WO2022176274A1 - 空気調和装置の室内機 - Google Patents

空気調和装置の室内機 Download PDF

Info

Publication number
WO2022176274A1
WO2022176274A1 PCT/JP2021/039227 JP2021039227W WO2022176274A1 WO 2022176274 A1 WO2022176274 A1 WO 2022176274A1 JP 2021039227 W JP2021039227 W JP 2021039227W WO 2022176274 A1 WO2022176274 A1 WO 2022176274A1
Authority
WO
WIPO (PCT)
Prior art keywords
flap
space
indoor unit
air conditioner
fan
Prior art date
Application number
PCT/JP2021/039227
Other languages
English (en)
French (fr)
Inventor
好教 布目
雅司 ▲高▼野
順道 宇野
宏大 増子
臣悟 大野
裕人 高橋
誠心 沖野
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP21926703.6A priority Critical patent/EP4273463A1/en
Priority to AU2021427965A priority patent/AU2021427965A1/en
Publication of WO2022176274A1 publication Critical patent/WO2022176274A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • F24F8/26Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media using ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/40Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation

Definitions

  • the present disclosure relates to an indoor unit of an air conditioner.
  • bacteria mixed in the air that is inhaled during cooling operation may adhere to the inside of the indoor unit.
  • the condensed water When condensed water is generated inside the indoor unit due to cooling operation, the condensed water facilitates breeding of bacteria. When bacteria grow, it causes stains and odors. Therefore, it is required to suppress the propagation of bacteria.
  • Patent Document 1 discloses a method using ozone. According to this method, after the cooling operation is stopped, ozone is generated with the air outlet closed to generate OH radicals for sterilization, and then the wet interior of the indoor unit is dried by the heating operation. I'm doing it.
  • Patent Document 1 it takes time to start drying, so the inside of the indoor unit remains in a high humidity state for a long time, which is not preferable in terms of suppressing the growth of bacteria.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an indoor unit of an air conditioner that can prevent the interior of the indoor unit from being in a high humidity state for a long time. do.
  • an indoor unit of an air conditioner according to an aspect of the present disclosure includes a housing having a space formed inside and an air outlet communicating with the space and the outside, and the air outlet is opened. and a closing flap, an ozone generator provided in the space, and a control unit, wherein the control unit prevents the flap from blocking the outlet after the cooling operation or the dehumidifying operation is stopped. Ozone is generated from the ozone generator in the open state.
  • the indoor unit of the air conditioner it is possible to prevent the interior of the indoor unit from being in a high humidity state for a long period of time.
  • FIG. 2 is a side cross-sectional view of an indoor unit of the air conditioner; Fig. 2 is a side cross-sectional view of an indoor unit of the air conditioner; Fig. 2 is a side cross-sectional view of an indoor unit of the air conditioner; Fig. 2 is a side cross-sectional view of an indoor unit of the air conditioner; FIG. 4 is a diagram showing the relationship between the amount of dew condensation, the number of remaining bacteria, and time.
  • FIG. 5 is a diagram showing the difference in the amount of condensation reduction depending on the state of the flap in the relationship between the amount of condensation and time.
  • an indoor unit of an air conditioner according to an embodiment of the present disclosure will be described with reference to the drawings.
  • a wall-mounted indoor unit will be described as an example, but the type of indoor unit is not limited to the wall-mounted type, and other types of indoor units can also be applied.
  • FIG. 1 to 4 show side sectional views of an indoor unit 1 of an air conditioner 100.
  • the air conditioner 100 includes an indoor unit 1 installed indoors and an outdoor unit (not shown) installed outdoors.
  • the indoor unit 1 and the outdoor unit are connected by a refrigerant pipe or the like (not shown).
  • the indoor unit 1 includes a housing 10, a flap 20, a fan 31, a heat exchanger 32 and an ozone generator 40.
  • a space 13 is formed inside the housing 10 .
  • the space 13 accommodates a fan 31 , a heat exchanger 32 and an ozone generator 40 .
  • a blowout port 11 is provided at the bottom of the housing 10 .
  • the air outlet 11 communicates the space 13 with the outside (inside the room) of the housing 10 .
  • the blowout port 11 is an opening for blowing out temperature-adjusted air into the room.
  • a suction port 12 is provided in the upper part (ceiling part) of the housing 10 .
  • the suction port 12 communicates the space 13 with the outside (inside the room) of the housing 10 .
  • the suction port 12 is an opening for taking in air in the room before temperature adjustment into the space 13 .
  • the flap 20 is a plate-like component provided at the blowout port 11 . As shown in FIGS. 1 to 4, the flap 20 is positioned between a closed position (FIG. 1) in which the outlet 11 is closed and an open position (FIGS. 2 to 4) in which the outlet 11 is opened without being closed. is configured to move
  • the closed position in which the outlet 11 is closed refers to, for example, a state in which the housing 10 and the tip portion 21 of the flap 20 are smoothly flush with each other, as shown in FIG.
  • the front end portion 21 of the flap 20 is an end portion located on the upstream side in the air blowing direction.
  • the fan 31 is a cylindrical cross-flow fan.
  • the fan 31 extends in a direction perpendicular to the plane of the drawing. Fan 31 is driven by a motor (not shown).
  • the heat exchanger 32 is provided so as to surround the fan 31 from the outer periphery.
  • the heat exchanger 32 is, for example, of plate-fin tube type.
  • Drain pans 33 and 34 are provided below the heat exchanger 32 to receive water droplets generated by heat exchange.
  • An air flow is generated by the rotation of the fan 31, and the air is taken into the space 13 from the suction port 12. Air taken in from the suction port 12 is supplied to the heat exchanger 32 . The air heat-exchanged by the heat exchanger 32 is blown out of the housing 10 from the outlet 11 (into the room).
  • the ozone generator 40 is a device that generates ozone in the space 13 .
  • the ozone generator 40 is of a discharge type, for example.
  • the ozone generator 40 is provided, for example, on the front side of the housing 10 in the space 13 .
  • ozone generators 40 are not limited to those shown in Figs. 1 to 4 .
  • two ozone generators 40 may be provided, and they may be installed in the vicinity of the outlet 11 .
  • the indoor unit 1 configured as described above is appropriately controlled by a control unit (not shown) and operated in various operation modes (cooling, dehumidifying, blowing, heating, etc.).
  • control unit includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing.
  • the program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via wired or wireless communication means. etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the indoor unit 1 can perform the sterilization process as described above after stopping the cooling operation or the dehumidifying operation. Control of each device related to sterilization is performed by a control unit (not shown). Note that “after the cooling operation or the dehumidifying operation is stopped” refers to, for example, a state in which the compressor (not shown) is stopped and the flap 20 is moved to the closed position.
  • FIG. 6 shows the relationship between the amount of condensation present in the space 13 after the cooling operation or the dehumidifying operation is stopped, the number of remaining bacteria, and time.
  • a certain amount of condensed water and bacteria are present until the cooling operation or dehumidifying operation is stopped.
  • the ozone generator 40 After stopping the cooling operation or the dehumidifying operation, the ozone generator 40 generates ozone to dissolve the ozone in the condensed water. At this time, contact between the condensed water and ozone generates OH radicals having stronger oxidizing power than ozone. As the drying progresses, the amount of condensed water decreases, and the number of remaining bacteria also decreases.
  • ozone is generated (that is, the ozone generator 40 is activated) while drying the space 13 .
  • This method can prevent the space 13 from being in a high-humidity state for a long period of time and can increase the concentration of OH radicals dissolved in the condensed water in a short period of time. Drying of the space 13 is started by opening at least the flap 20 regardless of whether or not the fan 31 blows air.
  • the fan 31 may be driven at the same time as the ozone generator 40 is activated. This can further promote drying of the space 13 .
  • FIG. 7 shows the difference in the amount of condensation reduction depending on the state of the flap 20 in the relationship between the amount of condensation and time when the fan 31 is driven. According to this, it can be seen that drying is accelerated when the flap 20 is open (indicated by the solid line) as compared to when the flap 20 is closed (indicated by the dashed line).
  • the fan 31 may be driven after a predetermined time (first predetermined time) has elapsed since the ozone generator 40 was activated. This allows sufficient time for the ozone to dissolve in the condensed water. Since the air outlet 11 is in an open state, the drying of the space 13 is performed from the start-up of the ozone generator 40 to the driving of the fan 31 .
  • the first predetermined time is a time obtained from a test conducted in advance, and is, for example, 30 to 60 minutes.
  • the flap 20 While the space 13 is being dried, it is preferable to position the flap 20 within a range that the flap 20 can take during normal cooling operation or dehumidifying operation. This allows efficient drying. In particular, drying can be most efficiently performed by positioning the flap 20 at the maximum air volume position (see FIG. 3) during normal cooling operation or dehumidifying operation.
  • the flap 20 may be positioned on the side that closes the outlet 11 (the side close to the state in FIG. 1) outside the range that the flap 20 can take during normal cooling operation or dehumidification operation. This reduces the possibility that the humid air coming out of the outlet 11 hits the user during the sterilization process.
  • the sterilization process is stopped when a predetermined time (second predetermined time) has passed.
  • stopping the sterilization means stopping the ozone generator 40 or the fan 31 .
  • the sterilization process can be stopped by simple control.
  • the second predetermined time is a time obtained by a test conducted in advance, and is a time during which the space 13 can be sufficiently dried.
  • the second predetermined time is, for example, 60 to 120 minutes.
  • the humidity of the drawn air and the humidity of the blown air are measured as follows. That is, as shown in FIG. 1, a humidity sensor (first humidity sensor 51) is provided in the vicinity of the outlet 11 or in the space 13 downstream of the heat exchanger 32 in the direction of air flow. Another humidity sensor (second humidity sensor 52 ) is provided in the vicinity of the suction port 12 and in the space 13 on the upstream side of the heat exchanger 32 . This makes it possible to measure the humidity of the air drawn in and the humidity of the air blown out.
  • first humidity sensor 51 is provided in the vicinity of the outlet 11 or in the space 13 downstream of the heat exchanger 32 in the direction of air flow.
  • second humidity sensor 52 is provided in the vicinity of the suction port 12 and in the space 13 on the upstream side of the heat exchanger 32 . This makes it possible to measure the humidity of the air drawn in and the humidity of the air blown out.
  • the control unit causes the ozone generator 40 to generate ozone in an open state in which the flap 20 does not block the blowout port 11. Therefore, the ozone generated in the space 13 is At the same time that ozone is dissolved in the condensed water to generate OH radicals, drying of the space 13 can be started. As a result, the space 13 can be prevented from being in a high humidity state for a long period of time, and the concentration of OH radicals dissolved in the condensed water can be increased in a short period of time. Therefore, after the cooling operation or the dehumidification operation is stopped, it is possible to efficiently suppress the propagation of bacteria and to exhibit the bactericidal effect of the OH radicals generated from ozone in a short time.
  • the drying of the space can be accelerated.
  • the fan 31 when the fan 31 is driven when the first predetermined time has elapsed after the ozone generator 40 is activated, sufficient time can be taken for dissolving the ozone in the condensed water. Since the air outlet 11 is in an open state, the drying of the space 13 is performed from the start-up of the ozone generator 40 to the driving of the fan 31 .
  • the stop of the sterilization process can be controlled based on the time.
  • the sterilization process can be stopped by simple control.
  • the fan 31 is stopped when the measured value of the first humidity sensor 51 and the measured value of the second humidity sensor 52 become substantially the same, so that the air sucked in and the air blown out are stopped.
  • the sterilization process can be stopped based on air humidity differences. As a result, the sterilization process can be stopped after confirming that the space 13 is surely dried.
  • the inside (space 13) and the outside (indoor) of the housing 10 are separated from each other by the air outlet 11. is communicated with a sufficient area via Thereby, the drying of the space 13 can be efficiently performed.
  • the space 13 can be dried most efficiently when the flap is at its maximum air volume position during cooling operation or dehumidifying operation.
  • the flap 20 in the open state is positioned on the side of closing the outlet 11 outside the range that the flap can take during cooling operation or dehumidifying operation, the humid air emitted from the outlet 11 during the sterilization process. The possibility of air hitting the user can be reduced.
  • the indoor unit (1) of the air conditioner (100) has a space (13) formed inside and an outlet (11) that communicates with the space and the outside.
  • a housing (10) a flap (20) for opening and closing the outlet, an ozone generator (40) provided in the space, and a controller, wherein the controller is and, after cooling operation or dehumidifying operation is stopped, ozone is generated from the ozone generator in an open state in which the flap does not close the outlet.
  • the control unit causes the ozone generator to generate ozone in an open state in which the flap does not block the outlet.
  • OH radicals are generated by dissolving ozone in the condensed water generated in the space, and drying of the space can be started at the same time.
  • the space can be prevented from being in a high humidity state for a long time, and the concentration of OH radicals dissolved in the condensed water can be increased in a short time. Therefore, after the cooling operation or the dehumidification operation is stopped, it is possible to efficiently suppress the propagation of bacteria and to exhibit the bactericidal effect of the OH radicals generated from ozone in a short time.
  • the indoor unit of an air conditioner includes a fan (31) provided in the space and sending air to the outlet, and the control unit simultaneously activates the ozone generator. drive the fan;
  • control unit drives the fan at the same time when the ozone generator is activated, so it is possible to promote the drying of the space.
  • the indoor unit of the air conditioner includes a fan provided in the space and sending air to the outlet, and the control unit controls the first air conditioner after starting the ozone generator.
  • the fan is driven when a predetermined time has passed.
  • the control unit drives the fan when the first predetermined time has passed since the start of the ozone generator. can take enough.
  • the air outlet since the air outlet is in an open state, the drying of the space is performed from the start of the ozone generator to the driving of the fan.
  • control unit stops the fan when a second predetermined time has elapsed after driving the fan.
  • the control unit stops the fan when the second predetermined time elapses after the fan is driven, so that the stop of the sterilization process is controlled based on the time. be able to. As a result, the sterilization process can be stopped by simple control.
  • the housing has a suction port (12) that communicates with the space and the outside, and a first suction port (12) provided in the space near the outlet port.
  • the control unit drives the fan when the measured value of the first humidity sensor and the measured value of the second humidity sensor become substantially the same. Since it stops, the sterilization process can be stopped based on the humidity difference between the sucked air and the blown air. This makes it possible to stop the sterilization process after confirming that the space has been reliably dried.
  • the flap in the open state is located within a range that the flap can take during cooling operation or dehumidifying operation.
  • the flap in the open state is located within a range that the flap can take during the cooling operation or the dehumidifying operation. (inside the room) communicate with each other with a sufficient area through the outlet. Thereby, the drying of the space can be efficiently performed.
  • the flap in the open state is at the maximum air volume position of the flap during cooling operation or dehumidifying operation.
  • the flap in the open state is at the maximum air volume position of the flap during the cooling operation or the dehumidifying operation, so the space can be dried most efficiently.
  • the flap in the open state is positioned on the side that closes the outlet outside the range that the flap can take during cooling operation or dehumidification operation. is doing.
  • the flap in the open state is located on the side that closes the outlet outside the range that the flap can take during the cooling operation or the dehumidifying operation. The user can be less likely to be exposed to humid air coming out of the outlet during processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

室内機の内部が長時間にわたって高湿度状態になることを避けることができる空気調和装置の室内機を提供する。内部に形成された空間(13)と、空間(13)と外部と連通する吹出口(11)と、を有している筐体(10)と、吹出口(11)を開放及び閉塞するフラップ(20)と、空間(13)に設けられているオゾン発生装置(40)と、制御部と、を備え、制御部は、冷房運転又は除湿運転の停止後、フラップ(20)が吹出口(11)を閉塞していない開状態でオゾン発生装置(40)からオゾンを発生させる。

Description

空気調和装置の室内機
 本開示は、空気調和装置の室内機に関する。
 空気調和装置の室内機において、冷房運転中に吸い込んだ空気に混入している菌が室内機の内部に付着することがある。冷房運転によって室内機の内部に結露水が発生している場合、結露水によって菌が繁殖しやすくなる。菌が繁殖した場合、汚れや臭いの原因となる。このため、菌の繁殖を抑制することが要求されている。
 菌の繁殖を抑制する方法として、例えば特許文献1には、オゾンを利用する方法が開示されている。この方法によれば、冷房運転の停止後において、吹出口を閉塞した状態でオゾンを発生させることでОHラジカルを生成して殺菌処理をした後に、濡れた室内機の内部を暖房運転によって乾燥させることとしている。
特開2008-111623号公報
 しかしながら、特許文献1の方法では、乾燥を開始するまでに時間を要するので、室内機の内部が長時間にわたって高湿度状態になってしまい、菌の繁殖を抑制するという目的を踏まえれば好ましくない。
 本開示は、このような事情に鑑みてなされたものであって、室内機の内部が長時間にわたって高湿度状態になることを避けることができる空気調和装置の室内機を提供することを目的とする。
 上記課題を解決するために、本開示の空気調和装置の室内機は以下の手段を採用する。
 すなわち、本開示の一態様に係る空気調和装置の室内機は、内部に形成された空間と、該空間と外部と連通する吹出口と、を有している筐体と、前記吹出口を開放及び閉塞するフラップと、前記空間に設けられているオゾン発生装置と、制御部と、を備え、前記制御部は、冷房運転又は除湿運転の停止後、前記フラップが前記吹出口を閉塞していない開状態で前記オゾン発生装置からオゾンを発生させる。
 本開示に係る空気調和装置の室内機よれば、室内機の内部が長時間にわたって高湿度状態になることを避けることができる。
空気調和装置の室内機の側断面図である。 空気調和装置の室内機の側断面図である。 空気調和装置の室内機の側断面図である。 空気調和装置の室内機の側断面図である。 空気調和装置の室内機の側断面図である。 結露の量及び菌の残存数と時間との関係を示す図である。 結露の量と時間との関係においてフラップの状態による結露の減少量の差を示す図である。
 以下、本開示の一実施形態に係る空気調和装置の室内機について図面を参照して説明する。
 なお、本実施形態においては、壁掛け型の室内機を例にして説明するが、室内機の型式については、壁掛け型に限定されるものではなく、他の型式の室内機にも適用できる。
[室内機の構成]
 図1から図4には空気調和装置100の室内機1の側断面図が示されている。
 空気調和装置100は、室内に設けられる室内機1と室外に設けられる室外機(図示せず)とを備えている。室内機1と室外機とは、冷媒配管等(図示せず)によって接続されている。
 室内機1は、筐体10、フラップ20、ファン31、熱交換器32及びオゾン発生装置40を備えている。
 筐体10の内部には、空間13が形成されている。空間13には、ファン31、熱交換器32及びオゾン発生装置40が収容される。
 筐体10の下部には、吹出口11が設けられている。吹出口11は、空間13と筐体10の外部(室内)とを連通している。吹出口11は、温度調整後の空気を室内に吹出すための開口である。
 筐体10の上部(天井部)には、吸込口12が設けられている。吸込口12は、空間13と筐体10の外部(室内)とを連通している。吸込口12は、室内にある温度調整前の空気を空間13に取り込むための開口である。
 フラップ20は、吹出口11に設けられた板状の部品である。図1から図4に示すように、フラップ20は、吹出口11を閉塞する閉状態位置(図1)と吹出口11を閉塞しないで開放する開状態位置(図2から図4)との間を移動するように構成されている。
 吹出口11を閉塞する閉状態位置とは、図1に示すように、例えば、筐体10とフラップ20の先端部21とが滑らかに略面一となるような状態を指す。フラップ20の先端部21とは、空気が吹出す方向の上流側に位置する端部である。
 なお、筐体10とフラップ20との間に不可避的に生じた隙間(開口)があったとしても、機構的にみてフラップ20が吹出口11を閉塞する限界の位置であれば、それは閉状態位置である。
 ファン31は、円筒状のクロスフローファンである。ファン31は、図が記載された紙面に対して垂直方向に延在している。ファン31は、モータ(図示せず)によって駆動される。
 熱交換器32は、ファン31を外周から包囲するように設けられている。熱交換器32は、例えば、プレートフィンチューブ型とされる。
 熱交換器32の下側には、熱交換によって生じた水滴を受けるドレンパン33,34が設けられている。
 ファン31が回転することで空気の流れが発生して、吸込口12から空間13に空気が取り込まれる。吸込口12から取り込まれた空気は、熱交換器32に供給される。熱交換器32で熱交換された空気は、吹出口11から筐体10の外部(室内)へ吹き出される。
 オゾン発生装置40は、空間13においてオゾンを発生させる装置である。オゾン発生装置40は、例えば放電式とされる。オゾン発生装置40は、例えば、空間13における筐体10の前面側に設けられている。
 なお、オゾン発生装置40の設置箇所や個数は図1から図4に示す形態に限定されない。例えば、図5に示すように、オゾン発生装置40は2個でもよく、吹出口11近傍に設置してもよい。
 以上のように構成された室内機1は、制御部(図示せず)によって適宜制御され、各種運転モード(冷房、除湿、送風、暖房など)で運転される。
 ここで、制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。
 そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
 なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。
 コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
[殺菌処理について]
 乾燥状態においてオゾンで殺菌することは一般的によく知られている。
 また、水分にオゾンを溶解させて、その後に乾燥させることで殺菌効果が向上することが明らかになっている。これは、次の要因によるもと考えられる。すなわち、水とオゾンとが接触することでオゾンよりも酸化力が強いOHラジカルが生成され、このOHラジカルが強力な殺菌効果を発揮する。
 室内機1は、冷房運転又は除湿運転の停止後に、上記のような殺菌処理を行うことができる。殺菌処理に関する各機器の制御は、制御部(図示せず)によって実行される。
 なお、冷房運転又は除湿運転の停止後とは、例えば、コンプレッサ(図示せず)を停止させ、フラップ20を閉状態位置に移動させた状態を指す。
 図6には、冷房運転又は除湿運転の停止後に空間13に存在する結露の量及び菌の残存数と時間との関係が示されている。
 図6に示すように、冷房運転又は除湿運転を停止するまでは、一定量の結露水及び菌が存在している。
 冷房運転又は除湿運転を停止した後、オゾン発生装置40でオゾンを発生させることで結露水にオゾンを溶解させる。このとき、結露水とオゾンとが接触することで、オゾンよりも酸化力が強いOHラジカルが生成される。そして、乾燥が進んで結露水の量が減少するとともに菌の残存数も減少していく。
 本実施形態においては、空間13を乾燥させながらオゾンを発生させる(すなわち、オゾン発生装置40を起動する)ことにした。発明者は、この方法によって、空間13が長時間にわたって高湿度状態になることを避けるとともに、結露水に溶存するОHラジカルを短時間で高濃度とすることができることを見出した。
 空間13の乾燥は、ファン31による送風の有無に関係なく、少なくともフラップ20を開状態とすることで開始される。
 ただし、オゾン発生装置40の起動と同時にファン31を駆動してもよい。これによって、空間13の乾燥を更に促進させることができる。
 図7には、ファン31を駆動した場合における結露の量と時間との関係において、フラップ20の状態による結露の減少量の差が示されている。これによれば、フラップ20を開状態とした場合(実線で表示)は、フラップ20を閉状態とした場合(一点鎖線で表示)と比較して乾燥が促進されていることが分かる。
 また、オゾン発生装置40を起動してから所定時間(第1所定時間)が経過したときにファン31を駆動してもよい。これによって、オゾンを結露水に溶解させる時間を十分にとることができる。なお、吹出口11が開状態とされているので、オゾン発生装置40の起動からファン31の駆動までの間も空間13の乾燥は行われている。
 なお、第1所定時間は、予め行われた試験によって得られた時間であって、例えば30~60分である。
 空間13を乾燥させている間は、フラップ20を、通常の冷房運転中又は除湿運転中にフラップ20が取り得る範囲に位置させることが好ましい。これによって、乾燥を効率的に行うことができる。特に、フラップ20を、通常の冷房運転中又は除湿運転中における最大風量位置(図3参照)に位置させることで、乾燥を最も効率的に行うことができる。
 また、フラップ20を、通常の冷房運転中又は除湿運転中にフラップ20が取り得る範囲外において吹出口11を閉塞する側(図1の状態に近い側)に位置させてもよい。これによって、殺菌処理中に吹出口11から出る多湿の空気がユーザにあたる可能性を低減できる。
 以上のように開始された殺菌処理は、例えば次のように終了される。
[時間による管理]
 殺菌処理が開示された後、所定時間(第2所定時間)が経過したときに、殺菌処理を停止する。ここで、殺菌処理の停止とは、オゾン発生装置40の停止やファン31の停止を指す。これによって、簡易な制御によって殺菌処理を停止することができる。
 なお、第2所定時間は、予め行われた試験によって得られた時間であって、十分に空間13を乾燥させることができる時間である。第2所定時間は、例えば60~120分である。
[湿度差による管理]
 殺菌処理が開示された後、吸い込まれた空気と吹き出された空気の湿度差が略同値になったときに、殺菌処理を停止する。これによって、空間13が確実に乾燥したことを確認してから殺菌処理を停止することができる。
 吸い込まれた空気の湿度及び吹き出された空気の湿度は、次のように計測する。
 すなわち、図1に示すように、吹出口11の近傍や空気の流れ方向において熱交換器32よりも下流側の空間13に湿度センサ(第1湿度センサ51)を設けておく。また、吸込口12の近傍や熱交換器32よりも上流側の空間13に他の湿度センサ(第2湿度センサ52)を設けておく。これによって、吸い込まれた空気の湿度及び吹き出された空気の湿度を計測することができる。
 本実施形態によれば、以下の効果を奏する。
 室内機1によれば、制御部は、冷房運転又は除湿運転の停止後、フラップ20が吹出口11を閉塞していない開状態でオゾン発生装置40からオゾンを発生させるので、空間13に発生した結露水にオゾンを溶解させОHラジカルを生成すると同時に空間13の乾燥を開始することができる。これによって、空間13が長時間にわたって高湿度状態になることを避けるとともに、結露水に溶存するОHラジカルを短時間で高濃度とすることができる。このため、冷房運転又は除湿運転の停止後において、菌の繁殖を効率的に抑制するとともに、オゾンから生成されたOHラジカルによる殺菌効果を短時間で発揮させることができる。
 また、オゾン発生装置40の起動と同時にファン31を駆動した場合、空間の乾燥を促進させることができる。
 また、オゾン発生装置40を起動してから第1所定時間が経過したときにファン31を駆動させる場合、オゾンを結露水に溶解させる時間を十分にとることができる。なお、吹出口11が開状態とされているので、オゾン発生装置40の起動からファン31の駆動までの間も空間13の乾燥は行われている。
 又はン31を駆動させてから第2所定時間が経過したときにファン31を停止させる場合、時間に基づいて殺菌処理の停止を制御することができる。これによって、簡易な制御によって殺菌処理を停止することができる。
 又はン31を駆動させた後、第1湿度センサ51の計測値と第2湿度センサ52の計測値とが略同値になったときにファン31を停止するので、吸い込まれた空気と吹き出された空気の湿度差に基づいて殺菌処理を停止させられる。これによって、空間13が確実に乾燥したことを確認してから殺菌処理を停止することができる。
 また、開状態にあるフラップ20が、冷房運転中又は除湿運転中にフラップ20が取り得る範囲に位置している場合、筐体10の内部(空間13)と外部(室内)とが吹出口11を介して十分な面積をもって連通している。これによって、空間13の乾燥を効率的に行うことができる。特に、フラップが、冷房運転中又は除湿運転中におけるフラップの最大風量位置にある場合、空間13の乾燥を最も効率的に行うことができる。
 また、開状態にあるフラップ20が、冷房運転中又は除湿運転中にフラップが取り得る範囲外において吹出口11を閉塞する側に位置している場合、殺菌処理中に吹出口11から出る多湿の空気がユーザにあたる可能性を低減できる。
 以上の通り説明した実施形態は、例えば、以下のように把握される。
 すなわち、本開示の一態様に係る空気調和装置(100)の室内機(1)は、内部に形成された空間(13)と、該空間と外部と連通する吹出口(11)と、を有している筐体(10)と、前記吹出口を開放及び閉塞するフラップ(20)と、前記空間に設けられているオゾン発生装置(40)と、制御部と、を備え、前記制御部は、冷房運転又は除湿運転の停止後、前記フラップが前記吹出口を閉塞していない開状態で前記オゾン発生装置からオゾンを発生させる。
 本態様に係る空気調和装置の室内機によれば、制御部は、冷房運転又は除湿運転の停止後、フラップが吹出口を閉塞していない開状態でオゾン発生装置からオゾンを発生させるので、空間に発生した結露水にオゾンを溶解させОHラジカルを生成すると同時に空間の乾燥を開始することができる。これによって、空間が長時間にわたって高湿度状態になることを避けるとともに、結露水に溶存するОHラジカルを短時間で高濃度とすることができる。このため、冷房運転又は除湿運転の停止後において、菌の繁殖を効率的に抑制するとともに、オゾンから生成されたOHラジカルによる殺菌効果を短時間で発揮させることができる。
 また、本開示の一態様に係る空気調和装置の室内機は、前記空間に設けられ、前記吹出口に空気を送るファン(31)を備え、前記制御部は、前記オゾン発生装置の起動と同時に前記ファンを駆動する。
 本態様に係る空気調和装置の室内機によれば、制御部は、オゾン発生装置の起動と同時にファンを駆動するので、空間の乾燥を促進させることができる。
 また、本開示の一態様に係る空気調和装置の室内機は、前記空間に設けられ、前記吹出口に空気を送るファンを備え、前記制御部は、前記オゾン発生装置を起動してから第1所定時間が経過したときに前記ファンを駆動する。
 本態様に係る空気調和装置の室内機によれば、制御部は、オゾン発生装置を起動してから第1所定時間が経過したときにファンを駆動するので、オゾンを結露水に溶解させる時間を十分にとることができる。なお、吹出口が開状態とされているので、オゾン発生装置の起動からファンの駆動までの間も空間の乾燥は行われている。
 また、本開示の一態様に係る空気調和装置の室内機において、前記制御部は、前記ファンを駆動してから第2所定時間が経過したときに前記ファンを停止する。
 本態様に係る空気調和装置の室内機によれば、制御部は、ファンを駆動してから第2所定時間が経過したときにファンを停止するので、時間に基づいて殺菌処理の停止を制御することができる。これによって、簡易な制御によって殺菌処理を停止させることができる。
 また、本開示の一態様に係る空気調和装置の室内機において、前記筐体は、前記空間と外部と連通する吸込口(12)を有し、前記吹出口近傍の前記空間に設けられた第1湿度センサ(51)と、前記吸込口近傍の前記空間に設けられた第2湿度センサ(52)と、を備え、前記制御部は、前記ファンを駆動した後、前記第1湿度センサの計測値と前記第2湿度センサの計測値とが略同値になったときに前記ファンを停止する。
 本態様に係る空気調和装置の室内機によれば、制御部は、ファンを駆動した後、第1湿度センサの計測値と第2湿度センサの計測値とが略同値になったときにファンを停止するので、吸い込まれた空気と吹き出された空気の湿度差に基づいて殺菌処理を停止させられる。これによって、空間が確実に乾燥したことを確認してから殺菌処理を停止させることができる。
 また、本開示の一態様に係る空気調和装置の室内機において、開状態にある前記フラップは、冷房運転中又は除湿運転中に前記フラップが取り得る範囲に位置している。
 本態様に係る空気調和装置の室内機によれば、開状態にあるフラップは、冷房運転中又は除湿運転中にフラップが取り得る範囲に位置しているので、筐体の内部(空間)と外部(室内)とが吹出口を介して十分な面積をもって連通している。これによって、空間の乾燥を効率的に行うことができる。
 また、本開示の一態様に係る空気調和装置の室内機において、開状態にある前記フラップは、冷房運転中又は除湿運転中における前記フラップの最大風量位置にある。
 本態様に係る空気調和装置の室内機によれば、開状態にあるフラップは、冷房運転中又は除湿運転中におけるフラップの最大風量位置にあるので、空間の乾燥を最も効率的に行うことができる。
 また、本開示の一態様に係る空気調和装置の室内機において、開状態にある前記フラップは、冷房運転中又は除湿運転中に前記フラップが取り得る範囲外において前記吹出口を閉塞する側に位置している。
 本態様に係る空気調和装置の室内機によれば、開状態にあるフラップは、冷房運転中又は除湿運転中にフラップが取り得る範囲外において吹出口を閉塞する側に位置しているので、殺菌処理中に吹出口から出る多湿の空気がユーザにあたる可能性を低減できる。
1 室内機
10 筐体
11 吹出口
12 吸込口
13 空間
20 フラップ
21 先端部
31 ファン
32 熱交換器
33 ドレンパン
34 ドレンパン
40 オゾン発生装置
51 第1湿度センサ
52 第2湿度センサ
100 空気調和装置

Claims (8)

  1.  内部に形成された空間と、該空間と外部と連通する吹出口と、を有している筐体と、
     前記吹出口を開放及び閉塞するフラップと、
     前記空間に設けられているオゾン発生装置と、
     制御部と、
    を備え、
     前記制御部は、冷房運転又は除湿運転の停止後、前記フラップが前記吹出口を閉塞していない開状態で前記オゾン発生装置からオゾンを発生させる空気調和装置の室内機。
  2.  前記空間に設けられ、前記吹出口に空気を送るファンを備え、
     前記制御部は、前記オゾン発生装置の起動と同時に前記ファンを駆動する請求項1に記載の空気調和装置の室内機。
  3.  前記空間に設けられ、前記吹出口に空気を送るファンを備え、
     前記制御部は、前記オゾン発生装置を起動してから第1所定時間が経過したときに前記ファンを駆動する請求項1に記載の空気調和装置の室内機。
  4.  前記制御部は、前記ファンを駆動してから第2所定時間が経過したときに前記ファンを停止する請求項2又は3に記載の空気調和装置の室内機。
  5.  前記筐体は、前記空間と外部と連通する吸込口を有し、
     前記吹出口近傍の前記空間に設けられた第1湿度センサと、
     前記吸込口近傍の前記空間に設けられた第2湿度センサと、
    を備え、
     前記制御部は、前記ファンを駆動した後、前記第1湿度センサの計測値と前記第2湿度センサの計測値とが略同値になったときに前記ファンを停止する請求項2又は3に記載の空気調和装置の室内機。
  6.  開状態にある前記フラップは、冷房運転中又は除湿運転中に前記フラップが取り得る範囲に位置している請求項1から5のいずれかに記載の空気調和装置の室内機。
  7.  開状態にある前記フラップは、冷房運転中又は除湿運転中における前記フラップの最大風量位置にある請求項6に記載の空気調和装置の室内機。
  8.  開状態にある前記フラップは、冷房運転中又は除湿運転中に前記フラップが取り得る範囲外において前記吹出口を閉塞する側に位置している請求項1から5のいずれかに記載の空気調和装置の室内機。
PCT/JP2021/039227 2021-02-19 2021-10-25 空気調和装置の室内機 WO2022176274A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21926703.6A EP4273463A1 (en) 2021-02-19 2021-10-25 Indoor unit for air conditioner
AU2021427965A AU2021427965A1 (en) 2021-02-19 2021-10-25 Indoor unit for air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025495 2021-02-19
JP2021025495A JP2022127378A (ja) 2021-02-19 2021-02-19 空気調和装置の室内機

Publications (1)

Publication Number Publication Date
WO2022176274A1 true WO2022176274A1 (ja) 2022-08-25

Family

ID=82931304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039227 WO2022176274A1 (ja) 2021-02-19 2021-10-25 空気調和装置の室内機

Country Status (4)

Country Link
EP (1) EP4273463A1 (ja)
JP (1) JP2022127378A (ja)
AU (1) AU2021427965A1 (ja)
WO (1) WO2022176274A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296519U (ja) * 1989-01-13 1990-08-01
JPH07269893A (ja) * 1994-03-28 1995-10-20 Blue Medical Sci:Kk 空気調和装置
JP2001041542A (ja) * 1999-07-30 2001-02-16 Hitachi Ltd 空気調和機
JP2002286243A (ja) * 2001-03-27 2002-10-03 Corona Corp 空気調和機
JP2003083594A (ja) * 2001-09-11 2003-03-19 Sharp Corp 空気調和機及び空気調和システム
JP2003106602A (ja) * 2001-09-28 2003-04-09 Fujitsu General Ltd 空気調和機の制御方法
JP2008111623A (ja) 2006-10-31 2008-05-15 Mitsubishi Electric Corp 空気調和装置およびその運転方法
JP2011169562A (ja) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp 空気調和機
WO2021001899A1 (ja) * 2019-07-01 2021-01-07 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296519U (ja) * 1989-01-13 1990-08-01
JPH07269893A (ja) * 1994-03-28 1995-10-20 Blue Medical Sci:Kk 空気調和装置
JP2001041542A (ja) * 1999-07-30 2001-02-16 Hitachi Ltd 空気調和機
JP2002286243A (ja) * 2001-03-27 2002-10-03 Corona Corp 空気調和機
JP2003083594A (ja) * 2001-09-11 2003-03-19 Sharp Corp 空気調和機及び空気調和システム
JP2003106602A (ja) * 2001-09-28 2003-04-09 Fujitsu General Ltd 空気調和機の制御方法
JP2008111623A (ja) 2006-10-31 2008-05-15 Mitsubishi Electric Corp 空気調和装置およびその運転方法
JP2011169562A (ja) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp 空気調和機
WO2021001899A1 (ja) * 2019-07-01 2021-01-07 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
JP2022127378A (ja) 2022-08-31
EP4273463A1 (en) 2023-11-08
AU2021427965A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP4396688B2 (ja) 空気調和装置およびその運転方法
JP6611006B2 (ja) 天井埋込型室内ユニット
JP4581024B1 (ja) 空気調和機
JP2008111623A5 (ja)
JP4003101B2 (ja) 空調機の制御方法及び装置
WO2022176274A1 (ja) 空気調和装置の室内機
JP2011058725A (ja) 空気調和機
JP4228194B2 (ja) 空気調和機の制御方法
JP6974756B2 (ja) 空気調和装置の室内ユニット
JP2003322359A (ja) 空気調和機
JP2005164113A (ja) 換気装置
JP2003247740A (ja) 空気調和機の制御方法
JP4632013B2 (ja) 空気調和機の制御方法
JP5114920B2 (ja) 浴室空調装置
KR200421625Y1 (ko) 공기조화기의 가습장치
JPH11159832A (ja) 空調機の制御装置
JP2005164114A (ja) 浴室用空調装置
JP2003106600A (ja) 空気調和機の制御方法
JP7209146B2 (ja) 換気装置
JP2015183982A (ja) 換気装置
WO2023199587A1 (ja) 空気調和システムの制御装置、空気調和システムの制御方法、プログラム、及び空気調和システム
JP2002243247A (ja) 空気調和機
JP7437293B2 (ja) 加湿装置
JP2024041239A (ja) 空気調和装置、及び空気調和装置の制御方法
JP2008045757A (ja) 換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021926703

Country of ref document: EP

Effective date: 20230802

ENP Entry into the national phase

Ref document number: 2021427965

Country of ref document: AU

Date of ref document: 20211025

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE