビニリデンを、正極活物質と導電助剤と結着剤の質量比が90:5:5となるように混合し、溶剤としてN-メチル-2-ピロリドンを添加してスラリー状の正極活物質層形成用組成物とした。正極用集電体としてアルミニウム箔を準備した。アルミニウム箔の表面に正極活物質層形成用組成物を膜状に塗布した後に溶剤を除去して製造された正極前駆体を、厚み方向にプレスすることで、アルミニウム箔の表面に正極活物質層が形成された正極を製造した。
 なお、正極の目付け量は13.87mg/cm2であった。
 上記の正極および負極を用いて、実施例1と同様にして実施例5のリチウムイオン二次電池を製造した。
 (比較例5)
 比較例4の電解液と同じ比較例5の電解液を用い、実施例5と同様にして比較例5のリチウムイオン二次電池を製造した。参考までに、比較例5の電解液は、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とし、当該母液に対して0.5質量%に相当する量のDTDを加えて溶解したものである。
 <評価例4 ガス発生評価>
 実施例5および比較例5のリチウムイオン二次電池につき、4.0Vまで0.05Cで充電し、60℃で20時間保持することにより活性化を行った。活性化前後の各リチウムイオン二次電池の体積をアルキメデス法により測定し、活性化前後での各リチウムイオン二次電池の体積変化から、活性化により生じたガス量(μL)を算出した。
 各リチウムイオン二次電池のガス発生量を表7に示す。なお、試験はn=3で行い、表7にはその平均値を示した。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例5のリチウムイオン二次電池におけるガス発生量は、比較例5のリチウムイオン二次電池におけるガス発生量よりも少ない。この結果から、LiPF6以外のリチウム塩をリチウム塩全体に対して30モル%以上含む電解液を用いることで、リチウムイオン二次電池の充放電に伴い発生するガスを抑制できることがわかる。
 なお、負極に黒鉛を用いたリチウムイオン二次電池においては、負極で電解液が分解されることによりガスが生じると考えられる。実施例5のリチウムイオン二次電池においては、電解液に含まれる(FSO22NLiが分解されることで負極の表面に良好な被膜が形成されると考えられ、当該被膜に因りに電解液の分解が抑制されたものと推測される。ガス発生を抑制することにより、充放電に伴うリチウムイオン二次電池の膨張量を低減でき、リチウムイオン二次電池に作用する応力を低減でき、ひいてはリチウムイオン二次電池の耐久性を向上させることが可能である。このガス発生の抑制効果は、容器として金属製の缶を用いない態様のリチウムイオン二次電池に特に有用であり、本発明リチウムイオン二次電池においても非常に有用である。
 (実施例6)
 実施例3の電解液と同じ実施例6の電解液を用い、実施例3と同様にして実施例6のリチウムイオン二次電池を製造した。参考までに、実施例6の電解液は、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とし、当該母液に対して0.5質量%に相当する量のDTDを加えて溶解したものである。
 (実施例7)
 実施例4の電解液と同じ実施例7の電解液を用い、実施例3と同様にして実施例7のリチウムイオン二次電池を製造した。参考までに、実施例7の電解液は、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度0.6mol/LでおよびLiPF6を濃度0.6mol/Lで溶解して母液とし、当該母液に対して0.5質量%に相当する量のDTDを加えて溶解したものである。
 (比較例6)
 比較例3の電解液と同じ比較例6の電解液を用い、実施例3と同様にして比較例6のリチウムイオン二次電池を製造した。参考までに、比較例6の電解液は、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とし、当該母液に対して0.5質量%に相当する量の(FSO22NLiおよび0.5質量%に相当する量のDTDを加えて溶解したものである。比較例6の電解液における(FSO22NLiの量は0.03mol/Lであり、当該(FSO22NLiの量は、(FSO22NLiとLiPF6との合計に対して2.4モル%であった。
 (比較例7)
 比較例4の電解液と同じ比較例7の電解液を用い、実施例3と同様にして比較例7のリチウムイオン二次電池を製造した。参考までに、比較例7の電解液は、エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とし、当該母液に対して0.5質量%に相当する量のDTDを加えて溶解したものである。
 <評価例5 高温充放電サイクル試験>
 実施例6、実施例7および比較例6、比較例5のリチウムイオン二次電池につき、0.4Cレートで4.0VまでCC-CV充電を行った。その後、1Cレートで2.5Vまで2時間かけてCC-CV放電を行った。このときの放電容量を初期容量とした。また、各リチウムイオン二次電池につき評価例2と同様の高温充放電サイクル試験を行った。さらに、50回目の充放電終了後、および、100回目の充放電終了後に、各リチウムイオン二次電池の放電容量を確認した。放電容量は、上記の初期容量と同様の方法で確認した。初期容量に対する50回目の充放電終了後の放電容量の百分率、および、100回目の充放電終了後の放電容量の百分率を計算し、各々、50サイクル後の容量維持率および100サイクル後の容量維持率とした。
 各リチウムイオン二次電池の50サイクル後の容量維持率および100サイクル後の容量維持率を表8に示す。なお、各試験はn=2で行い、表8にはその平均値を示した。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例6および実施例7のリチウムイオン二次電池は、比較例6および比較例7のリチウムイオン二次電池に比べて容量維持率に優れていた。この結果からも、LiPF6以外のリチウム塩をリチウム塩全体に対して30モル%以上含む電解液を用いることで、リチウムイオン二次電池における特に高温下での耐久性が向上することが裏付けられる。
 <評価例6 保存試験>
 実施例6、7および比較例6、7のリチウムイオン二次電池につき、評価例3と同様の方法で保存試験を行った。
 保存試験前、保存試験開始7日経過後および保存試験開始12日経過後に、評価例2と同様に各リチウムイオン二次電池の放電容量を確認した。保存試験前の放電容量を初期容量とし、当該初期容量に対する保存試験開始7日経過後の放電容量の百分率、および、保存試験開始12日経過後の放電容量の百分率を計算し、各々、保存試験開始7日後の容量維持率、および、保存試験開始12日後の容量維持率とした。
 各リチウムイオン二次電池の保存試験開始7日後の容量維持率、および、保存試験開始12日後の容量維持率を表9に示す。なお、各試験はn=2で行い、表9にはその平均値を示した。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、実施例6および実施例7のリチウムイオン二次電池は、比較例6および比較例7のリチウムイオン二次電池に比べて容量維持率に優れており、保存試験開始後の経過日数が長くなるほど、その差は顕著であった。
 この結果からも、LiPF6以外のリチウム塩をリチウム塩全体に対して30モル%以上含む電解液を用いることで、リチウムイオン二次電池における特に高温下での耐久性が向上することが裏付けられる。
 (実施例8)
 エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1.94質量%に相当する量のビニレンカーボネートを加えて溶解することで、実施例8の電解液を製造した。
 実施例8の電解液を用い、実施例1と同様にして実施例8のリチウムイオン二次電池を製造した。
 (比較例8)
 エチレンカーボネートとジメチルカーボネートとを体積比15:85で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1.94質量%に相当する量のビニレンカーボネートを加えて溶解することで、比較例8の電解液を製造した。
 比較例8の電解液を用い、実施例1と同様にして比較例8のリチウムイオン二次電池を製造した。
 (比較例9)
 エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとを体積比15:65:20で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1.94質量%に相当する量のビニレンカーボネートを加えて溶解することで、比較例9の電解液を製造した。
 比較例9の電解液を用い、実施例1と同様にして比較例9のリチウムイオン二次電池を製造した。
 (比較例10)
 エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとを体積比15:45:40で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して母液とした。当該母液に対して1.94質量%に相当する量のビニレンカーボネートを加えて溶解することで、比較例10の電解液を製造した。
 比較例10の電解液を用い、実施例1と同様にして比較例10のリチウムイオン二次電池を製造した。
 (比較例11)
 エチレンカーボネートとプロピオン酸メチルとを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とした。当該母液に対して1質量%に相当する量のビニレンカーボネートおよび1質量%に相当する量のLiDFOBを加えて溶解することで、比較例11の電解液を製造した。
 比較例11の電解液を用い、実施例1と同様にして比較例8のリチウムイオン二次電池を製造した。
 <評価例7 長時間放電試験1>
 実施例8および比較例11のリチウムイオン二次電池につき、1.1Cの放電レートでSOC95%から電圧2.2VとなるまでCC放電を行い、放電容量の変化を経時的に測定した。
 別に、各リチウムイオン二次電池につき0.33Cの放電レートでSOC100%から3.0VとなるまでCC-CV放電を行い、このときの容量をCC-CV容量とした。各リチウムイオン二次電池につき上記したCC-CV容量に対するCC放電終止時の容量の百分率を算出してレート%とした。なお、試験はn=2で行い、CC放電終止時の容量としてはその平均値を用いた。
 各リチウムイオン二次電池につき、0.2Cレートで3.75VまでCC-CV充電を行ったときの充電容量をSOC100%とした。
 実施例8および比較例11の各リチウムイオン二次電池におけるCC放電容量の経時変化を表すグラフを図1に示す。また、実施例8および比較例11の各リチウムイオン二次電池のレート%を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 図1に示すように、実施例8のリチウムイオン二次電池は、比較例11のイオン二次電池に比べて放電終止時の容量が大幅に高く、長時間放電特性に優れているといえる。
 また、表10に示すように、実施例8のリチウムイオン二次電池は、放電終止時のレート%についても、比較例11のリチウムイオン二次電池に比べて大幅に優れている。これらの結果は、リチウム塩として(FSO22NLiを用いることが長時間放電特性の向上に寄与することを示す。この結果は、基礎検討1にも示したように、リチウム塩の合計に対する(FSO22NLiの量が30モル%以上である場合に、電解液の粘度は低下し、イオン伝導率は向上することによるものと考えられる。
 <評価例8 長時間放電試験2>
 実施例8および比較例8~10のリチウムイオン二次電池につき、評価例7と同様にして放電容量の変化を経時的に測定した。
 実施例8および比較例8~10の各リチウムイオン二次電池におけるCC放電容量の経時変化を表すグラフを図2に示す。また、実施例8および比較例8~10の各リチウムイオン二次電池のレート%を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 図2に示すように、実施例8のリチウムイオン二次電池は、比較例8~10の各リチウムイオン二次電池に比べて放電終止時の容量が大幅に高く、長時間放電特性に優れているといえる。
 表11に示すように、実施例8のリチウムイオン二次電池は、放電終止時のレート%についても、比較例8~10の各リチウムイオン二次電池に比べて大幅に優れている。この結果からも、実施例8のリチウムイオン二次電池が長時間放電特性に優れていることが明らかになる。
 実施例8のリチウムイオン二次電池が比較例8~10のリチウムイオン二次電池に比べて長時間放電特性に優れている理由は、非水電解液の組成にあると考えられる。この結果から、非水電解液にプロピオン酸メチルを用いることの有用性がより明らかになる。さらに、評価例7および評価例8の結果から、リチウム塩としての(FSO22NLiと、非水溶媒としてのプロピオン酸メチルとを組み合わせて用いることで、リチウムイオン二次電池用の電池特性向上に寄与し得る電解液が得られるといい得る。
 (実施例9)
 実施例9のリチウムイオン二次電池は本発明のリチウムイオン二次電池である。実施例9のリチウムイオン二次電池を模式的に表す説明図を図3に示す。以下、図3を基に実施例9のリチウムイオン二次電池を説明する。
 図3に示すように、実施例9のリチウムイオン二次電池1は、2つの蓄電セル10が重ねられたものである。各蓄電セル10は、正極2、負極3、セパレータ4、封止部5および電解液6を有する。
 正極2は、第1集電体20および正極活物質層21を有する。第1集電体20はアルミニウム箔であり、一方面20aと他方面20bと有する。一方面20aと他方面20bとは互いに背中合わせの関係にある。
 正極活物質層21は、実施例1のリチウムイオン二次電池における正極活物質層と同じものであり、第1集電体20の一方面20aにおける中央部分に積層形成されている。
 負極3は、第2集電体30および負極活物質層31を有する。第2集電体30は銅箔であり、一方面30aと他方面30bと有する。一方面30aと他方面30bとは互いに背中合わせの関係にある。
 負極活物質層31は、実施例1のリチウムイオン二次電池における負極活物質層と同じものであり、第2集電体30の一方面30aにおける中央部分に積層形成されている。
 負極3は、負極活物質層31を正極活物質層21に対面させ、かつ、負極活物質層31と正極活物質層21との間にセパレータ4を挟んだ状態で、正極2に重ねられている。換言すると、既述した対面方向において、同じ蓄電セル10を構成する第1集電体20および第2集電体30の間には、負極活物質層31とセパレータ4と正極活物質層21との積層体が挟まれている。なお、セパレータ4は実施例1のリチウムイオン二次電池におけるセパレータと同じものである。
 封止部5は、酸変性オレフィンを材料とし、略短筒状をなす。封止部5は第1集電体20および第2集電体30の間において、負極活物質層31とセパレータ4と正極活物質層21との積層体の周囲を、当該積層体の周方向全周にわたって取り囲んでいる。封止部5における第1集電体20側の面は第1集電体20に熱融着されており、第2集電体30側の面は第2集電体30に熱融着されている。これにより、封止部5は第1集電体20と第2集電体30との間を液密にシールする。また、封止部5は、第1集電体20と第2集電体30との間隔を維持し、両者の直接的な電気的接続を断つためのスペーサとしても機能する。
 封止部5、第1集電体20および第2集電体30によって区画形成された空間には、電解液6が封止される。電解液6は実施例1の電解液と同じものである。
 実施例9のリチウムイオン二次電池1は、2つの蓄電セル10が直列接続されたものである。また、一つの蓄電セル10xの第1集電体20xと、これに隣り合う蓄電セル10yの第2集電体30yとは、互いに重ねられ直接的に電気的接続されている。このため、当該第1集電体20xと第2集電体30yとは2層構造をなす一つの集電体とみなすことができ、当該集電体はその両面の各々に正極活物質層21xと負極活物質層31yとが設けられた双極型電極とみなすことができる。
 実施例9のリチウムイオン二次電池1の製造方法を以下に説明する。
 先ず、実施例1に説明した方法で正極2および負極3を製造する。
 次いで封止部5を正極2と負極3との一方に一体化する。具体的には、インパルスシール機を用いて、第1集電体20と第2集電体30との一方に封止部5を熱融着する。これにより封止部5は、第1集電体20または第2集電体30上に箱状に一体化され、その内部に電解液6を収容可能になる。
 次いで、当該封止部5の内部に電解液6を注入し、これに正極2と負極3との他方を一体化する。具体的には、正極活物質層21と負極活物質層31とを対面させ、間にセパレータ4および封止部5を挟みつつこれらを重ねる。そして、インパルスシール機を用いて、第1集電体20と第2集電体30との他方に封止部5を熱融着する。これにより、実施例9のリチウムイオン二次電池1における蓄電セル10が得られた。
 二つの蓄電セル10を準備し、蓄電セル10の一方である第1蓄電セル10xの第1集電体20xと、蓄電セル10の他方である第2蓄電セル10yの第2集電体30yとを、対面方向に重ね合わせ、当該第1集電体20xと第2集電体30yとを積層する。積層された二つの蓄電セル10は図略の拘束部材によって拘束され、各蓄電セル10には、対面方向において、所定の拘束荷重が付加される。これにより、第1の蓄電セル10xと第2の蓄電セル10yとを、互いに積層された状態に維持できる。さらに、図略の端子を蓄電セル10x、10yに固着する。これにより、実施例9のリチウムイオン二次電池が得られた。
 実施例9のリチウムイオン二次電池1では、第1集電体20および第2集電体30に封止部5が固着されている。このため各蓄電セル10はその内部に安定的に電解液6を保持できる。
 (実施例10)
 実施例10のリチウムイオン二次電池は本発明のリチウムイオン二次電池であり、第1集電体および第2集電体の構造以外は実施例9のリチウムイオン二次電池と概略同じものである。実施例10のリチウムイオン二次電池を模式的に表す説明図を図4に示す。以下、図4を基に実施例10のリチウムイオン二次電池を説明する。
 図4に示すように、実施例10のリチウムイオン二次電池における正極2の第1集電体20と負極3の第2集電体30とは、一体に形成されている。具体的には、第1集電体20はアルミニウム箔であり、第2集電体30は当該第1集電体20上に形成された銅メッキ層である。
 実施例10のリチウムイオン二次電池もまた、実施例9のリチウムイオン二次電池と同様に耐久性に優れる。
 (実施例11)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度1.2mol/Lで溶解して実施例11の電解液を製造した。
 (実施例12)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度1mol/LおよびLiPF6を濃度0.2mol/Lで溶解して実施例12の電解液を製造した。なお、実施例12の電解液において、リチウム塩の合計に対する(FSO22NLiの量は約83.3モル%である。
 (実施例13)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度0.8mol/LおよびLiPF6を濃度0.4mol/Lで溶解して実施例12の電解液を製造した。なお、実施例13の電解液において、リチウム塩の合計に対する(FSO22NLiの量は約66.7モル%である。
 (実施例14)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度0.6mol/LおよびLiPF6を濃度0.6mol/Lで溶解して実施例14の電解液を製造した。なお、実施例14の電解液において、リチウム塩の合計に対する(FSO22NLiの量は約50モル%である。
 (実施例15)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度0.4mol/LおよびLiPF6を濃度0.8mol/Lで溶解して実施例15の電解液を製造した。なお、実施例15の電解液において、リチウム塩の合計に対する(FSO22NLiの量は約33.3モル%である。
 (比較例12)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、(FSO22NLiを濃度0.2mol/LおよびLiPF6を濃度1mol/Lで溶解して比較例12の電解液を製造した。なお、比較例12の電解液において、リチウム塩の合計に対する(FSO22NLiの量は約16.7モル%である。
 (比較例13)
 エチレンカーボネートとプロピオン酸メチルとを体積比30:70で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して比較例13の電解液を製造した。
 <評価例9 剥離評価>
 アルミニウム箔と銅箔とをシール材で熱融着したテストピースを準備した。当該テストピースを実施例11~15および比較例12、13の各電解液に浸漬して剥離評価を行った。
 詳しくは、各テストピースの寸法は15mm×65mmであり、シール幅は18mmであった。シール材は酸変性オレフィン系のものであり、より具体的には、低融点のポリエチレン樹脂を含む。熱融着にはインパルスシーラーを用い、加熱温度は110℃であった。
 アルミニウムラミネートフィルムを60mm×100mmの袋状にし、その内部に電解液を1mL注入し、そこにテストピースを浸漬した。袋の開口をインパルスシーラーで熱融着することで、当該袋の内部にテストピースと電解液とを密封した。これを60℃で72時間保存した。その後、袋から取り出したテストピースをエタノールで洗浄し、当該テストピースに生じた自然剥離長を測定した。測定にはグルーブマイクロメーターを用いた。
 図5に示すように、樹脂72とアルミニウム箔70との剥離開始点から樹脂72の終端部までの長さをアルミニウム箔70と樹脂72との界面における自然剥離長L1とした。同様に、樹脂72と銅箔71との剥離開始点から樹脂72の終端部までの長さを銅箔71と樹脂72との界面における自然剥離長L2とした。L1およびL2を複数個所で測定しその平均を算出して、これを各電解液によるテストピースの自然剥離長とした。結果を図6に示す。
 図6に示すように、LiPF6以外のリチウム塩を含む実施例11~15および比較例12の電解液を用いた場合、リチウム塩がLiPF6のみである比較例13の電解液を用いた場合に比べて、テストピースの自然剥離長が短かった。また、実施例12~15の電解液を用いたテストピースの自然剥離長は、ほぼ同じ値であった。
 既述したように、LiPF6は水と反応してフッ化水素を生じるため、比較例13の電解液を用いたテストピースにおいては、当該フッ化水素によってアルミニウム箔が劣化し、その結果、樹脂とアルミニウム箔との界面における剥離が進行したものと考えられる。そして、当該剥離は、実施例11~15のように、LiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含む電解液を用いる場合には、十分に抑制されるといえる。実施例12~15の電解液を用いたテストピースの自然剥離長がほぼ同じ値であったことから、剥離抑制の観点からは、電解液に含まれるLiPF6以外のリチウム塩の量は、リチウム塩の合計に対して30モル%以上であれば足るといい得る。
 なお、本発明のリチウムイオン二次電池の電解液として、比較例12、13のようにLiPF6を多く含む電解液を用いる場合には、同様に、第1集電体と封止部との界面で剥離が生じるものと推測される。
 これに対して、本発明のリチウムイオン二次電池の電解液として、実施例11~15のように、LiPF6以外のリチウム塩をリチウム塩の合計に対して30モル%以上含む電解液を用いる場合には、第1集電体と封止部との界面における剥離が十分に抑制されるといい得る。

Claims (6)

  1.  第1集電体と、前記第1集電体の一方面に設けられた正極活物質層と、を有する正極と、
     第2集電体と、前記第2集電体の一方面に設けられた負極活物質層と、を有し、前記負極活物質層を前記正極活物質層に対面させつつ前記正極に重ねられた負極と、
     前記正極活物質層と前記負極活物質層との間に配置されたセパレータと、
     前記第1集電体と前記第2集電体との間に配置され、前記正極活物質層及び前記負極活物質層の周囲を取り囲み、前記第1集電体と前記第2集電体との間の空間に電解液を封止する封止部と、を有し、
     前記電解液として、
     リチウム塩を含む電解質と、アルキレン環状カーボネートおよびプロピオン酸メチルを含む非水溶媒と、を有し、前記電解質は、LiPF6以外のリチウム塩を前記リチウム塩の合計に対して30モル%以上含み、
     前記非水溶媒は、前記プロピオン酸メチルを75体積%以上含む、電解液を用いる、リチウムイオン二次電池。
  2.  リチウム塩を含む電解質と、アルキレン環状カーボネートおよびプロピオン酸メチルを含む非水溶媒と、を有し、前記電解質は、LiPF6以外のリチウム塩を前記リチウム塩の合計に対して30モル%以上含み、
     前記非水溶媒は、前記プロピオン酸メチルを75体積%以上含む、電解液。
  3.  前記LiPF6以外のリチウム塩は、(CF3SO22NLi、(FSO22NLi、(C25SO22NLi、FSO2(CF3SO2)NLi、(SO2CF2CF2SO2)NLi、又は(SO2CF2CF2CF2SO2)NLiである、請求項2に記載の電解液。
  4.  前記非水溶媒は、前記プロピオン酸メチルを80体積%以上含む、請求項2又は請求項3に記載の電解液。
  5.  前記電解質は、前記LiPF6以外のリチウム塩を前記リチウム塩の合計に対して50モル%以上含む、請求項2~請求項4の何れか一項に記載の電解液。
  6.  前記負極は、前記負極活物質層に黒鉛を含有する、請求項1に記載のリチウムイオン二次電池。
PCT/JP2022/001511 2021-03-29 2022-01-18 電解液およびリチウムイオン二次電池 WO2022209158A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22779390.8A EP4318718A1 (en) 2021-03-29 2022-01-18 Electrolytic solution and lithium ion secondary battery
US18/284,376 US20240170725A1 (en) 2021-03-29 2022-01-18 Electrolytic solution and lithium ion secondary battery
CN202280026650.6A CN117099238A (zh) 2021-03-29 2022-01-18 电解液和锂离子二次电池
KR1020237020273A KR20230109691A (ko) 2021-03-29 2022-01-18 전해액 및 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056292 2021-03-29
JP2021056292A JP7563273B2 (ja) 2021-03-29 2021-03-29 電解液およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2022209158A1 true WO2022209158A1 (ja) 2022-10-06

Family

ID=83458585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001511 WO2022209158A1 (ja) 2021-03-29 2022-01-18 電解液およびリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20240170725A1 (ja)
EP (1) EP4318718A1 (ja)
JP (1) JP7563273B2 (ja)
KR (1) KR20230109691A (ja)
CN (1) CN117099238A (ja)
WO (1) WO2022209158A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230282799A1 (en) * 2022-03-07 2023-09-07 The University Of Hong Kong Flexible and printable paper-based al ion batteries
WO2024184682A1 (en) * 2023-03-08 2024-09-12 Ses Holdings Pte. Ltd. Electrolytes containing sulfonamide-type cyclic salts, and energy-storage cells and batteries made therewith

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258022A (ja) * 2007-04-05 2008-10-23 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
JP2010123300A (ja) 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc リチウム二次電池及びその使用方法
JP2013140734A (ja) 2012-01-05 2013-07-18 Gs Yuasa Corp 非水電解質二次電池
JP2015201318A (ja) 2014-04-07 2015-11-12 トヨタ自動車株式会社 電極シートの製造方法
JP2018092785A (ja) * 2016-12-02 2018-06-14 日本電気株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
WO2018179884A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 非水電解液及び非水電解液二次電池
JP2020026926A (ja) 2018-08-13 2020-02-20 株式会社フジクラ 熱交換器及び磁気ヒートポンプ装置
JP2021003409A (ja) 2019-06-27 2021-01-14 株式会社三洋物産 遊技機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258022A (ja) * 2007-04-05 2008-10-23 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
JP2010123300A (ja) 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc リチウム二次電池及びその使用方法
JP2013140734A (ja) 2012-01-05 2013-07-18 Gs Yuasa Corp 非水電解質二次電池
JP2015201318A (ja) 2014-04-07 2015-11-12 トヨタ自動車株式会社 電極シートの製造方法
JP2018092785A (ja) * 2016-12-02 2018-06-14 日本電気株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
WO2018179884A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 非水電解液及び非水電解液二次電池
JP2020026926A (ja) 2018-08-13 2020-02-20 株式会社フジクラ 熱交換器及び磁気ヒートポンプ装置
JP2021003409A (ja) 2019-06-27 2021-01-14 株式会社三洋物産 遊技機

Also Published As

Publication number Publication date
JP2022153187A (ja) 2022-10-12
CN117099238A (zh) 2023-11-21
JP7563273B2 (ja) 2024-10-08
EP4318718A1 (en) 2024-02-07
US20240170725A1 (en) 2024-05-23
KR20230109691A (ko) 2023-07-20

Similar Documents

Publication Publication Date Title
JP7232359B2 (ja) 再充電可能なバッテリーセル用のso2ベースの電解質および再充電可能なバッテリーセル
JP6070540B2 (ja) 二次電池および電解液
US9118079B2 (en) Nonaqueous electrolytic solution secondary battery, current collector and vehicle
JP7268796B2 (ja) リチウムイオン二次電池
WO2017094416A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法
JP6279233B2 (ja) リチウム二次電池
JP6623464B2 (ja) リチウムイオン二次電池
JP7003394B2 (ja) 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6680293B2 (ja) ハイドロフルオロエーテル化合物、非水電解液およびリチウムイオン二次電池
JP2006066341A (ja) 非水電解質二次電池
JP6801722B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2017126276A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
CN110036521B (zh) 锂离子二次电池
WO2022209158A1 (ja) 電解液およびリチウムイオン二次電池
JP6177042B2 (ja) リチウム二次電池
KR20160055137A (ko) 이차 전지
WO2023042262A1 (ja) リチウム2次電池
WO2022254717A1 (ja) リチウム2次電池
JP7565624B2 (ja) リチウム2次電池
JP2016207447A (ja) 非水電解液二次電池
JP5582573B2 (ja) 二次電池およびそれに用いる二次電池用電解液
KR20230137979A (ko) 충전식 배터리 셀
WO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液
CN114616709A (zh) 二次电池用电解液添加剂、锂二次电池用非水电解液及包含其的锂二次电池
JP2024115230A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237020273

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18284376

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280026650.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317068347

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022779390

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779390

Country of ref document: EP

Effective date: 20231030