WO2022168670A1 - 電荷移動錯体 - Google Patents

電荷移動錯体 Download PDF

Info

Publication number
WO2022168670A1
WO2022168670A1 PCT/JP2022/002630 JP2022002630W WO2022168670A1 WO 2022168670 A1 WO2022168670 A1 WO 2022168670A1 JP 2022002630 W JP2022002630 W JP 2022002630W WO 2022168670 A1 WO2022168670 A1 WO 2022168670A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
electron
transfer complex
compound
charge
Prior art date
Application number
PCT/JP2022/002630
Other languages
English (en)
French (fr)
Inventor
剛 遠藤
康友紀 森
一平 岡野
亮 小川
潤二 上山
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2022579460A priority Critical patent/JPWO2022168670A1/ja
Priority to EP22749545.4A priority patent/EP4289821A1/en
Priority to US18/262,337 priority patent/US20240109869A1/en
Priority to KR1020237023629A priority patent/KR20230142464A/ko
Priority to CN202280009944.8A priority patent/CN116710436A/zh
Publication of WO2022168670A1 publication Critical patent/WO2022168670A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/44Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • C07C25/10Trichloro-benzenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • C07C25/13Monocyclic aromatic halogenated hydrocarbons containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • C07C255/51Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings containing at least two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/544Diformyl benzenes; Alkylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • C07C49/786Benzophenone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/16Quinones the quinoid structure being part of a condensed ring system containing three rings
    • C07C50/18Anthraquinones, i.e. C14H8O2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/121Charge-transfer complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the present invention relates to charge transfer complexes, and more particularly to charge transfer complexes having imidazole moieties, epoxy resin curing agents comprising the charge transfer complexes, and curable resin compositions containing the charge transfer complexes.
  • Epoxy resins are widely used industrially as components of paints, adhesives, various molding materials, and the like.
  • the epoxy resin is usually used in combination with a curing agent, and as the curing agent, various curing agents such as acid anhydride curing agents, amine curing agents, and phenolic curing agents are known. It is
  • imidazole curing agents are anionic polymerization curing agents, so they can be cured by adding a small amount. Since it is also useful in that it is volatile and has low toxicity, it can be suitably used for electrical and electronic parts.
  • Patent Document 1 proposes to use a reaction product of an imidazole compound and an epoxy resin in an epoxy curing system
  • Patent Document 2 discloses modified imidazole, modified Curing agent compositions for epoxy resins comprising amines and phenolic compounds have been proposed.
  • the problem to be solved by the present invention is to provide a charge-transfer complex which, when used as an epoxy resin curing agent, yields a curable resin composition having an excellent balance between curability and storage stability. .
  • the present inventors have found that a charge transfer complex having an imidazole moiety as an electron donor is effective as an epoxy resin curing agent, and that a resin composition obtained by combining this with an epoxy resin has been developed. , found that it is a curable resin composition having an excellent balance of curability and storage stability, and arrived at the present invention.
  • the present invention is a charge transfer complex having an imidazole site as an electron donating site.
  • the present invention also provides an epoxy resin curing agent comprising the charge-transfer complex.
  • the present invention is also a curable resin composition containing an epoxy resin and the charge transfer complex.
  • the charge transfer complex of the present invention is useful as an epoxy resin curing agent because it can provide a curable resin composition having excellent curability and storage stability when combined with an epoxy resin.
  • By using the charge-transfer complex of the present invention it is possible to provide a resin composition suitable for applications such as one-component curing paints and adhesives.
  • FIG. 1 shows the UV spectrum measurement results of the charge-transfer complex of the present invention.
  • Charge transfer complexes also called electron-donor-acceptor complexes, are composed of two or more different molecules, or electron-accepting and electron-donating sites within a molecule, between which charge can be transferred. It is an aggregate consisting of a single molecule that possesses and electrons can move.
  • the charge transfer complex of the present invention is characterized in that the electron donating site is the imidazole site.
  • Examples of the charge-transfer complex include a charge-transfer complex obtained by the compound (b) having an electron-accepting site accepting electrons contained in the compound (a) having an imidazole site.
  • the charge-transfer complex may be a compound having an imidazole site and an electron-accepting site in the molecule, in which electrons contained in the imidazole site are accepted by the electron-accepting site.
  • Examples of the compound having an imidazole moiety which is the component (a) of the charge transfer complex, include 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 2-un Imidazoles having an alkyl group such as decylimidazole and 2-heptadecylimidazole; 1-benzyl-2-imidazole, 1-benzyl-2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methyl imidazoles having aromatic groups such as imidazole and 1-phenylmethyl-2-phenylimidazole; imidazoles having aminoalkyl groups such as 2-aminopropylimidazole; 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2 - imidazoles having a cyano group such as undecylimidazole, 1-cyanoethy
  • epoxy compounds examples include polyglycidyl etherified mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol and phloroglucinol; dihydroxynaphthalene, biphenol, methylenebisphenol (bisphenol F), methylenebis(orthocresol).
  • ethylidene bisphenol isopropylidene bisphenol (bisphenol A), isopropylidene bis(ortho-cresol), tetrabromobisphenol A, 1,3-bis(4-hydroxycumylbenzene), 1,4-bis(4-hydroxycumyl benzene), 1,1,3-tris(4-hydroxyphenyl)butane, 1,1,2,2-tetra(4-hydroxyphenyl)ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, ortho-cresol novolak , ethylphenol novolac, butylphenol novolak, octylphenol novolak, resorcinol novolac and polyglycidyl ether of polynuclear polyhydric phenol compounds such as terpene phenol; ethylene glycol, propylene glycol, butylene glycol, hexanediol, polyethylene glycol,
  • polycarboxylic acids examples include maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, trimer acid, phthalic acid, isophthalic acid, and terephthalic acid. , trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid and endomethylenetetrahydrophthalic acid.
  • unmodified compounds such as 2-methylimidazole and 2-ethyl-4-methylimidazole can be cured by adding a relatively small amount, and in combination with other curing agents It is more preferable because it can also exert an effect as a curing accelerator.
  • the compound having an electron-accepting site, which is the component (b) of the charge-transfer complex is included in the compound having the imidazole site, which is the component (a), in the presence of the compound having the imidazole site, which is the component (a).
  • Any compound that can accept electrons can be used without any particular limitation. Examples include imide compounds and aromatic compounds.
  • imide compounds have a wide variety of raw materials for synthesis, have a high degree of freedom in molecular design, and have excellent compatibility. It is preferred because it is easy to select.
  • an imide compound having an aromatic skeleton in the molecule is preferable because a curable resin composition having an excellent balance between storage stability and curability can be obtained.
  • the compound having an electron-accepting site which is the component (b) has a lowest occupied molecular orbital (LUMO) of ⁇ 1 eV or less. It is preferable because it provides excellent storage stability and curability.
  • the lowest occupied molecular orbital (LUMO) is obtained, for example, by electronic structure calculations.
  • the amount of the compound having an electron-accepting site as component (b) to be used is 0.01 to 20 mol, preferably 0.1 to 10 mol, per 1 mol of the compound having an imidazole site as component (a). More preferably, it is 0.2 to 8 mol.
  • the amount of the compound having an electron-accepting site is less than 0.01 mol, the effect of imparting stability to the curable resin composition can be obtained when the charge transfer complex obtained from these compounds is used as an epoxy resin curing agent. If the amount exceeds 20 mol, the curability of the curable resin composition may be adversely affected.
  • the method for producing the charge-transfer complex is not particularly limited, and it can be produced by mixing the components (a) and (b). When both components are liquid, the charge transfer complex can be obtained by mixing at room temperature. When at least one of the components is solid, the components are melted by heating and mixed, or mixed as a solution using a solvent. can also
  • the charge-transfer complex of the present invention is a compound having an imidazole site and an electron-accepting site in the molecule, and the electron-accepting site accepts an electron contained in the imidazole site, the electron-accepting site is obtained at the imidazole site.
  • Any site can be used as long as it can accept electrons, and examples thereof include an imide site, an aromatic site, and the like.
  • the imide moiety is preferable because it provides a compound that can be synthesized from a variety of raw materials, has a high degree of freedom in molecular design, has excellent compatibility, and does not adversely affect the physical properties of the resulting curable resin composition.
  • Examples of compounds having an imidazole site and an electron-accepting site in the molecule include compounds represented by the following general formula (1).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 4 is , represents a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent
  • ring A is a benzene ring which may have a substituent
  • a cyclohexane ring which may have a substituent
  • represents a norbornene ring which may have a substituent
  • the hydrocarbon group constituting the optionally substituted hydrocarbon group having 1 to 20 carbon atoms represented by R 6 , R 7 and R 8 includes, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, amyl group, isoamyl group, sec-amyl group, tert-amyl group, hexyl group, heptyl group, octyl group, isooctyl group, tertiary octyl group, 2-ethylhexyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, dodecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group,
  • Examples of the hydrocarbon group constituting the optionally substituted divalent hydrocarbon group having 1 to 10 carbon atoms represented by R 9 include a methylene group, an ethylene group, a propylene group and butylene. group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group and decylene group.
  • Substituents for R 6 to R 9 include alkyl groups, alkoxy groups, haloalkyl groups, haloalkoxy groups, halogen atoms, nitro groups, nitrile groups, amino groups and glycidyl ether groups.
  • Examples of the imidazole skeleton in the compound represented by the general formula (1) include 2-methylimidazol-1-yl, 2-ethyl-4-methylimidazol-1-yl, 2-isopropylimidazol-1-yl, imidazole skeletons having alkyl groups such as 2-undecylimidazol-1-yl, 2-heptadecylimidazol-1-yl, 2-phenylimidazol-1-yl and 2-phenyl-4-methylimidazol-1-yl; 2-benzylimidazol-1-yl, 2-benzyl-4-methylimidazol-1-yl and 2-phenylmethyl-4-phenylimidazol-1-yl imidazole skeleton having an aromatic group; 2-aminopropylimidazole -Imidazole skeleton having an aminoalkyl group such as 1-yl; 2-cyanoethyl-4-methylimidazol-1-yl, 2-cyanoe
  • the compound represented by the general formula (1) has a lowest occupied molecular orbital (LUMO) of ⁇ 1 eV or less. It is preferable because it provides excellent stability and curability.
  • the lowest occupied molecular orbital (LUMO) is obtained, for example, by electronic structure calculations.
  • a charge-transfer complex is a complex formed by an electron donating site that donates electrons and an electron accepting site that accepts electrons. Charge-transfer complexes induce charge-transfer transitions in the excited state. From this phenomenon, the fact that the electron donating site and the electron accepting site form a charge transfer complex is that the UV-vis absorption spectrum after complex formation is higher than the absorption band in the UV-vis spectrum of each raw material before complex formation. It can be confirmed by having a new absorption band on the long wavelength side.
  • the epoxy resin curing agent of the present invention consists of the charge transfer complex.
  • the charge-transfer complex of the present invention is stable in the presence of an epoxy resin and is suitable as a curing agent for epoxy resins.
  • the curable resin composition of the present invention contains an epoxy resin and the charge transfer complex.
  • the epoxy resin used in the present invention should have at least two epoxy groups in the molecule, and can be used without any particular limitation in terms of molecular structure, molecular weight, and the like.
  • epoxy resin examples include polyglycidyl etherified mononuclear polyhydric phenol compounds such as hydroquinone, resorcinol, pyrocatechol and phloroglucinol; dihydroxynaphthalene, biphenol, methylenebisphenol (bisphenol F), methylenebis(orthocresol), ethylidene.
  • Bisphenol isopropylidenebisphenol (bisphenol A), isopropylidenebis(orthocresol), tetrabromobisphenol A, 1,3-bis(4-hydroxycumylbenzene), 1,4-bis(4-hydroxycumylbenzene) , 1,1,3-tris(4-hydroxyphenyl)butane, 1,1,2,2-tetra(4-hydroxyphenyl)ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, ortho-cresol novolak, ethyl Polyglycidyl etherified products of polynuclear polyhydric phenol compounds such as phenol novolak, butylphenol novolak, octylphenol novolak, resorcinol novolak and terpene phenol; ethylene glycol, propylene glycol, butylene glycol, hexanediol, polyethylene glycol, polypropylene glycol,
  • epoxy resins are in the form of internal cross-linking with isocyanate-terminated prepolymers, and have high molecular weights with polyvalent active hydrogen compounds (polyhydric phenols, polyamines, carbonyl group-containing compounds, polyphosphate esters, etc.). It can also be used in the form An epoxy resin may be used independently and may use 2 or more types together.
  • the curable resin composition of the present invention contains an epoxy resin and the charge transfer complex.
  • the charge-transfer complex is prepared by mixing the epoxy resin and the charge-transfer complex.
  • the compound having an imidazole moiety (a) and the compound having an electron-accepting site (b) are separately blended with an epoxy resin to form a charge-transfer complex in the curable resin composition. It is also possible to produce the desired curable resin composition by forming the.
  • the amount of the charge-transfer complex used is not particularly limited, but is preferably 0.01 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin. .1 to 100 parts by mass is more preferable. If the amount is less than 0.01 part by mass, the effect of improving the curability and stability may not be obtained, and if the amount exceeds 500 parts by mass, the physical properties of the cured product may be adversely affected.
  • a normal epoxy resin curing agent can be used in the curable resin composition of the present invention.
  • the epoxy resin curing agent include acid anhydride curing agents, phenol curing agents, amine curing agents and polythiol curing agents.
  • Examples of the acid anhydride curing agent include hymic anhydride, phthalic anhydride, maleic anhydride, methyl hymic anhydride, succinic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, benzophenonetetracarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, hydrogenated methylnadic anhydride and the like.
  • phenol-based curing agent examples include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyloc resin), naphthol aralkyl resin, trisphenyl roll methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensation novolac resin, naphthol-cresol co-condensation novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nuclei are linked by bismethylene groups), Biphenyl-modified naphthol resin (polyhydric naphthol compound in which phenol nucleus is linked by bismethylene group), aminotriazine-modified phenol resin (compound having phenol skeleton, triazine ring and primary amino group in molecular structure
  • amine curing agent examples include alkylene diamine such as ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, 1,4-diaminobutane, hexamethylenediamine and metaxylenediamine.
  • alkylene diamine such as ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, 1,4-diaminobutane, hexamethylenediamine and metaxylenediamine.
  • Diamines such as diethylenetriamine, triethylenetriamine and tetraethylenepentamine; 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 1,3-diaminomethylcyclohexane, 1,2-diaminocyclohexane, 1 ,4-diamino-3,6-diethylcyclohexane, 4,4'-diaminodicyclohexylmethane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 4,4'-diaminodicyclohexyl Alicyclic polyamines such as propane, bis(4-aminocyclohexyl) sulfone, 4,4'-diaminodicyclohexyl ether, 2,2'-dimethyl-4,4'-diaminodic
  • a modified amine-based curing agent obtained by modifying the amines can also be used. Modification methods include dehydration condensation with carboxylic acid, addition reaction with epoxy resin, addition reaction with isocyanate, Michael addition reaction, Mannich reaction, condensation reaction with urea, and condensation reaction with ketone.
  • carboxylic acids that can be used to modify the amines include maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, and trimer acid.
  • phthalic acid isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylenetetrahydrophthalic acid, and other aliphatic, aromatic or alicyclic polybasic acids, etc. are mentioned.
  • Isocyanate compounds that can be used to modify the amines include, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, phenylene diisocyanate, xylylene diisocyanate, Aromatics such as tetramethylxylylene diisocyanate, 1,5-naphthylene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 3,3′-dimethyldiphenyl-4,4′-diisocyanate, dianisidine diisocyanate and tetramethylxylylene diisocyanate Diisocyanates; alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, trans-1,4-cyclohexyl diisocyanate and norbornene di
  • isocyanate compounds can be used in the form of modified products such as carbodiimide-modified, isocyanurate-modified and biuret-modified, and can also be used in the form of blocked isocyanates blocked with various blocking agents.
  • polythiol-based curing agent examples include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (thioglycolate), dipentaerythritol hexakis (3-mercaptopropionate), and dipentaerythritol hexakis.
  • imidazole curing agent examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2-phenyl- 4-methylimidazole, 2-aminopropylimidazole, imidazolesilane (eg, 2MUSIZ, manufactured by Shikoku Chemical Industry Co., Ltd.), and the like.
  • imidazolesilane eg, 2MUSIZ, manufactured by Shikoku Chemical Industry Co., Ltd.
  • imidazole compounds may be modified in the same manner as the amine-based curing agent, or imidazole salts, which are salts of the imidazoles with trimellitic acid, isocyanuric acid, boron, or the like.
  • Examples of commercially available curing agents include ADEKA HARDNER EH-3636AS, ADEKA HARDNER EH-4351S (manufactured by ADEKA; dicyandiamide type latent curing agent), ADEKA HARDNER EH-5011S, ADEKA HARDNER EH-5046S (manufactured by ADEKA; imidazole type latent curing agent), ADEKA HARDNER EH-4357S, ADEKA HARDENER EH-5057P, ADEKA HARDENER EH-5057PK (manufactured by ADEKA; polyamine type latent curing agent), Amicure PN-23, Amicure PN-40 (manufactured by Ajinomoto Fine Techno ; amine adduct-based latent curing agent), Amicure VDH (manufactured by Ajinomoto Fine Techno; hydrazide-based latent curing agent), Fujicure FXR-1020 (manufactured by T
  • the amount of the curing agent is not particularly limited, it is preferably 0 to 500 parts by mass, more preferably 0 to 100 parts by mass, based on 100 parts by mass of the epoxy resin.
  • curing agent and a known epoxy resin curing accelerator can be used together as needed.
  • curing accelerators include phosphines such as triphenylphosphine; phosphonium salts such as tetraphenylphosphonium bromide; amines such as benzyldimethylamine and 2,4,6-tris(dimethylaminomethyl)phenol; trimethylammonium chloride.
  • quaternary ammonium salts such as; 3-(p-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-phenyl-1,1-dimethylurea, Complexes of ureas such as isophorone diisocyanate-dimethylurea and tolylene diisocyanate-dimethylurea, boron trifluoride and amines, and complexes of boron trifluoride and an ether compound.
  • These curing accelerators may be used alone or in combination of two or more.
  • the content of the epoxy resin curing accelerator is not particularly limited and can be appropriately set according to the application of the curable resin composition.
  • the curable resin composition of the present invention can contain a silane coupling agent.
  • Silane coupling agents include, for example, ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)-N′- ⁇ -(amino ethyl)- ⁇ -aminopropyltriethoxysilane, ⁇ -anilinopropyltriethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane, vinyltriethoxysilane, N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane,
  • a filler can be contained in the curable resin composition of the present invention.
  • fillers include silica such as fused silica and crystalline silica; magnesium hydroxide, aluminum hydroxide, zinc molybdate, calcium carbonate, silicon carbonate, calcium silicate, potassium titanate, beryllia, zirconia, zircon, phosphor, Powders of stellite, steatite, spinel, mullite, titania, etc., or spherical beads thereof; glass fibers, pulp fibers, synthetic fibers, ceramic fibers, and the like.
  • the curable resin composition of the present invention can be used by dissolving in various solvents, preferably organic solvents.
  • Suitable organic solvents include ethers such as tetrahydrofuran, 1,2-dimethoxyethane and 1,2-diethoxyethane; alcohols such as furyl alcohol and tetrahydrofurfuryl alcohol; ketones such as methyl ethyl ketone, methyl isopropyl ketone and methyl butyl ketone; aromatic hydrocarbons such as benzene, toluene and xylene; triethylamine, pyridine, dioxane and acetonitrile.
  • the curable resin composition of the present invention may further contain other various additives as necessary.
  • the additives include phosphorus antioxidants, phenolic antioxidants and sulfur antioxidants; ultraviolet absorbers and hindered amine light stabilizers; phenolic compounds such as biphenol; Diluents; non-reactive diluents (plasticizers) such as dioctyl phthalate, dibutyl phthalate, benzyl alcohol and coal tar; reinforcing materials such as glass cloth, aramid cloth and carbon fiber; pigments; candelilla wax, carnauba wax, Lubricants such as Japan wax, wart wax, beeswax, lanolin, spermaceti, montan wax, petroleum wax, aliphatic waxes, aliphatic esters, aliphatic ethers, aromatic esters and aromatic ethers; thickeners; thixotropic agents; Commonly used additives such as antifoaming agents; rust inhibitors; colloidal silica and coll
  • the resin composition of the present invention is not particularly limited in its application, but it is a one-component curing resin composition because it is possible to adjust the balance between curability and storage stability. It can be used as paints and adhesives for concrete, cement mortar, various metals, leather, glass, rubber, plastics, wood, cloth, paper and the like.
  • Example 1 2-Ethyl-4-methylimidazole [EMI] and N-(2-ethylhexyl)phthalimide [2EHPI] were mixed in a 1:1 ratio to obtain a homogeneous mixture.
  • FIG. 1 shows the UV spectrum [EMI+2EHPI] measurement results of the obtained mixture.
  • the UV spectrum [EMI] of 2-ethyl-4-methylimidazole and the UV spectrum [2EHPI] of N-(2-ethylhexyl)phthalimide were measured, and the UV spectrum [sum ( EMI+2EHPI)] is also shown in FIG.
  • the curable resin composition was placed in a glass bottle and cured by heating at 150 ° C. for 1 hour.
  • a novel charge-transfer complex was obtained as shown in the above example. Moreover, it is clear that the charge transfer complex is useful as an epoxy resin curing agent, and that the curable resin composition obtained by containing the epoxy resin and the charge transfer complex has excellent curability and storage stability. is.
  • a one-component curable resin composition that is excellent in curability and storage stability. It can be suitably used for paints, structural adhesives and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明の目的は、エポキシ樹脂硬化剤として使用した場合に、硬化性と貯蔵安定性のバランスに優れた硬化性樹脂組成物が得られる電荷移動錯体を提供することにある。 本発明は、電子供与部位としてイミダゾール部位を有する電荷移動錯体である。前記電荷移動錯体は、イミダゾール部位を有する化合物(a)に含まれる電子を、電子受容部位を有する化合物(b)が受容したものであってもよく、イミダゾール部位及び電子受容部位を分子中に有する化合物において、イミダゾール部位に含まれる電子を電子受容部位が受容したものであってもよい。

Description

電荷移動錯体
 本発明は、電荷移動錯体に関し、詳しくは、イミダゾール部位を有する電荷移動錯体、該電荷移動錯体からなるエポキシ樹脂硬化剤、及び該電荷移動錯体を含有する硬化性樹脂組成物に関するものである。
 エポキシ樹脂は、塗料、接着剤、各種成形材料等の成分として工業的に幅広く使用されている。
 エポキシ樹脂を前記用途に使用する場合、通常は硬化剤と組み合わせて使用され、該硬化剤としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤等の種々の硬化剤が知られている。
 前記硬化剤は用途に応じて使い分けられており、例えば、イミダゾール系硬化剤は、付加重合型硬化剤と異なり、アニオン重合型硬化剤であることから少量の添加で硬化が可能であり、また低揮発性で毒性が低い点も有用であるため、電気・電子部品に好適に使用することができる。
 しかしながら、エポキシ樹脂硬化剤を単独で使用した場合、硬化性と貯蔵安定性のバランスを取ることが困難である。貯蔵安定性を向上させるために、例えば、特許文献1には、イミダゾール化合物とエポキシ樹脂との反応物をエポキシ硬化システムに使用することが提案されており、特許文献2には、変性イミダゾール、変性アミン及びフェノール化合物からなるエポキシ樹脂用硬化剤組成物が提案されている。
 しかしながら、これらの各種変性を行った場合、変性物の粘度が上昇して、ハンドリング、作業性が損なうなど、満足できるものが得られていない。
米国特許4066625号 特開2007-297493号公報
JORNAL OF POLYMER SCIENCE,PART A POLYMER CHEMISTRY 2016,54,2680-2688 JORNAL OF POLYMER SCIENCE,PART A POLYMER CHEMISTRY 2018,56,471-474 Composits Part B 17(2019)107380 Materials Leters 234(2019)379-383
 したがって、本発明が解決しようとする課題は、エポキシ樹脂硬化剤として使用した場合に、硬化性と貯蔵安定性のバランスに優れた硬化性樹脂組成物が得られる電荷移動錯体を提供することである。
 本発明者らは、鋭意検討を行った結果、電子供与体としてイミダゾール部位を有する電荷移動錯体が、エポキシ樹脂硬化剤として有効であること、さらにこれをエポキシ樹脂と組み合わせて得られる樹脂組成物が、硬化性と貯蔵安定性のバランスに優れた硬化性樹脂組成物であることを見出し、本発明に到達した。
 すなわち、本発明は、電子供与部位としてイミダゾール部位を有する電荷移動錯体である。
 また、本発明は、前記電荷移動錯体からなるエポキシ樹脂用硬化剤である。
 また、本発明は、エポキシ樹脂及び前記電荷移動錯体を含有する硬化性樹脂組成物である。
 本発明の電荷移動錯体は、エポキシ樹脂と組み合わせることにより、硬化性と貯蔵安定性に優れた硬化性樹脂組成物を提供できることから、エポキシ樹脂硬化剤として有用なものである。本発明の電荷移動錯体を用いることにより、一液硬化型の塗料、接着剤などの用途に好適な樹脂組成物を提供することができる。
図1は、本発明の電荷移動錯体のUVスペクトル測定結果である。
 以下に、本発明の電荷移動錯体について説明する。
 電荷移動錯体は、電子受容-供与錯体(Electron-donor-acceptor complex)とも呼ばれるものであり、電荷が分子間で移動できる2つ以上の異なる分子、又は分子内において電子受容部位と電子供与部位を有して電子が移動できる1つの分子からなる会合体である。
 本発明の電荷移動錯体は、電子供与部位がイミダゾール部位であることを特徴とするものである。
 前記電荷移動錯体としては、例えば、イミダゾール部位を有する化合物(a)に含まれる電子を、電子受容部位を有する化合物(b)が受容することによって得られる電荷移動錯体が挙げられる。また、前記電荷移動錯体は、イミダゾール部位及び電子受容部位を分子中に有する化合物において、イミダゾール部位に含まれる電子を電子受容体部位が受容したものであってもよい。
 前記電荷移動錯体の(a)成分であるイミダゾール部位を有する化合物としては、例えば、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-イソプロピルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール等のアルキル基を有するイミダゾール類;1-ベンジル-2-イミダゾール、1-ベンジル-2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-フェニルメチル-2-フェニルイミダゾール等の芳香族基を有するイミダゾール類;2-アミノプロピルイミダゾール等のアミノアルキル基を有するイミダゾール類;1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール等のシアノ基を有するイミダゾール類;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のヒドロキシメチル基を有するイミダゾール類;1-ブトキシカルボニルエチル-2-メチルイミダゾール、1-ブトキシカルボニルエチル-2-エチル-4-メチルイミダゾール、1-ブトキシカルボニルエチル-2-フェニルイミダゾール、1-(2-エチルヘキシル)カルボニルエチル-2-メチルイミダゾール、1-(2-エチルヘキシル)カルボニルエチル-2-エチル-4-メチルイミダゾール、1-(2-エチルヘキシル)カルボニルエチル-2-フェニルイミダゾール、1-オクチルオキシカルボニルエチル-2-メチルイミダゾール、1-オクチルオキシカルボニルエチル-2-エチル-4-メチルイミダゾール、1-オクチルオキシカルボニルエチル-2-フェニルイミダゾール、ヘキサンジオール・ビス(2-メチルイミダゾリルエタン酸)エステル、ヘキサンジオール・ビス(2-エチル-4-メチルイミダゾリルエタン酸)エステル、ヘキサンジオール・ビス(2-フェニルイミダゾリルエタン酸)エステル、デカンジオール・ビス(2-メチルイミダゾリルエタン酸)エステル、デカンジオール・ビス(2-エチル-4-メチルイミダゾリルエタン酸)エステル、デカンジオール・ビス(2-フェニルイミダゾリルエタン酸)エステル、トリシクロペンタンジメタノール・ビス(2-メチルイミダゾリルエタン酸)エステル、トリシクロペンタンジメタノール・ビス(2-エチル-4-メチルイミダゾリルエタン酸)エステル、トリシクロペンタンジメタノール・ビス(2-フェニルイミダゾリルエタン酸)エステル、1-(2-ヒドロキシナフチルメチル)-2-メチルイミダゾール、1-(2-ヒドロキシナフチルメチル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシナフチルメチル)-2-フェニルイミダゾール等のエステル結合を有するイミダゾール類;2,3-ジヒドロ-1H-ピロロ(1,2a)ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、イミダゾールシラン、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕-エチル-s-トリアジン等の特殊イミダゾール類が挙げられる。さらに、前記に例示されたイミダゾール化合物は、エポキシ化合物、ポリカルボン酸及びイソシアヌル酸等による変性物でもよい。
 前記エポキシ化合物としては、例えば、ハイドロキノン、レゾルシン、ピロカテコール及びフロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック及びテルペンフェノール等の多核多価フェノール化合物のポリグリシジルエーテル化物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリプロピレングリコール、チオグリコール、ジシクロペンタジエンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(水素化ビスフェノールA)、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール及びビスフェノールA-アルキレンオキシド付加物などの多価アルコール化合物のポリグリシジルエーテル化物;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸及びエンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族又は脂環族多塩基酸のグリシジルエステル化物及びグリシジルメタクリレートの単独重合体又は共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)-2-メチルアニリン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン及びN,N,N’,N’-テトラ(2,3-エポキシプロピル)-4,4-ジアミノジフェニルメタン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、シクロペンタジエンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート及びビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン及びエポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体;トリグリシジルイソシアヌレート等の複素環化合物が挙げられる。
 前記ポリカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸及びエンドメチレンテトラヒドロフタル酸等が挙げられる。
 前記イミダゾール化合物の中でも、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等の未変性化合物が、比較的少量を添加することで硬化が可能であり、かつ、他の硬化剤と組み合わせることで硬化促進剤としての効果も発揮することができるためより好ましい。
 前記電荷移動錯体の(b)成分である電子受容部位を有する化合物は、前記(a)成分であるイミダゾール部位を有する化合物の存在下において、(a)成分であるイミダゾール部位を有する化合物に含まれる電子を受容可能な化合物であれば特に制限なく使用することができる。例えば、イミド化合物、芳香族化合物などが挙げられる。
 電子受容部位を有する化合物の中でもイミド化合物は合成原料が多様であり、分子設計の自由度が高く、かつ相溶性に優れることから、得られる硬化性樹脂組成物の物性に悪影響を及ぼしにくいものを選択するのが容易であるため好ましい。とりわけ芳香族骨格を分子中に有するイミド化合物が、貯蔵安定性と硬化性にバランスの優れた硬化性樹脂組成物が得られるため好ましい。
 また、(b)成分である電子受容部位を有する化合物は、最低被占軌道(LUMO)が-1eV以下であるものが、これをエポキシ樹脂と共に配合して硬化性樹脂組成物とした場合に、貯蔵安定性及び硬化性に優れたものが得られるため好ましい。最低被占軌道(LUMO)は、例えば、電子構造計算によって得られたものである。
 (b)成分である電子受容部位を有する化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 (b)成分である電子受容部位を有する化合物の使用量は、(a)成分であるイミダゾール部位を有する化合物1モルに対して0.01~20モル、好ましくは、0.1~10モル、更に好ましくは0.2~8モルである。電子受容部位を有する化合物の使用量が0.01モル未満では、これらから得られる電荷異移動錯体をエポキシ樹脂硬化剤として使用した場合に、硬化性樹脂組成物の安定性付与効果が得ることができないおそれがあり、20モルを超えた場合には硬化性樹脂組成物の硬化性に悪影響を及ぼすおそれがある。
 前記電荷移動錯体を製造する方法は特に限定されるものではなく、前記(a)成分及び(b)成分を混合することによって製造することができる。両成分が液状であるものは常温で混合することよって電荷移動錯体が得られるが、少なくとも一方が固体の場合には加熱して溶融して混合したり、溶媒を用いて溶液として混合したりすることもできる。
 本発明の電荷移動錯体が、イミダゾール部位及び電子受容部位を分子中に有する化合物において、イミダゾール部位に含まれる電子を電子受容部位が受容したものである場合、前記電子受容部位は、イミダゾール部位で得られる電子を受容することのできる部位であればよく、例えばイミド部位、芳香族部位等が挙げられる。とりわけイミド部位であることが、合成原料が多様であり、分子設計の自由度が高く、かつ相溶性に優れ、得られる硬化性樹脂組成物の物性に悪影響を及ぼしにくい化合物が得られるため好ましい。
 イミダゾール部位及び電子受容部位を分子中に有する化合物としては、例えば、下記の一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023

 一般式(1)中、R、R及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素原子数が1~20の炭化水素基を表し、Rは、置換基を有してもよい炭素原子数1~10の二価の炭化水素基を表し、環Aは、置換基を有してもよいベンゼン環、置換基を有してもよいシクロヘキサン環、又は置換基を有してもよいノルボルネン環を表す。
 前記式(1)中、R、R及びRで表される、置換基を有してもよい炭素原子数1~20の炭化水素基を構成する炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二ブチル基、第三ブチル基、アミル基、イソアミル基、第二アミル基、第三アミル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、第三オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基及びエイコシル基等のアルキル基;フェニル基、ナフチル基及びアントラセニル基等のアリール基;シクロヘキシル基等の脂環式基等が挙げられる。
 また、Rで表される、置換基を有してよい炭素原子数1~10の二価の炭化水素基を構成する炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基及びデシレン基等が挙げられる。
 また、R~Rにおける置換基としては、アルキル基、アルコキシ基、ハロアルキル基、ハロアルコキシ基、ハロゲン原子、ニトロ基、ニトリル基、アミノ基及びグリシジルエーテル基等が挙げられる。
 前記一般式(1)で表される化合物におけるイミダゾール骨格としては、例えば、2-メチルイミダゾール-1-イル、2-エチル-4-メチルイミダゾール-1-イル、2-イソプロピルイミダゾール-1-イル、2-ウンデシルイミダゾール-1-イル、2-ヘプタデシルイミダゾール-1-イル、2-フェニルイミダゾール-1-イル及び2-フェニル-4-メチルイミダゾール-1-イル等のアルキル基を有するイミダゾール骨格;2-ベンジルイミダゾール-1-イル、2-ベンジル-4-メチルイミダゾール-1-イル及び2-フェニルメチル-4-フェニルイミダゾール-1-イル等の芳香族基を有するイミダゾール骨格;2-アミノプロピルイミダゾール-1-イル等のアミノアルキル基を有するイミダゾール骨格;2-シアノエチル-4-メチルイミダゾール-1-イル、2-シアノエチル-4-ウンデシルイミダゾール-1-イル、2-シアノエチル-メチルイミダゾール-1-イル及び2-シアノエチル-4-フェニルイミダゾール-1-イル等のシアノ基を有するイミダゾール骨格;2-フェニル-4,5-ジヒドロキシメチルイミダゾール-1-イル及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール-1-イル等のヒドロキシメチル基を有するイミダゾール骨格;2-ブトキシカルボニルエチル-4-メチルイミダゾール-1-イル、2-ブトキシカルボニルエチル-4-メチルイミダゾール-1-イル、2-ブトキシカルボニルエチル-4-フェニルイミダゾール-1-イル、2-(2-エチルヘキシル)カルボニルエチル-4-メチルイミダゾール-1-イル、2-(2-エチルヘキシル)カルボニルエチル-4-メチルイミダゾール-1-イル、2-(2-エチルヘキシル)カルボニルエチル-4-フェニルイミダゾール-1-イル、2-オクチルオキシカルボニルエチル-4-メチルイミダゾール-1-イル、2-オクチルオキシカルボニルエチル-4-メチルイミダゾール-1-イル及び2-オクチルオキシカルボニルエチル-4-フェニルイミダゾール-1-イル等のエステル結合を有するイミダゾール骨格等が挙げられる。
 また、前記一般式(1)で表される化合物は、最低被占軌道(LUMO)が-1eV以下であるものが、これとエポキシ樹脂を配合して硬化性樹脂組成物とした場合に、貯蔵安定性及び硬化性が優れたものが得られるため好ましい。最低被占軌道(LUMO)は、例えば、電子構造計算によって得られたものである。
 イミダゾール部位及び電子受容部位を分子中に有する化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 電荷移動錯体は、電子を供与する電子供与部位と、電子を受容する電子受容部位とが錯体を形成しているものである。電荷移動錯体は励起状態で電荷移動遷移を引き起こす。この現象から、電子供与部位及び電子受容部位が電荷移動錯体を形成していることは、錯体形成後のUV-vis吸収スペクトルが、錯体形成前の各原料のUV-visスペクトルにおける吸収帯よりも長波長側に新たな吸収帯を持つことで確認することができる。
 本発明のエポキシ樹脂硬化剤は、前記電荷移動錯体からなるものである。本発明の電荷移動錯体は、エポキシ樹脂の存在下において安定であり、エポキシ樹脂の硬化剤として良好なものである。
 次に、本発明の硬化性樹脂組成物について説明する。
 本発明の硬化性樹脂組成物は、エポキシ樹脂及び前記電荷移動錯体を含有するものである。
 本発明に使用されるエポキシ樹脂は、分子中にエポキシ基を少なくとも2つ有するものであればよく、分子構造、分子量等に特に制限なく使用することができる。
 前記エポキシ樹脂としては、ハイドロキノン、レゾルシン、ピロカテコール及びフロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック及びテルペンフェノール等の多核多価フェノール化合物のポリグリシジルエーテル化物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリプロピレングリコール、チオグリコール、ジシクロペンタジエンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(水素化ビスフェノールA)、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール及びビスフェノールA-アルキレンオキシド付加物などの多価アルコール化合物のポリグリシジルエーテル化物;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸及びエンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族又は脂環族多塩基酸のグリシジルエステル化物及びグリシジルメタクリレートの単独重合体又は共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)-2-メチルアニリン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン及びN,N,N’,N’-テトラ(2,3-エポキシプロピル)-4,4-ジアミノジフェニルメタン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、シクロペンタジエンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート及びビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン及びエポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体;トリグリシジルイソシアヌレート等の複素環化合物が挙げられる。また、これらのエポキシ樹脂は、末端イソシアネートのプレポリマーにより内部架橋された形、また多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)で高分子量化された形で用いることもできる。エポキシ樹脂は、単独で用いてもよいし、2種以上を併用してもよい。
 本発明の硬化性樹脂組成物は、エポキシ樹脂及び前記電荷移動錯体を含有するものである。(a)成分であるイミダゾール部位を有する化合物と(b)成分である電子受容部位を有する化合物から得られる電荷移動錯体を使用する場合においては、エポキシ樹脂と電荷移動錯体とを混合することにより製造することもできるが、(a)成分であるイミダゾール部位を有する化合物と(b)成分である電子受容部位を有する化合物とをエポキシ樹脂にそれぞれ別に配合し、硬化性樹脂組成物中において電荷移動錯体を形成させることによって目的の硬化性樹脂組成物を製造することもできる。
 本発明の硬化性樹脂組成物において、前記電荷移動錯体の使用量は、特に制限されるものではないが、エポキシ樹脂100質量部に対し、0.01~500質量部であることが好ましく、0.1~100質量部であることがより好ましい。0.01質量部より少ない場合には、硬化性及び安定性に対する改善効果が得られないおそれがあり、500質量部を超えて使用した場合には硬化物の物性に悪影響を及ぼすおそれがある。
 また、本発明の硬化性樹脂組成物には、前記電荷移動錯体に加えて、通常のエポキシ樹脂硬化剤を使用することができる。該エポキシ樹脂硬化剤としては、例えば、酸無水物系硬化剤、フェノール系硬化剤、アミン系硬化剤及びポリチオール系硬化剤等が挙げられる。
 前記酸無水物系硬化剤としては、例えば、無水ハイミック酸、無水フタル酸、無水マレイン酸、無水メチルハイミック酸、無水コハク酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸-無水マレイン酸付加物、ベンゾフェノンテトラカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸及び水素化メチルナジック酸無水物等が挙げられる。
 前記フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリスフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮合ノボラック樹脂、ナフトール-クレゾール共縮合ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(フェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物、)及びアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物等が挙げられる。
 前記アミン系硬化剤としては、例えば、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,3-ジアミノブタン、1,4-ジアミノブタン、ヘキサメチレンジアミン及びメタキシレンジアミン等のアルキレンジアミン類;ジエチレントリアミン、トリエチレントリアミン及びテトラエチレンペンタミン等のポリアルキルポリアミン類;1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,3-ジアミノメチルシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノ-3,6-ジエチルシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-ジアミノジシクロヘキシルプロパン、ビス(4-アミノシクロヘキシル)スルホン、4,4’-ジアミノジシクロヘキシルエーテル、2,2’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、イソホロンジアミン及びノルボルネンジアミン等の脂環式ポリアミン類;ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、1-メチル-3,5-ジエチル-2,4-ジアミノベンゼン、1-メチル-3,5-ジエチル-2,6-ジアミノベンゼン、1,3,5-トリエチル-2,6-ジアミノベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン及び3,5,3’,5’-テトラメチル-4,4’-ジアミノジフェニルメタン等の芳香族ポリアミン類;N,N-ジメチルアミノエチルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、N,N-ジアリルアミノエチルアミン、N,N-ベンジルメチルアミノエチルアミン、N,N-ジベンジルアミノエチルアミン、N,N-シクロヘキシルメチルアミノエチルアミン、N,N-ジシクロヘキシルアミノエチルアミン、N-(2-アミノエチル)ピロリジン、N-(2-アミノエチル)ピペリジン、N-(2-アミノエチル)モルホリン、N-(2-アミノエチル)ピペラジン、N-(2-アミノエチル)-N’-メチルピペラジン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジイソプロピルアミノプロピルアミン、N,N-ジアリルアミノプロピルアミン、N,N-ベンジルメチルアミノプロピルアミン、N,N-ジベンジルアミノプロピルアミン、N,N-シクロヘキシルメチルアミノプロピルアミン、N,N-ジシクロヘキシルアミノプロピルアミン、N-(3-アミノプロピル)ピロリジン、N-(3-アミノプロピル)ピペリジン、N-(3-アミノプロピル)モルホリン、N-(3-アミノプロピル)ピペラジン、N-(3-アミノプロピル)-N’-メチルピペリジン、4-(N,N-ジメチルアミノ)ベンジルアミン、4-(N,N-ジエチルアミノ)ベンジルアミン、4-(N,N-ジイソプロピルアミノ)ベンジルアミン、N,N,-ジメチルイソホロンジアミン、N,N-ジメチルビスアミノシクロヘキサン、N,N,N’-トリメチルエチレンジアミン、N’-エチル-N,N-ジメチルエチレンジアミン、N,N,N’-トリエチルエチレンジアミン、N’-エチル-N,N-ジメチルプロパンジアミン、N’-エチル-N,N-ジベンジルアミノプロピルアミン;N,N-(ビスアミノプロピル)-N-メチルアミン、N,N-ビスアミノプロピルエチルアミン、N,N-ビスアミノプロピルプロピルアミン、N,N-ビスアミノプロピルブチルアミン、N,N-ビスアミノプロピルペンチルアミン、N,N-ビスアミノプロピルヘキシルアミン、N,N-ビスアミノプロピル-2-エチルヘキシルアミン、N,N-ビスアミノプロピルシクロヘキシルアミン、N,N-ビスアミノプロピルベンジルアミン、N,N-ビスアミノプロピルアリルアミン、ビス〔3-(N,N-ジメチルアミノプロピル)〕アミン、ビス〔3-(N,N-ジエチルアミノプロピル)〕アミン、ビス〔3-(N,N-ジイソプロピルアミノプロピル)〕アミン、ビス〔3-(N,N-ジブチルアミノプロピル)〕アミン;シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド及びフタル酸ジヒドラジド等の二塩基酸ジヒドラジド;ジシアンジアミド、ベンゾグアナミン及びアセトグアナミン等のグアニジン化合物;メラミン等が挙げられる。
 また、前記アミン類を変性した変性アミン系硬化剤を用いることもできる。変性方法としては、カルボン酸との脱水縮合、エポキシ樹脂との付加反応、イソシアネートとの付加反応、マイケル付加反応、マンニッヒ反応、尿素との縮合反応、及びケトンとの縮合反応等が挙げられる。
 前記アミン類の変性に使用することのできるカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸及びエンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族又は脂環族多塩基酸等が挙げられる。
 前記アミン類の変性に使用することのできるエポキシ化合物としては、例えば、前記電荷移動錯体の(a)成分であるイミダゾール部位を有する化合物の変性に使用されるエポキシ化合物として例示したエポキシ化合物が挙げられる。
 前記アミン類の変性に使用することのできるイソシアネート化合物としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、3,3’-ジメチルジフェニル-4,4’-ジイソシアネート、ジアニシジンジイソシアネート及びテトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート;イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、トランス-1,4-シクロヘキシルジイソシアネート及びノルボルネンジイソシアネート等の脂環式ジイソシアネート;テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,2,4及び/又は2,4,4-トリメチルヘキサメチレンジイソシアネート及びリシンジイソシアネート等の脂肪族ジイソシアネート;前記例示のジイソシアネートのイソシアヌレート三量化物、ビューレット三量化物及びトリメチロールプロパンアダクト化物等;トリフェニルメタントリイソシアネート、1-メチルベンゾール-2,4,6-トリイソシアネート及びジメチルトリフェニルメタンテトライソシアネート等が挙げられる。さらにこれらのイソシアネート化合物は、カルボジイミド変性、イソシアヌレート変性、ビウレット変性等の変性物の形で用いることもでき、各種のブロッキング剤によってブロックされたブロックイソシアネートの形で用いることもできる。
 前記ポリチオール系硬化剤としては、例えば、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、1,3,4,6-テトラキス(2-メルカプトエチル)-1,3,4,6-テトラアザオクタヒドロペンタレン-2,5-ジオン、1,3,5-トリス(3-メルカブトプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、4,8-、4,7-若しくは5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン及び1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル等が挙げられる。
 前記イミダゾール系硬化剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-イソプロピルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-アミノプロピルイミダゾール、イミダゾールシラン(例えば、四国化成工業(株)製;2MUSIZ)等が挙げられる。
 また、これらのイミダゾール化合物を前記アミン系硬化剤と同様に変性したものあるいは、前記イミダゾール類と、トリメリット酸、イソシアヌル酸、ホウ素等との塩であるイミダゾール塩類であってもよい。
 前記硬化剤の市販品としては、例えば、アデカハードナー EH-3636AS、アデカハードナー EH-4351S(ADEKA製;ジシアンジアミド型潜在性硬化剤)、アデカハードナー EH-5011S、アデカハードナー EH-5046S(ADEKA製;イミダゾール型潜在性硬化剤)、アデカハードナー EH-4357S、アデカハードナー EH-5057P、アデカハードナー EH-5057PK(ADEKA製;ポリアミン型潜在性硬化剤)、アミキュアPN-23、アミキュアPN-40(味の素ファインテクノ製;アミンアダクト系潜在性硬化剤)、アミキュアVDH(味の素ファインテクノ製;ヒドラジド系潜在性硬化剤)、フジキュアFXR-1020(T&K TOKA製;潜在性硬化剤)、キュアゾール(四国化成工業製;イミダゾール系硬化剤)、TS-G(四国化成工業製;ポリチオール系硬化剤)、DPMP、PEMP(SC有機化学製;ポリチオール系硬化剤)及びPETG(淀化学製;ポリチオール系硬化剤)等が挙げられる。
 硬化剤は、単独で用いてもよいし、2種以上を併用してもよい。
 前記硬化剤の配合量は、特に限定されるものではないが、エポキシ樹脂100質量部に対して0~500質量部であることが好ましく、0~100質量部であることがより好ましい。
 本発明においては、必要に応じて前記硬化剤と公知のエポキシ樹脂硬化促進剤を併用することができる。硬化促進剤としては、例えば、トリフェニルホスフィン等のホスフィン類;テトラフェニルホスホニウムブロマイド等のホスホニウム塩;ベンジルジメチルアミン及び2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミン類;トリメチルアンモニウムクロライド等の4級アンモニウム塩類;3-(p-クロロフェニル)-1,1-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-フェニル-1,1-ジメチルウレア、イソホロンジイソシアネート-ジメチルウレア及びトリレンジイソシアネート-ジメチルウレア等のウレア類三フッ化ホウ素とアミン類との錯体、及び三フッ化ホウ素とエーテル化合物との錯体等が挙げられる。これらの硬化促進剤は、単独で使用してもよいし、2種類以上を併用してもよい。エポキシ樹脂硬化促進剤の含有量は、特に制限なく硬化性樹脂組成物の用途に応じて適宜設定することができる。
 本発明の硬化性樹脂組成物には、シランカップリング剤を含有させることができる。シランカップリング剤としては、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-N’-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン及びγ-メルカプトプロピルトリメトキシシラン等が挙げられる。
 本発明の硬化性樹脂組成物には、充填剤を含有させることができる。充填剤としては、例えば、溶融シリカ及び結晶シリカ等のシリカ;水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、炭酸カルシウム、炭酸ケイ素、ケイ酸カルシウム、チタン酸カリウム、べリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト及びチタニア等の粉体、又はこれらを球形化したビーズ;ガラス繊維、パルプ繊維、合成繊維及びセラミック繊維等が挙げられる。
 本発明の硬化性樹脂組成物は、種々の溶剤、好ましくは有機溶剤に溶解して使用することができる。適当な有機溶剤として、例えば、テトラヒドロフラン、1,2-ジメトキシエタン及び1,2-ジエトキシエタン等のエーテル類;イソ-又はn-ブタノール、イソ-又はn-プロパノール、アミルアルコール、ベンジルアルコール、フルフリルアルコール及びテトラヒドロフルフリルアルコール等のアルコール類;メチルエチルケトン、メチルイソプロピルケトン及びメチルブチルケトン等のケトン類;ベンゼン、トルエン及びキシレン等の芳香族炭化水素;トリエチルアミン、ピリジン、ジオキサン及びアセトニトリル等が挙げられる。
 本発明の硬化性樹脂組成物は、更に必要に応じて、その他の各種添加剤を含有させてもよい。前記添加剤としては、例えば、リン系酸化防止剤、フェノール系酸化防止剤及び硫黄系酸化防止剤;紫外線吸収剤及びヒンダードアミン系光安定剤;ビフェノール等のフェノール化合物;モノアルキルグリシジルエーテル等の反応性希釈剤;ジオクチルフタレート、ジブチルフタレート、ベンジルアルコール及びコールタール等の非反応性の希釈剤(可塑剤);ガラスクロス、アラミドクロス及びカーボンファイバー等の補強材;顔料;キャンデリラワックス、カルナウバワックス、木ろう、イボタロウ、みつろう、ラノリン、鯨ろう、モンタンワックス、石油ワックス、脂肪族ワックス、脂肪族エステル、脂肪族エーテル、芳香族エステル及び芳香族エーテル等の潤滑剤;増粘剤;チキソトロピック剤;消泡剤;防錆剤;コロイダルシリカ及びコロイダルアルミナ等の常用の添加剤が挙げられる。本発明においては、更に、シアネートエステル樹脂、キシレン樹脂及び石油樹脂等の粘着性の樹脂類を併用することもできる。
 本発明の樹脂組成物は、特にその用途が制限されるものではないが、硬化性と貯蔵安定性とのバランスを調整することが可能であることから、一液硬化型の樹脂組成物とすることが可能であり、コンクリート、セメントモルタル、各種金属、皮革、ガラス、ゴム、プラスチック、木、布、紙等に対する塗料及び接着剤に使用することができる。
 次に、本発明を実施例及び比較例により、さらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。
〔最低被占軌道(LUMO)の計算〕
 実施例で使用した、電子受容部位を有する化合物及びイミダゾール部位及び電子受容部位を分子中に有する化合物の最低被占軌道(LUMO)は、Gaussian 09, EM64L-G09Rev.B.01を使用し、密度半関数法B3LYP/6-31G(d, p)レべルの理論において、対称性を考慮なしに構造最適化し、いずれの最適化された構造も調和振動周波数計算により定常点が局所的な最小値であることを確認後、算出した。結果を表1に示した。
〔実施例1〕
 2-エチル-4-メチルイミダゾール〔EMI〕とN-(2-エチルヘキシル)フタルイミド〔2EHPI〕とを1:1の比率にて混合して均一な混合物を得た。得られた混合物のUVスペクトル〔EMI+2EHPI〕測定結果を図1に示す。
 比較として、2-エチル-4-メチルイミダゾールのUVスペクトル〔EMI〕及びN-(2-エチルヘキシル)フタルイミドのUVスペクトル〔2EHPI〕を測定し、これらのUVスペクトルを合算した場合のUVスペクトル〔sum(EMI+2EHPI)〕を図1にあわせて示した。
 この結果から、2-エチル-4-メチルイミダゾール〔EMI〕とN-(2-エチルヘキシル)フタルイミド〔2EHPI〕とを1:1の比率にて混合して均一な混合物のUVスペクトルが、EMI及び2EHPIのUVスペクトルの合算値から長波長側にシフトしていることが確認され、電荷移動錯体が形成されていることが確認された。
〔実施例2~18及び比較例1〕
 ビスフェノールA型エポキシ樹脂(BISAEP)、2-エチル-4-メチルイミダゾール(EMI)及び電子受容部位を有する化合物の具体例として例示した化合物を表1に記載された配合比(モル)にて配合して、電荷移動錯体を含有する硬化性樹脂組成物を製造した。得られた硬化性樹脂組成物を用いて下記の評価を実施した。
〔実施例19及び20〕
 ビスフェノールA型エポキシ樹脂(BISAEP)並びにイミダゾール部位及び電子受容部位を分子中に有する化合物の具体例として例示した化合物を表1に記載された配合比(モル)にて配合して硬化性樹脂組成物を製造した。得られた硬化性樹脂組成物を用いて下記の評価を実施した。
〔硬化性〕
 硬化性樹脂組成物をガラス瓶に入れて150℃、1時間加熱硬化させて、タックが無く、完全に固体状であることを確認し硬化したものを〇、そうでないものを×とした。
〔貯蔵安定性〕
 硬化性樹脂組成物を直径13mm、高さ40mmのガラス瓶に下から5分の1となる量入れてフタをした。これを平机の上で90°傾け、1分後の状態を観察して流動性があるかどうかを確認した。硬化性樹脂組成物の形状に変化が見られた場合は流動性があるとし、変化がない場合は流動性がないとした。評価を1日放置ごとに行い、流動性がなくなった時点で評価を終了した。流動性を維持できた日数を表1に示した。流動性を3日以上維持できた場合、貯蔵安定性が合格(〇)であると判断し、これに満たないものは貯蔵安定性不合格(×)と判断した。
Figure JPOXMLDOC01-appb-T000026
 前記実施例に示した通り、新規な電荷移動錯体が得られた。また、該電荷移動錯体は、エポキシ樹脂硬化剤として有用なものであり、エポキシ樹脂と該電荷移動錯体を含有して得られる硬化性樹脂組成物は、硬化性及び貯蔵安定性に優れることが明らかである。
 本発明によれば、特に、硬化性、貯蔵安定性に優れる一液硬化型の硬化性樹脂組成物を提供することが可能となり、例えば、電子部品接着剤、電子部品封止材、注型材、塗料、構造接着剤などに好適に使用することができる。
 
 

Claims (10)

  1.  電子供与部位としてイミダゾール部位を有する電荷移動錯体。
  2.  イミダゾール部位を有する化合物(a)に含まれる電子を、電子受容部位を有する化合物(b)が受容したものである、請求項1に記載された電荷移動錯体。
  3.  電子受容部位を有する化合物(b)の最低非占有軌道(LUMO)が、-1eV以下である、請求項2に記載の電荷移動錯体。
  4.  電子受容部位を有する化合物(b)が、イミド部位を有する化合物である、請求項2又は3に記載の電荷移動錯体。
  5.  イミダゾール部位及び電子受容部位を分子中に有する化合物において、イミダゾール部位に含まれる電子を電子受容部位が受容したものである、請求項1に記載の電荷移動錯体。
  6.  イミダゾール部位及び電子受容部位を分子中に有する化合物の最低非占有軌道(LUMO)が、-1eV以下である、請求項5に記載の電荷移動錯体。
  7.  電子受容部位がイミド部位である、請求項5又は6に記載の電荷移動錯体。
  8.  イミダゾール部位及び電子受容部位を分子中に有する化合物が、下記式(1)で表される化合物である、請求項5~7の何れか1項に記載の電荷移動錯体。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、R、R及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素原子数が1~20の炭化水素基を表し、Rは、置換基を有してもよい炭素原子数1~10の二価の炭化水素基を表し、環Aは、置換基を有してもよいベンゼン環、置換基を有してもよいシクロヘキサン環、又は置換基を有してもよいノルボルネン環を表す。
  9.  請求項1~8の何れか1項に記載の電荷移動錯体からなるエポキシ樹脂用硬化剤。
  10.  エポキシ樹脂及び請求項1~8の何れか1項に記載の電荷移動錯体を含有する硬化性樹脂組成物。
     
     
PCT/JP2022/002630 2021-02-03 2022-01-25 電荷移動錯体 WO2022168670A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022579460A JPWO2022168670A1 (ja) 2021-02-03 2022-01-25
EP22749545.4A EP4289821A1 (en) 2021-02-03 2022-01-25 Charge transfer complex
US18/262,337 US20240109869A1 (en) 2021-02-03 2022-01-25 Charge transfer complex
KR1020237023629A KR20230142464A (ko) 2021-02-03 2022-01-25 전하 이동 착체
CN202280009944.8A CN116710436A (zh) 2021-02-03 2022-01-25 电荷转移络合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-016045 2021-02-03
JP2021016045 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022168670A1 true WO2022168670A1 (ja) 2022-08-11

Family

ID=82741758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002630 WO2022168670A1 (ja) 2021-02-03 2022-01-25 電荷移動錯体

Country Status (6)

Country Link
US (1) US20240109869A1 (ja)
EP (1) EP4289821A1 (ja)
JP (1) JPWO2022168670A1 (ja)
KR (1) KR20230142464A (ja)
CN (1) CN116710436A (ja)
WO (1) WO2022168670A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299000A (en) * 1976-02-13 1977-08-19 Matsushita Electric Ind Co Ltd Manufacturing method of high inductivity film material
US4066625A (en) 1967-05-02 1978-01-03 Amicon Corporation Unitary curable resin compositions
DD294956A5 (de) * 1990-06-07 1991-10-17 Technische Universitaet,De Verfahren zur herstellung einer thermisch schnellhaertenden epoxidharzmischung
JPH10218859A (ja) * 1997-02-04 1998-08-18 Shikoku Chem Corp トリメリットイミド誘導体およびその製造方法
JPH10310685A (ja) * 1997-05-09 1998-11-24 Toshiba Chem Corp エポキシ注形用樹脂組成物
JPH1192670A (ja) * 1997-09-22 1999-04-06 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物
JP2007297493A (ja) 2006-04-28 2007-11-15 Adeka Corp エポキシ樹脂用硬化剤組成物およびそれを含有してなる硬化性エポキシ樹脂組成物
JP2012067177A (ja) * 2010-09-22 2012-04-05 Nippon Soda Co Ltd 包接錯体を含有する半導体封止用ビフェニル型エポキシ樹脂組成物
JP2013170173A (ja) * 2012-02-17 2013-09-02 Nippon Soda Co Ltd Sus基板用接着剤
JP2015054951A (ja) * 2013-09-13 2015-03-23 日立化成株式会社 エポキシ樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2019239149A1 (en) * 2018-06-15 2019-12-19 Seren Technologies Limited Ionic liquid preparation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066625A (en) 1967-05-02 1978-01-03 Amicon Corporation Unitary curable resin compositions
JPS5299000A (en) * 1976-02-13 1977-08-19 Matsushita Electric Ind Co Ltd Manufacturing method of high inductivity film material
DD294956A5 (de) * 1990-06-07 1991-10-17 Technische Universitaet,De Verfahren zur herstellung einer thermisch schnellhaertenden epoxidharzmischung
JPH10218859A (ja) * 1997-02-04 1998-08-18 Shikoku Chem Corp トリメリットイミド誘導体およびその製造方法
JPH10310685A (ja) * 1997-05-09 1998-11-24 Toshiba Chem Corp エポキシ注形用樹脂組成物
JPH1192670A (ja) * 1997-09-22 1999-04-06 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物
JP2007297493A (ja) 2006-04-28 2007-11-15 Adeka Corp エポキシ樹脂用硬化剤組成物およびそれを含有してなる硬化性エポキシ樹脂組成物
JP2012067177A (ja) * 2010-09-22 2012-04-05 Nippon Soda Co Ltd 包接錯体を含有する半導体封止用ビフェニル型エポキシ樹脂組成物
JP2013170173A (ja) * 2012-02-17 2013-09-02 Nippon Soda Co Ltd Sus基板用接着剤
JP2015054951A (ja) * 2013-09-13 2015-03-23 日立化成株式会社 エポキシ樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2019239149A1 (en) * 2018-06-15 2019-12-19 Seren Technologies Limited Ionic liquid preparation

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
COMPOSITES, vol. 17, 2019, pages 107380
DHANABAL T.; SETHURAM M.; AMIRTHAGANESAN G.; DAS SAMAR K.: "Spectral, thermal, structural, optical and antimicrobial activity studies on 2-methylimidazolinium picrate – An organic charge transfer com", JOURNAL OF MOLECULAR STRUCTURE, ELSEVIER AMSTERDAM, NL, vol. 1045, 15 April 2013 (2013-04-15), NL , pages 112 - 123, XP028561489, ISSN: 0022-2860, DOI: 10.1016/j.molstruc.2013.03.043 *
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, no. 56, 2018, pages 471 - 474
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 54, 2016, pages 2680 - 2688
MAHENDIRAN D., VINITHA G., SHOBANA S., VISWANATHAN V., VELMURUGAN D., RAHIMAN A. KALILUR: "Theoretical, photophysical and biological investigations of an organic charge transfer compound 2-aminobenzimidazolium-2-oxyisoindolate-1,3-dione-2-hydroxyisoindoline-1,3-dione", RSC ADVANCES, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 6, no. 65, 13 June 2016 (2016-06-13), GB , pages 60336 - 60348, XP009538545, ISSN: 2046-2069, DOI: 10.1039/C6RA03574D *
MARTIN IAN J., SHIH KUO-CHIH, NIEH MU-PING, KASI RAJESWARI M.: "Templated Supramolecular Structures of Multichromic, Multiresponsive Perylene Diimide-Polydiacetylene Films", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 53, no. 11, 9 June 2020 (2020-06-09), US , pages 4501 - 4510, XP009538546, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.0c00390 *
MATERIALS LETTERS, vol. 234, 2019, pages 379 - 383
VADIVELAN GANESAN, GOHULAVANI GRAHANDURAI, SARAVANABHAVAN MUNUSAMY, MURUGESAN VENKATESAN, SEKAR MARIMUTHU: "Benzimidazolium picrate single crystal: Synthesis, growth, characterization and their biological activity", INDIAN JOURNAL OF CHEMISTRY, 30 September 2020 (2020-09-30), pages 1305 - 1312, XP055955416, Retrieved from the Internet <URL:http://nopr.niscpr.res.in/bitstream/123456789/55347/1/IJCA%2059A(9)%201305-1312.pdf> *

Also Published As

Publication number Publication date
JPWO2022168670A1 (ja) 2022-08-11
KR20230142464A (ko) 2023-10-11
CN116710436A (zh) 2023-09-05
US20240109869A1 (en) 2024-04-04
EP4289821A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
JP2010006991A (ja) 一液型シアネート−エポキシ複合樹脂組成物
JP4938567B2 (ja) 一液型シアネート−エポキシ複合樹脂組成物
KR20130108280A (ko) 잠재성 경화제 조성물 및 일액 경화성 에폭시 수지 조성물
JP2013241517A (ja) 低温速硬化性の二液硬化型樹脂組成物及びそれを用いた接着剤
JP2020200389A (ja) 硬化性樹脂組成物
WO2022168670A1 (ja) 電荷移動錯体
JP7261580B2 (ja) 樹脂組成物
JP7325207B2 (ja) 樹脂組成物
WO2021049390A1 (ja) 硬化性樹脂組成物
WO2021112104A1 (ja) 樹脂組成物
WO2023074450A1 (ja) 包接化合物、エポキシ樹脂硬化剤及び硬化性樹脂組成物
WO2023176703A1 (ja) 化合物、硬化性樹脂組成物及び硬化物
WO2022168665A1 (ja) 新規化合物、及び該化合物を含有する硬化性樹脂組成物
CN115003726B (zh) 固化性树脂组合物及抑制固化性树脂组合物的固化收缩的方法
WO2022168666A1 (ja) 硬化性樹脂組成物
WO2022190746A1 (ja) 硬化性樹脂組成物、硬化物及び接着剤
JP2023131013A (ja) 硬化剤組成物、エポキシ樹脂組成物及び硬化物
WO2022270536A1 (ja) エポキシ樹脂組成物
WO2021112091A1 (ja) 樹脂組成物
JP2020002187A (ja) エポキシ樹脂組成物並びにそれを含む液晶シール剤、接着剤、アンダーフィル及びダイボンドペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579460

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009944.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18262337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749545

Country of ref document: EP

Effective date: 20230904