WO2022188193A1 - 一种显示面板及其制备方法 - Google Patents

一种显示面板及其制备方法 Download PDF

Info

Publication number
WO2022188193A1
WO2022188193A1 PCT/CN2021/080918 CN2021080918W WO2022188193A1 WO 2022188193 A1 WO2022188193 A1 WO 2022188193A1 CN 2021080918 W CN2021080918 W CN 2021080918W WO 2022188193 A1 WO2022188193 A1 WO 2022188193A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible
barrier layer
flexible substrate
display panel
Prior art date
Application number
PCT/CN2021/080918
Other languages
English (en)
French (fr)
Inventor
柯霖波
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/283,057 priority Critical patent/US11991917B2/en
Publication of WO2022188193A1 publication Critical patent/WO2022188193A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a manufacturing method thereof.
  • polyimide is the most promising polymer material for flexible substrates.
  • Polyimide has excellent heat resistance, radiation resistance, chemical resistance, electrical insulation, mechanical properties, etc., but its own water resistance and oxygen resistance ability is weak.
  • the water and oxygen blocking ability of flexible polyimide substrates is a structure in which multiple layers of polyimide/inorganic silicon dioxide (Silicon Oxide, SiO2) are alternately stacked, but the adhesion of this structure is obviously insufficient.
  • Thin After Film Transistor, TFT problems such as film peeling off during bending or film separation during high temperature and high humidity are prone to occur.
  • the purpose of the present invention is to provide a flexible substrate and a preparation method thereof, a display panel, and a display device, so as to solve the problem that the existing flexible substrate has weak water and oxygen resistance, and the film layer falls off during bending or when high temperature and high humidity occur.
  • Technical issues of membrane separation are to provide a flexible substrate and a preparation method thereof, a display panel, and a display device, so as to solve the problem that the existing flexible substrate has weak water and oxygen resistance, and the film layer falls off during bending or when high temperature and high humidity occur.
  • the purpose of the present invention is to provide a display panel and a preparation method thereof, so as to solve the technical problems that the existing flexible substrates have weak water and oxygen resistance, film layers fall off during bending, or film layers are separated at high temperature and high humidity. .
  • the present invention provides a display panel, comprising: a first flexible layer; a first barrier layer disposed on the first flexible layer; and a second flexible layer disposed on the first barrier layer ;
  • the mass ratio of the silicon oxide and the silicon nitride is 9:7.
  • the silicon oxide is silicon dioxide; the silicon nitride is trisilicon tetranitride.
  • the display panel further includes: a second barrier layer disposed on the second flexible layer.
  • the thickness of the first flexible layer is 4000-12000 nm; and/or the thickness of the first barrier layer is 100-600 nm; and/or the thickness of the second flexible layer is 4000-12000 nm; and/or Or the thickness of the second barrier layer is 100-600 nm.
  • the sum of the thicknesses of the first flexible layer, the first barrier layer, the second flexible layer, and the second barrier layer is 8200-25200 nm.
  • the method further includes: forming a second barrier layer on the second flexible layer.
  • the method further includes: using mechanical peeling technology and/or laser peeling technology to peel off the glass substrate and the first flexible layer deal with.
  • the technical effect of the present invention is to provide a display panel and a manufacturing method thereof.
  • the display panel includes two layers of flexible layers and two layers of barrier layers, and the flexible layers and the barrier layers are arranged at intervals, so that the two layers can be improved.
  • the adhesion between the flexible layers can also improve the adhesion between the flexible layer and other film layers, and realize the water and oxygen resistance, adhesion, bending performance, high temperature and high humidity performance and optical properties of the flexible substrate. transmittance.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a flexible substrate provided by an embodiment of the present application.
  • FIG. 3 is a graph of the water vapor transmission rate of a flexible substrate according to an embodiment of the present application.
  • FIG. 4 is a graph showing the adhesive force of a flexible substrate according to an embodiment of the present application.
  • FIG. 5 is a graph showing the optical transmittance of a flexible substrate according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for manufacturing a flexible substrate provided in this embodiment.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • This embodiment also provides a display panel 1000 , which includes the aforementioned flexible substrate 100 , a thin film transistor layer 200 , a planarization layer 300 , an anode 400 , a pixel definition layer 500 , an organic light-emitting layer 600 and a thin film encapsulation layer 700 .
  • FIG. 2 is a schematic structural diagram of a flexible substrate provided by an embodiment of the present application.
  • the flexible substrate 100 includes a first flexible layer 11 , a first barrier layer 12 , a second flexible layer 13 and a second barrier layer 14 .
  • the first barrier layer 12 is arranged on the first flexible layer 11
  • the second flexible layer 13 is arranged on the first barrier layer 12
  • the second barrier layer 14 is arranged on the second flexible layer on layer 13.
  • the materials used for the first flexible layer 11 and the second flexible layer 13 are the same or different, which are not limited herein.
  • Materials used for the first flexible layer 11 and the second flexible layer 13 may be polyimide, polymethyl methacrylate (PMMA), or the like.
  • the thickness of the first flexible layer 11 is less than or equal to the thickness of the second flexible layer, which is not particularly limited herein.
  • the thickness of the first blocking layer 12 is 100-600 nm, and the materials used for the first blocking layer 12 include silicon oxide and silicon nitride.
  • the thickness of the second barrier layer 14 can also be 100-600nm, and its material can also be silicon oxide and silicon nitride, the silicon oxide includes but not limited to SiO 2 , and the silicon nitride includes but not limited to Si 3 N 4 .
  • the sum of the thicknesses of the first flexible layer 11 , the first barrier layer 12 , the second flexible layer 13 , and the second barrier layer 14 is 8200-25200 nm.
  • FIG. 3 is a graph of the water vapor transmittance of the flexible substrate according to the embodiment of the present application
  • FIG. 3 is a graph of the adhesive force of the flexible substrate according to the embodiment of the present application
  • FIG. 5 is the flexible substrate of the embodiment of the present application.
  • the flexible substrate 100 adopts the structural design of the first flexible layer 11 , the first barrier layer 12 and the second flexible layer 13 .
  • Three different flexible substrates will be provided below, namely a first flexible substrate 101 , a second flexible substrate 102 and a third flexible substrate 100 , which are the flexible substrate 100 provided in this application.
  • the first flexible substrate 101 is a combination structure of a single-layer flexible layer and a barrier layer
  • the material used for the barrier layer is only SiO 2
  • the water vapor permeability of the first flexible substrate The excess rate was 500 mg/m 2 day.
  • the second flexible substrate 102 is a combination structure of a double-layer flexible layer and a barrier layer (that is, the barrier layer is disposed between two flexible layers) and the material used for the barrier layer is only SiO 2
  • the first The water vapor transmission rate of the two flexible substrates 102 is 0.05 mg/m 2 day.
  • the third flexible substrate 100 is a combination structure of a double-layer flexible layer and a barrier layer (that is, the barrier layer is disposed between the two flexible layers) and the materials used for the barrier layer are SiO 2 and Si 3 N 4 , the The water vapor transmission rate of the third flexible substrate is 0.05 mg/m 2 day.
  • the value of the water vapor transmission rate of the flexible substrate 101 shows that the barrier capability of the second flexible substrate 102 and the third flexible substrate 100 is quite excellent.
  • the first flexible substrate 101 and the second flexible substrate 102 are made of SiO 2
  • the first flexible substrate 101 and the second flexible substrate 102 are made of SiO 2 .
  • the peeling force of the flexible substrate 102 was 0.196.
  • the materials used for the barrier layer of the third flexible substrate 100 are SiO 2 and Si 3 N 4
  • the adhesive force of the third flexible substrate 100 is 0.271, and the third flexible substrate 100 is much larger than the Adhesion of the first flexible substrate 101 or the second flexible substrate 102 .
  • the first flexible The optical transmittance (Optical Transmission) of the substrate 101 and the second flexible substrate 102 is 66.72.
  • the optical transmittance of the third flexible substrate 100 is 65.95-67.48, and the third flexible substrate 100 and the The first flexible substrate 101 or the second flexible substrate 102 is basically the same.
  • the barrier layer has lower water vapor Transmittance, better adhesion, better optical transmittance. Therefore, when the barrier layer is applied to the flexible substrate 100 to form the first barrier layer 12, the adhesion of the first flexible layer 12 and the second flexible layer 13 can be improved, so that the flexible substrate 100 achieves excellent water and oxygen barrier properties, bending properties, high temperature and high humidity properties and optical transmittance.
  • the first barrier layer 12 can combine the The adhesion between the first flexible layer 12 and the second flexible layer 13 is increased to more than 138%, so that the flexible substrate 100 achieves better bending performance and high temperature and high humidity performance, and improves the optical transmittance.
  • the adhesion between the flexible substrate 100 and other film layers can be improved, thereby improving the flexibility between the flexible substrate 100 and other film layers.
  • the thin film transistor layer 200 is disposed on the flexible substrate 100 .
  • the flexible substrate 100 includes the second barrier layer 13 disposed between the thin film transistor layer 200 and the second flexible layer 12 , and the second barrier layer 13 is used to improve the thin film transistor layer 200
  • the thin film transistor layer 200 includes an active layer 201, a first gate insulating layer 202, a first gate layer 203, a second gate insulating layer 204, a second gate layer 205, a dielectric layer 206, and a source and drain layer Layer 207.
  • the flat layer 300 is disposed on the thin film transistor layer 200 .
  • the active layer 201 is disposed on the second blocking layer 14 .
  • the first gate insulating layer 202 covers the active layer 201 and extends to the surface of the second blocking layer 14 .
  • the first gate layer 203 is disposed on the first gate insulating layer 202 and has a plurality of first gates and first scan lines, and the first gates are opposite to the active layer 201 .
  • the second gate insulating layer 204 is disposed on the first gate insulating layer 203 and extends to the surface of the first gate insulating layer 202 .
  • the second gate layer 205 is disposed on the second gate insulating layer 204, and has a plurality of second gates and second scan lines, and the second gates are opposite to the first gates.
  • the dielectric layer 206 covers the second gate layer 205 and extends to the surface of the second gate insulating layer 204 .
  • the source and drain layers 207 are disposed on the dielectric layer 206 and are connected through the dielectric layer 206 to the surface of the active layer 201 or the first scan line or the second scan line.
  • the flat layer 300 covers the source and drain layers 207 and extends to the surface of the dielectric layer.
  • the anode 400 is disposed on the flat layer 300 and is electrically connected to the thin film transistor layer 200 . Specifically, the anode 400 is electrically connected to the source and drain layers 207 .
  • the pixel definition layer 500 is disposed on the flat layer 300 .
  • the organic light emitting layer 600 is disposed on the pixel definition layer 500 and connected to the anode 400 .
  • the organic light-emitting layer 600 is an OLED device, which includes film layers such as an electron transport layer, an electron injection layer, a light-emitting layer, a hole injection layer, a hole transport layer, and a cathode. Referring to the structure of the existing OLED device, I won't go into details here.
  • the thin film encapsulation layer 700 is disposed on the organic light emitting layer 600 .
  • the thin film encapsulation layer 700 includes a laminated film layer formed of organic and inorganic materials, as long as the water and oxygen barrier capability of the display panel 1000 can be improved and the flexible bending capability of the display panel 1000 can be improved.
  • This embodiment provides a display panel, which includes two flexible layers and two barrier layers, and the flexible layers and the barrier layers are arranged at intervals, which can not only improve the adhesion between the two flexible layers, but also improve the overall Adhesion of the flexible layer to other film layers.
  • the mass ratio of the silicon oxide and the silicon nitride is 9:7
  • the adhesion between the barrier layer and the two flexible layers, or the adhesion between the barrier layer and the flexible layer and other film layers is increased to more than 138%. Therefore, when the barrier layer is applied to the display panel, the display panel can have higher adhesion, and achieve more excellent bending performance and high temperature and high humidity performance.
  • WVTR water vapor transmission rate
  • force refers to the adhesion ability of the barrier layer
  • optical transmittance refers to the optical transmittance of the barrier layer.
  • the present embodiment provides a method for manufacturing a display panel, which includes the following steps: forming a flexible substrate; forming a thin film transistor layer on the flexible substrate; forming a flat layer on the thin film transistor layer; forming an anode on the flexible substrate on the flat layer; forming a pixel definition layer on the flat layer and covering the anode; forming an organic light emitting layer on the pixel definition layer; and forming a thin film encapsulation layer on the light emitting layer.
  • FIG. 6 is a flowchart of a method for manufacturing a flexible substrate provided in this embodiment.
  • This embodiment also provides a method for preparing a flexible substrate, including the following steps S1)-S4).
  • the material used for the second flexible layer 13 may be polyimide, polymethyl methacrylate (PMMA), or the like.
  • first barrier layer on the first flexible layer, wherein the materials used for the first barrier layer include silicon oxide and silicon nitride, and the silicon oxide and the silicon nitride are formed by chemical vapor method
  • a uniform first barrier layer 12 is formed on the first flexible layer 11 by a chemical vapor deposition (PECVD) film forming process.
  • the thickness of the first blocking layer 12 is 100-600 nm, and the materials used for the first blocking layer 12 include silicon oxide and silicon nitride.
  • the material used for the second flexible layer 13 may be polyimide, polymethyl methacrylate (PMMA), or the like.
  • the thickness of the first flexible layer 11 is less than or equal to the thickness of the second flexible layer, which is not particularly limited herein.
  • the thickness of the second barrier layer 14 can also be 100-600 nm, and its material can also be silicon oxide and silicon nitride, the silicon oxide includes but not limited to SiO 2 , the nitrogen Silicone includes, but is not limited to, Si 3 N 4 .
  • S5 Use mechanical peeling technology and/or laser peeling technology to perform peeling treatment on the glass substrate and the first flexible layer.
  • step S4) and the step S5) can be exchanged with each other, which is not particularly limited here.
  • the flexible substrate 100 adopts the structural design of the first flexible layer 11 , the first barrier layer 12 and the second flexible layer 13 .
  • Three different flexible substrates will be provided below, namely a first flexible substrate 101 , a second flexible substrate 102 and a third flexible substrate 100 , which are the flexible substrate 100 provided in this application.
  • the first flexible substrate 101 is a combination structure of a single-layer flexible layer and a barrier layer
  • the material used for the barrier layer is only SiO 2
  • the water vapor permeability of the first flexible substrate The excess rate was 500 mg/m 2 day.
  • the second flexible substrate 102 is a combination structure of a double-layer flexible layer and a barrier layer (that is, the barrier layer is disposed between two flexible layers) and the material used for the barrier layer is only SiO 2
  • the first The water vapor transmission rate of the two flexible substrates 102 is 0.05 mg/m 2 day.
  • the third flexible substrate 100 is a combination structure of a double-layer flexible layer and a barrier layer (that is, the barrier layer is disposed between the two flexible layers) and the materials used for the barrier layer are SiO 2 and Si 3 N 4 , the The water vapor transmission rate of the third flexible substrate is 0.05 mg/m 2 day.
  • the value of the water vapor transmission rate of the flexible substrate 101 shows that the barrier capability of the second flexible substrate 102 and the third flexible substrate 100 is quite excellent.
  • the first flexible substrate 101 and the second flexible substrate 102 are made of SiO 2
  • the first flexible substrate 101 and the second flexible substrate 102 are made of SiO 2 .
  • the peeling force of the flexible substrate 102 was 0.196.
  • the materials used for the barrier layer of the third flexible substrate 100 are SiO 2 and Si 3 N 4
  • the adhesive force of the third flexible substrate 100 is 0.271, and the third flexible substrate 100 is much larger than the Adhesion of the first flexible substrate 101 or the second flexible substrate 102 .
  • the first flexible The optical transmittance (Optical Transmission) of the substrate 101 and the second flexible substrate 102 is 66.72.
  • the optical transmittance of the third flexible substrate 100 is 65.95-67.48, and the third flexible substrate 100 and the The first flexible substrate 101 or the second flexible substrate 102 is basically the same.
  • the barrier layer has a lower water vapor permeability Pass rate, better adhesion, better optical transmittance. Therefore, when the barrier layer is applied to the flexible substrate 100 to form the first barrier layer 12, the adhesion of the first flexible layer 12 and the second flexible layer 13 can be improved, so that the flexible substrate 100 achieves excellent water and oxygen barrier properties, bending properties, high temperature and high humidity properties and optical transmittance.
  • the first barrier layer 12 can make the first flexible
  • the adhesion between the layer 12 and the second flexible layer 13 is increased to more than 138%, so that the flexible substrate 100 achieves better bending performance and high temperature and high humidity performance, and improves the optical transmittance.
  • the adhesion between the flexible substrate 100 and other film layers can be improved, thereby improving the flexibility between the flexible substrate 100 and other film layers.
  • the technical effect of the present invention is to provide a display panel and a manufacturing method thereof.
  • the display panel includes two layers of flexible layers and two layers of barrier layers, and the flexible layers and the barrier layers are arranged at intervals, so that the two layers can be improved.
  • the adhesion between the flexible layers can also improve the adhesion between the flexible layer and other film layers, and realize the water and oxygen resistance, adhesion, bending performance, high temperature and high humidity performance and optical properties of the flexible substrate. transmittance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示面板(1000),包括:第一柔性层(11);第一阻隔层(12),设于第一柔性层上;以及第二柔性层(13),设于第一阻隔层(12)上;其中,第一阻隔层(12)所用的材料包括氧化硅和氮化硅,氧化硅和氮化硅的质量比为3x∶7y,且x=1-4,y=1-4。提供了显示面板(1000)的制备方法。在两层柔性层之间设置阻隔层,可以提高两层柔性层之间的粘附力,实现柔性基板阻水阻氧能力、粘附力、弯折性能、高温高湿性能和光学透过率。

Description

一种显示面板及其制备方法 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及其制备方法。
背景技术
随着现代显示技术的快速发展,显示技术领域正朝着更轻、更薄、更柔、更透明的方向发展。传统的玻璃基板由于自身硬和脆等特性,难以满足未来柔性显示技术的要求;而高分子薄膜基板具有质轻、柔性、综合性能优异等特点,可以很好地满足显示技术对柔性的要求。因此,柔性高分子基板材料是未来柔性显示技术的首选材料。
目前,聚酰亚胺(Polyimide, PI)为柔性基板最具发展前景的高分子材料。聚酰亚胺具有优异的耐热性、耐辐射性能、耐化学性、电绝缘性、机械性能等,但其自身的阻水阻氧能力较弱。通常柔性聚酰亚胺基板的阻水阻氧能力是采用多层聚酰亚胺/无机二氧化硅(Silicon Oxide, SiO2)交替堆叠的结构,但该结构粘附力明显不足,制备薄膜晶体管(Thin Film Transistor, TFT)后,容易发生弯折时膜层脱落或高温高湿时膜层分离等问题。
技术问题
本发明的目的在于,本发明提供一种柔性基板及其制备方法、显示面板、显示装置,以解决现有柔性基板阻水阻氧能力较弱,在弯折时膜层脱落或高温高湿时膜层分离的技术问题。
技术解决方案
本发明的目的在于,本发明提供一种显示面板及其制备方法,以解决现有柔性基板阻水阻氧能力较弱,在弯折时膜层脱落或高温高湿时膜层分离的技术问题。
为实现上述目的,本发明提供一种显示面板,包括:第一柔性层;第一阻隔层,设于所述第一柔性层上;以及第二柔性层,设于所述第一阻隔层上;其中,所述第一阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4。
进一步地,当x=3,y=1时,所述氧化硅和所述氮化硅的质量比为9:7。
进一步地,所述氧化硅为二氧化硅;所述氮化硅为四氮化三硅。
进一步地,所述的显示面板还包括:第二阻隔层,设于所述第二柔性层上。
进一步地,所述第二阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4。
进一步地,所述第一柔性层的厚度为4000-12000nm;和/或所述第一阻隔层的厚度为100-600nm;和/或所述第二柔性层的厚度为4000-12000nm;和/或所述第二阻隔层的厚度为100-600nm。
进一步地,所述第一柔性层与所述第一阻隔层、所述第二柔性层、所述第二阻隔层的厚度之和为8200-25200nm。
为实现上述目的,本发明还提供一种显示面板的制备方法,包括如下步骤:形成一第一柔性层于一玻璃基板上;形成一第一阻隔层于所述第一柔性层上,其中所述第一阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4。
进一步地,在所述形成一第二柔性层于所述第一阻隔层上的步骤之后还包括:形成一第二阻隔层于所述第二柔性层上。
进一步地,在所述形成一第二柔性层于所述第一阻隔层上的步骤之后还包括:采用机械剥离技术和/或激光剥离技术对所述玻璃基板和所述第一柔性层进行剥离处理。
有益效果
本发明的技术效果在于,提供一种显示面板及其制备方法,所述显示面板包括两层柔性层和两层阻隔层,且所述柔性层与所述阻隔层间隔设置,既可以提高两层柔性层之间的粘附力,还可以提高所述柔性层与其他膜层的粘附力,实现所述柔性基板阻水阻氧能力、粘附力、弯折性能、高温高湿性能和光学透过率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的结构示意图;
图2为本申请实施例提供的柔性基板的结构示意图;
图3为本申请实施例柔性基板水汽透过率的曲线图;
图4为本申请实施例柔性基板粘附力的曲线图;
图5为本申请实施例柔性基板光学透过率的曲线图;
图6为本实施例提供的柔性基板的制备方法的流程图。
附图标记说明:
100柔性基板、第三柔性基板;           11第一柔性层;
12第一阻隔层;                        13第二柔性层;
14第二阻隔层;                        101第一柔性基板;
102第二柔性基板;                     1000显示面板;
200薄膜晶体管层;                     300平坦层;
400阳极;                             500像素定义层;
600有机发光层;                       700薄膜封装层;
201有源层;                           202第一栅极绝缘层;
203第一栅极层;                       204第二栅极绝缘层;
205第二栅极层;                       206介电层;
207源漏极层。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
如图1所示,图1为本申请实施例提供的显示面板的结构示意图。
本实施例还提供一种显示面板1000,其包括前文所述的柔性基板100、薄膜晶体管层200、平坦层300、阳极400、像素定义层500、有机发光层600以及薄膜封装层700。
如图2所示,图2为本申请实施例提供的柔性基板的结构示意图。
所述柔性基板100包括第一柔性层11、第一阻隔层12、第二柔性层13以及第二阻隔层14。
所述第一阻隔层12设于所述第一柔性层11上,所述第二柔性层13设于所述第一阻隔层12上,所述第二阻隔层14设于所述第二柔性层13上。其中,所述第一柔性层11和所述第二柔性层13所用的材料相同或者不同,在此不做限定。所述第一柔性层11和所述第二柔性层13所用的材料可以为聚酰亚胺、聚甲基丙烯酸甲酯(PMMA)等。所述第一柔性层11的厚度小于或等于所述第二柔性层的厚度,在此不做特别的限定。所述第一阻隔层12的厚度为100-600nm,所述第一阻隔层12所用的材料包括氧化硅和氮化硅。所述第二阻隔层14的厚度也可以为100-600nm,其材料也可以为氧化硅和氮化硅,所述氧化硅包括但不限于SiO 2,所述氮化硅包括但不限于Si 3N 4。所述第一柔性层11与所述第一阻隔层12、所述第二柔性层13、所述第二阻隔层14的厚度之和为8200-25200nm。
在本实施例中,当所述第一阻隔层12的所述氧化硅和所述氮化硅在化学气相法成膜时的质量比为3x:7y,且x=1-4,y=1-4时,有利于提升所述第一柔性层11与所述第二柔性层13之间的粘附力,且可以将粘附力提升至138%以上,使得柔性基板100实现更优异的弯折性能和高温高湿性能,并且提升光学透过率,下面结合实验数据进行详细地说明。
如图3-5所示,图3为本申请实施例柔性基板水汽透过率的曲线图;图3为本申请实施例柔性基板粘附力的曲线图;图5为本申请实施例柔性基板光学透过率的曲线图。
在本实施例中,所述柔性基板100采用所述第一柔性层11、所述第一阻隔层12和所述第二柔性层13的结构设计。以下将提供三个不同的柔性基板,分别为第一柔性基板101、第二柔性基板102以及第三柔性基板100,其中为本申请所提供的的柔性基板100。
从图3可以看出,当所述第一柔性基板101为单层的柔性层与阻隔层的组合结构所述阻隔层所采用的材料仅为SiO 2时,所述第一柔性基板的水汽透过率为500mg/m 2day。当所述第二柔性基板102为双层的柔性层与阻隔层的组合结构(即阻隔层设两层柔性层之间)且所述阻隔层所采用的材料仅为SiO 2时,所述第二柔性基板102的水汽透过率为0.05mg/m 2day。当第三柔性基板100为双层的柔性层与阻隔层的组合结构(即阻隔层设两层柔性层之间)且所述阻隔层所采用的材料为SiO 2和Si 3N 4时,所述第三柔性基板的水汽透过率为0.05mg/m 2day。由此可见,当所述阻隔层所用的材料为Dual(SiO 2),与所述阻隔层所用的材料为Dual(SiO 2:Si 3N 4=x:y)时,Dual(SiO 2)的曲线与Dual(SiO 2:Si 3N 4=x:y)的曲线基板重叠,即所述第二柔性基板102和所述第三柔性基板100的水汽透过率的数值明显小于所述第一柔性基板101的水汽透过率的数值,表面所述第二柔性基板102和所述第三柔性基板100的阻隔能力相当优异。
从图4可以看出,当所述第一柔性基板101和所述第二柔性基板102二者的阻隔层所采用的材料均为SiO 2时,所述第一柔性基板101和所述第二柔性基板102的粘附力(peeling force)为0.196。当所述第三柔性基板100的阻隔层所采用的材料为SiO 2和Si 3N 4时,所述第三柔性基板100的粘附力为0.271,所述第三柔性基板100远大于所述第一柔性基板101或者所述第二柔性基板102的粘附力。当所采用的材料为SiO 2和Si 3N 4时,在化学气相法成膜时x=3,y=1,质量比为9:7,,所述第三柔性基板100与所述第一柔性基板101或者所述第二柔性基板102的粘附力提升至138%(即0.271/0.196=138%)以上。由此可见,本申请的所述阻隔层具有更高的粘附力,并实现更优异的弯折性能和高温高湿性能。
结合图3-图5所示,当所述第一柔性基板101和所述第二柔性基板102二者的阻隔层所采用的材料均为SiO 2(参照图5)时,所述第一柔性基板101和所述第二柔性基板102的光学透过率(Optical Transmission)为66.72。当所述第三柔性基板100的阻隔层所采用的材料为SiO 2和Si 3N 4时,所述第三柔性基板100的光学透过率为65.95-67.48,所述第三柔性基板100与所述第一柔性基板101或者所述第二柔性基板102的基本相同。
当所述氧化硅和所述氮化硅在化学气相法成膜时的的质量比为3x:7y,且x=1-4,y=1-4时,所述阻隔层的具有更低水汽透过率,较佳的粘附力,较佳的光学透过率。因此,当该阻隔层应用于所述柔性基板100中形成所述第一阻隔层12时,可以提升所述第一柔性层12和所述第二柔性层13的粘附力,从而使得柔性基板100实现优异的阻水阻氧性能、弯折性能、高温高湿性能和光学透过率。优选地,当所采用的材料为SiO 2和Si 3N 4时,在化学气相法成膜时x=3,y=1,质量比为9:7,所述第一阻隔层12可以将所述第一柔性层12和所述第二柔性层13的粘附力提升至138%以上,使得柔性基板100实现更优异的弯折性能和高温高湿性能,并且提升光学透过率。
同理,当该阻隔层应用于所述柔性基板100中形成所述第二阻隔层13时,可以提高所述柔性基板100与其他膜层的粘附力,进而提升所述柔性基板100与其他膜层的阻水阻氧性能、弯折性能、高温高湿性能和光学透过率。优选地,当所采用的材料为SiO 2和Si 3N 4在化学气相法成膜时的质量比为9:7(即x=3,y=1)时,所述第二阻隔层13可以将所述柔性基板100的粘附力提升至138%以上,使得柔性基板100与其他膜层实现更优异的弯折性能和高温高湿性能,并且提升光学透过率。
请继续参照图1所示,所述薄膜晶体管层200设于所述柔性基板100上。所述柔性基板100包括所述第二阻隔层13,其设于所述薄膜晶体管层200与所述第二柔性层12之间,所述第二阻隔层13用以提高所述薄膜晶体管层200与所述第二柔性层12之间的粘附力,从而使得所述柔性基板100与所述薄膜晶体管层200紧密地贴合在一起,进而提升所述柔性基板100与所述薄膜晶体管层200的阻水阻氧性能、弯折性能、高温高湿性能和光学透过率。
所述薄膜晶体管层200包括有源层201、第一栅极绝缘层202、第一栅极层203、第二栅极绝缘层204、第二栅极层205、介电层206以及源漏极层207。
所述平坦层300设于所述薄膜晶体管层200上。具体的,所述有源层201设于所述第二阻隔层14上。所述第一栅极绝缘层202覆盖所述有源层201且延伸至所述第二阻隔层14的表面。所述第一栅极层203设于所述第一栅极绝缘层202上,其具有多个第一栅极和第一扫描线,所述第一栅极正对于所述有源层201。所述第二栅极绝缘层204设于所述第一栅极层203上且延伸至所述第一栅极绝缘层202表面。所述第二栅极层205设于所述第二栅极绝缘层204,其具有多个第二栅极和第二扫描线,所述第二栅极正对于所述第一栅极。所述介电层206覆盖所述第二栅极层205且延伸至所述第二栅极绝缘层204表面。所述源漏极层207设于所述介电层206上,且从所述介电层206贯穿连接至所述有源层201表面或者所述第一扫描线或者所述第二扫描线。
所述平坦层300覆盖所述源漏极层207且延伸至所述介电层表面。
所述阳极400设于所述平坦层300上,且电连接至所述薄膜晶体管层200。具体的,所述阳极400电连接至所述源漏极层207。
所述像素定义层500设于所述平坦层300上。
所述有机发光层600设于所述像素定义层500上,且连接至所述阳极400。具体的,所述有机发光层600为OLED器件,其包括电子传输层、电子注入层、发光层、空穴注入层、空穴传输层以及阴极等膜层,可参照现有OLED器件的结构,在此不一一赘述。
所述薄膜封装层700设于所述有机发光层600上。所述薄膜封装层700包括有机、无机材料形成的叠膜层,只要可以提高所述显示面板1000的阻隔水氧能力以及提升所述显示面板1000的柔性弯折能力即可。
本实施例提供一种显示面板,包括两层柔性层和两层阻隔层,且所述柔性层与所述阻隔层间隔设置,既可以提高两层柔性层之间的粘附力还可以提高所述柔性层与其他膜层的粘附力。另外,当所述阻隔层的所用的材料为氧化硅和氮化硅,且所述氧化硅和所述氮化硅在化学气相法成膜时的质量比为3x:7y,且x=1-4,y=1-4时,有利于提升所述阻隔层与两层柔性层之间的粘附力,或者阻隔层与柔性层和其他膜层之间的粘附力。进一步地,当所述氧化硅和所述氮化硅的质量比为9:7时,所述阻隔层与两层柔性层之间的粘附力,或者阻隔层与柔性层和其他膜层之间的粘附力提升至138%以上。因此,所述阻隔层应用于所述显示面板中,可以使得所述显示面板具有更高的粘附力,并实现更优异的弯折性能和高温高湿性能。
需要说明的是,本实施例所提及到的水汽透过率(Water vapor Transmission Rate,WVTR)指的是膜层对水蒸气的阻隔能力;粘附力(peeling force)指的是阻隔层的粘附能力;光学透过率(Optical Transmission)指的是阻隔层的光学透过率。
本实施例提供一种显示面板的制备方法,其包括如下步骤:形成一柔性基板;形成一薄膜晶体管层于所述柔性基板上;形成一平坦层于所述薄膜晶体管层上;形成一阳极于所述平坦层上;形成一像素定义层于所述平坦层上,且覆盖所述阳极;形成一有机发光层于所述像素定义层上;以及形成一薄膜封装层于所述发光层上。
如图6所示,图6为本实施例提供的柔性基板的制备方法的流程图。
本实施例还提供一种柔性基板的制备方法,包括如下步骤S1)-S4)。
S1)形成一第一柔性层于一玻璃基板上。
结合图2所示,所述第二柔性层13所用的材料可以为聚酰亚胺、聚甲基丙烯酸甲酯(PMMA)等。
S2)形成一第一阻隔层于所述第一柔性层上,其中所述第一阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅在化学气相法成膜时的质量比为3x:7y,且x=1-4,y=1-4。
请继续结合图2所示,采用化学气相法(PECVD)成膜工艺在所述第一柔性层11上形成均匀的第一阻隔层12。所述第一阻隔层12的厚度为100-600nm,所述第一阻隔层12所用的材料包括氧化硅和氮化硅。
S3)形成一第二柔性层于所述第一阻隔层上。
请继续结合图2所示,所述第二柔性层13所用的材料可以为聚酰亚胺、聚甲基丙烯酸甲酯(PMMA)等。所述第一柔性层11的厚度小于或等于所述第二柔性层的厚度,在此不做特别的限定。
S4)形成一第二阻隔层于所述第二柔性层上。
请继续结合图2所示,所述第二阻隔层14的厚度也可以为100-600nm,其材料也可以为氧化硅和氮化硅,所述氧化硅包括但不限于SiO 2,所述氮化硅包括但不限于Si 3N 4
S5)采用机械剥离技术和/或激光剥离技术对所述玻璃基板和所述第一柔性层进行剥离处理。
在本实施例中,所述步骤S4)和步骤S5)可以相互调换,在此不做特别的限定。
在本实施例中,所述柔性基板100采用所述第一柔性层11、所述第一阻隔层12和所述第二柔性层13的结构设计。以下将提供三个不同的柔性基板,分别为第一柔性基板101、第二柔性基板102以及第三柔性基板100,其中为本申请所提供的的柔性基板100。
从图3可以看出,当所述第一柔性基板101为单层的柔性层与阻隔层的组合结构所述阻隔层所采用的材料仅为SiO 2时,所述第一柔性基板的水汽透过率为500mg/m 2day。当所述第二柔性基板102为双层的柔性层与阻隔层的组合结构(即阻隔层设两层柔性层之间)且所述阻隔层所采用的材料仅为SiO 2时,所述第二柔性基板102的水汽透过率为0.05mg/m 2day。当第三柔性基板100为双层的柔性层与阻隔层的组合结构(即阻隔层设两层柔性层之间)且所述阻隔层所采用的材料为SiO 2和Si 3N 4时,所述第三柔性基板的水汽透过率为0.05mg/m 2day。由此可见,当所述阻隔层所用的材料为Dual(SiO 2),与所述阻隔层所用的材料为Dual(SiO 2:Si 3N 4=3x:7y)时,Dual(SiO 2)的曲线与Dual(SiO 2:Si 3N 4=3x:7y)的曲线基板重叠,即所述第二柔性基板102和所述第三柔性基板100的水汽透过率的数值明显小于所述第一柔性基板101的水汽透过率的数值,表面所述第二柔性基板102和所述第三柔性基板100的阻隔能力相当优异。
从图4可以看出,当所述第一柔性基板101和所述第二柔性基板102二者的阻隔层所采用的材料均为SiO 2时,所述第一柔性基板101和所述第二柔性基板102的粘附力(peeling force)为0.196。当所述第三柔性基板100的阻隔层所采用的材料为SiO 2和Si 3N 4时,所述第三柔性基板100的粘附力为0.271,所述第三柔性基板100远大于所述第一柔性基板101或者所述第二柔性基板102的粘附力。当所采用的材料为氧化硅(SiO 2)和氮化硅(Si 3N 4)在化学气相法成膜时的分子摩尔比例为x:y=3:1时,所述第三柔性基板100与所述第一柔性基板101或者所述第二柔性基板102的粘附力提升至138%(即0.271/0.196=138%)以上。由此可见,本申请的所述阻隔层具有更高的粘附力,并实现更优异的弯折性能和高温高湿性能。
结合图3-图5所示,当所述第一柔性基板101和所述第二柔性基板102二者的阻隔层所采用的材料均为SiO 2(参照图5)时,所述第一柔性基板101和所述第二柔性基板102的光学透过率(Optical Transmission)为66.72。当所述第三柔性基板100的阻隔层所采用的材料为SiO 2和Si 3N 4时,所述第三柔性基板100的光学透过率为65.95-67.48,所述第三柔性基板100与所述第一柔性基板101或者所述第二柔性基板102的基本相同。
当所述氧化硅和所述氮化硅在化学气相法成膜时的质量比为3x:7y,且x=1-4,y=1-4时,所述阻隔层的具有更低水汽透过率,较佳的粘附力,较佳的光学透过率。因此,当该阻隔层应用于所述柔性基板100中形成所述第一阻隔层12时,可以提升所述第一柔性层12和所述第二柔性层13的粘附力,从而使得柔性基板100实现优异的阻水阻氧性能、弯折性能、高温高湿性能和光学透过率。优选地,当所采用的材料为SiO 2和Si 3N 4在化学气相法成膜时的分子摩尔比例为x:y=3:1时,所述第一阻隔层12可以将所述第一柔性层12和所述第二柔性层13的粘附力提升至138%以上,使得柔性基板100实现更优异的弯折性能和高温高湿性能,并且提升光学透过率。
同理,当该阻隔层应用于所述柔性基板100中形成所述第二阻隔层13时,可以提高所述柔性基板100与其他膜层的粘附力,进而提升所述柔性基板100与其他膜层的阻水阻氧性能、弯折性能、高温高湿性能和光学透过率。优选地,当所采用的材料为SiO 2和Si 3N 4在化学气相法成膜时的质量比为9:7(即x=3,y=1)时,所述第二阻隔层13可以将所述柔性基板100的粘附力提升至138%以上,使得柔性基板100与其他膜层实现更优异的弯折性能和高温高湿性能,并且提升光学透过率。
本发明的技术效果在于,提供一种显示面板及其制备方法,所述显示面板包括两层柔性层和两层阻隔层,且所述柔性层与所述阻隔层间隔设置,既可以提高两层柔性层之间的粘附力,还可以提高所述柔性层与其他膜层的粘附力,实现所述柔性基板阻水阻氧能力、粘附力、弯折性能、高温高湿性能和光学透过率。
另外,当所述第一阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4时,有利于提升所述阻隔层与两层柔性层之间的粘附力,或者阻隔层与柔性层和其他膜层之间的粘附力。进一步地,当所述氧化硅和所述氮化硅的质量比为9:7(x=3,y=1)时,所述阻隔层与两层柔性层之间的粘附力,或者阻隔层与柔性层和其他膜层之间的粘附力提升至138%以上。因此,所述阻隔层应用于所述显示面板中,可以使得所述显示面板具有更高的粘附力,并实现更优异的弯折性能和高温高湿性能。
以上对本申请实施例所提供的一种显示面板及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种显示面板,其包括:
    第一柔性层;
    第一阻隔层,设于所述第一柔性层上;以及
    第二柔性层,设于所述第一阻隔层上;
    其中,所述第一阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4。
  2. 根据权利要求1所述的显示面板,其中,
    当x=3,y=1时,所述氧化硅和所述氮化硅的质量比为9:7。
  3. 根据权利要求1所述的显示面板,其中,
    所述氧化硅为二氧化硅;
    所述氮化硅为四氮化三硅。
  4. 根据权利要求1所述的显示面板,其中,还包括:
    第二阻隔层,设于所述第二柔性层上。
  5. 根据权利要求4所述的显示面板,其中,
    所述第二阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4。
  6. 根据权利要求4所述的显示面板,其中,
    所述第一柔性层的厚度为4000-12000nm;和/或
    所述第一阻隔层的厚度为100-600nm;和/或
    所述第二柔性层的厚度为4000-12000nm;和/或
    所述第二阻隔层的厚度为100-600nm。
  7. 根据权利要求4所述的显示面板,其中,
    所述第一柔性层与所述第一阻隔层、所述第二柔性层、所述第二阻隔层的厚度之和为8200-25200nm。
  8. 一种显示面板的制备方法,其中,包括如下步骤:
    形成一第一柔性层于一玻璃基板上;
    形成一第一阻隔层于所述第一柔性层上,其中所述第一阻隔层所用的材料包括氧化硅和氮化硅,所述氧化硅和所述氮化硅的质量比为3x:7y,且x=1-4,y=1-4;以及
    形成一第二柔性层于所述第一阻隔层上。
  9. 根据权利要求8所述的显示面板的制备方法,其中,
    在所述形成一第二柔性层于所述第一阻隔层上的步骤之后还包括:
    形成一第二阻隔层于所述第二柔性层上。
  10. 根据权利要求8所述的显示面板的制备方法,其中,
    在所述形成一第二柔性层于所述第一阻隔层上的步骤之后还包括:
    采用机械剥离技术和/或激光剥离技术对所述玻璃基板和所述第一柔性层进行剥离处理。
PCT/CN2021/080918 2021-03-08 2021-03-16 一种显示面板及其制备方法 WO2022188193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/283,057 US11991917B2 (en) 2021-03-08 2021-03-16 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110249634.0 2021-03-08
CN202110249634.0A CN113053915A (zh) 2021-03-08 2021-03-08 一种显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2022188193A1 true WO2022188193A1 (zh) 2022-09-15

Family

ID=76510596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080918 WO2022188193A1 (zh) 2021-03-08 2021-03-16 一种显示面板及其制备方法

Country Status (3)

Country Link
US (1) US11991917B2 (zh)
CN (1) CN113053915A (zh)
WO (1) WO2022188193A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599153B (zh) * 2022-03-04 2023-09-26 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612648A (zh) * 2003-10-29 2005-05-04 铼宝科技股份有限公司 有机发光显示面板
US20080085418A1 (en) * 2004-09-21 2008-04-10 Kazuhiro Fukuda Transparent Gas Barrier Film
US20110198627A1 (en) * 2008-09-30 2011-08-18 Tony Maindron Organic Optoelectronic Device And A Method For Encapsulating Said Device
WO2014082306A1 (zh) * 2012-11-30 2014-06-05 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
WO2014082300A1 (zh) * 2012-11-30 2014-06-05 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103855321A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104425735A (zh) * 2013-09-09 2015-03-18 群创光电股份有限公司 电子装置
US20160059261A1 (en) * 2013-05-01 2016-03-03 Konica Minolta, Inc. Gas barrier film and method for producing the same
CN107680994A (zh) * 2017-10-30 2018-02-09 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板及其制备方法
CN110473964A (zh) * 2019-08-16 2019-11-19 武汉华星光电半导体显示技术有限公司 Oled显示面板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474583A (zh) * 2013-09-24 2013-12-25 京东方科技集团股份有限公司 柔性显示基板及其制备方法、柔性显示装置
CN103500745B (zh) * 2013-09-25 2014-12-17 京东方科技集团股份有限公司 柔性显示基板及其制备方法、柔性显示装置
CN103681694A (zh) * 2013-12-06 2014-03-26 京东方科技集团股份有限公司 一种柔性显示基板及柔性显示器
CN103779390B (zh) * 2014-02-11 2016-08-17 京东方科技集团股份有限公司 一种柔性显示基板及其制备方法
CN107393859B (zh) * 2017-08-22 2019-07-05 京东方科技集团股份有限公司 柔性基板的制作方法、柔性基板及柔性显示面板
US10804478B2 (en) * 2018-12-10 2020-10-13 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Foldable display panel, manufacturing method thereof and foldable display device
CN109560088B (zh) * 2018-12-19 2021-06-22 武汉华星光电半导体显示技术有限公司 柔性显示基板及其制作方法
CN110034150B (zh) * 2019-03-25 2020-11-27 厦门天马微电子有限公司 显示面板及其制作方法、显示装置
CN110391294B (zh) * 2019-07-08 2021-04-27 武汉华星光电半导体显示技术有限公司 柔性阵列基板及柔性显示面板
CN111755624A (zh) * 2020-06-24 2020-10-09 武汉华星光电半导体显示技术有限公司 显示面板和显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612648A (zh) * 2003-10-29 2005-05-04 铼宝科技股份有限公司 有机发光显示面板
US20080085418A1 (en) * 2004-09-21 2008-04-10 Kazuhiro Fukuda Transparent Gas Barrier Film
US20110198627A1 (en) * 2008-09-30 2011-08-18 Tony Maindron Organic Optoelectronic Device And A Method For Encapsulating Said Device
WO2014082306A1 (zh) * 2012-11-30 2014-06-05 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
WO2014082300A1 (zh) * 2012-11-30 2014-06-05 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103855321A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
US20160059261A1 (en) * 2013-05-01 2016-03-03 Konica Minolta, Inc. Gas barrier film and method for producing the same
CN104425735A (zh) * 2013-09-09 2015-03-18 群创光电股份有限公司 电子装置
CN107680994A (zh) * 2017-10-30 2018-02-09 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板及其制备方法
CN110473964A (zh) * 2019-08-16 2019-11-19 武汉华星光电半导体显示技术有限公司 Oled显示面板

Also Published As

Publication number Publication date
CN113053915A (zh) 2021-06-29
US11991917B2 (en) 2024-05-21
US20240023421A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2017035866A1 (zh) 薄膜封装方法及有机发光装置
WO2017059609A1 (zh) 柔性显示装置的制作方法及制得的柔性显示装置
TWI695462B (zh) 薄膜封裝結構及具有其的顯示裝置
WO2018086191A1 (zh) Oled显示器及其制作方法
CN1953189A (zh) 薄膜晶体管、薄膜晶体管基板及其制造方法
US11322718B2 (en) Flexible display panel and preparation method
WO2016086616A1 (zh) 显示基板及其制作方法、显示装置
KR102116035B1 (ko) 유기 발광 표시 장치 제조 방법
CN110571347B (zh) 一种显示面板及其制备方法
CN109817817A (zh) 一种柔性oled器件及其制备方法
WO2020206980A1 (zh) 柔性oled显示装置及制备方法
WO2019237644A1 (zh) 一种柔性有机发光二极管显示器及其制作方法
WO2020228235A1 (zh) 阵列基板及其制备方法、柔性显示面板
WO2015158092A1 (zh) 有机电致发光显示面板及显示装置
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
WO2019033578A1 (zh) 柔性oled显示面板的柔性基底及其制备方法
CN106784384A (zh) 柔性显示器及其制备方法
WO2022188193A1 (zh) 一种显示面板及其制备方法
WO2023004839A1 (zh) 封装结构、显示面板及显示面板的制作方法
WO2020237914A1 (zh) 一种柔性基板及其制作方法、显示面板
WO2020228491A1 (zh) Oled显示屏、显示面板及其制作方法
WO2022077774A1 (zh) 显示面板及其制作方法
TWI477642B (zh) 阻氣基板
JP2017041412A (ja) 電子装置
WO2019051959A1 (zh) 一种oled器件制作方法及相应的oled器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17283057

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929666

Country of ref document: EP

Kind code of ref document: A1