WO2022206141A1 - 车载顶置式空调器及其控制方法、车辆 - Google Patents

车载顶置式空调器及其控制方法、车辆 Download PDF

Info

Publication number
WO2022206141A1
WO2022206141A1 PCT/CN2022/073269 CN2022073269W WO2022206141A1 WO 2022206141 A1 WO2022206141 A1 WO 2022206141A1 CN 2022073269 W CN2022073269 W CN 2022073269W WO 2022206141 A1 WO2022206141 A1 WO 2022206141A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
air
air outlet
rotational speed
flow rate
Prior art date
Application number
PCT/CN2022/073269
Other languages
English (en)
French (fr)
Inventor
于尊才
董元伟
刘光朋
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022206141A1 publication Critical patent/WO2022206141A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00871Air directing means, e.g. blades in an air outlet

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically provides a vehicle-mounted overhead air conditioner, a control method thereof, and a vehicle.
  • Air conditioners are widely used in people's daily life. Air conditioners are not only widely used in people's home environment, but also widely used in vehicles driven by people, which improves the temperature comfort in the driving space of the vehicle.
  • vehicle overhead air conditioners are the main type of air conditioners for vehicles.
  • the vehicle overhead air conditioner is installed on the roof, and its upper half is located on the upper part of the roof, and its lower half is located in the car, and the air inlet and/or air outlet of the internal circulation air duct is arranged at the bottom of the overhead air conditioner so that the vehicle can
  • the inner air flows through the indoor heat exchanger for heat exchange and then returns to the car.
  • the air inlet and/or air outlet of the external circulation air duct is set on the top of the vehicle overhead air conditioner, so that the outside air flows through the outdoor heat exchanger. After the heat exchange, return to the outside of the car.
  • the vehicle In the process of cooling or heating the interior of the vehicle using the on-board overhead air conditioner, the vehicle is usually in a driving state.
  • the top of the vehicle-mounted overhead air conditioner moves relative to the air in the environment, forming an airflow flowing toward the rear of the vehicle at the top.
  • the air flow of the air outlet on the top of the vehicle air conditioner does not match the heat exchange of the outdoor heat exchanger, which causes the compressor to start and stop irregularly and the pipeline pressure in the refrigerant circuit is unstable, which affects the compressor and the refrigerant circulation pipeline. service life.
  • the present invention provides A control method of a vehicle-mounted overhead air conditioner, wherein the vehicle-mounted overhead air conditioner is installed on a vehicle, an air outlet corresponding to an outdoor heat exchanger is arranged on the top of the vehicle-mounted overhead air conditioner, and an air outlet is arranged at the air outlet.
  • An opening adjustment device, a gas flow rate sensor is provided on the top of the vehicle-mounted overhead air conditioner, and the vehicle-mounted overhead air conditioner includes a controller, and the controller is connected with the opening adjustment device and the gas flow rate sensor,
  • the control method includes: acquiring the flow rate of the current airflow at the top of the vehicle-mounted overhead air conditioner; controlling the opening adjustment device to adjust the opening of the air outlet according to the flow rate of the current airflow; wherein, the air outlet The opening of is controlled to be inversely related to the current flow rate of the airflow.
  • the opening degree of the air outlet is set to include n opening degrees, and the flow velocity range of the air flowing through the top of the vehicle-mounted overhead air conditioner is defined as n flow velocity interval, the n openings of the air outlet correspond to the n flow velocity intervals one-to-one, n is a positive integer greater than or equal to 2, "control the opening adjustment device to adjust the outlet according to the flow velocity of the current airflow.
  • the step of "opening degree of the air outlet” includes: judging the flow velocity interval in which the current flow rate of the airflow is located and determining the target opening degree of the air outlet; and adjusting the opening degree of the air outlet to the target opening degree.
  • the step of "controlling the opening degree adjusting device to adjust the opening degree of the air outlet according to the current flow rate of the airflow” includes: according to the current flow rate of the airflow, according to formula (1) Calculate the target opening of the air outlet,
  • the air outlet includes a first air outlet, ..., the i-th air outlet, ..., the p-th air outlet, which are arranged in sequence from the front to the rear of the vehicle, "according to the current
  • the step of controlling the opening degree adjusting device to adjust the opening degree of the air outlet by the flow velocity of the air flow includes: determining the target opening degree of the first air outlet according to the current flow velocity of the air flow; calculating the air outlet according to formula (2) The target opening of the i-th air outlet,
  • K i K 1 +(i-1) ⁇ K (2);
  • the target opening degree of an air outlet K i is the target opening degree of the i-th air outlet
  • p is a positive integer greater than or equal to 2
  • i is a positive integer greater than or equal to 2 and less than or equal to p
  • ⁇ K is the preset opening degree difference.
  • the top of the vehicle-mounted overhead air conditioner is provided with an air inlet corresponding to the outdoor heat exchanger, and the control method further includes: increasing the air inlet according to the current flow rate of the air flow.
  • the rotational speed of the blower of the air outlet wherein, the increase in the rotational speed of the blower of the air inlet is controlled to be positively correlated with the current flow rate of the airflow.
  • the flow velocity range of the air flowing through the top of the vehicle-mounted overhead air conditioner is delimited into n flow velocity intervals
  • the fan of the air inlet is provided with n rotational speed increases
  • the The n rotational speed increases correspond to the n velocity intervals
  • n is a positive integer greater than or equal to 2.
  • the step of “increasing the rotational speed of the fan at the air inlet according to the current airflow velocity” includes: judging the The flow rate interval in which the current flow rate of the airflow is located and the rotational speed increase amount of the fan at the air inlet is determined; the rotational speed of the fan at the air inlet is increased by the rotational speed increase amount.
  • the step of "increasing the rotational speed of the fan at the air inlet according to the current flow rate of the air flow” includes: calculating the air inlet according to the current flow rate of the air flow according to formula (3) the fan speed increase,
  • M is the rotational speed increase amount
  • v is the current flow rate of the airflow
  • V is the maximum moving speed that the vehicle can reach
  • ⁇ M is the preset speed.
  • the air inlet includes a first air inlet, .
  • the step of increasing the rotational speed of the blower at the air inlet with the flow rate of the air flow includes: determining the increase in the rotational speed of the blower at the first air inlet according to the current flow rate of the air; The speed increase of the fan of the tuyere,
  • M j M 1 -(j-1) ⁇ m (4);
  • M 1 is the The rotational speed increase of the fan at the first air inlet
  • Mj is the rotational speed increase of the fan at the jth air inlet
  • q is a positive integer greater than or equal to 2
  • j is a positive integer greater than or equal to 2 and less than or equal to q
  • ⁇ m is the preset speed increase difference.
  • an opening adjustment device at the top air outlet of the vehicle-mounted overhead air conditioner, and a gas flow rate sensor is arranged at the top of the vehicle-mounted overhead air conditioner, the controller and the The opening adjustment device is connected with the gas flow rate sensor to obtain the current flow rate of the airflow at the top of the vehicle overhead air conditioner and control the opening adjustment device to adjust the opening of the air outlet accordingly, and the opening of the air outlet is controlled to match the current flow velocity Negative correlation, which can make the air outlet at the corresponding opening degree when the vehicle is running at different speeds, so that the airflow flow of the air outlet matches the heat exchange of the outdoor heat exchanger, and ensures that the compressor starts and stops regularly, so that the refrigerant The line pressure in the circuit remains relatively stable, thereby extending the service life of the compressor and refrigerant circulation lines.
  • the air flow rate sensor installed on the top of the vehicle-mounted overhead air conditioner detects the flow rate of the air flow during the driving process of the vehicle, and controls the opening adjustment device to adjust the opening of the air outlet accordingly. There is no need to modify the vehicle so that the controller can establish communication with the vehicle. Connected, the vehicle-mounted overhead air conditioner using the control method of the present invention can be applied to any vehicle, and is more convenient to install and use.
  • the present invention also provides a vehicle-mounted overhead air conditioner, comprising: a memory; a processor; and a computer program, the computer program being stored in the memory and configured to be executed by the processor to The control method of the vehicle-mounted overhead air conditioner in the above technical solution is realized.
  • the present invention also provides a vehicle, which includes the vehicle-mounted overhead air conditioner in the above technical solution.
  • Fig. 1 is the main step diagram of the control method of the vehicle-mounted overhead air conditioner of the present invention
  • Fig. 2 is a kind of concrete step diagram of the control method of the vehicle-mounted overhead air conditioner of the present invention
  • FIG. 3 is a schematic top view of the vehicle-mounted overhead air conditioner according to an embodiment of the present invention 1 (the air outlet is fully opened);
  • FIG. 4 is a second schematic top view of the vehicle-mounted overhead air conditioner according to an embodiment of the present invention (the air outlet is partially open);
  • FIG. 5 is a specific step diagram of a control method for a vehicle-mounted overhead air conditioner according to an embodiment of the present invention.
  • the damper in the opening degree adjusting device in the embodiment of the present invention adjusts the opening degree of the air outlet in a translational manner
  • this does not limit the protection scope of the present invention, and those skilled in the art can make it according to their needs. It can be adjusted so as to adapt to specific application occasions.
  • the damper in the opening degree adjusting device of the present invention can also adjust the opening degree of the air outlet in a pivoting manner. Obviously, the adjusted technical solution will still fall within the protection scope of the present invention.
  • connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • FIGS. 1 to 5 the vehicle-mounted overhead air conditioner and the control method thereof of the present invention will be introduced.
  • 1 is a main step diagram of the control method of the vehicle-mounted overhead air conditioner of the present invention
  • FIG. 2 is a specific step diagram of the control method of the vehicle-mounted overhead air conditioner of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • FIG. 4 is the top schematic diagram 2 of the vehicle overhead air conditioner according to an embodiment of the present invention (the air outlet is partially open)
  • FIG. 5 is the first embodiment of the present invention.
  • the present invention provides a vehicle-mounted overhead air conditioner and the same. Control Method.
  • the vehicle-mounted overhead air conditioner is installed on the vehicle, the top of the vehicle-mounted overhead air conditioner is provided with an air outlet corresponding to the outdoor heat exchanger, the air outlet is provided with an opening adjustment device, and the top of the vehicle-mounted overhead air conditioner is provided with a gas flow rate sensor , the vehicle overhead air conditioner includes a controller, the controller is connected with an opening adjustment device and a gas flow rate sensor.
  • the controller is connected to the opening adjustment device and the gas flow rate sensor, and can be connected by a communication line or by a wireless connection such as Bluetooth and WIFI.
  • the opening degree adjusting device may be a device disposed at the air outlet, which can move the damper in a pivoting manner, a translation manner or other suitable manners, thereby changing the opening degree of the air outlet.
  • control method of the vehicle-mounted overhead air conditioner of the present invention mainly comprises the following steps:
  • Step S100 Obtain the current flow rate of the airflow at the top of the vehicle overhead air conditioner.
  • an air flow rate sensor disposed on the top of the vehicle-mounted overhead air conditioner detects the current flow rate of the airflow at the top of the vehicle-mounted overhead air conditioner in real time and sends the current flow rate to the controller.
  • Step S200 Control the opening degree adjusting device to adjust the opening degree of the air outlet according to the current flow rate of the air flow, wherein the opening degree of the air outlet is controlled to be negatively correlated with the current flow rate of the air flow.
  • the domestic high-speed speed limit is 120km/h.
  • the moving speed of the vehicle is usually 0-120km/h, and the air velocity flowing through the top of the vehicle-mounted overhead air conditioner is also roughly 0-120km/h during the driving process.
  • the speed range from 0 to 120 km/h can be delineated into n flow velocity intervals, and the openings of the air outlets are preset as n openings corresponding to the n velocity intervals one-to-one.
  • the opening of the air outlet is preset to 1, 4/5, 3/5, 2/5, 1/5 corresponding to the flow rate interval. It should be noted that the opening is the ratio of the open cross-sectional area of the air outlet to its cross-sectional area.
  • the controller can determine the current outlet The target opening of the air outlet is 4/5, so the opening adjustment device is controlled to make the opening of the air outlet reach 4/5. It can be understood that the range of the air velocity flowing through the top of the vehicle overhead air conditioner can also be measured experimentally.
  • the opening adjustment device adjusts the opening of the air outlet according to the current flow rate of the current airflow at the top of the vehicle overhead air conditioner, so that the air outlet is at the corresponding opening degree when the vehicle is in different driving states, thereby reducing the vehicle overhead air conditioner during driving.
  • the influence of the airflow generated by the relative movement of the air conditioner and the air on the airflow at the air outlet that is, to reduce the promotion effect of the negative pressure area formed above the vehicle overhead air conditioner on the air outlet of the air outlet during the driving process of the vehicle, so that the air flow at the air outlet is equal to that of the air outlet.
  • the heat exchange of the outdoor heat exchanger is matched to ensure that the compressor starts and stops regularly, so that the pipeline pressure in the refrigerant circuit remains relatively stable, thereby extending the service life of the compressor and the refrigerant circulation pipeline.
  • the number of the flow velocity intervals and the openings of the air outlet is only a specific setting method, and those skilled in the art can make adjustments to them as needed, such as the flow velocity interval and the air outlet opening.
  • the number of openings may be 3, 4, 6 or more, etc.
  • step S200 includes:
  • K is the target opening
  • V is the maximum moving speed that the vehicle can reach
  • 0 ⁇ ⁇ 1 v is the current flow rate of the airflow.
  • the maximum moving speed that the vehicle can reach may be the maximum moving speed that the vehicle itself is designed to reach, or the maximum speed that the vehicle is restricted to travel while traveling on the road.
  • the speed of the airflow is lower than the running speed of the vehicle.
  • the top material of the vehicle-mounted overhead air conditioner and the roughness of its surface have a certain influence on the friction coefficient.
  • the value of ⁇ can be preset according to the specific vehicle-mounted overhead air conditioner, so as to obtain an outlet that better matches the current flow rate.
  • Step S220 adjusting the opening of the air outlet to the target opening.
  • the target opening of the air outlet can be calculated, and the opening of the air outlet can be adjusted to match the driving speed at any speed of the vehicle. It can effectively reduce the influence of the relative air flow generated during the driving of the vehicle on the air flow of the air outlet, make the air flow through the outdoor heat exchanger more stable, and ensure that the compressor starts and stops regularly, so that the refrigerant
  • the pipeline pressure in the circuit remains relatively stable, extending the service life of the compressor and refrigerant circulation pipeline.
  • the air inlet of the external circulation air duct is also set at the top, and the relative airflow generated during the driving of the vehicle affects the gas flow of the air inlet and does not match the heat exchange of the outdoor heat exchanger. .
  • the control method of the vehicle-mounted overhead air conditioner also comprises "increase the rotational speed of the blower of the air inlet according to the flow velocity of the current air flow, wherein, the rotational speed increase amount of the blower of the air inlet is controlled to be positively correlated with the flow velocity of the current air flow.
  • a step of. Specifically, it includes the following steps:
  • the preset rotational speed increase amount ⁇ M is preset, for example, the preset rotational speed increase amount ⁇ M may be 20 rpm, 30 rpm, or other suitable rotational speed increases.
  • Step S320 increasing the rotational speed of the fan at the air inlet by the rotational speed increase amount.
  • the heat exchange of the compressor is matched to ensure that the compressor starts and stops regularly, so that the pipeline pressure in the refrigerant circuit remains relatively stable, thereby prolonging the service life of the compressor and the refrigerant circulation pipeline.
  • the range of the flow velocity of the air flowing through the top of the vehicle-mounted overhead air conditioner is divided into n flow velocity intervals, and the fan at the air inlet is set with n rotational speeds corresponding to the n velocity intervals one-to-one.
  • Increase the amount For example, the speed range from 0 to 120km/h is divided into 5 velocity intervals, which are (0, 20] km/h, (20, 45] km/h, (45, 70] km/h, (70 , 95]km/h, (95, 120]km/h, the speed increase of the fan at the air inlet is set to 10 rpm, 20 rpm, 30 rpm, 40 rpm corresponding to the flow rate interval. /min, 50 r/min.
  • the controller When the controller receives the flow rate of the current airflow at the top of the vehicle-mounted overhead air conditioner from the gas flow rate sensor, it determines the flow rate range in which the current flow rate of the current airflow at the top of the vehicle-mounted overhead air conditioner falls, thereby Determine the increase in the rotational speed of the fan at the air inlet.
  • the current flow rate of the current airflow at the top of the vehicle-mounted overhead air conditioner is 75km/h, falling into the flow velocity range of (70, 95]km/h, and the corresponding fan at the air inlet
  • the speed increase of the air inlet is 40 rpm
  • the controller can determine that the current increase in the speed of the fan at the air inlet is 40 rpm, so as to control the speed of the fan at the air inlet to increase by 40 rpm.
  • Step S200 of the control method for the vehicle-mounted overhead air conditioner includes the following steps:
  • K 1 is the target opening degree of the first air outlet
  • K i is the target opening degree of the ith air outlet
  • i is a positive integer greater than or equal to 2 and less than or equal to p
  • ⁇ K is the preset opening degree difference. It can be understood that the preset opening degree difference ⁇ K may be 1/10, 2/10, 3/10 or other values.
  • the openings of the air outlets along the front-rear direction can be set differently, so that in the case of being arranged in the front-rear direction, the influence of the relative airflow on the air flow of the air outlets arranged in the front-rear direction is different, and the front-rear direction can be controlled more accurately.
  • the opening of the air outlet is set so that the gas flow of different air outlets matches the heat exchange of the corresponding part of the outdoor heat exchanger.
  • FIG. 3 to FIG. 5 The following description will be made with reference to FIG. 3 to FIG. 5 in conjunction with a vehicle-mounted overhead air conditioner having two air outlets on the top that are arranged in the front-rear direction.
  • the vehicle-mounted overhead air conditioner includes a casing 1 , and a first air outlet 131 and a second air outlet are distributed on the top plate 11 of the casing 1 from top to bottom. 132.
  • An air inlet 14 is provided on the side panel 12 of the lower side of the housing 1 (the side faces the rear of the vehicle when the vehicle-mounted overhead air conditioner is installed in the vehicle).
  • the top plate 11 is provided with a first opening adjustment device and a second opening adjustment device at the positions on the left side of the first air outlet 131 and the second air outlet 132, respectively.
  • the first opening adjustment device and the second opening adjustment device are respectively It is used to adjust the opening of the first air outlet 131 and the second air outlet 132 .
  • the first opening adjustment device includes a first linear motor 21 and a first air plate 22 connected to the output shaft of the first linear motor 21 .
  • the second opening adjustment device includes a second linear motor 31 and a second air plate 32 connected to the output shaft of the second linear motor 31 .
  • the control method of the vehicle-mounted overhead air conditioner includes the following steps:
  • Step S100 acquiring the current flow rate of the airflow at the top of the vehicle-mounted overhead air conditioner.
  • V is the maximum moving speed that the vehicle can reach
  • v is the current flow rate of the airflow
  • ⁇ K is the preset opening degree difference, 0 ⁇ 1, for example, ⁇ can be preset to 0.8.
  • Step S221 adjusting the opening degree of the first air outlet and the opening degree of the second air outlet to corresponding target opening degrees.
  • the maximum moving speed that the vehicle can reach is 120 km/h
  • the preset opening degree difference is 1/10
  • 0.8
  • the controller controls the first linear motor 21 and the second linear motor 22 to drive the first air plate 22 and the second air plate 32 to move to corresponding positions respectively, so that the opening of the first air outlet 131 and the second air outlet 132 The opening reaches 0.375 and 0.475.
  • the top of the vehicle-mounted overhead air conditioner is provided with a first air inlet, . positive integer of .
  • the step of "increasing the rotational speed of the fan at the air inlet according to the current flow rate of the air, wherein the increase in the rotational speed of the fan at the air inlet is controlled to be positively correlated with the current flow rate" includes:
  • M1 is the increase in the rotational speed of the fan at the first air inlet
  • Mj is the increase in the rotational speed of the fan at the jth air inlet
  • q is a positive integer greater than or equal to 2
  • j is a positive integer greater than or equal to 2 and less than or equal to q Integer
  • ⁇ m is the preset speed increase difference.
  • the fan at the air inlet is set with n speed increments corresponding to the n velocity intervals, to determine the velocity interval in which the current flow velocity of the current air flow at the top of the vehicle overhead air conditioner is located, and to determine the rotational speed increase of the fan at the first air inlet. a lot.
  • the rotational speed of the air inlets along the front and rear directions can be set differently, so that in the case of setting in the front and rear directions, the relative airflow has different influences on the airflow flow of the air inlets arranged in the front and rear directions, and more accurately control the speed of the air inlets arranged in the front and rear directions.
  • the rotation speed of the fan at the air inlet makes the gas flow of different air inlets match the heat exchange of the corresponding parts of the outdoor heat exchanger.
  • the present invention also provides a vehicle-mounted overhead air conditioner, comprising: a memory, a processor, and a computer program, where the computer program is stored in the memory and configured to be executed by the processor to implement any of the above embodiments The control method of the vehicle overhead air conditioner.
  • the memory in the above embodiments includes but is not limited to random access memory, flash memory, read-only memory, programmable read-only memory, volatile memory, non-volatile memory, serial memory, parallel memory or Registers, etc.
  • processors include but are not limited to CPLD/FPGA, DSP, ARM processor, MIPS processor, etc.
  • the present invention also provides a vehicle including the vehicle-mounted overhead air conditioner of the above embodiment.
  • the opening degree adjusting device is controlled to adjust the opening degree of the air outlet according to the flow rate of the current airflow at the top of the vehicle overhead air conditioner, which can make the vehicle run at different speeds.
  • the air outlet is at the corresponding opening, so that the airflow flow of the air outlet matches the heat exchange of the outdoor heat exchanger, so as to ensure that the compressor starts and stops regularly, so that the pipeline pressure in the refrigerant circuit remains relatively stable, thereby prolonging the compressor and the compressor.
  • the service life of the refrigerant circulation line there is no need to modify the vehicle so that the controller can establish a communication connection with the vehicle, and the vehicle-mounted overhead air conditioner using the control method of the present invention can be applied to any vehicle, and is more convenient to install and use.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本发明属于空调技术领域,旨在解决车载顶置式空调器的顶部出风口的气流流量在车辆行驶过程中与室外换热器的换热量不匹配的问题。为此目的,本发明提供了一种车载顶置式空调器及其控制方法、车辆,车载顶置式空调器安装于车辆,其顶部设置有气体流速传感器以及与室外换热器对应的出风口,出风口处设置有开度调节装置,车载顶置式空调器包括与开度调节装置和速度传感器连接的控制器,控制方法包括:获取车辆顶置式空调器的顶部当前气流的流速并据此控制开度调节装置调节出风口的开度,其中出风口的开度被控制成与当前气流的流速负相关,从而使出风口的气流流量与室外换热器的换热量相匹配,延长了压缩机和冷媒循环管路的使用寿命。

Description

车载顶置式空调器及其控制方法、车辆 技术领域
本发明属于空调技术领域,具体提供了一种车载顶置式空调器及其控制方法、车辆。
背景技术
随着科技的进步以及人们生活水平的不断提高,空调器被广泛应用于人们的日常生活中。空调器不仅在人们的居家环境中得到了普遍的应用,并且在人们驾驶的车辆中被广泛应用,提高了车辆驾乘空间内的温度舒适度。考虑到车辆的内部空间有限,车载顶置式空调器是车辆用空调的主要类型。车载顶置式空调器安装在车顶,其上半部分位于车顶上部,其下半部分位于车内,内循环风道的进风口和/或出风口设置在顶置式空调器的底部,以便车内空气流经室内换热器进行热交换后重新回到车内,外循环风道的进风口和/或出风口设置在车载顶置式空调器的顶部,以便车外空气流经室外换热器进行热交换后重新回到车外。
在使用车载顶置式空调器对车内进行制冷或制热的过程中,车辆通常处于行驶状态。在车辆行驶过程中,车载顶置式空调器顶部与环境中的空气相对运动,在顶部形成朝车辆后方流动的气流,流动的气流对车载空调器顶部的出风口流通的气流产生了较大的影响,车载空调器顶部的出风口的气流流量与室外换热器的换热量不匹配,从而导致压缩机不规律地启停以及冷媒回路中管路压力不稳定,影响压缩机和冷媒循环管路的使用寿命。
因此,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决车载顶置式空调器的顶部出风口的气流流量在车辆行驶过程中与室外换热器的换热量不匹配的问题,一方面本发明提供了一种车载顶置式空调器的控制方法,所述车载顶置式空调器安装于车辆,所述车载顶置式空调器的顶部设置 有与室外换热器对应的出风口,所述出风口处设置有开度调节装置,所述车载顶置式空调器的顶部设置有气体流速传感器,所述车载顶置式空调器包括控制器,所述控制器与所述开度调节装置和所述气体流速传感器连接,所述控制方法包括:获取所述车载顶置式空调器的顶部当前气流的流速;根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度;其中,所述出风口的开度被控制成与所述当前气流的流速负相关。
在上述控制方法的优选技术方案中,所述出风口的开度被设定成包括n个开度,所述车载顶置式空调器的顶部流过的气流的流速范围被划定成n个流速区间,所述出风口的n个开度与所述n个流速区间一一对应,n为大于等于2的正整数,“根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度”的步骤包括:判断所述当前气流的流速所处的流速区间并确定所述出风口的目标开度;将所述出风口的开度调节成所述目标开度。
在上述控制方法的优选技术方案中,“根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度”的步骤包括:根据所述当前气流的流速按照公式(1)计算所述出风口的目标开度,
Figure PCTCN2022073269-appb-000001
将所述出风口的开度调节成所述目标开度;其中,K为所述目标开度,V为所述车辆能够达到的最大移动速度,0<ω<1,v为所述当前气流的流速。
在上述控制方法的优选技术方案中,所述出风口包括沿所述车辆从前向后方向依次排列的第一出风口、…、第i出风口、…、第p出风口,“根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度”的步骤包括:根据所述当前气流的流速确定所述第一出风口的目标开度;按照公式(2)计算所述第i出风口的目标开度,
K i=K 1+(i-1)ΔK               (2);
将所述第一出风口的开度、…、所述第i出风口的开度、…、所述第p出风口的开度调节成对应的目标开度;其中,K 1为所述第一出风口的目标开度,K i为所述第i出风口的目标开度,p为大于等于2的正整数,i为大于等于2且小于等于p的正整数,ΔK为预设开度差值。
在上述控制方法的优选技术方案中,所述车载顶置式空调器的顶部设置有与室外换热器对应的进风口,所述控制方法还包括:根据所述当前气流的流速增大所述进风口的风机的转速;其中,所述进风口的风机的转速增大量被控制成与所述当前气流的流速正相关。
在上述控制方法的优选技术方案中,所述车载顶置式空调器的顶部流过的气流的流速范围被划定成n个流速区间,所述进风口的风机设置n个转速增大量,所述n个转速增大量与所述n个流速区间一一对应,n为大于等于2的正整数,“根据所述当前气流的流速增大所述进风口的风机的转速”的步骤包括:判断所述当前气流的流速所处的流速区间并确定所述进风口的风机的转速增大量;将所述进风口的风机的转速增加所述转速增大量。
在上述控制方法的优选技术方案中,“根据所述当前气流的流速增大所述进风口的风机的转速”的步骤包括:根据所述当前气流的流速按照公式(3)计算所述进风口的风机的转速增大量,
Figure PCTCN2022073269-appb-000002
将所述进风口的风机的转速增加所述转速增大量;其中,M为所述转速增大量,v为所述当前气流的流速,V为所述车辆能够到达的最大移动速度,ΔM为预设转速增大量。
在上述控制方法的优选技术方案中,所述进风口包括沿所述车辆从前向后方向依次排列的第一进风口、…、第j进风口、…、第q进风口,“根据所述当前气流的流速增大所述进风口的风机的转速”的步骤包括:根据所述当前气流的流速确定所述第一进风口的风机的转速增大量;按照公式(4)计算所述第j进风口的风机的转速增大量,
M j=M 1-(j-1)Δm             (4);
将所述第一进风口的风机的转速、…、所述第j进风口的风机的转速、…、所述第q进风口的风机的转速增加对应的转速增大量;其中,M 1为所述第一进风口的风机的转速增大量,M j为所述第j进风口的风机的转速增大量,q为大于等于2的正整数,j为大于等于2且小于等于q的正整数,Δm为预设转速增大差。
本领域技术人员能够理解的是,在本发明的技术方案中,通过在车载顶置式空调器的顶部出风口处设置开度调节装置,车载顶置式 空调器的顶部设置气体流速传感器,控制器与开度调节装置和气体流速传感器连接,获取车载顶置式空调器的顶部当前气流的流速并据此控制开度调节装置调节出风口的开度,出风口的开度被控制成与当前气流的流速负相关,能够在车辆处于不同速度行驶的状态下使出风口处于对应的开度,使出风口的气流流量与室外换热器的换热量相匹配,保证压缩机规律地启停,使冷媒回路中管路压力保持相对稳定,从而延长压缩机和冷媒循环管路的使用寿命。
通过设置在车载顶置式空调器顶部的气体流速传感器检测车辆行驶过程中检测气流的流速,并据此控制开度调节装置调节出风口的开度,无需对车辆进行改造以便控制器与车辆建立通信连接,使用本发明的控制方法的车载顶置式空调器可以适用于任何车辆,安装和使用更加方便。
另一方面,本发明还提供了一种车载顶置式空调器,包括:存储器;处理器;以及计算机程序,所述计算机程序存储于所述存储器中,并被配置为由所述处理器执行以实现上述技术方案中的车载顶置式空调器的控制方法。
此外,本发明还提供了一种车辆,所述车辆包括上述技术方案中的车载顶置式空调器。
需要说明的是,该车载顶置式空调器和车辆具有上述控制方法的全部技术效果,在此不再赘述。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是本发明车载顶置式空调器的控制方法的主要步骤图;
图2是本发明车载顶置式空调器的控制方法的一种具体步骤图;
图3是本发明一种实施例的车载顶置式空调器的俯视示意图一(出风口完全打开状态);
图4是本发明一种实施例的车载顶置式空调器的俯视示意图二(出风口部分打开状态);
图5是本发明一种实施例的车载顶置式空调器的控制方法的具体步骤图。
附图标记列表:
1、壳体;11、顶板;12、侧板;131、第一出风口;132、第二出风口;14、进风口;21、第一直线电机;22、第一风板;31、第二直线电机;32、第二风板。
具体实施方式
首先,本领域技术人员应当理解的是,下面描述的实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本发明实施例中开度调节装置中的风门是以平移的方式调节出风口的开度的,但是这并不能对本发明的保护范围构成限制,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合,如本发明的开度调节装置中的风门也可以以枢转的方式调节出风口的开度。显然,调整后的技术方案仍将落入本发明的保护范围。
需要说明的是,在本发明的描述中,术语“左”、“右”、“上”、“下”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“设置”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
参照图1至图5,来对本发明的车载顶置式空调器及其控制方法进行介绍。其中,图1是本发明车载顶置式空调器的控制方法的主要步骤图,图2是本发明车载顶置式空调器的控制方法的一种具体步骤图,图3是本发明一种实施例的车载顶置式空调器的俯视示意图一(出风口 完全打开状态),图4是本发明一种实施例的车载顶置式空调器的俯视示意图二(出风口部分打开状态),图5是本发明一种实施例的车载顶置式空调器的控制方法的具体步骤图。
基于背景技术提到的车载顶置式空调器的顶部出风口的气流流量在车辆行驶过程中与室外换热器的换热量不匹配的问题,本发明提供了一种车载顶置式空调器及其控制方法。车载顶置式空调器安装于车辆,车载顶置式空调器的顶部设置有与室外换热器对应的出风口,出风口处设置有开度调节装置,车载顶置式空调器的顶部设置有气体流速传感器,车载顶置式空调器包括控制器,控制器与开度调节装置和气体流速传感器连接。
本领域技术人员可以理解的是,控制器与开度调节装置和气体流速传感器连接,可以采用通信线路进行有线连接,也可以采用蓝牙、WIFI等无线方式连接。开度调节装置可以是设置在出风口处能够以枢转方式、平移方式或者其他合适的方式移动风门从而改变出风口的开度的装置。
如图1所示,本发明的车载顶置式空调器的控制方法主要包括以下步骤:
步骤S100、获取车辆顶置式空调器的顶部当前气流的流速。
在车辆行驶过程中车载顶置式空调器的顶部设置的气体流速传感器实时检测车载顶置式空调器的顶部当前气流的流速并将当前气流的流速发送至控制器。
步骤S200、根据当前气流的流速控制开度调节装置调节出风口的开度,其中出风口的开度被控制成与当前气流的流速负相关。
国内规定高速限速120km/h,在日常驾驶过程中车辆的移动速度通常在0~120km/h,在车辆行驶过程中车载顶置式空调器的顶部流过的气流速度也大致在0~120km/h。可以将0~120km/h的速度范围划定成n个流速区间,出风口的开度预设成与n个流速区间一一对应的n个开度。例如,划定成5个流速区间,分别是[0、20)km/h、[20、45)km/h、[45、70)km/h、[70、95)km/h、[95、120]km/h,出风口的开度预设成与流速区间一一对应的1、4/5、3/5、2/5、1/5。需要说明的是,开度为出风口打开的截面积与其横截面积的比值。控制器接收到气体流速传感器传来的 车载顶置式空调器顶部当前气流的流速时,判断当前气流的流速落入的流速区间,从而确定出出风口的目标开度。例如,车载顶置式空调器的顶部当前气流的流速为32km/h,落入[20、45)km/h的流速区间,相对应的出风口开度为4/5,控制器可以确定当前出风口的目标开度为4/5,从而控制开度调节装置使出风口的开度达到4/5。可以理解的是,车载顶置式空调器的顶部流过的气流速度的范围也可以通过实验测得。
根据车载顶置式空调器的顶部当前气流的流速控制开度调节装置调节出风口的开度,在车辆处于不同行驶状态时使出风口处于对应的开度,从而降低车辆行驶过程中车载顶置式空调器与空气相对运动产生的气流对出风口气流流量的影响,即降低车辆行驶过程中车载顶置式空调器的上方形成的负压区对出风口出风的促进作用,使出风口的气流流量与室外换热器的换热量相匹配,保证压缩机规律地启停,使冷媒回路中管路压力保持相对稳定,从而延长压缩机和冷媒循环管路的使用寿命。
本领域技术人员可以理解的是,流速区间和出风口的开度的数量为5个仅是一种具体的设置方式,本领域技术人员可以根据需要对其作出调整,如流速区间和出风口的开度的数量可以是3个、4个、6个或者更多个等。将速度范围0~120km/h划分成多个流速区间也是一种具体的设置方式,本领域技术人员可以根据实际情况对其作出调整,如速度范围可以是0~100km/h、0~130km/h或者0~140km/h等。
参照图2,在另一种具体的实施方式中,步骤S200包括:
步骤S210、根据当前气流的流速按照公式K=(ω*V-v)/(ω*V)计算出风口的目标开度,其中K为目标开度,V为车辆能够达到的最大移动速度,0<ω<1,v为当前气流的流速。可以理解的是,车辆能够达到的最大移动速度可以是车辆自身设计能够到达的最大移动速度,也可以是车辆在道路上行驶过程中被限制行驶的最高速度。由于车辆行驶过程中,车载顶置式空调器顶部上方的空气与车载顶置式空调器之间存在摩擦,因此气流的速度小于车辆的行驶速度。并且,车载顶置式空调器顶部材料及其表面的粗造度等对摩擦系数有一定的影响,在车辆处于相同行驶速度的情况下不同的车载顶置式空调器顶部的气流的流速也会不同,按照公式K=(ω*V-v)/(ω*V)计算出风口的目标开度,可以根据具体 的车载顶置式空调器预先设置ω的值,从而能够得到与当前气流的流速更加匹配的出风口的目标开度。
步骤S220、将出风口的开度调节成目标开度。
按照公式K=(ω*V-v)/(ω*V)计算出风口的目标开度,能够在车辆行驶的任一速度情况下均能够使出风口的开度调节到与该行驶速度状态下匹配的出风口开度,更加有效地降低车辆行驶过程中产生的相对气流对出风口气流的流量的影响,使流经室外换热器的气流流量更加稳定,保证压缩机规律地启停,使冷媒回路中管路压力保持相对稳定,延长压缩机和冷媒循环管路的使用寿命。
对于部分车载顶置式空调器,其外循环风道的进风口也设置在顶部,在车辆行驶过程中产生的相对气流对进风口的气体流量产生影响而与室外换热器的换热量不匹配。
继续参照图2,车载顶置式空调器的控制方法还包括“根据当前气流的流速增大进风口的风机的转速,其中,进风口的风机的转速增大量被控制成与当前气流的流速正相关”的步骤。具体地,包括以下步骤:
步骤S310、根据当前气流的流速按照公式M=v*ΔM/V计算进风口的风机的转速增大量,其中M为转速增大量,v为当前气流的流速,V为车辆能够达到的最大移动速度,ΔM为预设转速增大量。
预设转速增大量ΔM是预先设置好的,例如,预设转速增大量ΔM可以是20转/分钟、30转/分钟或者其他合适的转速增大量等。
步骤S320、将进风口的风机的转速增加所述转速增大量。
通过这样的设置,根据当前气流的流速按照公式M=v*ΔM/V计算进风口的风机的转速增大量并将进风口的转速增加所述转速增大量,能够对于车辆处于任一速度的状况下使进风口的风机转速增大对应的转速增大量,从而降低车辆行驶过程中产生的相对气流对车载空调器顶部进风口的气流流动的阻碍作用,使出风口的气流流量与室外换热器的换热量相匹配,保证压缩机规律地启停,使冷媒回路中管路压力保持相对稳定,从而延长压缩机和冷媒循环管路的使用寿命。
在另外一种可行的实施方式中,将车载顶置式空调器的顶部流过的气流的流速范围划定成n个流速区间,进风口的风机设置n个与n个流速区间一一对应的转速增大量。例如,将0~120km/h的速度范围划 定成5个流速区间,分别是(0、20]km/h、(20、45]km/h、(45、70]km/h、(70、95]km/h、(95、120]km/h,进风口的风机的转速增加量设置成与流速区间一一对应的10转/分钟、20转/分钟、30转/分钟、40转/分钟、50转/分钟。控制器接收到气体流速传感器传来的车载顶置式空调器的顶部当前气流的流速时,判断车载顶置式空调器的顶部当前气流的流速落入的流速区间,从而确定出进风口的风机的转速增大量。例如,车载顶置式空调器的顶部当前气流的流速为75km/h,落入(70、95]km/h的流速区间,相对应的进风口的风机的转速增大量为40转/分钟,控制器可以确定当前进风口的风机的转速增大量为40转/分钟,从而控制进风口的风机的转速增加40转/分钟。
对于部分车载顶置式空调器,其顶部设置有多个出风口,多个出风口为沿车辆从前向后方向依次排列的第一出风口、…、第i出风口、…、第p出风口,p为大于等于2的正整数。车载顶置式空调器的控制方法的步骤S200包括以下步骤:
根据当前气流的流速确定第一出风口的目标开度,按照公式K i=K 1+(i-1)ΔK计算第i出风口的目标开度;
将第一出风口的开度、…、第i出风口的开度、…、第p出风口的开度调节成对应的目标开度;
其中,K 1为第一出风口的目标开度,K i为第i出风口的目标开度,i为大于等于2且小于等于p的正整数,ΔK为预设开度差值。可以理解的是,预设开度差值ΔK可以是1/10、2/10、3/10或者其他值等。
通过这样的设置,能够对于沿前后方向的出风口的开度进行区别设置,从而对于前后方向设置的情况下相对气流对于前后方向设置的出风口的气流流量的影响不同而更加精确地控制前后方向设置的出风口的开度,从而使不同出风口的气体流量与室外换热器对应的部位的换热量相匹配。
下面参照图3至图5并结合顶部具有两个沿前后方向设置的出风口的车载顶置式空调器来进行介绍。
如图3至图5所示并参照图3所示的方位,车载顶置式空调器包括壳体1,壳体1的顶板11上从上向下分布有第一出风口131和第二出风口132,壳体1的下侧(车载顶置式空调器安装至车辆时该侧朝向 车辆尾部)的侧板12上设置有进风口14。顶板11上分别位于第一出风口131和第二出风口132左侧的位置设置有第一开度调节装置和第二开度调节装置,第一开度调节装置和第二开度调节装置分别用于调节第一出风口131和第二出风口132的开度。第一开度调节装置包括第一直线电机21以及与第一直线电机21的输出轴连接的第一风板22。第二开度调节装置包括第二直线电机31以及与第二直线电机31的输出轴连接的第二风板32。
车载顶置式空调器的控制方法包括以下步骤:
步骤S100、获取车载顶置式空调器的顶部当前气流的流速。
步骤S211、按照公式K 1=(ω*V-v)/(ω*V)计算第一出风口的目标开度K 1,按照公式K 2=K 1+ΔK计算第二出风口的目标开度K 2。其中,V为车辆能够达到的最大移动速度,v为当前气流的流速,ΔK为预设开度差值,0<ω<1,如ω可以预设成0.8。步骤S221、将第一出风口的开度和第二出风口的开度调节成对应的目标开度。
例如,车辆能够达到的最大移动速度120km/h,预设开度差值为1/10,ω=0.8。当检测到车辆当前的移动速度为60km/h时,K 1=(0.8×120-60)/(0.8×120)=0.375,K 2=0.375+1/10=0.475。控制器控制第一直线电机21和第二直线电机22分别驱动第一风板22和第二风板32分别移动至对应的位置而使第一出风口131的开度和第二出风口132的开度达到0.375和0.475。
本领域技术人员可以理解的是,也可以将车载顶置式空调器的顶部流过的气流的流速范围划定成n个流速区间,出风口的开度设置成包括与车辆的n个流速区间一一对应的n个开度,判断车载顶置式空调器的顶部当前气流的流速所处的流速区间并确定第一出风口的目标开度K 1,按照公式K i=K 1+(i-1)ΔK计算第i出风口的目标开度。
在另外一种实施方式中,车载顶置式空调器的顶部设置有沿车辆从前向后方向依次排列的第一进风口、…、第j进风口、…、第q进风口,q为大于等于2的正整数。“根据当前气流的流速增大进风口的风机的转速,其中,进风口的风机的转速增大量被控制成与当前气流的流速正相关”的步骤包括:
根据当前气体的流速确定第一进风口的风机的转速增大量;
按照公式M j=M 1-(j-1)Δm计算第j进风口的风机的转速增大量;
将第一进风口的风机的转速、…、第j进风口的风机的转速、…、第q进风口的风机的转速增加对应的转速增大量;
其中,M 1为第一进风口的风机的转速增大量,M j为第j进风口的风机的转速增大量,q为大于等于2的正整数,j为大于等于2且小于等于q的正整数,Δm为预设转速增大差。
可以理解的是,可以按照公式M=v*ΔM/V计算第一进风口的风机的转速增大量,也可以将车载顶置式空调器的顶部流过的气流的流速范围划定成n个流速区间,进风口的风机设置n个与n个流速区间一一对应的转速增大量,判断车载顶置式空调器的顶部当前气流的流速所处的流速区间并确定第一进风口的风机的转速增大量。
通过这样设置,能够对于沿前后方向的进风口的转速进行区别设置,从而对于前后方向设置的情况下相对气流对于前后方向设置的进风口的气流流量的影响不同而更加精确地控制前后方向设置的进风口的风机的转速,从而使不同进风口的气体流量与室外换热器对应的部位的换热量相匹配。
另一方面,本发明还提供了一种车载顶置式空调器,包括:存储器,处理器以及计算机程序,计算机程序存储于存储器中,并被配置为由处理器执行以实现上述任一项实施例的车载顶置式空调器的控制方法。
本领域技术人员可以理解,上述实施例中的存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。
此外,本发明还提供了一种车辆,车辆包括上述实施例的车载顶置式空调器。
通过以上描述可以看出,在本发明的技术方案中,根据车载顶置式空调器的顶部当前气流的流速控制开度调节装置调节出风口的开度,能够在车辆处于不同速度行驶的状态下使出风口处于对应的开度,使出风口的气流流量与室外换热器的换热量相匹配,保证压缩机规律地启停,使冷媒回路中管路压力保持相对稳定,从而延长压缩机和冷媒循环管 路的使用寿命。另外,无需对车辆进行改造以便控制器与车辆建立通信连接,使用本发明的控制方法的车载顶置式空调器可以适用于任何车辆,安装和使用更加方便。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种车载顶置式空调器的控制方法,所述车载顶置式空调器安装于车辆,其特征在于,所述车载顶置式空调器的顶部设置有与室外换热器对应的出风口,所述出风口处设置有开度调节装置,所述车载顶置式空调器的顶部设置有气体流速传感器,所述车载顶置式空调器包括控制器,所述控制器与所述开度调节装置和所述气体流速传感器连接,所述控制方法包括:
    获取所述车载顶置式空调器的顶部当前气流的流速;
    根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度;
    其中,所述出风口的开度被控制成与所述当前气流的流速负相关。
  2. 根据权利要求1所述的控制方法,其特征在于,所述出风口的开度被设定成包括n个开度,所述车载顶置式空调器的顶部流过的气流的流速范围被划定成n个流速区间,所述出风口的n个开度与所述n个流速区间一一对应,n为大于等于2的正整数,
    “根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度”的步骤包括:
    判断所述当前气流的流速所处的流速区间并确定所述出风口的目标开度;
    将所述出风口的开度调节成所述目标开度。
  3. 根据权利要求1所述的控制方法,其特征在于,“根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度”的步骤包括:
    根据所述当前气流的流速按照公式(1)计算所述出风口的目标开度,
    Figure PCTCN2022073269-appb-100001
    将所述出风口的开度调节成所述目标开度;
    其中,K为所述目标开度,V为所述车辆能够达到的最大移动速度,0<ω<1,v为所述当前气流的流速。
  4. 根据权利要求2或3所述的控制方法,其特征在于,所述出风口包括沿所述车辆从前向后方向依次排列的第一出风口、…、第i出风口、…、第p出风口,
    “根据所述当前气流的流速控制所述开度调节装置调节所述出风口的开度”的步骤包括:
    根据所述当前气流的流速确定所述第一出风口的目标开度;
    按照公式(2)计算所述第i出风口的目标开度,
    K i=K 1+(i-1)ΔK  (2);
    将所述第一出风口的开度、…、所述第i出风口的开度、…、所述第p出风口的开度调节成对应的目标开度;
    其中,K 1为所述第一出风口的目标开度,K i为所述第i出风口的目标开度,p为大于等于2的正整数,i为大于等于2且小于等于p的正整数,ΔK为预设开度差值。
  5. 根据权利要求1所述的控制方法,其特征在于,所述车载顶置式空调器的顶部设置有与室外换热器对应的进风口,所述控制方法还包括:
    根据所述当前气流的流速增大所述进风口的风机的转速;
    其中,所述进风口的风机的转速增大量被控制成与所述当前气流的流速正相关。
  6. 根据权利要求5所述的控制方法,其特征在于,所述车载顶置式空调器的顶部流过的气流的流速范围被划定成n个流速区间,所述进风口的风机设置n个转速增大量,所述n个转速增大量与所述n个流速区间一一对应,n为大于等于2的正整数,
    “根据所述当前气流的流速增大所述进风口的风机的转速”的步骤包括:
    判断所述当前气流的流速所处的流速区间并确定所述进风口的风机的转速增大量;
    将所述进风口的风机的转速增加所述转速增大量。
  7. 根据权利要求5所述的控制方法,其特征在于,“根据所述当前气流的流速增大所述进风口的风机的转速”的步骤包括:
    根据所述当前气流的流速按照公式(3)计算所述进风口的风机的转速增大量,
    Figure PCTCN2022073269-appb-100002
    将所述进风口的风机的转速增加所述转速增大量;
    其中,M为所述转速增大量,v为所述当前气流的流速,V为所述车辆能够到达的最大移动速度,ΔM为预设转速增大量。
  8. 根据权利要求6或7所述的控制方法,其特征在于,所述进风口包括沿所述车辆从前向后方向依次排列的第一进风口、…、第j进风口、…、第q进风口,
    “根据所述当前气流的流速增大所述进风口的风机的转速”的步骤包括:
    根据所述当前气流的流速确定所述第一进风口的风机的转速增大量;
    按照公式(4)计算所述第j进风口的风机的转速增大量,
    M j=M 1-(j-1)Δm  (4);
    将所述第一进风口的风机的转速、…、所述第j进风口的风机的转速、…、所述第q进风口的风机的转速增加对应的转速增大量;
    其中,M 1为所述第一进风口的风机的转速增大量,M j为所述第j进风口的风机的转速增大量,q为大于等于2的正整数,j为大于等于2且小于等于q的正整数,Δm为预设转速增大差。
  9. 一种车载顶置式空调器,其特征在于,包括:
    存储器;
    处理器;以及
    计算机程序,所述计算机程序存储于所述存储器中,并被配置为由所述处理器执行以实现权利要求1至8中任一项所述的车载顶置式空调器的控制方法。
  10. 一种车辆,其特征在于,所述车辆包括权利要求9所述的车载顶置式空调器。
PCT/CN2022/073269 2021-03-29 2022-01-21 车载顶置式空调器及其控制方法、车辆 WO2022206141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110335719.0 2021-03-29
CN202110335719.0A CN113085476B (zh) 2021-03-29 2021-03-29 车载顶置式空调器及其控制方法、车辆

Publications (1)

Publication Number Publication Date
WO2022206141A1 true WO2022206141A1 (zh) 2022-10-06

Family

ID=76671110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073269 WO2022206141A1 (zh) 2021-03-29 2022-01-21 车载顶置式空调器及其控制方法、车辆

Country Status (2)

Country Link
CN (1) CN113085476B (zh)
WO (1) WO2022206141A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085476B (zh) * 2021-03-29 2022-10-28 青岛海尔空调器有限总公司 车载顶置式空调器及其控制方法、车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003312253A (ja) * 2002-04-23 2003-11-06 Denso Corp 窓自動開閉装置
JP2006240524A (ja) * 2005-03-04 2006-09-14 Denso Corp 車両空調用室外熱交換装置
JP2008201224A (ja) * 2007-02-19 2008-09-04 Shin Caterpillar Mitsubishi Ltd キャブ内部温度制御方法、キャブ内部温度制御装置および車両
WO2016027431A1 (ja) * 2014-08-19 2016-02-25 株式会社デンソー 空調ユニット
CN113085476A (zh) * 2021-03-29 2021-07-09 青岛海尔空调器有限总公司 车载顶置式空调器及其控制方法、车辆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160713A (en) * 1981-03-31 1982-10-04 Hitachi Ltd Flow rate control mechanism for car air conditioner
KR20100064609A (ko) * 2008-12-05 2010-06-15 현대자동차주식회사 차량용 공기조화기의 공기유입방법 및 그 시스템
CN202204063U (zh) * 2011-02-24 2012-04-25 湖南华强电气有限公司 一种顶置式车载空调结构
CN102259572B (zh) * 2011-04-13 2012-11-28 浙江吉利汽车研究院有限公司 汽车采暖装置
CN105115064B (zh) * 2015-09-14 2018-03-30 广东美的制冷设备有限公司 空调室外机及其散热控制方法
CN206531156U (zh) * 2017-01-03 2017-09-29 珠海格力电器股份有限公司 一种环形出风的新风组件及空调器
CN108177501A (zh) * 2017-12-28 2018-06-19 西安工程大学 一种带有通风系统的大巴车
CN108759003B (zh) * 2018-04-27 2021-04-09 广东美的制冷设备有限公司 空调器的控制方法、空调器和计算机可读存储介质
CN210050903U (zh) * 2019-05-31 2020-02-11 特灵空调系统(中国)有限公司 进风装置、空调系统的室外机和空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003312253A (ja) * 2002-04-23 2003-11-06 Denso Corp 窓自動開閉装置
JP2006240524A (ja) * 2005-03-04 2006-09-14 Denso Corp 車両空調用室外熱交換装置
JP2008201224A (ja) * 2007-02-19 2008-09-04 Shin Caterpillar Mitsubishi Ltd キャブ内部温度制御方法、キャブ内部温度制御装置および車両
WO2016027431A1 (ja) * 2014-08-19 2016-02-25 株式会社デンソー 空調ユニット
CN113085476A (zh) * 2021-03-29 2021-07-09 青岛海尔空调器有限总公司 车载顶置式空调器及其控制方法、车辆

Also Published As

Publication number Publication date
CN113085476B (zh) 2022-10-28
CN113085476A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US6293116B1 (en) Humidity control method for a variable capacity vehicle climate control system
WO2022213709A1 (zh) 车载顶置式空调器及其控制方法、车辆
WO2022206141A1 (zh) 车载顶置式空调器及其控制方法、车辆
JPS58220939A (ja) アイドル回転速度制御装置
CN105115064B (zh) 空调室外机及其散热控制方法
WO2022199239A1 (zh) 车载顶置式空调器及其控制方法、车辆
CN110116602B (zh) 一种用于新能源汽车的暖通空调箱
WO2022199240A1 (zh) 车载顶置式空调器及其控制方法、车辆
WO2022206140A1 (zh) 车载顶置式空调器及其控制方法、车辆
CN116638928A (zh) 一种汽车空调出风调温装置及控制方法和汽车
JPH0642797A (ja) 空気調和装置の運転制御装置
KR101418849B1 (ko) 차량용 공조장치 및 그 제어방법
KR101587658B1 (ko) 차량의 공조장치 및 그 제어방법
JP2508917B2 (ja) 天井設置形空気調和機
JP2020131804A (ja) 車両用温度推定装置
JP2016078746A (ja) クーリングモジュール
JPH03164646A (ja) 空気調和装置の運転制御装置
JPS606809B2 (ja) 車輌用空調装置
JPS5936484Y2 (ja) 車輌用空調装置に於ける送風ファン速度制御装置
KR101703203B1 (ko) 전기자동차용 공조장치
JPH0818488B2 (ja) 車両客室用空気温度制御装置
CN100384650C (zh) 车辆用空调装置
KR20220101916A (ko) 버스 에어컨 송풍구 토출압력 유지 구조 및 방법
JPH07186690A (ja) 車両用空調装置の風量制御装置
JP2711734B2 (ja) 自動車用空調装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778330

Country of ref document: EP

Kind code of ref document: A1