WO2023042262A1 - リチウム2次電池 - Google Patents

リチウム2次電池 Download PDF

Info

Publication number
WO2023042262A1
WO2023042262A1 PCT/JP2021/033741 JP2021033741W WO2023042262A1 WO 2023042262 A1 WO2023042262 A1 WO 2023042262A1 JP 2021033741 W JP2021033741 W JP 2021033741W WO 2023042262 A1 WO2023042262 A1 WO 2023042262A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
less
negative electrode
lithium
Prior art date
Application number
PCT/JP2021/033741
Other languages
English (en)
French (fr)
Inventor
剛輔 大山
浩 井本
Original Assignee
TeraWatt Technology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TeraWatt Technology株式会社 filed Critical TeraWatt Technology株式会社
Priority to JP2023547969A priority Critical patent/JPWO2023042262A1/ja
Priority to PCT/JP2021/033741 priority patent/WO2023042262A1/ja
Publication of WO2023042262A1 publication Critical patent/WO2023042262A1/ja
Priority to US18/601,657 priority patent/US20240266608A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium secondary batteries.
  • lithium secondary batteries that charge and discharge by moving lithium ions between positive and negative electrodes are known to exhibit high voltage and high energy density.
  • a positive electrode and a negative electrode have an active material capable of holding lithium elements, and lithium ions are charged and discharged by exchanging lithium ions between the positive electrode active material and the negative electrode active material.
  • Secondary batteries are known.
  • lithium secondary batteries lithium metal batteries; LMB
  • LMB lithium metal batteries
  • US Pat. No. 6,200,000 discloses a rechargeable battery that uses a lithium metal-based electrode as the negative electrode.
  • Patent Document 2 discloses a lithium secondary battery including a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween. A lithium secondary battery is disclosed that migrates from the positive electrode to form lithium metal on a negative current collector within the negative electrode. Patent Document 2 discloses that such a lithium secondary battery solves the problems caused by the reactivity of lithium metal and the problems occurring during the assembly process, and provides a lithium secondary battery with improved performance and life. We disclose what we can do.
  • a lithium secondary battery including a negative electrode having a negative electrode active material it is difficult to sufficiently increase the energy density due to the volume and mass occupied by the negative electrode active material.
  • dendrite-like lithium metal is likely to form on the surface of the negative electrode due to repeated charging and discharging, resulting in short circuits and/or short circuits.
  • the cycle characteristics are not sufficient because the capacity tends to decrease.
  • solvents used for the purpose of improving cycle characteristics and/or energy density in lithium secondary batteries such as those described in Patent Documents 1 and 2 usually tend to have low boiling points and high vapor pressures.
  • the present inventors have found that in lithium secondary batteries such as those disclosed in Patent Documents 1 and 2, when the composition of the electrolyte is adjusted to improve cycle characteristics and/or energy density, the electrolyte composition is easily changed, and the problem that the stability against environmental temperature changes is lowered was found.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery that achieves both high energy density, excellent cycle characteristics, and high stability against changes in environmental temperature. .
  • a lithium secondary battery includes a positive electrode, a negative electrode having no negative electrode active material, and an electrolytic solution, and the electrolytic solution contains, as solvents, an ether having no fluorine atom and a hydro It contains fluoroethers and saturated or unsaturated chain hydrofluorocarbons.
  • the lithium secondary battery of the above embodiment has a smaller volume and mass of the entire battery and a lower energy density than a lithium secondary battery that has a negative electrode active material. expensive.
  • lithium metal is deposited on the surface of the negative electrode, and the deposited lithium metal is electrolytically eluted, whereby charge and discharge are performed.
  • a lithium secondary battery comprising: can achieve both high energy density and excellent cycle characteristics and high stability against changes in environmental temperature. Although the cause is not clear, it is presumed that each component of the solvent synergistically improves the energy density, cycle characteristics, and stability against changes in environmental temperature.
  • the molecular weight of the hydrofluorocarbon is preferably 300 or more and 600 or less. According to such an aspect, the lithium secondary battery tends to have better stability against environmental temperature changes.
  • the boiling point of the electrolytic solution is preferably 74°C or higher. According to such an aspect, the lithium secondary battery becomes more excellent in stability against changes in ambient temperature, especially against high temperatures.
  • the content of the hydrofluorocarbon is preferably 5.0% by volume or more and 50% by volume or less with respect to the total amount of the hydrofluoroether and the hydrofluorocarbon. . According to such an aspect, the lithium secondary battery tends to have a better balance between cycle characteristics and stability against changes in environmental temperature.
  • the hydrofluoroether preferably has a structure represented by the following formula (1).
  • the lithium secondary battery tends to have better cycle characteristics.
  • R F is a fluorinated saturated or unsaturated monovalent hydrocarbon group
  • R 1 is a hydrogen atom or an alkyl group
  • R 2 is an optionally fluorinated saturated or unsaturated is a monovalent hydrocarbon group
  • n represents an integer of 1 or more and 5 or less.
  • the hydrofluoroether preferably has at least one structure represented by the following formula (2) or (3). According to such an aspect, the lithium secondary battery tends to have better cycle characteristics.
  • the wavy line represents the binding site in the monovalent group.
  • the ratio (F/(F+H)) of the number of fluorine atoms (F) to the total number of fluorine atoms and hydrogen atoms (F+H) is 0.60 or more and 0.90 or less. According to such an aspect, the lithium secondary battery tends to have a better balance between cycle characteristics and stability against changes in environmental temperature.
  • the electrolytic solution preferably contains LiN( SO2F ) 2 as a lithium salt. According to such an aspect, the lithium secondary battery tends to have better cycle characteristics.
  • the total content of the fluorinated solvent in the electrolyte preferably exceeds 50% by volume with respect to the total amount of solvent components. According to such an aspect, the lithium secondary battery tends to have a better balance between cycle characteristics and stability against changes in environmental temperature.
  • the content of the fluorine atom-free ether is 3.0% by volume or more and 50% by volume or less with respect to the total amount of the solvent component of the electrolyte solution. is. According to such an aspect, the lithium secondary battery tends to have a better balance between cycle characteristics and stability against changes in environmental temperature.
  • the present invention it is possible to provide a lithium secondary battery that achieves both high energy density, excellent cycle characteristics, and high stability against environmental temperature changes.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to an embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of use of a lithium secondary battery according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of use of a lithium secondary battery according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to this embodiment.
  • the lithium secondary battery 100 of the present embodiment includes a positive electrode 120, a negative electrode 140 having no negative electrode active material, a separator 130 interposed between the positive electrode 120 and the negative electrode 140, and 1 is provided with an electrolytic solution (not shown).
  • the positive electrode 120 has a positive electrode current collector 110 on the surface opposite to the surface facing the separator 130 .
  • Each configuration of the lithium secondary battery 100 will be described below.
  • the negative electrode 140 does not have a negative electrode active material.
  • the term “negative electrode active material” refers to a material that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the negative electrode.
  • the negative electrode active material of the present embodiment includes lithium metal and a host material of lithium element (lithium ion or lithium metal).
  • a host material for elemental lithium means a material provided to hold lithium ions or lithium metal to the negative electrode. Mechanisms for such retention include, but are not limited to, intercalation, alloying, and occlusion of metal clusters, typically intercalation.
  • the negative electrode does not have a negative electrode active material before the initial charge of the battery, lithium metal is deposited on the negative electrode, and the deposited lithium metal is electrolytically eluted. is done. Therefore, in the lithium secondary battery of the present embodiment, the volume occupied by the negative electrode active material and the mass of the negative electrode active material are reduced compared to a lithium secondary battery having a negative electrode active material, and the overall volume and mass of the battery are small. Therefore, in principle, the energy density is high.
  • the negative electrode 140 does not have a negative electrode active material before initial charging of the battery, lithium metal is deposited on the negative electrode by charging the battery, and the deposited lithium metal is discharged by discharging the battery. is electrolytically eluted. Therefore, in the lithium secondary battery of this embodiment, the negative electrode functions as a negative electrode current collector.
  • the negative electrode has a host material of elemental lithium (lithium ion or lithium metal), and upon charging of the battery, such material is charged with elemental lithium, and the host material releases elemental lithium, thereby forming a battery. is discharged.
  • the LIB is different from the lithium secondary battery 100 of the present embodiment in that the negative electrode has a lithium element host material.
  • Lithium metal batteries (LMBs) are manufactured using an electrode with lithium metal on its surface, or with lithium metal alone as the negative electrode.
  • the LMB differs from the lithium secondary battery 100 of the present embodiment in that the negative electrode has lithium metal as the negative electrode active material immediately after the battery is assembled, that is, before the battery is initially charged.
  • the LMB uses an electrode containing lithium metal, which is highly combustible and reactive, in its manufacture, but the lithium secondary battery 100 of the present embodiment uses a negative electrode that does not contain lithium metal, so it is safer and more productive. It is excellent for
  • the phrase "the negative electrode does not have a negative electrode active material” means that the negative electrode 140 does not have or substantially does not have a negative electrode active material. That the negative electrode 140 does not substantially contain a negative electrode active material means that the content of the negative electrode active material in the negative electrode 140 is 10% by mass or less with respect to the entire negative electrode.
  • the content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, may be 1.0% by mass or less, or may be 0.1% by mass or less with respect to the entire negative electrode 140. It may be 0.0% by mass or less.
  • the lithium secondary battery 100 has a high energy density.
  • the battery "before the initial charge” means the state from the time the battery is assembled to the time it is charged for the first time.
  • the state that the battery is “at the end of discharge” means that the voltage of the battery is 1.0 V or more and 3.8 V or less, preferably 1.0 V or more and 3.0 V or less.
  • a lithium secondary battery including a negative electrode that does not have a negative electrode active material means that the negative electrode 140 does not have a negative electrode active material before initial charging of the battery. Therefore, the phrase “negative electrode without negative electrode active material” is equivalent to “negative electrode without negative electrode active material before the initial charge of the battery” and “negative electrode having a negative electrode active material other than lithium metal regardless of the state of charge of the battery.” In other words, the term “negative electrode that does not contain lithium metal before initial charge” or "negative electrode current collector that does not contain lithium metal before initial charge” or the like.
  • the “lithium secondary battery having a negative electrode without negative electrode active material” may also be referred to as an anode-free lithium battery, a zero-anode lithium battery, or an anode-less lithium battery.
  • the content of the negative electrode active material other than lithium metal is 10% by mass or less, preferably 5.0% by mass or less, relative to the entire negative electrode, regardless of the state of charge of the battery. 1.0% by mass or less, 0.1% by mass or less, 0.0% by mass or less, or 0% by mass.
  • the negative electrode 140 of the present embodiment may have a lithium metal content of 10% by mass or less, preferably 5.0% by mass or less with respect to the entire negative electrode before initial charging. It may be 0% by mass or less, 0.1% by mass or less, 0.0% by mass or less, or 0% by mass.
  • the lithium metal content when the voltage of the battery is 1.0 V or more and 3.5 V or less, the lithium metal content may be 10% by mass or less with respect to the entire negative electrode 140. (Preferably 5.0% by mass or less, and may be 1.0% by mass or less.); It may be 10% by mass or less with respect to the entire negative electrode 140 (preferably 5.0% by mass or less, and may be 1.0% by mass or less); or the battery voltage is 1.0V In the case of 2.5 V or less, the lithium metal content may be 10% by mass or less with respect to the entire negative electrode 140 (preferably 5.0% by mass or less, and 1.0% by mass or less may be.).
  • the mass M of lithium metal deposited on the negative electrode is 4.2
  • the ratio M 3.0 /M 4.2 of the mass M 3.0 of the lithium metal deposited on the negative electrode is preferably 40% or less, more preferably 38% or less, and still more preferably 35%. It is below.
  • the ratio M 3.0 /M 4.2 may be 1.0% or more, 2.0% or more, 3.0% or more, or 4.0% or more. may be
  • Examples of the negative electrode active material of the present embodiment include lithium metal and alloys containing lithium metal, carbonaceous materials, metal oxides, metals that are alloyed with lithium, and alloys containing such metals.
  • Examples of the carbon-based substance include, but are not limited to, graphene, graphite, hard carbon, mesoporous carbon, carbon nanotube, and carbon nanohorn.
  • Examples of the metal oxide include, but are not particularly limited to, titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds.
  • Examples of metals alloyed with lithium include silicon, germanium, tin, lead, aluminum, and gallium.
  • the negative electrode 140 of the present embodiment is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector. At least one selected from the group consisting of metals, alloys thereof, and stainless steel (SUS), preferably Cu, Ni, alloys thereof, and stainless steel (SUS). The use of such a negative electrode tends to improve the energy density and productivity of the battery.
  • SUS stainless steel
  • SUS stainless steel
  • conventionally well-known various things can be used.
  • the above negative electrode materials are used individually by 1 type or in combination of 2 or more types.
  • the term "metal that does not react with Li” means a metal that does not react with lithium ions or lithium metal to form an alloy under the operating conditions of the lithium secondary battery.
  • the capacity of the negative electrode 140 is sufficiently smaller than the capacity of the positive electrode 120, and may be, for example, 20% or less, 15% or less, 10% or less, or 5% or less. Each capacity of the positive electrode 120 and the negative electrode 140 can be measured by a conventionally known method.
  • the average thickness of the negative electrode 140 is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and still more preferably 6 ⁇ m or more and 15 ⁇ m or less. According to this aspect, the volume occupied by the negative electrode 140 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the electrolytic solution is a solution that contains an electrolyte and a solvent, has ionic conductivity, and acts as a conductive path for lithium ions.
  • the electrolytic solution may be impregnated into the separator 130, or may be sealed together with the laminate of the positive electrode 120, the separator 130, and the negative electrode 140 in an airtight container.
  • the electrolytic solution of the present embodiment contains, as solvents, an ether having no fluorine atom, a hydrofluoroether, and a saturated or unsaturated chain hydrofluorocarbon. Since the lithium secondary battery of the present embodiment has such an electrolytic solution, it is possible to achieve both excellent cycle characteristics and stability against changes in environmental temperature. The reason for this is not necessarily clear, but is presumed, for example, as follows.
  • a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode or the like by decomposing the solvent or the like in the electrolyte. be.
  • the SEI layer suppresses further decomposition of the components in the electrolytic solution, resulting irreversible reduction of lithium ions, generation of gas, and the like.
  • the SEI layer has ion conductivity, the reactivity of the lithium deposition reaction on the negative electrode surface on which the SEI layer is formed becomes uniform in the planar direction of the negative electrode surface. Therefore, promoting the formation of the SEI layer is very important for improving the performance of anode-free lithium secondary batteries.
  • HFE hydrofluoroether
  • the electrolyte contains an ether having no fluorine atom
  • the solubility of the electrolyte in the electrolyte is further improved, so that the internal resistance of the battery is further reduced, and the properties of the SEI layer formed are suitable. It is speculated that it can be Furthermore, since the chain hydrofluorocarbon (hereinafter also referred to as "HFC”) has a fluorine atom, it is easily dissolved in a mixed solvent of HFE and an ether having no fluorine atom, and even if the molecular weight is increased, phase separation is less likely to occur. Therefore, a solvent having a large molecular weight can be added as a solvent, and the boiling point of the electrolytic solution can be improved.
  • HFC chain hydrofluorocarbon
  • the lithium secondary battery 100 is less likely to undergo phase separation in the electrolyte, and has both excellent cycle characteristics and stability against changes in environmental temperature. It is considered possible to have However, the factors are not limited to the above.
  • hydrofluoroether or “HFE” means an ether compound having at least one fluorine atom and one hydrogen atom.
  • hydrofluorocarbon or “HFC” means a hydrocarbon compound containing at least one fluorine atom and one hydrogen atom.
  • chain hydrocarbon skeleton means a hydrocarbon chain structure formed by bonding a plurality of carbon atoms in a chain, and is intended to exclude cyclic hydrocarbon skeletons. do.
  • the molecular weight of the hydrofluoroether (HFE) contained in the electrolytic solution of this embodiment is not particularly limited, and is, for example, 100 or more and 500 or less. From the viewpoint of making the lithium secondary battery more stable against changes in environmental temperature, the molecular weight of HFE is preferably 120 or more and 450 or less, more preferably 140 or more and 400 or less, and 160 or more. It is more preferably 350 or less, and even more preferably 180 or more and 300 or less.
  • the number of carbon atoms in HFE is not particularly limited, and is, for example, 3 or more and 30 or less. Further, from the viewpoint of improving the cycle characteristics and/or stability of the battery, the number of carbon atoms in the HFE is preferably 4 or more, 5 or more, or 6 or more. or less, or preferably 10 or less.
  • the number of fluorine atoms in HFE is not particularly limited, and is, for example, 1 or more and 45 or less. From the viewpoint of improving the cycle characteristics and/or stability of the battery, the number of fluorine atoms in the HFE is preferably 3 or more and 40 or less, more preferably 5 or more and 30 or less, and 6 or more and 20 or less. is more preferable, and 7 or more and 15 or less is even more preferable.
  • the number of ether bonds in HFE is not particularly limited, and is, for example, 1 or more and 10 or less. From the viewpoint of improving cycle characteristics and/or stability of the battery, the number of ether bonds in HFE is preferably 1 or more and 5 or less, more preferably 1 or more and 2 or less.
  • HFE contained in the electrolytic solution of the present embodiment preferably has a structure represented by the following formula (1).
  • R F is a fluorinated saturated or unsaturated monovalent hydrocarbon group
  • R 1 is a hydrogen atom or an alkyl group
  • R 2 is an optionally fluorinated saturated or an unsaturated monovalent hydrocarbon group.
  • RF is not particularly limited as long as it is a fluorinated saturated or unsaturated monovalent hydrocarbon group, for example, a linear or branched carbon having at least one fluorine atom It is an alkyl group, alkenyl group or alkynyl group having numbers 1 to 5.
  • R F is preferably a linear or branched C 1-5 alkyl group having at least one fluorine atom, more preferably a linear or branched C 1-5 alkyl group having at least one fluorine atom. 3 is an alkyl group.
  • the number of fluorine atoms in RF is not particularly limited as long as it is 1 or more, and is, for example, 1 or more and 10 or less, preferably 1 or more and 5 or less, more preferably 2 or more and 4 or less.
  • RF is preferably a fluorinated methyl group or a fluorinated ethyl group, and is a trifluoromethyl group, a tetrafluoroethyl group, or a pentafluoroethyl group. is more preferable.
  • R 1 is not particularly limited as long as it is a hydrogen atom or an alkyl group.
  • R 1 is an alkyl group
  • the number of carbon atoms is not particularly limited, and is, for example, 1 to 5, preferably 1 to 3, more preferably 1 or 2.
  • the alkyl group has no fluorine atoms.
  • R1 is preferably a hydrogen atom.
  • R 2 is not particularly limited as long as it is a saturated or unsaturated monovalent hydrocarbon group which may be fluorinated. or a branched C 1-5 alkyl group, alkenyl group or alkynyl group.
  • R 2 is preferably a linear or branched C 1-5 alkyl group having at least one fluorine atom, more preferably a linear or branched C 1-5 alkyl group having at least one fluorine atom.
  • 3 is an alkyl group.
  • the number of fluorine atoms in R 2 is not particularly limited, and is, for example, 0 or more and 10 or less, preferably 1 or more and 6 or less, more preferably 2 or more and 5 or less.
  • R 2 is preferably a fluorinated methyl group or a fluorinated ethyl group, a trifluoromethyl group, a trifluoroethyl group, a tetrafluoroethyl group, or a pentafluoro It is more preferably an ethyl group, more preferably a trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, or pentafluoroethyl group.
  • n is not particularly limited as long as it is an integer of 1 or more and 5 or less. From the viewpoint of improving the cycle characteristics of the battery, n in the above formula (1) is preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, and even more preferably 1 or more and 2 or less. .
  • the HFE contained in the electrolytic solution of this embodiment preferably has at least one of the structures represented by the following formula (2) or (3).
  • a lithium secondary battery uses an electrolyte containing HFE as described above, a good SEI layer tends to be formed on the surface of the negative electrode.
  • the HFE contained in the electrolytic solution of the present embodiment preferably has both the following formulas (2) and (3).
  • HFE may have a plurality of at least one of the structures of the following formula (2) or (3).
  • the wavy line represents a binding site in the monovalent group.
  • the HFE contained in the electrolytic solution of the present embodiment has at least one of the structures represented by the above formula (2) or (3)
  • the HFE is more preferably the following formula (2′) or (3′) It is a compound represented by In formulas (2′) and (3′) below, definitions and preferred embodiments of R 1 , R 2 , R F , and n are the same as in formula (1) above.
  • HFE in the present embodiment is not particularly limited, but examples include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, bis(2,2,2-trifluoroethyl) ethers, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, methyl-1,1,2,2-tetrafluoroethyl ether, 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoro Ethyl ether, difluoromethyl-2,2,3,3-tetrafluoropropyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether and the like
  • HFE includes 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, or bis(2,2 ,2-trifluoroethyl) ether is preferred.
  • the chain hydrofluorocarbon (HFC) contained in the electrolytic solution of the present embodiment is not particularly limited as long as it is saturated or unsaturated chain, but preferably has a molecular weight of 200 or more and 800 or less.
  • the molecular weight of the chain HFC is more preferably 225 or more and 700 or less, more preferably 250 or more and 650 or less. It is preferably 275 or more and 630 or less, and particularly preferably 300 or more and 600 or less.
  • the ratio (F/(F+H)) of the number of fluorine atoms (F) to the total number of fluorine atoms and hydrogen atoms (F+H) is not particularly limited. , from 0.30 to less than 1.0. From the viewpoint of further improving the balance between the cycle characteristics of the lithium secondary battery and the stability against changes in environmental temperature, the ratio (F/(F+H)) should be 0.40 or more and 0.95 or less. is preferably 0.50 or more and 0.90 or less, more preferably 0.60 or more and 0.90 or less, and even more preferably 0.65 or more and 0.90 or less.
  • the chain HFC contained in the electrolytic solution of the present embodiment may have a carbon atom chain portion that does not have a fluorine atom. By containing such a chain HFC, the electrolytic solution tends to have excellent compatibility.
  • the chain HFC preferably has a structure in which a carbon atom chain portion having fluorine atoms and a carbon atom chain portion having no fluorine atoms are linked.
  • the number of carbon atoms in the carbon atom chain portion having no fluorine atom is not particularly limited, and may be, for example, 1 or more and 8 or less, 2 or more and 6 or less, or 2 or more and 4 It may be below.
  • the number of carbon atoms in the carbon atom chain portion having a fluorine atom is not particularly limited, and may be, for example, 2 or more and 15 or less, 3 or more and 12 or less, or 4 or more and 10 or less. may be
  • the number of fluorine atoms possessed by the chain HFC is not particularly limited, and is, for example, 4 or more and 50 or less. From the viewpoint of improving the stability of the battery against changes in environmental temperature, the number of fluorine atoms in the chain HFC is preferably 6 or more and 40 or less, more preferably 8 or more and 30 or less, and 10 or more and 25. is more preferably 12 or more and 20 or less is even more preferable.
  • the number of carbon atoms in the chain HFC is not particularly limited, and is, for example, 4 or more and 30 or less.
  • the number of carbon atoms in the HFE is preferably 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more. , 20 or less, 15 or less, or 12 or less.
  • the chain HFC in the present embodiment is not particularly limited, and examples thereof include (perfluoro-n-hexyl)ethane, 1H,1H,2H-heptadecafluoro-1-decene, 1-(perfluoro-n- hexyl)tetradecane, 2H,3H-decafluoropentane, eicosafluorononane, hexadecafluoroheptane, hexacosafluorododecane, octadecafluorooctane, (perfluorohexyl)ethylene, 1H-tridecafluorohexane, and the like.
  • chain HFCs include (perfluoro-n-hexyl)ethane, 1H, 1H, 2H- Heptadecafluoro-1-decene is preferred.
  • the electrolytic solution of the present embodiment may contain a compound substituted with at least one fluorine atom (hereinafter also referred to as a "fluorine-substituted compound") other than the HFE and the chain HFC.
  • Fluorine-substituted compounds other than HFEs and chain HFCs are not particularly limited, and include, for example, fluorine-substituted compounds having an ester group, a carbonate group, a carbonyl group, and/or a ketone group.
  • the electrolytic solution may contain a fluorine-substituted compound having no hydrogen atoms.
  • Such fluorine-substituted compounds are not particularly limited, and examples thereof include hydrocarbons in which all substituents are substituted with fluorine, hydrocarbons in which all substituents are substituted with chlorine or fluorine, and the like.
  • the electrolyte may contain a cyclic HFC.
  • Cyclic HFCs are not particularly limited, and examples include 1,1,2,2,3,3,4-heptafluorocyclopentane, hexadecafluoro(1,3-dimethylcyclohexane), tetradecafluoromethylcyclohexane, fluorocyclohexane, fluorocyclopentane, octadecafluorodecahydronaphthalene, octafluoronaphthalene, and the like.
  • the number of carbon atoms in the ether compound containing no fluorine atoms (hereinafter also referred to as "non-fluorine ether compound”) contained in the electrolytic solution is not particularly limited, and is, for example, 2 or more and 20 or less. From the viewpoint of further improving the solubility of the electrolyte in the electrolytic solution, the number of carbon atoms in the non-fluorine ether compound is preferably 3 or more and 15 or less, more preferably 4 or more and 12 or less, and 5 or more and 10 or less. More preferred.
  • the non-fluorine ether compound is not particularly limited, and examples thereof include triethylene glycol dimethyl ether, 1,2-dimethoxyethane, 1,1-dimethoxyethane, diethylene glycol dimethyl ether, tetrahydrofuran, tetrahydropyran, dioxolane, dioxane, 4-methyl-1. , 3-dioxane, oxetane, and hexamethylene oxide.
  • the non-fluorine ether compound is preferably a compound having 2, 3, 4, 5, 6, 7 or 8 ether bonds. -dimethoxyethane, diethylene glycol dimethyl ether, or triethylene glycol dimethyl ether, and more preferably 1,2-dimethoxyethane.
  • the content of HFE in the electrolytic solution is not particularly limited, and is, for example, 40% by volume or more and 90% by volume or less with respect to the total amount of solvent components. From the viewpoint of further improving the cycle characteristics of the lithium secondary battery, the content of HFE is preferably 45% by volume or more and 85% by volume or less, and 50% by volume or more and 80% by volume or less, based on the total amount of the solvent components. more preferably 55% by volume or more and 75% by volume or less, and even more preferably 60% by volume or more and 70% by volume or less.
  • the content of the chain HFC in the electrolytic solution is not particularly limited, and is, for example, 1.0% by volume or more and 60% by volume or less with respect to the total amount of the solvent component. From the viewpoint of further improving the balance between the cycle characteristics of the lithium secondary battery and/or the stability against changes in environmental temperature, the content of the chain HFC is 3.0% by volume with respect to the total amount of the solvent component. It is preferably 55% by volume or less, more preferably 5.0% by volume or more and 50% by volume or less, even more preferably 7.0% by volume or more and 45% by volume or less, and 10% by volume or more and 40% by volume. It is even more preferable that it is vol% or less.
  • the total content of the fluorinated solvent is not particularly limited, and is, for example, 30% by volume or more with respect to the total amount of solvent components. From the viewpoint of further improving the balance between the cycle characteristics of the lithium secondary battery and/or the stability against changes in environmental temperature, the total content of the fluorinated solvent is 40 volumes with respect to the total amount of the solvent components. % or more, more preferably 50 vol% or more or more than 50 vol%, still more preferably 60 vol% or more, even more preferably 70 vol% or more, 75 vol% It is particularly preferable that it is above.
  • the content of the ether having no fluorine atom is not particularly limited, and is, for example, 1.0% by volume or more and 60% by volume or less with respect to the total amount of the solvent component of the electrolytic solution.
  • the content of the ether having no fluorine atom is 3.5% with respect to the total amount of the solvent components of the electrolyte. It is preferably 0 volume% or more and 50 volume% or less, more preferably 5.0 volume% or more and 45 volume% or less, still more preferably 7.0 volume% or more and 40 volume% or less, 10 volumes % or more and 30 volume % or less is even more preferable.
  • the above compounds and solvents other than the above compounds can be freely combined and used as long as they contain a non-fluorine ether compound, HFE, and chain HFC.
  • the non-fluorine ether compounds, HFEs, and chain HFCs may be used singly or in combination of two or more.
  • the boiling point of the electrolytic solution of this embodiment is preferably 60°C or higher. From the viewpoint of further improving the stability of the lithium secondary battery against changes in environmental temperature, particularly the stability against high temperatures, the boiling point of the electrolyte is preferably 65° C. or higher, more preferably 70° C. or higher. It is more preferably 74° C. or higher, even more preferably 80° C. or higher, and particularly preferably 90° C. or higher.
  • the electrolyte contained in the electrolytic solution is not particularly limited as long as it is a salt, and examples thereof include salts of Li, Na, K, Ca, and Mg.
  • a lithium salt is preferably used as the electrolyte.
  • the lithium salt is not particularly limited, but LiI, LiCl, LiBr, LiF, LiBF4 , LiPF6, LiAsF6 , LiSO3CF3 , LiN( SO2F ) 2 , LiN( SO2CF3 ) 2 , LiN ( SO2CF3CF3 ) 2 , LiBF2 ( C2O4 ) , LiB ( O2C2H4 ) 2 , LiB(O2C2H4 ) F2 , LiB( OCOCF3 ) 4 , LiNO 3 , and Li2SO4 .
  • LiN(SO 2 F) 2 is preferable as the lithium salt from the viewpoint of further improving the energy density and cycle characteristics of the lithium secondary battery 100 .
  • the electrolyte contains LiN(SO 2 F) 2 , the formation and growth of the SEI layer on the negative electrode surface are further promoted, and there is a tendency to obtain a lithium secondary battery with even better cycle characteristics.
  • said lithium salt is used individually by 1 type or in combination of 2 or more types.
  • the concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably 0.50 M or higher, more preferably 0.70 M or higher, still more preferably 0.90 M or higher, and even more preferably 1.0 M or higher. be.
  • the electrolyte concentration is within the above range, the SEI layer is formed more easily and the internal resistance tends to be lower.
  • a lithium secondary battery containing a fluorine compound as a solvent can increase the concentration of the electrolyte in the electrolytic solution, so that the cycle characteristics and rate performance can be further improved.
  • the upper limit of the electrolyte concentration is not particularly limited, and the electrolyte concentration may be 10M or less, 5.0M or less, or 2.0M or less.
  • the lithium secondary battery of the present embodiment may contain the electrolytic solution or components of the electrolytic solution in a state other than liquid.
  • a battery containing the above electrolytic solution in a solid or semi-solid (gel) member can be obtained.
  • the electrolytic solution can be rephrased as an electrolyte.
  • the electrolytic solution contains non-fluorine ether compounds, HFEs, and chain HFCs.
  • examples of such methods include NMR measurement, mass spectrometry such as HPLC-MS, and IR measurement.
  • the separator 130 is a member for separating the positive electrode 120 and the negative electrode 140 to prevent the battery from short-circuiting and ensuring ionic conductivity of lithium ions serving as charge carriers between the positive electrode 120 and the negative electrode 140 .
  • the separator 130 has a function of physically and/or electrically isolating the positive electrode 120 and the negative electrode 140 and a function of ensuring ionic conductivity of lithium ions. Therefore, the separator 130 is made of a material that does not have electronic conductivity and does not react with lithium ions. Moreover, the separator 130 may play a role of retaining the electrolytic solution.
  • one type of member having the above two functions may be used alone, or two or more types of members having the above one function may be used in combination.
  • the separator is not particularly limited as long as it performs the functions described above, and examples thereof include insulating porous members, polymer electrolytes, gel electrolytes, and inorganic solid electrolytes. It is at least one selected from the group consisting of a material member, a polymer electrolyte, and a gel electrolyte.
  • the separator When the separator includes an insulating porous member, the member exhibits ion conductivity by filling the pores of the member with an ion-conducting substance. Substances to be filled include, for example, the electrolytic solution, polymer electrolyte, and gel electrolyte described above.
  • the separator 130 can use an insulating porous member, a polymer electrolyte, or a gel electrolyte singly or in combination of two or more.
  • the lithium secondary battery needs to further include an electrolytic solution.
  • the material constituting the insulating porous member is not particularly limited, but examples thereof include insulating polymer materials, specifically polyethylene (PE) and polypropylene (PP). That is, the separator 130 may be a porous polyethylene (PE) film, a porous polypropylene (PP) film, or a laminated structure thereof.
  • PE polyethylene
  • PP polypropylene
  • the separator 130 may be covered with a separator covering layer.
  • the separator coating layer may cover both sides of the separator 130, or may cover only one side.
  • the separator coating layer is not particularly limited as long as it has ion conductivity and does not react with lithium ions.
  • Examples of such a separator coating layer include, but are not limited to, polyvinylidene fluoride (PVDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and lithium polyacrylate. (Li-PAA), polyimide (PI), polyamideimide (PAI), and binders such as aramid.
  • the separator 130 may be a separator without a separator coating layer or a separator with a separator coating layer.
  • the average thickness of the separator 130 including the separator coating layer is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less. According to this aspect, the volume occupied by the separator 130 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved. Also, the average thickness of the separator 130 is preferably 5.0 ⁇ m or more, more preferably 7.0 ⁇ m or more, and even more preferably 10 ⁇ m or more. According to such an aspect, the positive electrode 120 and the negative electrode 140 can be reliably separated, and the short circuit of the battery can be further suppressed.
  • the positive electrode 120 is not particularly limited as long as it is generally used in lithium secondary batteries, and a known material can be appropriately selected depending on the application of the lithium secondary battery. From the viewpoint of improving battery stability and output voltage, the positive electrode 120 preferably has a positive electrode active material. When the positive electrode has a positive electrode active material, lithium ions are typically charged into and released from the positive electrode active material by charge and discharge of the battery.
  • a “positive electrode active material” is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the positive electrode.
  • the positive electrode active material includes a host material of lithium element (typically lithium ion).
  • positive electrode active materials include, but are not particularly limited to, metal oxides and metal phosphates.
  • metal oxide include, but are not limited to, cobalt oxide-based compounds, manganese oxide-based compounds, and nickel oxide-based compounds.
  • metal phosphate include, but are not particularly limited to, iron phosphate-based compounds and cobalt phosphate-based compounds.
  • the above positive electrode active materials are used singly or in combination of two or more.
  • the positive electrode 120 may contain components other than the positive electrode active material described above. Examples of such components include, but are not limited to, conductive aids, binders, gel electrolytes and polymer electrolytes.
  • the positive electrode 120 may be a gel electrolyte. According to such an embodiment, the function of the gel electrolyte improves the adhesion between the positive electrode and the positive electrode current collector, making it possible to attach a thinner positive electrode current collector, thereby further improving the energy density of the battery. can be When attaching the positive electrode current collector to the surface of the positive electrode, the positive electrode current collector formed on release paper may be used.
  • the conductive aid in the positive electrode 120 is not particularly limited, but examples include carbon black, single-wall carbon nanotubes (SWCNT), multi-wall carbon nanotubes (MWCNT), carbon nanofibers (CF), and acetylene black.
  • the binder is not particularly limited, but examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, acrylic resin, and polyimide resin.
  • the content of the positive electrode active material in the positive electrode 120 may be, for example, 50% by mass or more and 100% by mass or less with respect to the entire positive electrode 120 .
  • the content of the conductive aid may be, for example, 0.50% by mass or more and 30% by mass or less with respect to the entire positive electrode 120 .
  • the content of the binder may be, for example, 0.50% by mass or more and 30% by mass or less with respect to the entire positive electrode 120 .
  • the content of the gel electrolyte or polymer electrolyte may be, for example, 0.50% by mass or more and 30% by mass or less, preferably 5.0% by mass or more and 20% by mass or less, with respect to the entire positive electrode 120, More preferably, it is 8.0% by mass or more and 15% by mass or less.
  • the average thickness of the positive electrode 120 is preferably 20 ⁇ m or more and 100 ⁇ m or less, more preferably 30 ⁇ m or more and 80 ⁇ m or less, and still more preferably 40 ⁇ m or more and 70 ⁇ m or less.
  • the average thickness of the positive electrode can be appropriately adjusted according to the desired battery capacity.
  • a positive electrode current collector 110 is arranged on one side of the positive electrode 120 .
  • the positive electrode current collector is not particularly limited as long as it is a conductor that does not react with lithium ions in the battery. Examples of such a positive electrode current collector include aluminum. Note that the positive electrode current collector 110 may not be provided, in which case the positive electrode itself functions as a current collector.
  • the positive electrode current collector acts to transfer electrons to and from the positive electrode (particularly the positive electrode active material).
  • Cathode current collector 110 is in physical and/or electrical contact with cathode 120 .
  • the average thickness of the positive electrode current collector is preferably 1.0 ⁇ m or more and 15 ⁇ m or less, more preferably 2.0 ⁇ m or more and 10 ⁇ m or less, and still more preferably 3.0 ⁇ m or more and 6.0 ⁇ m or less. is. According to such an aspect, the volume occupied by the positive electrode current collector in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • FIG. 2 shows one mode of use of the lithium secondary battery of this embodiment.
  • a positive electrode terminal 210 and a negative electrode terminal 220 for connecting the lithium secondary battery 200 to an external circuit are joined to a positive current collector 110 and a negative electrode 140, respectively.
  • the lithium secondary battery 200 is charged and discharged by connecting the negative terminal 220 to one end of an external circuit and the positive terminal 210 to the other end of the external circuit.
  • the lithium secondary battery 200 is charged by applying a voltage between the positive electrode terminal 210 and the negative electrode terminal 220 so that a current flows from the negative electrode terminal 220 (negative electrode 140) through an external circuit to the positive electrode terminal 210 (positive electrode 120). be done.
  • a solid electrolyte interface layer SEI layer
  • SEI layer solid electrolyte interface layer
  • the lithium secondary battery 200 When the positive electrode terminal 210 and the negative electrode terminal 220 of the charged lithium secondary battery 200 are connected via a desired external circuit, the lithium secondary battery 200 is discharged. As a result, lithium metal deposited on the negative electrode is electrolytically eluted.
  • the SEI layer is formed in the lithium secondary battery 200, deposition of lithium metal occurring at least at the interface between the negative electrode 140 and the SEI layer and/or the interface between the SEI layer and the separator 130 is electrolytically eluted. .
  • the method for manufacturing the lithium secondary battery 100 as shown in FIG. 1 is not particularly limited as long as it is a method capable of manufacturing a lithium secondary battery having the above configuration. be done.
  • the positive electrode current collector 110 and the positive electrode 120 are manufactured, for example, as follows.
  • a positive electrode mixture is obtained by mixing the above-described positive electrode active material, conductive aid, and binder.
  • the compounding ratio is, for example, 50% by mass or more and 99% by mass or less of the positive electrode active material, 0.5% by mass or more and 30% by mass or less of the conductive aid, and 0.5% by mass of the binder with respect to the entire positive electrode mixture. It may be more than or equal to 30% by mass or less.
  • the obtained positive electrode mixture is applied to one side of a metal foil (for example, Al foil) having a predetermined thickness (for example, 5.0 ⁇ m or more and 1.0 mm or less) as a positive electrode current collector, and press-molded.
  • the obtained molded body is punched into a predetermined size to obtain the positive electrode current collector 110 and the positive electrode 120 .
  • the negative electrode material described above for example, a metal foil of 1.0 ⁇ m or more and 1.0 mm or less (for example, an electrolytic Cu foil) is washed with a solvent containing sulfamic acid, punched into a predetermined size, and further extruded with ethanol. After ultrasonic cleaning, the negative electrode 140 is obtained by drying.
  • the separator 130 having the configuration described above is prepared.
  • the separator 130 may be manufactured by a conventionally known method, or a commercially available product may be used.
  • a lithium salt is dissolved in the solution.
  • an electrolytic solution is prepared.
  • the mixing ratio of the solvent and the lithium salt may be appropriately adjusted so that the content or concentration of each solvent and the lithium salt in the electrolytic solution is within the ranges described above.
  • the positive electrode current collector 110 having the positive electrode 120 obtained as described above, the separator 130, and the negative electrode 140 are laminated in this order so that the positive electrode 120 and the separator 130 face each other to obtain a laminate.
  • the lithium secondary battery 100 can be obtained by enclosing the obtained laminate in a sealed container together with an electrolytic solution. Examples of the closed container include, but are not particularly limited to, a laminate film.
  • the present embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to the present embodiment, and the present invention can be modified in various ways without departing from the gist thereof. .
  • the separator 130 may be omitted. In that case, it is preferable to fix the positive electrode 120 and the negative electrode 140 in a sufficiently separated state so as not to physically or electrically contact each other.
  • the lithium secondary battery of the present embodiment may have a current collector arranged on the surface of the negative electrode so as to be in contact with the negative electrode.
  • Such current collectors are not particularly limited, but include, for example, those that can be used for negative electrode materials.
  • the lithium secondary battery does not have a positive electrode current collector and a negative electrode current collector, the positive electrode or the negative electrode itself acts as a current collector, respectively.
  • the surface of the negative electrode facing the separator may be partially or wholly coated with a coating agent.
  • negative electrode coating agents include benzotriazole (BTA), imidazole (IM), triazinethiol (TAS), and derivatives thereof.
  • BTA benzotriazole
  • IM imidazole
  • TAS triazinethiol
  • derivatives thereof For example, after washing the negative electrode material described above, it is immersed in a solution containing a negative electrode coating agent (for example, a solution in which the negative electrode coating agent is 0.01% by volume or more and 10% by volume or less), and then dried in the atmosphere.
  • the negative electrode coating agent can be coated by causing the It is presumed that the coating of the above-mentioned compound suppresses non-uniform deposition of lithium metal on the surface of the negative electrode, and suppresses the growth of dendrites of the lithium metal deposited on the negative electrode.
  • a terminal for connecting to an external circuit may be attached to the positive electrode current collector and/or the negative electrode.
  • a metal terminal for example, Al, Ni, etc.
  • a joining method a conventionally known method may be used, for example, ultrasonic welding may be used.
  • high energy density or “high energy density” means that the capacity per total volume or total mass of the battery is high, preferably 700 Wh / L or more or 300 Wh /kg or more, more preferably 800 Wh/L or more or 350 Wh/kg or more, still more preferably 900 Wh/L or more or 400 Wh/kg or more.
  • excellent in cycle characteristics means that the rate of decrease in battery capacity is low before and after the number of charge-discharge cycles that can be assumed in normal use. That is, when comparing the first discharge capacity after the initial charge and discharge and the capacity after the number of charge and discharge cycles that can be assumed in normal use, the capacity after the charge and discharge cycles is the same as the capacity after the initial charge and discharge. It means that there is almost no decrease with respect to the first discharge capacity of .
  • the number of times that can be assumed in normal use is, for example, 30 times, 50 times, 70 times, 100 times, 300 times, or 500 times, depending on the application for which the lithium secondary battery is used. be.
  • the capacity after the charge-discharge cycle is hardly reduced from the first discharge capacity after the initial charge-discharge means that, although it depends on the application for which the lithium secondary battery is used,
  • the capacity after the discharge cycle is 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, or 85% or more of the first discharge capacity after the initial charge and discharge. means.
  • a parameter is preferably 50 or more, more preferably 60 or more, preferably 100 or less, more preferably 90 or less, then the parameter is 50 or more and 100 or less, 50 or more and 90 or less and 60 or more and 100 or less, Or it may be any of 60 or more and 90 or less.
  • Example 1 A lithium secondary battery of Example 1 was produced as follows.
  • a positive electrode was produced.
  • a mixture of 96 parts by mass of LiNi 0.85 Co 0.12 Al 0.03 O 2 as a positive electrode active material, 2.0 parts by mass of carbon black as a conductive aid, and 2.0 parts by mass of polyvinylidene fluoride (PVDF) as a binder was prepared.
  • PVDF polyvinylidene fluoride
  • the obtained molded body was punched into a predetermined size (40 mm ⁇ 40 mm) to obtain a positive electrode having a positive electrode current collector on one side.
  • a separator having a predetermined size 50 mm ⁇ 50 mm was prepared by coating both sides of a polyethylene microporous film of 12 ⁇ m with polyvinylidene fluoride (PVDF) of 2.0 ⁇ m.
  • PVDF polyvinylidene fluoride
  • An electrolytic solution was prepared as follows. 70% by volume of 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 10% by volume of (perfluoro-n-hexyl)ethane, and 20% by volume of 1,2-dimethoxyethane %, the three solvents were mixed. An electrolytic solution was obtained by dissolving LiN(SO 2 F) 2 in the obtained mixed solution so that the molar concentration was 1.0M.
  • a laminate was obtained by stacking the positive electrode current collector having the positive electrode obtained as described above, the separator, and the negative electrode in this order such that the positive electrode faced the separator. Further, an Al terminal of 100 ⁇ m and a Ni terminal of 100 ⁇ m were joined to the positive electrode current collector and the negative electrode by ultrasonic welding, respectively, and then inserted into the laminate exterior body. Next, the electrolytic solution obtained as described above was injected into the outer package. A lithium secondary battery was obtained by sealing the outer package.
  • Examples 2 to 5 A lithium secondary battery was obtained in the same manner as in Example 1, except that the solvent shown in Table 1 was used to prepare the electrolytic solution.
  • Comparative Examples 1 to 5 A lithium secondary battery was obtained in the same manner as in Example 1, except that the solvent shown in Table 2 was used to prepare the electrolytic solution.
  • the comparative example does not contain either hydrofluoroether (HFE) or chain hydrofluorocarbon (HFC), and comparative example 5 contains a cyclic HFC.
  • each solvent is classified into one of fluorine atom-free ether, HFE, and HFC, and further classified into linear and cyclic in HFC. Further, in Tables 1 and 2, the numerical value on the right side of each solvent indicates the content of the solvent with respect to the total amount of the solvent in units of volume %. For example, in Table 1, Example 1 means containing 20% by volume DME, 70% by volume HFE1, and 10% by volume HFC1. All examples and comparative examples contain 1.0 M LiN(SO 2 F) 2 as an electrolyte.
  • phase separation After the electrolytic solution was prepared, it was allowed to stand for 1 hour in an argon atmosphere, and then the presence or absence of phase separation was visually observed. In Tables 1 and 2, "Phase separation" is indicated for those judged to have phase separation.
  • the UN38.3-T2 test is a United Nations transport recommendation test that evaluates the stability of electrical connections inside batteries under rapid temperature changes.
  • the UN38.3-T2 test was performed on the lithium secondary batteries produced in each example and comparative example as follows.
  • the produced lithium secondary battery was CC-charged at a temperature of 25° C. at 3.2 mA to a voltage of 4.2V, and then CC-discharged at 3.2 mA to a voltage of 3.0V.
  • CC charging at 13.6 mA to a voltage of 4.2 V CC discharging at 13.6 mA to a voltage of 3.0 V was repeated 25 cycles.
  • CC charging was performed at 13.6 mA until the voltage reached 4.2V.
  • the lithium secondary battery was stored at a test temperature of 72 ⁇ 2° C. for 6 hours, and then stored at a test temperature of ⁇ 40 ⁇ 2° C. for 6 hours within 30 minutes.
  • the prepared lithium secondary battery was CC-charged at 3.2 mA until the voltage reached 4.2 V (initial charge), and then CC-discharged at 3.2 mA until the voltage reached 3.0 V (hereinafter referred to as ""initialdischarge").
  • the battery was CC-charged at 13.6 mA to a voltage of 4.2 V, and then CC-discharged at 13.6 mA to a voltage of 3.0 V.
  • Discharge capacities at temperatures of 25° C. and 0° C. are shown in Tables 1 and 2.
  • Initial charge and initial discharge were performed using the lithium secondary battery that was produced.
  • a cycle of CC charging at 13.6 mA to a voltage of 4.2 V and then CC discharging at 13.6 mA to a voltage of 3.0 V was repeated in an environment at a temperature of 25°C.
  • the capacity was obtained from the initial discharge (hereinafter referred to as "initial capacity"), and the number of cycles when the discharge capacity reached 80% of the initial capacity (referred to as "cycle number" in the table) was calculated. Shown in Tables 1 and 2.
  • the lithium secondary battery of the present invention has a high energy density, and has both excellent cycle characteristics and high stability against changes in environmental temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、エネルギー密度が高く、優れたサイクル特性と、環境温度の変化に対する高い安定性とを両立するリチウム2次電池を提供する。本発明は、正極と、負極活物質を有しない負極と、電解液と、を備え、前記電解液が、溶媒として、フッ素原子を有しないエーテルと、ハイドロフルオロエーテルと、飽和又は不飽和の鎖状のハイドロフルオロカーボンと、を含む、リチウム2次電池に関する。

Description

リチウム2次電池
 本発明は、リチウム2次電池に関する。
 近年、太陽光又は風力等の自然エネルギーを電気エネルギーに変換する技術が注目されている。これに伴い、安全性が高く、かつ多くの電気エネルギーを蓄えることができる蓄電デバイスとして、様々な2次電池が開発されている。
 その中でも、正極及び負極の間をリチウムイオンが移動することで充放電を行うリチウム2次電池は、高電圧及び高エネルギー密度を示すことが知られている。典型的なリチウム2次電池として、正極及び負極にリチウム元素を保持することのできる活物質を有し、当該正極活物質及び負極活物質の間でのリチウムイオンの授受によって充放電をおこなうリチウムイオン2次電池(LIB)が知られている。
 また、高エネルギー密度化の実現を目的として、負極活物質として、炭素材料のようなリチウムイオンを挿入することができる材料に代えて、リチウム金属を用いるリチウム2次電池(リチウム金属電池;LMB)が開発されている。例えば、特許文献1には、負極としてリチウム金属をベースとする電極を用いる充電型電池が開示されている。
 また、更なる高エネルギー密度化や生産性の向上等を目的として、炭素材料やリチウム金属といった負極活物質を有しない負極を用いるリチウム2次電池が開発されている。例えば、特許文献2には、正極、負極、これらの間に介在された分離膜及び電解質を含むリチウム2次電池において、前記負極は、負極集電体上に金属粒子が形成され、充電によって前記正極から移動され、負極内の負極集電体上にリチウム金属を形成する、リチウム2次電池が開示されている。特許文献2は、そのようなリチウム2次電池は、リチウム金属の反応性による問題と、組み立ての過程で発生する問題点を解決し、性能及び寿命が向上されたリチウム2次電池を提供することができることを開示している。
特表2006-500755号公報 特表2019-505971号公報
 しかしながら、本発明者らが、上記特許文献に記載のものを始めとする従来の電池を詳細に検討したところ、エネルギー密度、サイクル特性及び環境温度の変化に対する安定性の少なくともいずれかが十分でないことが分かった。
 例えば、負極活物質を有する負極を備えるリチウム2次電池は、その負極活物質の占める体積や質量に起因して、エネルギー密度を十分高くすることが困難である。また、負極活物質を有しない負極を備えるアノードフリー型リチウム2次電池についても、従来型のものは、充放電を繰り返すことにより負極表面上にデンドライト状のリチウム金属が形成されやすく、短絡及び/又は容量低下が生じやすいため、サイクル特性が十分でない。
 また、上記の特許文献1及び2のようなリチウム2次電池においてサイクル特性及び/又はエネルギー密度を向上させることを目的として用いられる溶媒は、通常、沸点が低く、蒸気圧が高い傾向にある。本発明者らは、特許文献1及び2のようなリチウム2次電池において、サイクル特性及び/又はエネルギー密度を向上させるために電解液の組成を調整した場合、高温に曝されたときに電解液の組成が変化しやすくなり、環境温度の変化に対する安定性が低下するという課題を見出した。
 本発明は、上記問題点に鑑みてなされたものであり、高いエネルギー密度及び優れたサイクル特性と、環境温度の変化に対する高い安定性とを両立するリチウム2次電池を提供することを目的とする。
 本発明の一実施形態に係るリチウム2次電池は、正極と、負極活物質を有しない負極と、電解液と、を備え、上記電解液が、溶媒として、フッ素原子を有しないエーテルと、ハイドロフルオロエーテルと、飽和又は不飽和の鎖状のハイドロフルオロカーボンと、を含む。
 負極活物質を有しない負極を用いることにより、上記態様のリチウム2次電池は、負極活物質を有するリチウム2次電池と比較して、電池全体の体積及び質量が小さく、エネルギー密度が原理的に高い。上記態様のリチウム2次電池は、リチウム金属が負極の表面に析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われる。
 また、本発明者らは、溶媒としてフッ素原子を有しないエーテルと、ハイドロフルオロエーテルと、飽和又は不飽和の鎖状のハイドロフルオロカーボンと、を含む電解液を用いると、負極活物質を有しない負極を備えるリチウム2次電池が高いエネルギー密度及び優れたサイクル特性と、環境温度の変化に対する高い安定性とを両立できることを見出した。その要因は明らかではないが、上記溶媒の各成分が相乗的にエネルギー密度、サイクル特性及び環境温度の変化に対する安定性を向上させていると推察される。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記ハイドロフルオロカーボンの分子量が、300以上600以下である。そのような態様によれば、リチウム2次電池は、環境温度の変化に対する安定性に一層優れたものとなる傾向にある。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記電解液の沸点が、74℃以上である。そのような態様によれば、リチウム2次電池は、環境温度の変化に対する安定性、特に高温に対する安定性に一層優れたものとなる。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記ハイドロフルオロカーボンの含有量が、上記ハイドロフルオロエーテル及び上記ハイドロフルオロカーボンの総量に対し、5.0体積%以上50体積%以下である。そのような態様によれば、リチウム2次電池はサイクル特性及び環境温度の変化に対する安定性のバランスが一層優れたものとなる傾向にある。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記ハイドロフルオロエーテルが下記式(1)で表される構造を有する。そのような態様によれば、リチウム2次電池は、サイクル特性に一層優れたものとなる傾向にある。
Figure JPOXMLDOC01-appb-C000004
(式中、Rはフッ素化された飽和又は不飽和の1価の炭化水素基であり、Rは水素原子又はアルキル基であり、Rはフッ素化されていてもよい飽和又は不飽和の1価の炭化水素基であり、nは1以上5以下の整数を表す。)
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記ハイドロフルオロエーテルが、下記式(2)又は(3)で表される構造のうち少なくとも一方を有する。そのような態様によれば、リチウム2次電池は、サイクル特性に一層優れたものとなる傾向にある。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(2)及び(3)の式中、波線は、1価の基における結合部位を表す。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記ハイドロフルオロカーボンにおいて、フッ素原子及び水素原子の合計数(F+H)に対するフッ素原子の数(F)の比(F/(F+H))が0.60以上0.90以下である。そのような態様によれば、リチウム2次電池は、サイクル特性及び環境温度の変化に対する安定性のバランスが一層優れたものとなる傾向にある。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記電解液が、リチウム塩としてLiN(SOF)を含む。そのような態様によれば、リチウム2次電池は、サイクル特性に一層優れたものとなる傾向にある。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記電解液において、フッ素化された溶媒の合計の含有量が、溶媒成分の総量に対し、50体積%超である。そのような態様によれば、リチウム2次電池は、サイクル特性及び環境温度の変化に対する安定性のバランスが一層優れたものとなる傾向にある。
 本発明の一実施形態に係るリチウム2次電池において、好ましくは、上記フッ素原子を有しないエーテルの含有量が、上記電解液の溶媒成分の総量に対し、3.0体積%以上50体積%以下である。そのような態様によれば、リチウム2次電池は、サイクル特性及び環境温度の変化に対する安定性のバランスが一層優れたものとなる傾向にある。
 本発明によれば、高いエネルギー密度及び優れたサイクル特性と、環境温度の変化に対する高い安定性とを両立するリチウム2次電池を提供することができる。
本発明の実施の形態に係るリチウム2次電池の概略断面図である。 本発明の実施の形態に係るリチウム2次電池の使用の概略断面図である。
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、図面中、同一要素には同一符号を付することとし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
[本実施形態]
(リチウム2次電池)
 図1は、本実施形態に係るリチウム2次電池の概略断面図である。図1に示すように、本実施形態のリチウム2次電池100は、正極120と、負極活物質を有しない負極140と、正極120と負極140との間に配置されているセパレータ130と、図1には図示されていない電解液とを備える。正極120は、セパレータ130に対向する面とは反対側の面に正極集電体110を有する。
 以下、リチウム2次電池100の各構成について説明する。
(負極)
 負極140は、負極活物質を有しないものである。本明細書において、「負極活物質」とは、負極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、本実施形態の負極活物質としては、リチウム金属、及びリチウム元素(リチウムイオン又はリチウム金属)のホスト物質が挙げられる。リチウム元素のホスト物質とは、リチウムイオン又はリチウム金属を負極に保持するために設けられる物質を意味する。そのような保持の機構としては、特に限定されないが、例えば、インターカレーション、合金化、及び金属クラスターの吸蔵等が挙げられ、典型的には、インターカレーションである。
 本実施形態のリチウム2次電池は、電池の初期充電前に負極が負極活物質を有しないため、負極上にリチウム金属が析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われる。したがって、本実施形態のリチウム2次電池は、負極活物質を有するリチウム2次電池と比較して、負極活物質が占める体積及び負極活物質の質量が削減され、電池全体の体積及び質量が小さくなるため、エネルギー密度が原理的に高い。
 本実施形態のリチウム2次電池100は、電池の初期充電前に負極140が負極活物質を有せず、電池の充電により負極上にリチウム金属が析出し、電池の放電によりその析出したリチウム金属が電解溶出する。したがって、本実施形態のリチウム2次電池において、負極は負極集電体として働く。
 本実施形態のリチウム2次電池100をリチウムイオン電池(LIB)及びリチウム金属電池(LMB)と比較すると、以下の点で異なるものである。
 リチウムイオン電池(LIB)において、負極はリチウム元素(リチウムイオン又はリチウム金属)のホスト物質を有し、電池の充電によりかかる物質にリチウム元素が充填され、ホスト物質がリチウム元素を放出することにより電池の放電が行われる。LIBは、負極がリチウム元素のホスト物質を有する点で、本実施形態のリチウム2次電池100とは異なる。
 リチウム金属電池(LMB)は、その表面にリチウム金属を有する電極か、あるいはリチウム金属単体を負極として用いて製造される。すなわち、LMBは、電池を組み立てた直後、すなわち電池の初期充電前に、負極が負極活物質であるリチウム金属を有する点で、本実施形態のリチウム2次電池100とは異なる。LMBは、その製造に、可燃性及び反応性が高いリチウム金属を含む電極を用いるが、本実施形態のリチウム2次電池100は、リチウム金属を有しない負極を用いるため、より安全性及び生産性に優れるものである。
 本明細書において、負極が「負極活物質を有しない」とは、負極140が負極活物質を有しないか、実質的に有しないことを意味する。負極140が負極活物質を実質的に有しないとは、負極140における負極活物質の含有量が、負極全体に対して10質量%以下であることを意味する。負極における負極活物質の含有量は、負極140全体に対して、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。負極140が負極活物質を有せず、又は、負極140における負極活物質の含有量が上記の範囲内にあることにより、リチウム2次電池100のエネルギー密度が高いものとなる。
 本明細書において、電池が「初期充電前である」とは、電池が組み立てられてから第1回目の充電をするまでの状態を意味する。また、電池が「放電終了時である」とは、電池の電圧が1.0V以上3.8V以下、好ましくは1.0V以上3.0V以下である状態を意味する。
 本明細書において、「負極活物質を有しない負極を備えるリチウム2次電池」とは、電池の初期充電前に、負極140が負極活物質を有しないことを意味する。したがって、「負極活物質を有しない負極」との句は、「電池の初期充電前に負極活物質を有しない負極」、「電池の充電状態に依らずリチウム金属以外の負極活物質を有せず、かつ、初期充電前においてリチウム金属を有しない負極」、又は「初期充電前においてリチウム金属を有しない負極集電体」等と換言してもよい。また、「負極活物質を有しない負極を備えるリチウム2次電池」は、アノードフリーリチウム電池、ゼロアノードリチウム電池、又はアノードレスリチウム電池と換言してもよい。
 本実施形態の負極140は、電池の充電状態によらず、リチウム金属以外の負極活物質の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であってもよく、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよく、0質量%であってもよい。
 また、本実施形態の負極140は、初期充電前において、リチウム金属の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であってもよく、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよく、0質量%であってもよい。
 本実施形態のリチウム2次電池100は、電池の電圧が1.0V以上3.5V以下である場合において、リチウム金属の含有量が、負極140全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよい。);電池の電圧が1.0V以上3.0V以下である場合において、リチウム金属の含有量が、負極140全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよい。);又は、電池の電圧が1.0V以上2.5V以下である場合において、リチウム金属の含有量が、負極140全体に対して10質量%以下であってもよい(好ましくは5.0質量%以下であり、1.0質量%以下であってもよい。)。
 また、本実施形態のリチウム2次電池100において、電池の電圧が4.2Vの状態において負極上に析出しているリチウム金属の質量M4.2に対する、電池の電圧が3.0Vの状態において負極上に析出しているリチウム金属の質量M3.0の比M3.0/M4.2は、好ましくは40%以下であり、より好ましくは38%以下であり、更に好ましくは35%以下である。比M3.0/M4.2は、1.0%以上であってもよく、2.0%以上であってもよく、3.0%以上であってもよく、4.0%以上であってもよい。
 本実施形態の負極活物質の例としては、リチウム金属及びリチウム金属を含む合金、炭素系物質、金属酸化物、並びにリチウムと合金化する金属及び該金属を含む合金等が挙げられる。上記炭素系物質としては、特に限定されないが、例えば、グラフェン、グラファイト、ハードカーボン、メソポーラスカーボン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化チタン系化合物、酸化スズ系化合物、及び酸化コバルト系化合物等が挙げられる。上記リチウムと合金化する金属としては、例えば、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、及びガリウムが挙げられる。
 本実施形態の負極140としては、負極活物質を有せず、集電体として用いることができるものであれば特に限定されないが、例えば、Cu、Ni、Ti、Fe、及び、その他Liと反応しない金属、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられ、好ましくは、Cu、Ni、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられる。このような負極を用いると、電池のエネルギー密度、及び生産性が一層優れたものとなる傾向にある。なお、負極にSUSを用いる場合、SUSの種類としては従来公知の種々のものを用いることができる。上記のような負極材料は、1種を単独で又は2種以上を併用して用いられる。なお、本明細書中、「Liと反応しない金属」とは、リチウム2次電池の動作条件においてリチウムイオン又はリチウム金属と反応して合金化することがない金属を意味する。
 負極140の容量は、正極120の容量に対して十分小さく、例えば、20%以下、15%以下、10%以下、又は5%以下であってもよい。なお、正極120、及び負極140の各容量は、従来公知の方法により測定することができる。
 負極140の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、リチウム2次電池100における負極140の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。
(電解液)
 電解液は、電解質及び溶媒を含有し、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。電解液は、セパレータ130に浸潤させてもよく、正極120とセパレータ130と負極140との積層体と共に密閉容器に封入してもよい。
 本実施形態の電解液は、溶媒として、フッ素原子を有しないエーテルと、ハイドロフルオロエーテルと、飽和又は不飽和の鎖状のハイドロフルオロカーボンと、を含む。本実施形態のリチウム2次電池は、そのような電解液を有するため、優れたサイクル特性と、環境温度の変化に対する安定性とを両立することが可能である。その要因は必ずしも明らかではないが、例えば以下のように推察される。
 一般的に、電解液を有するアノードフリー型のリチウム2次電池を充放電すると、電解液中の溶媒等が分解されることにより、負極等の表面に固体電解質界面層(SEI層)が形成される。SEI層は、リチウム2次電池において、電解液中の成分が更に分解されること、並びにそれに起因する非可逆的なリチウムイオンの還元、及び気体の発生等を抑制する。また、SEI層はイオン伝導性を有するため、SEI層が形成された負極表面において、リチウム析出反応の反応性が負極表面の面方向について均一なものとなる。したがって、SEI層の形成を促進することは、アノードフリー型のリチウム2次電池の性能を向上させるために、非常に重要である。
 上記ハイドロフルオロエーテル(以下、「HFE」ともいう。)は構造の一部がフッ素に置換されていることに起因して、特にエーテル結合近傍のフッ素の反応性が高くなっていると推察される。したがって、本実施形態のリチウム2次電池は、その充電時において、HFEの一部が負極と反応しやすく、当該反応を起点としたSEI層形成反応が生じやすく、フッ素含有量の高いSEI層が好適に形成されると推察される。
 また、電解液がフッ素原子を有しないエーテルを含むことにより、電解液における電解質の溶解度が一層向上するため、電池の内部抵抗を一層低下させ、また、形成されるSEI層の性質を好適なものとすることができると推察される。
 更に、上記鎖状のハイドロフルオロ―カーボン(以下、「HFC」ともいう。)は、フッ素原子を有するため、HFEとフッ素原子を有しないエーテルとの混合溶媒に溶解しやすく、分子量を高くしたとしても相分離が生じにくい。したがって、溶媒として分子量の大きい溶媒を添加することが可能となり、電解液の沸点を向上させることができる。
 したがって、上述した各成分の特徴による相乗的効果として、リチウム2次電池100は、電解液において相分離が起こりにくく、優れたサイクル特性と、環境温度に対する環境温度の変化に対する安定性との両方を有することが可能になると考えられる。ただし、要因は上記のものに限定されない。
 本明細書において、「ハイドロフルオロエーテル」又は「HFE」とは、少なくとも1つのフッ素原子及び水素原子を有するエーテル化合物を意味する。
 本明細書において、「ハイドロフルオロカーボン」又は「HFC」とは、少なくとも1つのフッ素原子及び水素原子を有する炭化水素化合物を意味する。
 本明細書において、「鎖状の炭化水素骨格」とは、複数の炭素原子が鎖状に結合することにより形成される炭化水素鎖の構造を意味し、環式炭化水素骨格を除くことを意図する。
 本実施形態の電解液に含まれるハイドロフルオロエーテル(HFE)の分子量は、特に限定されず、例えば100以上500以下である。リチウム2次電池を環境温度の変化に対する安定性に一層優れたものにする観点から、HFEの分子量は、120以上450以下であることが好ましく、140以上400以下であることがより好ましく、160以上350以下であることが更に好ましく、180以上300以下であることがより更に好ましい。
 HFEの炭素数は、特に限定されず、例えば3以上30以下である。また、電池のサイクル特性向上及び/又は安定性向上の観点から、HFEの炭素数は、4以上、5以上、又は6以上であることが好ましく、同様の観点から、25以下、20以下、15以下、又は10以下であることが好ましい。
 HFEのフッ素原子の数は、特に限定されず、例えば1以上45以下である。電池のサイクル特性向上及び/又は安定性向上の観点から、HFEのフッ素原子の数は、3以上40以下であることが好ましく、5以上30以下であることがより好ましく、6以上20以下であることが更に好ましく、7以上15以下であることがより更に好ましい。
 HFEのエーテル結合の数は、特に限定されず、例えば1以上10以下である。電池のサイクル特性向上及び/又は安定性向上の観点から、HFEのエーテル結合の数は、好ましくは1以上5以下、より好ましくは1以上2以下である。
 本実施形態の電解液に含まれるHFEは、下記式(1)で表される構造を有することが好ましい。下記式(1)中、Rはフッ素化された飽和又は不飽和の1価の炭化水素基であり、Rは水素原子又はアルキル基であり、Rはフッ素化されていてもよい飽和又は不飽和の1価の炭化水素基である。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rとしてはフッ素化された飽和又は不飽和の1価の炭化水素基であれば、特に限定されず、例えば少なくとも1つのフッ素原子を有する直鎖又は分岐鎖の炭素数1~5のアルキル基、アルケニル基、又はアルキニル基である。Rは、好ましくは少なくとも1つのフッ素原子を有する直鎖又は分岐鎖の炭素数1~5のアルキル基であり、より好ましくは少なくとも1つのフッ素原子を有する直鎖又は分岐鎖の炭素数1~3のアルキル基である。R中のフッ素原子の数は、1つ以上であれば特に限定されず、例えば1以上10以下であり、好ましくは1以上5以下であり、より好ましくは2以上4以下である。
 電池のサイクル特性向上の観点から、Rは、フッ素化されたメチル基、又はフッ素化されたエチル基であることが好ましく、トリフルオロメチル基、テトラフルオロエチル基、又はペンタフルオロエチル基であることがより好ましい。
 上記式(1)中、Rとしては水素原子又はアルキル基であれば、特に限定されない。Rがアルキル基であるとき、その炭素数は特に限定されず、例えば1~5であり、1~3が好ましく、1又は2がより好ましい。当該アルキル基はフッ素原子を有しない。
 電池のサイクル特性向上の観点からは、Rは水素原子であることが好ましい。
 上記式(1)中、Rとしてはフッ素化されていてもよい飽和又は不飽和の1価の炭化水素基であれば、特に限定されず、例えばフッ素原子を有していてもよい直鎖又は分岐鎖の炭素数1~5のアルキル基、アルケニル基、又はアルキニル基である。Rは、好ましくは少なくとも1つのフッ素原子を有する直鎖又は分岐鎖の炭素数1~5のアルキル基であり、より好ましくは少なくとも1つのフッ素原子を有する直鎖又は分岐鎖の炭素数1~3のアルキル基である。R中のフッ素原子の数は、特に限定されず、例えば0以上10以下であり、好ましくは1以上6以下であり、より好ましくは2以上5以下である。
 電池のサイクル特性向上の観点から、Rはフッ素化されたメチル基、又はフッ素化されたエチル基であることが好ましく、トリフルオロメチル基、トリフルオロエチル基、テトラフルオロエチル基、又はペンタフルオロエチル基であることがより好ましく、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、又はペンタフルオロエチル基であることがより好ましい。
 上記式(1)中、nは1以上5以下の整数であれば特に限定されない。電池のサイクル特性向上の観点からは、上記式(1)におけるnは、1以上4以下であることが好ましく、1以上3以下であることがより好ましく、1以上2以下であることが更に好ましい。
 本実施形態の電解液に含まれるHFEは、下記式(2)又は(3)で表される構造のうち少なくとも一方を有することが好ましい。リチウム2次電池が上記のようなHFEを含む電解液を用いる場合、負極表面において良質のSEI層が形成される傾向にある。このような観点から、本実施形態の電解液に含まれるHFEは、下記式(2)及び(3)を両方有することが好ましい。また、HFEは、下記式(2)又は(3)の構造の少なくとも一方を複数有していてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
なお、上記式(2)及び(3)の式中、波線は、1価の基における結合部位を表す。
 本実施形態の電解液に含まれるHFEが上記式(2)又は(3)で表される構造のうち少なくとも一方を有するとき、HFEは、より好ましくは下記式(2’)又は(3’)で表される化合物である。下記式(2’)及び(3’)中、R、R、R、及びnの定義及び好ましい態様は上記式(1)におけるものと同様である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本実施形態におけるHFEとしては、特に限定されないが、例えば、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、ビス(2,2,2-トリフルオロエチル)エーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、メチル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、ジフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、メチルパーフルオロブチルエーテル、及びエチルパーフルオロブチルエーテル等が挙げられる。リチウム2次電池のサイクル特性を一層優れたものにする観点から、HFEとしては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、又はビス(2,2,2-トリフルオロエチル)エーテルが好ましい。
 本実施形態の電解液に含まれる鎖状のハイドロフルオロカーボン(HFC)は、飽和又は不飽和の鎖状のものであれば特に限定されないが、分子量が200以上800以下であることが好ましい。リチウム2次電池を環境温度の変化に対する安定性に一層優れたものにする観点から、鎖状のHFCの分子量は、225以上700以下であることがより好ましく、250以上650以下であることが更に好ましく、275以上630以下であることがより更に好ましく、300以上600以下であることが特に好ましい。
 本実施形態の電解液に含まれる鎖状のHFCにおいて、フッ素原子及び水素原子の合計数(F+H)に対するフッ素原子の数(F)の比(F/(F+H))は特に限定されず、例えば、0.30以上1.0未満である。リチウム2次電池のサイクル特性及び環境温度の変化に対する安定性のバランスを一層優れたものにする観点から、上記の比(F/(F+H))は、0.40以上0.95以下であることが好ましく、0.50以上0.90以下であることがより好ましく、0.60以上0.90以下であることが更に好ましく、0.65以上0.90以下であることがより更に好ましい。
 本実施形態の電解液に含まれる鎖状のHFCは、フッ素原子を有しない炭素原子鎖部分を有していてもよい。そのような鎖状のHFCを含むことにより、電解液は相溶性に優れる傾向にある。鎖状のHFCは、フッ素原子を有する炭素原子鎖部分と、フッ素原子を有しない炭素原子鎖部分とが連結された構造を有していると好ましい。
 上記態様において、フッ素原子を有しない炭素原子鎖部分における、炭素原子の数は、特に限定されず、例えば1以上8以下であってもよく、2以上6以下であってもよく、2以上4以下であってもよい。上記態様において、フッ素原子を有する炭素原子鎖部分における、炭素原子の数は、特に限定されず、例えば2以上15以下であってもよく、3以上12以下であってもよく、4以上10以下であってもよい。
 鎖状のHFCが有するフッ素原子の数は、特に限定されず、例えば、4以上50以下である。電池の環境温度の変化に対する安定性向上の観点から、鎖状のHFCが有するフッ素原子の数は、6以上40以下であることが好ましく、8以上30以下であることがより好ましく、10以上25以下であることが更に好ましく、12以上20以下であることがより更に好ましい。
 鎖状のHFCの炭素数は、特に限定されず、例えば4以上30以下である。また、電池のサイクル特性向上及び/又は安定性向上の観点から、HFEの炭素数は、5以上、6以上、7以上、8以上又は9以上であることが好ましく、同様の観点から、25以下、20以下、15以下、又は12以下であることが好ましい。
 本実施形態における鎖状のHFCとしては、特に限定されず、例えば、(パーフルオロ-n-ヘキシル)エタン、1H,1H,2H-ヘプタデカフルオロ-1-デセン、1-(パーフルオロ-n-ヘキシル)テトラデカン、2H,3H-デカフルオロペンタン、エイコサフルオロノナン、ヘキサデカフルオロヘプタン、ヘキサコサフルオロドデカン、オクタデカフルオロオクタン、(ペルフルオロヘキシル)エチレン、1H-トリデカフルオロヘキサン等が挙げられる。リチウム2次電池のサイクル特性及び環境温度の変化に対する安定性のバランスを一層優れたものにする観点から、鎖状のHFCとしては、(パーフルオロ-n-ヘキシル)エタン、1H,1H,2H-ヘプタデカフルオロ-1-デセンが好ましい。
 本実施形態の電解液は、上記HFE及び鎖状のHFC以外の、少なくとも1つのフッ素原子に置換された化合物(以下、「フッ素置換化合物」ともいう。)を含んでいてもよい。上記HFE及び鎖状のHFC以外のフッ素置換化合物としては、特に限定されず、例えば、エステル基、カーボネート基、カルボニル基、及び/又はケトン基等を有するフッ素置換化合物が挙げられる。
 また、電解液は、水素原子を有しないフッ素置換化合物を含んでいてもよい。そのようなフッ素置換化合物としては、特に限定されず、例えば、全ての置換基がフッ素置換されている炭化水素、及び全ての置換基が塩素又はフッ素に置換されている炭化水素等が挙げられる。
 更に、電解液は、環状のHFCを含んでいてもよい。環状のHFCとしては、特に限定されず、例えば、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、ヘキサデカフルオロ(1,3-ジメチルシクロヘキサン)、テトラデカフルオロメチルシクロヘキサン、フルオロシクロヘキサン、フルオロシクロペンタン、オクタデカフルオロデカヒドロナフタレン、及びオクタフルオロナフタレン等が挙げられる。
 電解液に含まれるフッ素原子を有しないエーテル化合物(以下、「非フッ素エーテル化合物」ともいう。)の炭素数は、特に限定されず、例えば、2以上20以下である。電解液における電解質の溶解度を一層向上させる観点から、非フッ素エーテル化合物の炭素数は3以上15以下であることが好ましく、4以上12以下であることがより好ましく、5以上10以下であることが更に好ましい。
 非フッ素エーテル化合物としては、特に限定されず、例えば、トリエチレングリコールジメチルエーテル、1,2-ジメトキシエタン、1,1-ジメトキシエタン、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキソラン、ジオキサン、4-メチル-1,3-ジオキサン、オキセタン、及びヘキサメチレンオキシド等が挙げられる。電解液における電解質の溶解度を一層向上させる観点から、非フッ素エーテル化合物は、エーテル結合を2つ、3つ、4つ、5つ、6つ、7つ又は8つ有する化合物が好ましく、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、又はトリエチレングリコールジメチルエーテルであるとより好ましく、1,2-ジメトキシエタンであると更に好ましい。
 電解液においてHFEの含有量は特に限定されず、溶媒成分の総量に対し、例えば、40体積%以上90体積%以下である。リチウム2次電池のサイクル特性を一層向上させる観点から、HFEの含有量は、溶媒成分の総量に対し、45体積%以上85体積%以下であることが好ましく、50体積%以上80体積%以下であることがより好ましく、55体積%以上75体積%以下であることが更に好ましく、60体積%以上70体積%以下であることがより更に好ましい。
 電解液において鎖状のHFCの含有量は特に限定されず、溶媒成分の総量に対し、例えば、1.0体積%以上60体積%以下である。リチウム2次電池のサイクル特性及び/又は環境温度の変化に対する安定性のバランスを一層優れたものとする観点から、鎖状のHFCの含有量は、溶媒成分の総量に対し、3.0体積%以上55体積%以下であることが好ましく、5.0体積%以上50体積%以下であることがより好ましく、7.0体積%以上45体積%以下であることが更に好ましく、10体積%以上40体積%以下であることがより更に好ましい。
 本実施形態の電解液において、フッ素化された溶媒の合計の含有量は、特に限定されず、溶媒成分の総量に対し、例えば30体積%以上である。リチウム2次電池のサイクル特性及び/又は環境温度の変化に対する安定性のバランスを一層優れたものとする観点から、フッ素化された溶媒の合計の含有量は、溶媒成分の総量に対し、40体積%以上であることが好ましく、50体積%以上又は50体積%超であることがより好ましく、60体積%以上であることが更に好ましく、70体積%以上であることがより更に好ましく、75体積%以上であることが特に好ましい。
 電解液において、フッ素原子を有しないエーテルの含有量は、特に限定されず、電解液の溶媒成分の総量に対し、例えば1.0体積%以上60体積%以下である。リチウム2次電池のサイクル特性及び環境温度の変化に対する安定性のバランスを一層優れたものとする観点から、フッ素原子を有しないエーテルの含有量は、電解液の溶媒成分の総量に対し、3.0体積%以上50体積%以下であることが好ましく、5.0体積%以上45体積%以下であることがより好ましく、7.0体積%以上40体積%以下であることが更に好ましく、10体積%以上30体積%以下であることがより更に好ましい。
 電解液の溶媒として、非フッ素エーテル化合物、HFE、及び鎖状のHFCを含むものであれば、上記の化合物及び上記化合物以外の溶媒を自由に組み合わせて用いることができる。また、非フッ素エーテル化合物、HFE、又は鎖状のHFCは、それぞれ1種を単独で又は2種以上を併用して用いてもよい。
 本実施形態の電解液の沸点は、60℃以上であることが好ましい。リチウム2次電池の環境温度の変化に対する安定性、特に高温に対する安定性を一層向上させる観点から、電解液の沸点は、65℃以上であることが好ましく、70℃以上であることがより好ましく、74℃以上であることが更に好ましく、80℃以上であることがより更に好ましく、90℃以上であることが特に好ましい。
  電解液に含まれる電解質としては、塩であれば特に限定されないが、例えば、Li、Na、K、Ca、及びMgの塩等が挙げられる。電解質としては、好ましくはリチウム塩が用いられる。
 リチウム塩としては、特に限定されないが、LiI、LiCl、LiBr、LiF、LiBF、LiPF、LiAsF、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOCFCF、LiBF(C)、LiB(O、LiB(O)F、LiB(OCOCF、LiNO、及びLiSO等が挙げられる。リチウム2次電池100のエネルギー密度、及びサイクル特性が一層優れる観点から、リチウム塩としては、LiN(SOF)が好ましい。また、電解液がLiN(SOF)を含有すると、負極表面におけるSEI層の形成及び成長が一層促進され、サイクル特性が一層優れたリチウム2次電池を得ることができる傾向にある。なお、上記のリチウム塩は、1種を単独で又は2種以上を併用して用いられる。
 電解液における電解質の濃度は特に限定されないが、好ましくは0.50M以上であり、より好ましくは0.70M以上であり、更に好ましくは0.90M以上であり、更により好ましくは1.0M以上である。電解質の濃度が上記の範囲内にあることにより、SEI層が一層形成されやすくなり、また、内部抵抗が一層低くなる傾向にある。特に、フッ素化合物を溶媒として含むリチウム2次電池は、電解液中における電解質の濃度を高くすることができるため、サイクル特性及びレート性能を一層向上させることができる。電解質の濃度の上限は特に限定されず、電解質の濃度は10M以下であってもよく、5.0M以下であってもよく、2.0M以下であってもよい。
 本実施形態のリチウム2次電池は、液体以外の状態で電解液又は電解液の成分を含んでいてもよい。例えば、後述するセパレータを調製する際に、電解液と高分子とを用いることにより固体状又は半固体状(ゲル状)の部材中に上記の電解液を含む電池とすることができる。なお、電解液は電解質と換言することができる。
 なお、電解液に非フッ素エーテル化合物、HFE、及び鎖状のHFCが含まれることは、従来公知の種々の方法により確かめることができる。そのような方法としては、例えば、NMR測定法、HPLC-MS等の質量分析法、及びIR測定法等が挙げられる。
(セパレータ)
 セパレータ130は、正極120と負極140とを隔離することにより電池が短絡することを防ぎつつ、正極120と負極140との間の電荷キャリアとなるリチウムイオンのイオン伝導性を確保するための部材である。すなわち、セパレータ130は、正極120と負極140を物理的及び/又は電気的に隔離する機能、及びリチウムイオンのイオン伝導性を確保する機能を有する。したがって、セパレータ130は電子伝導性を有せず、リチウムイオンと反応しない材料により構成される。また、セパレータ130は電解液を保持する役割を担っていてもよい。
 このようなセパレータとして、上記の2つの機能を有する1種の部材を単独で用いてもよいし、上記の1つの機能を有する部材を2種以上組み合わせて用いてもよい。セパレータとしては、上述した機能を担うものであれば特に限定されないが、例えば、絶縁性の多孔質部材、ポリマー電解質、ゲル電解質、及び無機固体電解質が挙げられ、典型的には絶縁性を有する多孔質の部材、ポリマー電解質、及びゲル電解質からなる群より選択される少なくとも1種である。
 セパレータが絶縁性の多孔質部材を含む場合、かかる部材の細孔にイオン伝導性を有する物質が充填されることにより、かかる部材はイオン伝導性を発揮する。充填される物質としては、例えば上述の電解液、ポリマー電解質、及びゲル電解質が挙げられる。
 セパレータ130は、絶縁性の多孔質部材、ポリマー電解質、又はゲル電解質を1種単独で又は2種以上を組み合わせて用いることができる。なお、セパレータとして絶縁性の多孔質部材を単独で用いる場合、リチウム2次電池は電解液を更に備える必要がある。
 上記の絶縁性の多孔質部材を構成する材料としては、特に限定されないが、例えば絶縁性高分子材料が挙げられ、具体的には、ポリエチレン(PE)、及びポリプロピレン(PP)が挙げられる。すなわち、セパレータ130は、多孔質のポリエチレン(PE)膜、多孔質のポリプロピレン(PP)膜、又はこれらの積層構造であってよい。
 セパレータ130は、セパレータ被覆層により被覆されていてもよい。セパレータ被覆層は、セパレータ130の両面を被覆していてもよく、片面のみを被覆していてもよい。セパレータ被覆層は、イオン伝導性を有し、リチウムイオンと反応しない部材であれば特に限定されないが、セパレータ130と、セパレータ130に隣接する層とを強固に接着させることができるものであると好ましい。そのようなセパレータ被覆層としては、特に限定されないが、例えば、ポリビニリデンフロライド(PVDF)、スチレンブタジエンゴムとカルボキシメチルセルロースの合材(SBR-CMC)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(Li-PAA)、ポリイミド(PI)、ポリアミドイミド(PAI)、及びアラミドのようなバインダーを含むものが挙げられる。セパレータ被覆層は、上記バインダーにシリカ、アルミナ、チタニア、ジルコニア、酸化マグネシウム、水酸化マグネシウム、硝酸リチウム等の無機粒子を添加させてもよい。なお、セパレータ130は、セパレータ被覆層を有しないセパレータであってもよく、セパレータ被覆層を有するセパレータであってもよい。
 セパレータ被覆層を含めたセパレータ130の平均厚さは、好ましくは30μm以下であり、より好ましくは25μm以下であり、更に好ましくは20μm以下である。そのような態様によれば、リチウム2次電池100におけるセパレータ130の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。また、セパレータ130の平均厚さは、好ましくは5.0μm以上であり、より好ましくは7.0μm以上であり、更に好ましくは10μm以上である。そのような態様によれば、正極120と負極140とを確実に隔離することができ、電池が短絡することを一層抑止することができる。
(正極)
 正極120は、一般的にリチウム2次電池に用いられるものであれば特に限定されず、リチウム2次電池の用途によって、公知の材料を適宜選択することができる。電池の安定性及び出力電圧を向上させる観点から、正極120は、正極活物質を有することが好ましい。
 正極が正極活物質を有する場合、典型的には、電池の充放電により正極活物質にリチウムイオンが充填及び脱離される。
 本明細書において、「正極活物質」とは、正極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、正極活物質としてはリチウム元素(典型的には、リチウムイオン)のホスト物質が挙げられる。
 そのような正極活物質としては、特に限定されないが、例えば、金属酸化物及び金属リン酸塩が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化コバルト系化合物、酸化マンガン系化合物、及び酸化ニッケル系化合物等が挙げられる。上記金属リン酸塩としては、特に限定されないが、例えば、リン酸鉄系化合物、及びリン酸コバルト系化合物が挙げられる。典型的な正極活物質としては、LiCoO、LiNiCoMnO(x+y+z=1)、LiNiCoAlO(x+y+z=1)、LiNiMnO(x+y=1)、LiNiO、LiMn、LiFePO、LiCoPO、LiFeOF、LiNiOF、及びLiTiSが挙げられる。上記のような正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。
 正極120は、上記の正極活物質以外の成分を含んでいてもよい。そのような成分としては、特に限定されないが、例えば、導電助剤、バインダー、ゲル電解質及びポリマー電解質が挙げられる。
 正極120は、ゲル電解質であってよい。そのような態様によれば、ゲル電解質の機能により正極と正極集電体との接着力が向上し、より薄い正極集電体を貼り付けることが可能となり、電池のエネルギー密度を一層優れたものにすることができる。正極集電体を正極の表面に貼り付ける際には、剥離紙上に形成されている正極集電体を用いてもよい。
 正極120における導電助剤としては、特に限定されないが、例えば、カーボンブラック、シングルウォールカーボンナノチューブ(SWCNT)、マルチウォールカーボンナノチューブ(MWCNT)、カーボンナノファイバー(CF)、及びアセチレンブラック等が挙げられる。また、バインダーとしては、特に限定されないが、例えば、ポリビニリデンフロライド、ポリテトラフルオロエチレン、スチレンブタジエンゴム、アクリル樹脂、及びポリイミド樹脂等が挙げられる。
 正極120における、正極活物質の含有量は、正極120全体に対して、例えば、50質量%以上100質量%以下であってもよい。導電助剤の含有量は、正極120全体に対して、例えば、0.50質量%以上30質量%以下あってもよい。バインダーの含有量は、正極120全体に対して、例えば、0.50質量%以上30質量%以下であってもよい。ゲル電解質又はポリマー電解質の含有量は、正極120全体に対して、例えば、0.50質量%以上30質量%以下であってもよく、好ましくは5.0質量%以上20質量%以下であり、より好ましくは8.0質量%以上15質量%以下である。
 正極120の平均厚さは、好ましくは20μm以上100μm以下であり、より好ましくは30μm以上80μm以下であり、更に好ましくは40μm以上70μm以下である。ただし、正極の平均厚さは、所望する電池の容量に応じて適宜調整することができる。
(正極集電体)
 正極120の片側には、正極集電体110が配置されている。正極集電体は、電池においてリチウムイオンと反応しない導電体であれば特に限定されない。そのような正極集電体としては、例えば、アルミニウムが挙げられる。なお、正極集電体110は設けなくてもよく、その場合、正極自身が集電体として働く。正極集電体は、正極(特に正極活物質)に電子を授受するように働く。正極集電体110は、正極120に対して、物理的及び/又は電気的に接触している。
 本実施形態において、正極集電体の平均厚さは、好ましくは1.0μm以上15μm以下であり、より好ましくは2.0μm以上10μm以下であり、更に、好ましくは3.0μm以上6.0μm以下である。そのような態様によれば、リチウム2次電池100における正極集電体の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。
(リチウム2次電池の使用)
 図2に本実施形態のリチウム2次電池の1つの使用態様を示す。リチウム2次電池200は、正極集電体110及び負極140に、リチウム2次電池200を外部回路に接続するための正極端子210及び負極端子220がそれぞれ接合されている。リチウム2次電池200は、負極端子220を外部回路の一端に、正極端子210を外部回路のもう一端に接続することにより充放電される。
 正極端子210及び負極端子220の間に、負極端子220(負極140)から外部回路を通り正極端子210(正極120)へと電流が流れるような電圧を印加することでリチウム2次電池200が充電される。リチウム2次電池200は、初期充電により、負極140の表面(負極140とセパレータ130との界面)に固体電解質界面層(SEI層)が形成されると推察されるが、リチウム2次電池200はSEI層を有していなくてもよい。リチウム2次電池200を充電することにより、負極140とSEI層との界面、負極140とセパレータ130との界面、及び/又はSEI層とセパレータ130との界面にリチウム金属の析出が生じる。
 充電後のリチウム2次電池200について、所望の外部回路を介して正極端子210及び負極端子220を接続するとリチウム2次電池200が放電される。これにより、負極上に生じたリチウム金属の析出が電解溶出する。リチウム2次電池200にSEI層が形成されている場合、負極140とSEI層との界面、及び/又はSEI層とセパレータ130との界面の少なくともいずれかに生じたリチウム金属の析出が電解溶出する。
(リチウム2次電池の製造方法)
 図1に示すようなリチウム2次電池100の製造方法としては、上述の構成を備えるリチウム2次電池を製造することができる方法であれば特に限定されないが、例えば、以下のような方法が挙げられる。
 正極集電体110及び正極120は例えば以下のようにして製造する。上述した正極活物質、導電助剤、及びバインダーを混合し、正極混合物を得る。その配合比は、例えば、上記正極混合物全体に対して、正極活物質が50質量%以上99質量%以下、導電助剤が0.5質量%以上30質量%以下、バインダーが0.5質量%以上30質量%以下であってもよい。得られた正極混合物を、所定の厚さ(例えば、5.0μm以上1.0mm以下)を有する正極集電体としての金属箔(例えば、Al箔)の片面に塗布し、プレス成型する。得られる成型体を、打ち抜き加工により、所定のサイズに打ち抜き、正極集電体110及び正極120を得る。
 次に、上述した負極材料、例えば1.0μm以上1.0mm以下の金属箔(例えば、電解Cu箔)を、スルファミン酸を含む溶剤で洗浄した後に所定の大きさに打ち抜き、更に、エタノールで超音波洗浄した後、乾燥させることにより負極140を得る。
 次に、上述した構成を有するセパレータ130を準備する。セパレータ130は従来公知の方法で製造してもよく、市販のものを用いてもよい。
 次に、少なくとも1種の、上記非フッ素エーテル化合物、HFE、及び鎖状のHFCと、必要に応じてその他の化合物を混合することにより得られる溶液を溶媒として、当該溶液にリチウム塩を溶解させることにより、電解液を調製する。各溶媒、及びリチウム塩の電解液における含有量又は濃度が上述した範囲内となるように、適宜、溶媒及びリチウム塩の混合比を調整すればよい。
 以上のようにして得られる正極120が形成された正極集電体110、セパレータ130、及び負極140を、正極120とセパレータ130とが対向するように、この順に積層することで積層体を得る。得られた積層体を、電解液と共に密閉容器に封入することでリチウム2次電池100を得ることができる。密閉容器としては、特に限定されないが、例えば、ラミネートフィルムが挙げられる。
[変形例]
 上記本実施形態は、本発明を説明するための例示であり、本発明をその本実施形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。
 例えば、リチウム2次電池100において、セパレータ130を省略してもよい。その場合、正極120及び負極140が物理的又は電気的に接触しないように、両者を十分離した状態で固定することが好ましい。
 また、本実施形態のリチウム2次電池は、負極の表面において、当該負極に接触するように配置される集電体を有していてもよい。そのような集電体としては、特に限定されないが、例えば、負極材料に用いることのできるものが挙げられる。なお、リチウム2次電池が正極集電体、及び負極集電体を有しない場合、それぞれ、正極、又は負極自身が集電体として働く。
 本実施形態のリチウム2次電池は、負極の表面において、セパレータに対向する表面の一部又は全部がコーティング剤でコーティングされていてもよい。負極コーティング剤としては、例えば、ベンゾトリアゾール(BTA)、イミダゾール(IM)、及びトリアジンチオール(TAS)、並びにこれらの誘導体等が挙げられる。例えば、上述した負極材料を洗浄した後、負極コーティング剤を含有する溶液(例えば、負極コーティング剤が0.01体積%以上10体積%以下である溶液)に浸漬して、更に、大気下で乾燥させることにより、負極コーティング剤をコーティングすることができる。上述した化合物がコーティングされることで、負極の表面においてリチウム金属が不均一に析出することを抑制し、負極上に析出するリチウム金属がデンドライト状に成長することが抑制されると推察される。
 本実施形態のリチウム2次電池は、正極集電体及び/又は負極に、外部回路へと接続するための端子を取り付けてもよい。例えば10μm以上1.0mm以下の金属端子(例えば、Al、Ni等)を、正極集電体及び負極の片方又は両方にそれぞれ接合してもよい。接合方法としては、従来公知の方法を用いればよく、例えば超音波溶接を用いてもよい。
 なお、本明細書において、「エネルギー密度が高い」又は「高エネルギー密度である」とは、電池の総体積又は総質量当たりの容量が高いことを意味するが、好ましくは700Wh/L以上又は300Wh/kg以上であり、より好ましくは800Wh/L以上又は350Wh/kg以上であり、更に好ましくは900Wh/L以上又は400Wh/kg以上である。
 また、本明細書において、「サイクル特性に優れる」とは、通常の使用において想定され得る回数の充放電サイクルの前後において、電池の容量の減少率が低いことを意味する。すなわち、初期充放電の後の1回目の放電容量と、通常の使用において想定され得る回数の充放電サイクル後の容量とを比較した際に、充放電サイクル後の容量が、初期充放電の後の1回目の放電容量に対してほとんど減少していないことを意味する。ここで、「通常の使用において想定され得る回数」とは、リチウム2次電池が用いられる用途にもよるが、例えば、30回、50回、70回、100回、300回、又は500回である。また、「充放電サイクル後の容量が、初期充放電の後の1回目の放電容量に対してほとんど減少していない」とは、リチウム2次電池が用いられる用途にもよるが、例えば、充放電サイクル後の容量が、初期充放電の後の1回目の放電容量に対して、60%以上、65%以上、70%以上、75%以上、80%以上、又は85%以上であることを意味する。
 本明細書において、好ましい範囲等として記載した数値範囲は、記載した上限値及び下限値を任意に組み合わせて得られる数値範囲に置き換えてもよい。例えば、あるパラメータが好ましくは50以上、より好ましくは60以上であり、好ましくは100以下、より好ましくは90以下である場合、当該パラメータは、50以上100以下、50以上90以下60以上100以下、又は60以上90以下のいずれであってもよい。
 以下、本発明の実施例及び比較例を用いてより具体的に説明する。本発明は、以下の試験例によって何ら限定されるものではない。
[実施例1]
 以下のようにして、実施例1のリチウム2次電池を作製した。
(負極の準備)
 まず、厚さ8.0μmの電解Cu箔を、スルファミン酸を含む溶剤で洗浄した後、水洗した。続いて、電解Cu箔を、負極コーティング剤としての1H-benzotriazole(1H-ベンゾトリアゾール)を含有する溶液に浸漬した後、乾燥させ、更に水洗することにより、負極コーティング剤がコーティングされたCu箔を得た。
(正極の作製)
 次に、正極を作製した。正極活物質としてLiNi0.85Co0.12Al0.032を96質量部、導電助剤としてカーボンブラックを2.0質量部、及びバインダーとしてポリビニリデンフロライド(PVDF)を2.0質量部混合したものを、12μmのAl箔の片面に塗布し、プレス成型した。得られた成型体を、打ち抜き加工により、所定の大きさ(40mm×40mm)に打ち抜き、片面に正極集電体を有する正極を得た。
(セパレータの準備)
 セパレータとして、12μmのポリエチレン微多孔膜の両面に2.0μmのポリビニリデンフロライド(PVDF)がコーティングされた所定の大きさ(50mm×50mm)のセパレータを準備した。
(電解液の調製)
 電解液を以下のようにして調製した。1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルが70体積%、(パーフルオロ-n-ヘキシル)エタンが10体積%、1,2-ジメトキシエタンが20体積%になるように、3種の溶媒を混合させた。得られた混合液に、モル濃度が1.0MとなるようにLiN(SOF)を溶解させることにより電解液を得た。
(電池の組み立て)
 以上のようにして得られた正極が形成された正極集電体、セパレータ、及び負極を、この順に、正極がセパレータと対向するように積層することで積層体を得た。更に、正極集電体及び負極に、それぞれ100μmのAl端子及び100μmのNi端子を超音波溶接で接合した後、ラミネートの外装体に挿入した。次いで、上記のようにして得られた電解液を上記の外装体に注入した。外装体を封止することにより、リチウム2次電池を得た。
[実施例2~5]
 表1に記載の溶媒を用いて電解液を調製したこと以外は、実施例1と同様にしてリチウム2次電池を得た。
[比較例1~5]
 表2に記載の溶媒を用いて電解液を調製したこと以外は、実施例1と同様にしてリチウム2次電池を得た。なお、比較例は、ハイドロフルオロエーテル(HFE)又は鎖状のハイドロフルオロカーボン(HFC)のうち一方を含有しないものであり、比較例5は環状のHFCを含有するものである。
 なお、表1及び4において、「DME」は1,2-ジメトキシエタンを、「HFE1」は下記式(4)で表される1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルを、「HFE2」は下記式(5)で表されるビス(2,2,2-トリフルオロエチル)エーテルを、「HFC1」は下記式(6)で表される(パーフルオロ-n-ヘキシル)エタンを、「HFC2」は下記式(7)で表される1H,1H,2H-ヘプタデカフルオロ-1-デセンを、「HFC3」は下記式(8)で表される1H,1H,2H-ヘプタデカフルオロ-1-デセンを、それぞれ表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 表1及び2中、各溶媒は、上記した定義において、フッ素原子を有しないエーテル、HFE、HFCのいずれかに分類されており、更にHFCでは鎖状と環状に分類されている。また、表1及び2中、各溶媒の右隣の数値は、溶媒の総量に対する含有量が体積%単位で記載されている。例えば、表1において、実施例1は、DMEを20体積%と、HFE1を70体積%と、HFC1を10体積%と含有することを意味する。なお、すべての実施例及び比較例は、電解質として1.0MのLiN(SOF)を含有する。
[相分離の有無]
 上記電解液を調製した後、アルゴン雰囲気下で1時間静置した後に相分離の有無を目視で観察した。相分離があると判断されるものには表1及び2中、「相分離」と示す。
[UN38.3-T2試験による評価]
 UN38.3-T2試験は、急激な温度変化における電池内部の電気接続の安定性を評価する国際連合の輸送勧告試験である。各実施例及び比較例で作成したリチウム2次電池において、以下のようにしてUN38.3-T2試験を行った。
 作製したリチウム2次電池を、温度25℃において、3.2mAで、電圧が4.2VになるまでCC充電した後、3.2mAで、電圧が3.0VになるまでCC放電した。次いで、13.6mAで電圧が4.2VになるまでCC充電した後、13.6mAで電圧が3.0VになるまでCC放電し、これを25サイクル繰り返した。その後13.6mAで電圧が4.2VになるまでCC充電した。サイクル試験後のリチウム二次電池を72±2℃の試験温度において6時間保管し、その後30分以内に、-40±2℃の試験温度において6時間保管した。このような操作を10回繰り返した後、20±5℃の環境において24時間保管した。
 上記保管が完了したリチウム2次電池において、セルパックの破裂、液漏れ、分解、0.2重量%以上の重量ロス及び発火の異常が生じていないことを確認し、更に、開回路電圧(OCV)が上記操作以前のものに対し、90%未満となっていないことを確認した。上記異常又は開回路電圧の低下が生じたものには「×」とし、生じていないものには「-」として表1及び2に示す。
[放電容量の測定]
 作製したリチウム2次電池を、3.2mAで、電圧が4.2VになるまでCC充電した(初期充電)後、3.2mAで、電圧が3.0VになるまでCC放電した(以下、「初期放電」という。)。次いで、温度25℃又は0℃の環境において、13.6mAで電圧が4.2VになるまでCC充電した後、13.6mAで電圧が3.0VになるまでCC放電した。25℃及び0℃の温度における放電容量を表1及び2に示す。
[サイクル特性の評価]
 以下のようにして、各実施例及び比較例で作成したリチウム2次電池のサイクル特性を評価した。
 作製したリチウム2次電池を用いて、初期充電及び初期放電をした。次いで、13.6mAで、電圧が4.2VになるまでCC充電した後、13.6mAで、電圧が3.0VになるまでCC放電するサイクルを、温度25℃の環境で繰り返した。各例について、初期放電から容量を求め(以下、「初期容量」という。)、放電容量が初期容量の80%になったときのサイクル回数(表中、「サイクル数」と記載する。)を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表1及び2中、電解液の成分における「-」は該当成分を有しないことを、試験結果における「-」は測定されていないことを意味する。
 表1及び2から、フッ素原子を有しないエーテルと、ハイドロフルオロエーテル(HFE)と、飽和又は不飽和の鎖状のハイドロフルオロカーボン(HFC)と、を含む電解液を用いた実施例1~5は、そうでない比較例と比較して、サイクル特性に優れ、かつ、相分離が起こらないとともに環境温度の変化に対する安定性があることがわかる。
産業上利用可能性
 本発明のリチウム2次電池は、エネルギー密度が高く、優れたサイクル特性と、環境温度の変化に対する高い安定性とが両立するため、様々な用途に用いられる蓄電デバイスとして、産業上の利用可能性を有する。
 100,200…リチウム2次電池、110…正極集電体、120…正極、130…セパレータ、140…負極、210…正極端子、220…負極端子。

Claims (10)

  1.  正極と、負極活物質を有しない負極と、電解液と、を備え、
     前記電解液が、溶媒として、
     フッ素原子を有しないエーテルと、
     ハイドロフルオロエーテルと、
     鎖状のハイドロフルオロカーボンと、を含む、
     リチウム2次電池。
  2.  前記ハイドロフルオロカーボンの分子量が、300以上600以下である、請求項1に記載のリチウム2次電池。
  3.  前記電解液の沸点が、74℃以上である、請求項1又は2に記載のリチウム2次電池。
  4.  前記ハイドロフルオロカーボンの含有量が、前記ハイドロフルオロエーテル及び前記ハイドロフルオロカーボンの総量に対し、5.0体積%以上50体積%以下である、請求項1~3のいずれか1項に記載のリチウム2次電池。
  5.  前記ハイドロフルオロエーテルが下記式(1)で表される構造を有する、請求項1~4のいずれか1項に記載のリチウム2次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはフッ素化された飽和又は不飽和の1価の炭化水素基であり、Rは水素原子又はアルキル基であり、Rはフッ素化されていてもよい飽和又は不飽和の1価の炭化水素基であり、nは1以上5以下の整数を表す。)
  6.  前記ハイドロフルオロエーテルが、下記式(2)又は(3)で表される構造のうち少なくとも一方を有する、請求項1~5のいずれか1項に記載のリチウム2次電池。
    Figure JPOXMLDOC01-appb-C000002
    (式中、波線は、1価の基における結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、波線は、1価の基における結合部位を表す。)
  7.  前記ハイドロフルオロカーボンにおいて、フッ素原子及び水素原子の合計数(F+H)に対するフッ素原子の数(F)の比(F/(F+H))が0.60以上0.90以下である、請求項1~6のいずれか1項に記載のリチウム2次電池。
  8.  前記電解液が、リチウム塩としてLiN(SOF)を含む、請求項1~7のいずれか1項に記載のリチウム2次電池。
  9.  前記電解液において、フッ素化された溶媒の合計の含有量が、溶媒成分の総量に対し、50体積%超である、請求項1~8のいずれか1項に記載のリチウム2次電池。
  10.  前記フッ素原子を有しないエーテルの含有量が、前記電解液の溶媒成分の総量に対し、3.0体積%以上50体積%以下である、請求項1~9のいずれか1項に記載のリチウム2次電池。
PCT/JP2021/033741 2021-09-14 2021-09-14 リチウム2次電池 WO2023042262A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023547969A JPWO2023042262A1 (ja) 2021-09-14 2021-09-14
PCT/JP2021/033741 WO2023042262A1 (ja) 2021-09-14 2021-09-14 リチウム2次電池
US18/601,657 US20240266608A1 (en) 2021-09-14 2024-03-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033741 WO2023042262A1 (ja) 2021-09-14 2021-09-14 リチウム2次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/601,657 Continuation US20240266608A1 (en) 2021-09-14 2024-03-11 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2023042262A1 true WO2023042262A1 (ja) 2023-03-23

Family

ID=85601996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033741 WO2023042262A1 (ja) 2021-09-14 2021-09-14 リチウム2次電池

Country Status (3)

Country Link
US (1) US20240266608A1 (ja)
JP (1) JPWO2023042262A1 (ja)
WO (1) WO2023042262A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190273A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 非水電解液、及び電気化学デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085058A (ja) * 1999-09-20 2001-03-30 Hitachi Ltd 非水電解液及びこれを用いたリチウム1次電池及びリチウム2次電池及び電気化学キャパシタ及び高分子電解質及びこれを用いたポリマ2次電池
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
WO2004064190A1 (ja) * 2003-01-09 2004-07-29 Sony Corporation 電解質、負極および電池
WO2009133899A1 (ja) * 2008-04-28 2009-11-05 旭硝子株式会社 二次電池用非水電解液および二次電池
JP2018067501A (ja) * 2016-10-21 2018-04-26 株式会社Gsユアサ 非水電解質蓄電素子
JP2020017362A (ja) * 2018-07-23 2020-01-30 カーリットホールディングス株式会社 リチウム二次電池及び電解液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085058A (ja) * 1999-09-20 2001-03-30 Hitachi Ltd 非水電解液及びこれを用いたリチウム1次電池及びリチウム2次電池及び電気化学キャパシタ及び高分子電解質及びこれを用いたポリマ2次電池
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
WO2004064190A1 (ja) * 2003-01-09 2004-07-29 Sony Corporation 電解質、負極および電池
WO2009133899A1 (ja) * 2008-04-28 2009-11-05 旭硝子株式会社 二次電池用非水電解液および二次電池
JP2018067501A (ja) * 2016-10-21 2018-04-26 株式会社Gsユアサ 非水電解質蓄電素子
JP2020017362A (ja) * 2018-07-23 2020-01-30 カーリットホールディングス株式会社 リチウム二次電池及び電解液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190273A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 非水電解液、及び電気化学デバイス

Also Published As

Publication number Publication date
JPWO2023042262A1 (ja) 2023-03-23
US20240266608A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
JP4743752B2 (ja) リチウムイオン二次電池
WO2011027530A1 (ja) 非水溶媒、並びにそれを用いた非水電解液および非水系二次電池
JP4222519B2 (ja) リチウムイオン二次電池およびこれを用いた機器
US20230246240A1 (en) Lithium secondary battery
US20240266608A1 (en) Lithium secondary battery
US20240120549A1 (en) Lithium secondary battery
US20230246239A1 (en) Lithium secondary battery
JP2015050168A (ja) リチウム二次電池
JP2014022245A (ja) リチウムイオン二次電池およびその製造方法
WO2022209158A1 (ja) 電解液およびリチウムイオン二次電池
WO2022102072A1 (ja) リチウム2次電池
WO2023053295A1 (ja) リチウム2次電池
WO2023166663A1 (ja) リチウム2次電池用電解液及びリチウム2次電池
WO2022215160A1 (ja) リチウム2次電池
WO2023002537A1 (ja) リチウム2次電池
JP7340303B2 (ja) リチウム2次電池及びその製造方法
WO2022144947A1 (ja) リチウム2次電池
WO2023170799A1 (ja) リチウム2次電池
WO2022091407A1 (ja) リチウム2次電池
WO2022244110A1 (ja) リチウム2次電池及びその使用方法、並びにリチウム2次電池の製造方法
WO2022264406A1 (ja) リチウム2次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547969

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE