WO2022153840A1 - 自動車構造部材用めっき鋼板 - Google Patents

自動車構造部材用めっき鋼板 Download PDF

Info

Publication number
WO2022153840A1
WO2022153840A1 PCT/JP2021/048191 JP2021048191W WO2022153840A1 WO 2022153840 A1 WO2022153840 A1 WO 2022153840A1 JP 2021048191 W JP2021048191 W JP 2021048191W WO 2022153840 A1 WO2022153840 A1 WO 2022153840A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
plating layer
plated steel
plating
oxide
Prior art date
Application number
PCT/JP2021/048191
Other languages
English (en)
French (fr)
Inventor
卓哉 光延
武寛 高橋
浩史 竹林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/250,774 priority Critical patent/US20230383392A1/en
Priority to JP2022575510A priority patent/JPWO2022153840A1/ja
Priority to EP21919726.6A priority patent/EP4230756A4/en
Priority to CN202180080366.2A priority patent/CN116490626A/zh
Priority to KR1020237017807A priority patent/KR20230095102A/ko
Priority to MX2023006041A priority patent/MX2023006041A/es
Publication of WO2022153840A1 publication Critical patent/WO2022153840A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer

Definitions

  • the present invention relates to a plated steel sheet for an automobile structural member.
  • the present application claims priority based on Japanese Patent Application No. 2021-004012 filed in Japan on January 14, 2021, and the contents thereof are incorporated herein by reference.
  • hot-dip galvanized steel sheets such as alloyed hot-dip galvanized steel sheets have been mainly applied in the Japanese domestic market.
  • the alloyed hot-dip galvanized steel sheet is plated with improved weldability and post-painting corrosion resistance by subjecting the steel sheet to hot-dip galvanized steel sheet and then subjecting it to alloying heat treatment to diffuse Fe from the steel sheet (base steel sheet) in the plating layer. It is a steel plate.
  • hot-dip galvanized steel sheets are required to be further improved in corrosion resistance such as corrosion resistance after painting and red rust resistance.
  • the plating layer containing Zn As a method for improving the corrosion resistance of the hot-dip galvanized steel sheet, addition of Al to the plating layer containing Zn can be mentioned.
  • hot-dip Al—Zn-based plated steel sheets have been widely put into practical use as highly corrosion-resistant plated steel sheets.
  • the plating layer of such molten Al-Zn-based plating is a dendrite-like ⁇ - (Zn, Al) phase (Al primary crystal part: Al-Zn-based binary state diagram, etc.) that first crystallizes from the molten state.
  • ⁇ - (Zn, Al) phase crystallized as.
  • the hot-dip Al—Zn-based plated steel sheet has excellent corrosion resistance as compared with the hot-dip galvanized steel sheet having the same thickness of the plating layer. Further, for the purpose of improving corrosion resistance, it is also considered to use a Zn—Al—Mg-based plated steel sheet in which an element such as Mg is further added to the Al—Zn-based plating.
  • Patent Document 1 Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less on the surface of the steel plate.
  • a Zn alloy plating layer containing Zn and unavoidable impurities is formed, and a chromate film or a phosphate film, or a base treatment layer made of a resin-based film containing an aqueous resin is formed on the Zn alloy plating layer.
  • a water-based lubricating paint containing 5 to 50% by mass of the silica particles (b) and 1 to 40% by mass of the solid lubricant (c) is applied onto the water-based resin (a) with respect to 100% by mass of the solid content.
  • a lubricated steel plate having excellent workability is disclosed, wherein a film obtained by drying is formed with an adhesion amount of 0.2 to 5 g / m 2 .
  • Patent Document 2 a zinc-plated layer containing Al: 0.05 to 10% by mass, optionally Mg: 0.01 to 5% by mass, and the balance consisting of Zn and unavoidable impurities is provided.
  • the center line average roughness Ra of the surface of the plated steel sheet is 0.5 to 1.5 ⁇ m, and the peak having a size of 1.27 ⁇ m or more contained per PPI (1 inch (2.54 cm)).
  • Patent Document 2 shows that the slidability is improved by setting Pc ⁇ PPI / 2.54 + 10.
  • Patent Document 1 has a problem that the manufacturing cost is high because it is necessary to apply and dry the water-based lubricating paint as a post-treatment after the plating process. Further, Patent Document 2 has a problem that sufficient slidability cannot be obtained only by improving the roughness.
  • An object of the present invention is to provide a Zn—Al—Mg-based plated steel sheet having excellent corrosion resistance (a steel sheet having plating containing Zn, Al, Mg) and having excellent lubricity for an automobile structural member. ..
  • the present inventors have investigated a method for improving lubricity in a Zn—Al—Mg-based plated steel sheet. As a result, it was found that the lubricity of the plating layer is enhanced by increasing the proportion of Mg contained in the plating layer as an oxide [MgO] or a hydroxide [Mg (OH) 2 ]. In addition, the chemical conversion processability can be improved by reducing the proportion of Al contained in the plating layer as an oxide [Al 2 O 3 ] or a hydroxide [Al (OH) 3 ]. I found.
  • the present invention has been made based on the above findings.
  • the gist of the present invention is as follows.
  • the plated steel sheet for an automobile structural member according to one aspect of the present invention is formed on a steel sheet, a plating layer formed on at least a part of the surface of the steel sheet, and at least a part of the surface of the plating layer. It has an oxide layer, and the plating layer is, in mass%, Al: 0.5 to 35.0%, Mg: 0.5 to 15.0%, Si: 0 to 2.0%, Ca.
  • I Mg / I which is the ratio of the maximum detection intensity of Mg to the maximum detection intensity of an oxide or hydroxide of Mg when measured by XPS at a position of 5.0 nm from the surface of the oxide layer in the thickness direction.
  • MgOx is 0.00 or more and 1.20 or less.
  • the chemical composition of the plating layer is mass%, Al: 6.0 to 30.0%, Mg: 3.0 to 11. It may contain 0%.
  • the plated steel sheet for an automobile structural member according to the above [1] or [2] is of Al when measured by XPS at a position of the oxide layer at a position of 5.0 nm in the thickness direction from the surface.
  • I Al / I AlOx which is the ratio of the maximum detection intensity of Al to the maximum detection intensity of oxides or hydroxides, may be 0.77 or more.
  • the plated steel sheet for an automobile structural member according to any one of [1] to [3] above may have I Mg / I MgOx of 0.00 or more and 0.80 or less.
  • a steel sheet having plating containing Zn, Al, and Mg (Zn—Al—Mg-based plated steel sheet) and having excellent lubricity for an automobile structural member. .. Further, according to a preferred embodiment of the present invention, it is possible to provide a plated steel sheet for an automobile structural member, which is excellent in chemical conversion treatment property in addition to lubricity.
  • the plated steel sheet for an automobile structural member (plated steel sheet according to the present embodiment) according to an embodiment of the present invention includes a steel sheet, a plating layer formed on at least a part of the surface of the steel sheet, and at least one of the surfaces of the plating layer. It has an oxide layer formed in the portion. Further, in the plated steel sheet according to the present embodiment, the chemical composition of the plating layer is mass%, Al: 0.5 to 35.0% (preferably 6.0 to 30.0%), Mg: 0.5.
  • ⁇ 15.0% (preferably 3.0 to 11.0%), Si: 0 to 2.0%, Ca: 0 to 2.0%, Fe: 0 to 2.0%, La + Ce: 0 in total ⁇ 0.5%, Sb: 0 to 0.5%, Pb: 0 to 0.5%, Sr: 0 to 0.5%, Sn: 0 to 1.0%, Cu: 0 to 1.0% , Ti: 0 to 1.0%, Ni: 0 to 1.0%, Mn: 0 to 1.0%, Cr: 0 to 1.0%, Nb: 0 to 1.0%, Zr: 0 to 1.0%, Mo: 0 to 1.0%, Li: 0 to 1.0%, Ag: 0 to 1.0%, B: 0 to 0.5%, Y: 0 to 0.5%, And P: 0 to 0.5%, and the balance is made of Zn and impurities.
  • the maximum oxide or hydroxide of Mg is measured.
  • I Mg / I MgOx which is the ratio of the maximum detection intensity of Mg to the detection intensity, is 0.00 or more and 1.20 or less (preferably 0.00 or more and 0.80 or less).
  • the plated steel plate according to the present embodiment preferably has the maximum oxide or hydroxide of Al when measured by XPS at a position of the oxide layer at a position of 5.0 nm in the thickness direction from the surface.
  • I Al / I AlOx which is the ratio of the maximum detected intensity (I Al ) of Al to the detected intensity (I AlOx ), is 0.77 or more.
  • the plated steel sheet and the oxide layer are important for the plated steel sheet according to the present embodiment. Therefore, the type of the steel plate (base steel plate) is not particularly limited, and may be determined depending on the applicable product, the required strength, the plate thickness, and the like. For example, a hot-rolled steel sheet described in JIS G3193: 2008 or a cold-rolled steel sheet described in JIS G3141: 2017 can be used.
  • the plated steel sheet according to the present embodiment includes a plating layer on at least a part of the surface of the steel sheet.
  • the plating layer may be formed on one side of the steel sheet or on both sides.
  • the amount of the plating layer adhered is preferably 15 to 250 g / m 2 per side.
  • Al 0.5 to 35.0%
  • Al is an element effective for ensuring corrosion resistance after coating in a plating layer containing aluminum (Al), zinc (Zn), and magnesium (Mg).
  • Al content is set to 0.5% or more.
  • the Al content is preferably 1.0% or more, more preferably 6.0% or more.
  • the Al content exceeds 35.0%, the corrosion resistance after painting and the corrosion resistance of the cut end face of the plating layer are lowered.
  • the formation of Al oxide increases, and the formation of MgO and Mg (OH) 2 in the oxide layer is inhibited. Therefore, the Al content is set to 35.0% or less.
  • the Al content is preferably 30.0% or less.
  • Mg 0.5 to 15.0% Mg is an element having an effect of enhancing the corrosion resistance of the plating layer.
  • the Mg content is set to 0.5% or more.
  • the Mg content is preferably 1.0% or more, more preferably 3.0% or more.
  • the corrosion resistance after coating is lowered and the processability of the plating layer is lowered.
  • the Mg-based compound is formed inside the plating layer instead of near the surface, the formation of MgO and Mg (OH) 2 (oxide and hydroxide) near the surface is inhibited.
  • the Mg content is set to 15.0% or less.
  • the Mg content is preferably 11.0% or less.
  • Si 0-2.0%
  • Si is an element that forms a compound together with Mg and contributes to the improvement of corrosion resistance after coating of the plating layer. Further, Si suppresses the formation of an excessively thick alloy layer formed between the steel sheet and the plating layer when forming the plating layer on the steel sheet, thereby improving the adhesion between the steel sheet and the plating layer. It is also an element that has the effect of enhancing. Therefore, it may be contained. Si does not necessarily have to be contained, and the lower limit is 0%, but in order to obtain the above effect, the Si content is preferably 0.1% or more.
  • the Si content exceeds 2.0%, excess Si is crystallized in the plating layer, a lamella structure is not sufficiently formed, and the like, so that the corrosion resistance after coating is lowered. In addition, the workability of the plating layer is reduced. Therefore, the Si content is set to 2.0% or less. The Si content is more preferably 1.5% or less.
  • Ca 0-2.0%
  • the Ca content is preferably 0.1% or more.
  • the Ca content is set to 2.0% or less.
  • the Ca content is preferably 1.0% or less.
  • Fe 0-2.0%
  • the Fe content is preferably 2.0% or less.
  • the Fe content is more preferably 1.5% or less, still more preferably 1.0% or less.
  • Fe is mixed into the plating layer as an impurity. Since it is extremely costly to completely prevent the mixing of Fe, the Fe content may be 0.1% or more.
  • the chemical composition of the plating layer of the plated steel sheet according to the present embodiment basically has the above chemical composition, and the balance is Zn and impurities.
  • the plating layer of the plated steel plate according to the present embodiment is further replaced with a part of Zn, for example, La, Ce, Sb, Pb, Cu, Sn, Ti, Sr, Ni, Mn, Cr, Nb, Zr. , Mo, Li, Ag, B, Y, P may be contained in the following range (whether it is intentionally added or contained as an impurity). Since these elements do not necessarily have to be contained, the lower limit of the content is 0%.
  • the total content of impurities is preferably 5.0% or less, more preferably 3.0% or less.
  • La + Ce 0-0.5% in total La and Ce are elements that contribute to improving the corrosion resistance of the plating layer. Therefore, one or two kinds of La and Ce may be contained. It is not necessary to contain La and / or Ce, and the lower limit is 0%, but when the above effect is obtained, the total content of La and Ce is preferably 0.01% or more. On the other hand, if the total content of La and Ce exceeds 0.5%, the viscosity of the plating bath increases, which often makes it difficult to build the plating bath itself, and it is not possible to manufacture a plated steel sheet having good plating properties. .. Therefore, the total content of La and Ce is set to 0.5% or less.
  • Sb 0 to 0.5%
  • Sr 0-0.5%
  • Pb 0-0.5%
  • Sr, Sb, and Pb are contained in the plating layer, the appearance of the plating layer is changed, spangles are formed, and an improvement in metallic luster is confirmed. Therefore, it may be contained.
  • the content of these elements exceeds 0.5%, various intermetallic compound phases are formed, and the processability and corrosion resistance are deteriorated. Further, when the content of these elements becomes excessive, the viscosity of the plating bath increases, which often makes it difficult to build the plating bath itself, and it is not possible to manufacture a plated steel sheet having good plating properties. Therefore, the Sr content is 0.5% or less, the Sb content is 0.5% or less, and the Pb content is 0.5% or less.
  • Sn 0 to 1.0%
  • Sn is an element that increases the Mg elution rate in the plating layer containing Zn, Al, and Mg. As the elution rate of Mg increases, the corrosion resistance of the flat surface portion deteriorates. Therefore, the Sn content is set to 1.0% or less.
  • the chemical composition of the plating layer is measured by the following method. First, an acid solution in which the plating layer is peeled and dissolved with an acid containing an inhibitor that suppresses corrosion of the base iron (steel plate) is obtained. Next, by measuring the obtained acid solution by ICP analysis, the chemical composition of the plating layer (if an alloy layer is formed between the plating layer and the steel plate, the total of the plating layer and the alloy layer). However, since the alloy layer is thin, the effect is small).
  • the acid type is not particularly limited as long as it is an acid capable of dissolving the plating layer.
  • the chemical composition is measured as the average chemical composition.
  • the plating structure is not particularly limited.
  • the plating structure is, for example, (Al—Zn) dendrite, (Al—Zn) phase / MgZn two -phase lamella structure, Zn phase / MgZn two -phase.
  • the plated steel sheet according to the present embodiment includes an oxide layer on at least a part of the surface of the plated layer.
  • the oxide layer may be formed on one side or both sides.
  • the present inventors have investigated a method for improving lubricity in a Zn—Al—Mg-based plated steel sheet. As a result, it was found that the lubricity of the plating layer is enhanced by increasing the proportion of Mg contained in the plating layer as an oxide or a hydroxide. Specifically, when the oxide layer is measured by XPS (X-ray photoelectron spectroscopy) at a position of 5.0 nm from the surface in the thickness direction, the maximum detection intensity of an oxide or hydroxide of Mg (I).
  • XPS X-ray photoelectron spectroscopy
  • I Mg / I MgOx which is the ratio of the maximum detection intensity (I Mg ) of Mg (metal state) to MgOx ), is 0.00 or more and 1.20 or less. rice field.
  • I Mg / I MgOx is low in the surface layer of the oxide layer in contact with the mold, that is, MgO (Mg oxide) or Mg (OH) 2 (Mg hydroxide). It is considered that MgO or Mg (OH) 2 functions as a lubricating material and the lubricity is improved by increasing the abundance ratio of the substance).
  • MgO manganese oxide
  • Mg (OH) 2 a hydroxide of Mg
  • I Mg / I MgOx and I Al / I AlOx at a position of 5.0 nm in the thickness direction from the surface of the oxide layer are measured using XPS.
  • the surface of the plating layer is ground by 5.0 nm (allowable if it is in the range of 4.0 to 6.0 nm) in the depth direction by argon sputtering or the like, and its position (depth 5.0 nm (depth)).
  • XPS measurement is performed at the position) (which may be in the range of 4.0 to 6.0 nm).
  • the following conditions are adopted using a Quantera SXM type XPS analyzer manufactured by ULVAC-PHI, or an equivalent apparatus thereof.
  • X-ray source mono-Al K ⁇ (1486.6 eV) Vacuum degree: 9 ⁇ 10-10 torr Ion species: Ar + Acceleration voltage: 4kV Rate: 22.7 nm / min (when SiO 2 )
  • the peak having an energy range of 304 to 309 eV is regarded as the peak obtained from Mg oxide or Mg hydroxide
  • the peak having an energy range of 300 to 303 eV is regarded as the peak obtained from metallic Mg. It is assumed that there is, and the maximum detection intensity of each peak is measured to calculate I Mg / I MgOx .
  • the peak with an energy range of 73.5 to 76.5 eV is regarded as the peak obtained from Al oxide or Al hydroxide, and the peak with 72.0 to 73.4 eV is regarded as a metal. It is regarded as a peak obtained from Al, and I Al / I AlOx is calculated from the maximum intensity of each peak.
  • the thickness of the oxide layer is not particularly limited, but is, for example, more than 5.0 nm and less than 50.0 nm.
  • the thickness of the oxide layer is measured by the following method. XPS measurement is performed in the depth direction from the surface of the plated steel sheet at a pitch of 1 to 3 nm, and the depth until the maximum strength of oxygen becomes 1/20 of the maximum strength of the outermost surface is defined as the thickness of the oxide layer.
  • the steel sheet according to the present embodiment can be manufactured by a manufacturing method including the following steps (I) to (III). (I) Annealing step of reducing and annealing a steel sheet, (II) A plating process in which a steel sheet is immersed in a plating bath containing Al, Mg, and Zn to obtain a plating base plate.
  • the plating base plate is cooled in a temperature range of bath temperature to 380 ° C. in an inert gas atmosphere having a dew point of ⁇ 10 ° C. or higher at an average cooling rate of 10.0 ° C./sec or less at 380 to 100 ° C.
  • a controlled cooling step in which the temperature range of the above is cooled at an average cooling rate of 15 ° C./sec or higher in an atmosphere having a dew point of ⁇ 20 ° C. or lower.
  • a steel sheet (hot-rolled steel sheet or cold-rolled steel sheet) obtained by a known method is subjected to reduction annealing.
  • the annealing conditions may be known conditions, for example, heating to 750 to 900 ° C. in a 5% H2 - N2 gas atmosphere with a dew point of ⁇ 10 ° C. or higher and holding for 30 to 240 seconds.
  • the plating bath contains Al: 0.5 to 35.0%, Mg: 0.5 to 15.0%, Si: 0 to 2.0%, Ca: 0 to 2.0%, and the balance is Zn and It preferably consists of impurities.
  • the plating bath may further contain La, Ce, Fe, Sb, Pb, Cu, Sn, Ti, Sr, Ni, Mn, Cr, Nb, Li and Ag, if necessary. Since the composition of the plating layer formed from the composition of the plating bath can be estimated, the composition of the plating bath may be adjusted according to the chemical composition of the plating layer to be obtained.
  • the plating original plate (pulled up from the plating bath) after the plating step is cooled after adjusting the amount of plating adhesion with a wiping gas such as N2 .
  • a wiping gas such as N2 .
  • the steel sheet pulled up from the plating bath (which has a temperature equivalent to the plating bath temperature) is cooled to 100 ° C. or lower.
  • the average cooling rate from the bath temperature to 380 ° C. is set to 10.0 ° C./sec or less
  • the atmosphere in cooling from the bath temperature to 380 ° C. is set to the inert gas atmosphere
  • the dew point is set to ⁇ 10 ° C. or higher.
  • First cooling Further, the average cooling rate of 380 to 100 ° C. is set to 15 ° C./sec or more, and the dew point of the atmosphere is set to ⁇ 20 ° C. or lower (second cooling).
  • the average cooling rate up to 380 ° C. is more than 10.0 ° C./sec, oxidation becomes insufficient and I Mg / I MgOx becomes large in the oxide layer.
  • the dew point of the atmosphere is less than ⁇ 10 ° C., an oxide of Al is formed preferentially over MgO and Mg (OH) 2 , and I Mg / I MgOx becomes large in the oxide layer. Even if an oxide of Al is formed, it does not contribute to the improvement of lubricity.
  • the atmospheric dew point is 0 ° C. or higher.
  • the atmosphere is an inert gas atmosphere.
  • the inert gas atmosphere is, for example, an N2 atmosphere, an Ar atmosphere, or a He atmosphere.
  • the dew point of the inert gas alone is low (it does not reach ⁇ 20 ° C. or higher), the dew point is controlled by introducing H2O gas.
  • the cooling start temperature of the second cooling is preferably 380 ° C (preferably the cooling rate is switched immediately after the completion of the first cooling), but if the average cooling rate up to 100 ° C is less than 15 ° C / sec, the second cooling
  • the cooling start temperature may be in the range of 380 to 330 ° C.
  • the plated steel sheet according to the present embodiment can be obtained.
  • a cold-rolled steel sheet (0.2% C-2.0% Si-2.3% Mn) having a thickness of 1.6 mm was prepared. After cutting this steel sheet to a size of 100 mm ⁇ 200 mm ( ⁇ plate thickness), annealing and hot-dip plating were continuously performed using a batch-type hot-dip plating test apparatus. Annealing was performed at 860 ° C. for 120 seconds in an atmosphere containing 5% H 2 gas and the balance consisting of N 2 gas in a furnace having an oxygen concentration of 20 ppm or less and having a dew point of 0 ° C. rice field.
  • the steel sheet was air-cooled with N2 gas, and when the steel sheet temperature reached a bath temperature of + 20 ° C., it was immersed in a plating bath having a bath temperature shown in Table 1A for about 3 seconds.
  • the plating base plate on which the plating layer was formed was cooled to room temperature so that the average cooling rate and atmosphere (atmospheric gas, dew point) at bath temperature to 380 ° C. and 380 to 100 ° C. were the conditions shown in Table 1B.
  • the temperature of the steel sheet was measured using a thermocouple spot-welded to the center of the original plating plate.
  • the composition of the formed plating layer was as shown in Table 1.
  • I Mg / I MgOx and I Al / I AlOx at a position of 5 nm from the surface of the oxide layer and the thickness of the oxide layer were measured by the above-mentioned method using XPS. The results are shown in Table 2.
  • the obtained plated steel sheet was subjected to a ball-on-disc test as follows to evaluate its lubricity.
  • a 5 mm ⁇ SUS sphere is pressed against the sample with a load P of 30 N, the sample is rotated with a turning radius of 10 mm and a rotation speed of 1 rpm while the load P is applied, and the load F in the direction perpendicular to the SUS sphere is measured.
  • the dynamic friction coefficient was obtained by dividing F at a sliding distance of 200 mm by P. It was evaluated as follows according to the coefficient of dynamic friction, and it was judged that AA or A was excellent in lubricity.
  • AA Dynamic friction coefficient 0.2 or less
  • A Dynamic friction coefficient more than 0.2 to 0.4
  • B Dynamic friction coefficient over 0.4
  • No. 1 which is an example of the invention.
  • 2 to 8, 10 to 13, 19 to 22, 24, and 26 to 30, excellent lubricity is obtained.
  • No. 1 having a large Al / Al Ox In 3 to 8, 10 to 13, 19 to 22, 24, 26, 28 and 29, the chemical conversion processability was also excellent.
  • the I Mg / I MgOx of the material layer became large, and the lubricity decreased.

Abstract

この自動車構造部材用めっき鋼板は、鋼板と、前記鋼板の表面の少なくとも一部に形成されためっき層と、前記めっき層の表面の少なくとも一部に形成された酸化物層と、を有し、前記めっき層が、所定の化学組成を有し、前記酸化物層の、表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Mgの酸化物または水酸化物の最大検出強度に対するMgの最大検出強度の比であるIMg/IMgOxが、0.00以上、1.20以下である。

Description

自動車構造部材用めっき鋼板
 本発明は自動車構造部材用めっき鋼板に関する。
 本願は、2021年01月14日に、日本に出願された特願2021-004012号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車構造部材には、防錆の観点からめっき鋼板が使用され、主に日本国内市場では合金化溶融亜鉛めっき鋼板等の溶融亜鉛めっき鋼板が適用されている。合金化溶融亜鉛めっき鋼板は、鋼板に溶融亜鉛めっきを施した後に合金化熱処理し、めっき層内に鋼板(下地鋼板)からFeを拡散させることによって、溶接性や塗装後耐食性を向上させためっき鋼板である。しかしながら、溶融亜鉛めっき鋼板に対しては、塗装後耐食性や耐赤錆性などの更なる耐食性の向上が求められている。
 溶融亜鉛めっき鋼板の耐食性を向上させる方法として、Znを含むめっき層へのAlの添加が挙げられる。例えば建材分野では高耐食性めっき鋼板として溶融Al-Zn系めっき鋼板が広く実用化されている。こうした溶融Al-Zn系めっきのめっき層は、溶融状態から最初に晶出したデンドライト状のα-(Zn,Al)相(Al初晶部:Al-Zn系二元状態図等において、初晶として晶出するα-(Zn,Al)相。必ずしもAlリッチな相ではなく、ZnとAlの固溶体として晶出。)と、デンドライト状のAl初晶部の隙間に形成したZn相とAl相とからなる組織(Zn/Al混相組織)から形成される。Al初晶部は不動態化しており、かつ、Zn/Al混相組織はAl初晶部に比べZn濃度が高いため、腐食はZn/Al混相組織に集中する。結果として、腐食はZn/Al混相組織を虫食い状に進行し、腐食進行経路が複雑になるので、腐食が容易に下地鋼板に到達しにくくなる。これにより、溶融Al-Zn系めっき鋼板は、めっき層の厚みが同一の溶融亜鉛めっき鋼板に比べ優れた耐食性を有する。また、耐食性向上を目的に、Al-Zn系めっきへさらにMg等の元素を添加した、Zn-Al-Mg系めっき鋼板とすることも検討されている。
 一方、自動車構造部材に適用されるめっき鋼板には加工性が求められる。特に、プレス成形は無塗装のまま行われるので、金型とめっき鋼板との間の潤滑性が重視される。そのため、プレス成形が行われる自動車構造部材に適用される鋼板には、優れた潤滑性が求められる。
 このような課題に対し、特許文献1では、鋼板の表面に、Al:4~22質量%、Mg:1~5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部がZn及び不可避的不純物よりなるZn合金めっき層を形成させ、その上にクロメート皮膜もしくはりん酸塩被膜、又は、水性樹脂を含む樹脂系皮膜による下地処理層を形成させ、更にその上に、水性樹脂(a)の固形分100質量%に対して、シリカ粒子(b)を5~50質量%、固形潤滑剤(c)を1~40質量%含有する水性潤滑塗料を塗布、乾燥することにより得られる皮膜が0.2~5g/mの付着量で形成されていることを特徴とする、加工性に優れた潤滑めっき鋼板が開示されている。
 また、特許文献2では、Al:0.05~10質量%を含有し、必要に応じてMg:0.01~5質量%を含有し、残部がZnおよび不可避的不純物からなる亜鉛めっき層を有する溶融亜鉛めっき鋼板において、該めっき鋼板表面の中心線平均粗さRaが0.5~1.5μm,PPI(1インチ(2.54cm)あたりに含まれる1.27μm以上の大きさのピークの数)が150~300,Pc(1cmあたりに含まれる0.5μm以上の大きさのピークの数)がPc≧PPI/2.54+10であることを特徴とする成形性に優れた溶融亜鉛めっき鋼板が開示されている。特許文献2では、Pc≧PPI/2.54+10とすることで、摺動性が向上すると示されている。
日本国特開2004-338397号公報 日本国特開2003-13192号公報
 しかしながら、特許文献1ではめっき工程後の後処理として水性潤滑塗料の塗布、乾燥を行う必要があり製造コストが大きいという課題がある。また特許文献2では、粗さの改善のみでは十分な摺動性が得られないという問題があった。
 本発明は、上記の課題に鑑みてなされた。本発明は、耐食性に優れるZn-Al-Mg系めっき鋼板(Zn、Al、Mgを含むめっきを備える鋼板)であって、潤滑性に優れる自動車構造部材用めっき鋼板を提供することを目的とする。
 本発明者らは、Zn-Al-Mg系めっき鋼板において、潤滑性を向上させる方法を検討した。その結果、めっき層に含まれるMgが、酸化物[MgO]または水酸化物[Mg(OH)]として存在する割合を高めることで、めっき層の潤滑性が高まることを見出した。
 また、加えて、めっき層に含まれるAlが、酸化物[Al]または水酸化物[Al(OH)]として存在する割合を低くすることで、化成処理性も高めることができることを見出した。
 本発明は、上記の知見に基づいてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る自動車構造部材用めっき鋼板は、鋼板と、前記鋼板の表面の少なくとも一部に形成されためっき層と、前記めっき層の表面の少なくとも一部に形成された酸化物層と、を有し、前記めっき層が、質量%で、Al:0.5~35.0%、Mg:0.5~15.0%、Si:0~2.0%、Ca:0~2.0%、Fe:0~2.0%、La+Ce:合計で0~0.5%、Sb:0~0.5%、Pb:0~0.5%、Sr:0~0.5%、Sn:0~1.0%、Cu:0~1.0%、Ti:0~1.0%、Ni:0~1.0%、Mn:0~1.0%、Cr:0~1.0%、Nb:0~1.0%、Zr:0~1.0%、Mo:0~1.0%、Li:0~1.0%、Ag:0~1.0%、B:0~0.5%、Y:0~0.5%、及びP:0~0.5%、を含有し、残部がZn及び不純物からなる化学組成を有し、前記酸化物層の、表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Mgの酸化物または水酸化物の最大検出強度に対するMgの最大検出強度の比であるIMg/IMgOxが、0.00以上、1.20以下である。
[2]上記[1]に記載の自動車構造部材用めっき鋼板は、前記めっき層の前記化学組成が、質量%で、Al:6.0~30.0%、Mg:3.0~11.0%、を含有してもよい。
[3]上記[1]または[2]に記載の自動車構造部材用めっき鋼板は、前記酸化物層の、前記表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Alの酸化物または水酸化物の最大検出強度に対するAlの最大検出強度の比であるIAl/IAlOxが、0.77以上であってもよい。
[4]上記[1]~[3]のいずれかに記載の自動車構造部材用めっき鋼板は、前記IMg/IMgOxが、0.00以上、0.80以下であってもよい。
 本発明の上記態様によれば、Zn、Al、Mgを含むめっきを有する鋼板(Zn-Al-Mg系めっき鋼板)であって、潤滑性に優れる自動車構造部材用めっき鋼板を提供することができる。また、本発明の好ましい態様によれば、潤滑性に加え、化成処理性にも優れる自動車構造部材用めっき鋼板を提供することができる。
 本発明の一実施形態に係る自動車構造部材用めっき鋼板(本実施形態に係るめっき鋼板)は、鋼板と、鋼板の表面の少なくとも一部に形成されためっき層と、めっき層の表面の少なくとも一部に形成された酸化物層とを有する。また、本実施形態に係るめっき鋼板では、めっき層の化学組成は、質量%で、Al:0.5~35.0%(好ましくは6.0~30.0%)、Mg:0.5~15.0%(好ましくは3.0~11.0%)、Si:0~2.0%、Ca:0~2.0%、Fe:0~2.0%、La+Ce:合計で0~0.5%、Sb:0~0.5%、Pb:0~0.5%、Sr:0~0.5%、Sn:0~1.0%、Cu:0~1.0%、Ti:0~1.0%、Ni:0~1.0%、Mn:0~1.0%、Cr:0~1.0%、Nb:0~1.0%、Zr:0~1.0%、Mo:0~1.0%、Li:0~1.0%、Ag:0~1.0%、B:0~0.5%、Y:0~0.5%、及びP:0~0.5%、を含有し、残部がZn及び不純物からなる。
 また、本実施形態に係るめっき鋼板では、前記酸化物層の表層部(例えば厚み方向に表面から5.0nmの位置)においてXPSで測定を行ったとき、Mgの酸化物または水酸化物の最大検出強度に対するMgの最大検出強度の比であるIMg/IMgOxが、0.00以上、1.20以下(好ましくは0.00以上0.80以下)である。
 また、本実施形態に係るめっき鋼板は、好ましくは、前記酸化物層の、前記表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Alの酸化物または水酸化物の最大検出強度(IAlOx)に対するAlの最大検出強度(IAl)の比であるIAl/IAlOxが、0.77以上である。
<鋼板>
 本実施形態に係るめっき鋼板はめっき層及び酸化物層が重要である。そのため、鋼板(母材鋼板)の種類については特に限定されず、適用される製品や要求される強度や板厚等によって決定すればよい。例えば、JIS G3193:2008に記載された熱延鋼板やJIS G3141:2017に記載された冷延鋼板を用いることができる。
<めっき層>
 本実施形態に係るめっき鋼板は、鋼板の表面の少なくとも一部にめっき層を備える。めっき層は鋼板の片面に形成されていてもよく、両面に形成されていてもよい。
 めっき層の付着量は、片面あたり15~250g/mが好ましい。
[化学組成]
 本実施形態に係るめっき鋼板のめっき層の化学組成について説明する。以下、化学組成に関する%は、いずれも質量%である。
 Al:0.5~35.0%
 Alは、アルミニウム(Al)、亜鉛(Zn)、マグネシウム(Mg)を含むめっき層において、塗装後耐食性を確保するために有効な元素である。上記効果を十分に得るため、Al含有量を0.5%以上とする。Al含有量は、好ましくは1.0%以上、より好ましくは6.0%以上である。
 一方、Al含有量が35.0%超であると、塗装後耐食性やめっき層の切断端面の耐食性が低下する。また、Al酸化物の生成が多くなり、酸化物層のMgO、Mg(OH)の生成が阻害される。そのため、Al含有量は35.0%以下とする。Al含有量は、好ましくは30.0%以下である。
 Mg:0.5~15.0%
 Mgは、めっき層の耐食性を高める効果を有する元素である。上記効果を十分に得るため、Mg含有量を0.5%以上とする。Mg含有量は、好ましくは1.0%以上、より好ましくは3.0%以上である。
 一方、Mg含有量が15.0%超であると、塗装後耐食性が低下する上、めっき層の加工性が低下する。また、Mg系化合物がめっき層中の表面付近ではなく内側に形成することによって、表面付近でのMgO及びMg(OH)(酸化物及び水酸化物)の生成が阻害される。また、めっき浴のドロス発生量が増大する等、製造上の問題が生じる。そのため、Mg含有量を15.0%以下とする。Mg含有量は、好ましくは11.0%以下である。
 Si:0~2.0%
 Siは、Mgとともに化合物を形成して、めっき層の塗装後耐食性の向上に寄与する元素である。また、Siは、鋼板上にめっき層を形成するにあたり、鋼板とめっき層との間に形成される合金層が過剰に厚く形成されることを抑制して、鋼板とめっき層との密着性を高める効果を有する元素でもある。そのため含有させてもよい。Siは必ずしも含有させる必要はなく、下限は0%であるが、上記効果を得る場合、Si含有量を0.1%以上とすることが好ましい。
 一方、Si含有量を2.0%超にすると、めっき層中に過剰なSiが晶出したり、ラメラ組織が十分に形成されない、等によって、塗装後耐食性が低下する。また、めっき層の加工性が低下する。従って、Si含有量を2.0%以下とする。Si含有量は、より好ましくは1.5%以下である。
 Ca:0~2.0%
 Caがめっき層中に含有されると、Mg含有量の増加に伴ってめっき操業時に形成されやすいドロスの形成量が減少し、めっき製造性が向上する。そのため、Caを含有させてもよい。Caは必ずしも含有させる必要はなく、下限は0%であるが、上記効果を得る場合、Ca含有量を0.1%以上とすることが好ましい。
 一方、Ca含有量が過剰になると塗装後耐食性が低下する。また、めっき層の平面部の塗装後耐食性そのものが劣化する傾向にあり、溶接部周囲の耐食性も劣化することがある。そのため、Ca含有量は2.0%以下とする。Ca含有量は、好ましくは1.0%以下である。
 Fe:0~2.0%
 Feはめっき層を製造する際に、めっき基材である鋼板等から不純物としてめっき層に混入する。2.0%程度まで含有されることがあるが、この範囲であれば本実施形態に係るめっき鋼板の特性への悪影響は小さい。そのため、Fe含有量を2.0%以下とすることが好ましい。Fe含有量は、より好ましくは1.5%以下、さらに好ましくは1.0%以下である。
 一方、上述の通り、Feは不純物としてめっき層に混入する。Feの混入を完全に防ぐには著しくコストがかかるので、Fe含有量を0.1%以上としてもよい。
 本実施形態に係るめっき鋼板のめっき層の化学組成は、上記の化学組成を有し、残部がZn及び不純物であることを基本とする。
 しかしながら、本実施形態に係るめっき鋼板のめっき層は、更にZnの一部に代えて、例えば、La、Ce、Sb、Pb、Cu、Sn、Ti、Sr、Ni、Mn、Cr、Nb、Zr、Mo、Li、Ag、B、Y、Pを以下の範囲で含んでもよい(意図的な添加であるか、不純物としての含有であるかは問わない)。これらの元素は必ずしも含まなくてもよいので含有量の下限は0%である。
 不純物の含有量は、合計で5.0%以下であることが好ましく、3.0%以下であることがより好ましい。
 La+Ce:合計で0~0.5%
 La及びCeは、めっき層の耐食性向上に寄与する元素である。そのため、La、Ceの1種または2種を含有させてもよい。La及び/またはCeを含有させる必要はなく、下限は0%であるが、上記効果を得る場合、LaとCeの合計含有量が0.01%以上であることが好ましい。
 一方、LaとCeの合計含有量が0.5%を超えると、めっき浴の粘性が上昇し、めっき浴の建浴そのものが困難となることが多く、めっき性状が良好なめっき鋼板を製造できない。そのため、LaとCeの合計含有量を0.5%以下とする。
 Sb:0~0.5%
 Sr:0~0.5%
 Pb:0~0.5%
 Sr、Sb、Pbがめっき層中に含有されると、めっき層の外観が変化し、スパングルが形成されて、金属光沢の向上が確認される。そのため含有させてもよい。しかしながら、これらの元素の含有量が0.5%超になると、様々な金属間化合物相が形成され、加工性および耐食性が悪化する。また、これらの元素の含有量が過剰になるとめっき浴の粘性が上昇し、めっき浴の建浴そのものが困難となることが多く、めっき性状が良好なめっき鋼板を製造できない。そのため、Sr含有量を0.5%以下、Sb含有量を0.5%以下、Pb含有量を0.5%以下とする。
 Sn:0~1.0%
 Snは、Zn、Al、Mgを含むめっき層において、Mg溶出速度を上昇させる元素である。Mgの溶出速度が上昇すると、平面部耐食性が悪化する。そのため、Sn含有量を1.0%以下とする。
 Cu:0~1.0%
 Ti:0~1.0%
 Ni:0~1.0%
 Mn:0~1.0%
 Cr:0~1.0%
 Nb:0~1.0%
 Zr:0~1.0%
 Mo:0~1.0%
 Li:0~1.0%
 Ag:0~1.0%
 B:0~0.5%
 Y:0~0.5%
 P:0~0.5%
 これらの元素は、耐食性の向上に寄与する元素である。そのため、含有させてもよい。一方、これらの元素の含有量が過剰になるとめっき浴の粘性が上昇し、めっき浴の建浴そのものが困難となることが多く、めっき性状が良好なめっき鋼板を製造できない。そのため、各元素の含有量をそれぞれ1.0%以下とする。
 めっき層の化学組成は、次の方法により測定する。
 まず、地鉄(鋼板)の腐食を抑制するインヒビターを含有した酸でめっき層を剥離溶解した酸液を得る。次に、得られた酸液をICP分析で測定することで、めっき層の化学組成(めっき層と鋼板との間に合金層が形成されている場合には、めっき層と合金層との合計の化学組成となるが合金層は薄いので影響は小さい)を得ることができる。酸種は、めっき層を溶解できる酸であれば、特に制限はない。化学組成は、平均化学組成として測定される。
[組織]
 本実施形態に係るめっき鋼板では、めっき組織は、特に限定されない。本実施形態に係るめっき鋼板のめっき層の化学組成によれば、めっき組織は、例えば、(Al-Zn)デンドライト、(Al-Zn)相/MgZn相のラメラ組織、Zn相/MgZn相のラメラ組織、Zn/Al/MgZnの三元共晶組織、MgZn相、デンドライトまたは不定形のZn相、MgSi相、及び/またはその他の金属間化合物相を含む。
<酸化物層>
 本実施形態に係るめっき鋼板は、めっき層の表面の少なくとも一部に、酸化物層を備える。酸化物層は片面に形成されていてもよく、両面に形成されていてもよい。
 本発明者らは、Zn-Al-Mg系めっき鋼板において、潤滑性を向上させる方法を検討した。その結果、めっき層に含まれるMgが、酸化物または水酸化物として存在する割合を高めることで、めっき層の潤滑性が高まることを見出した。具体的には、酸化物層の、表面から厚み方向に5.0nmの位置においてXPS(X線光電子分光法)で測定を行ったとき、Mgの酸化物または水酸化物の最大検出強度(IMgOx)に対するMg(金属状態)の最大検出強度(IMg)の比である、IMg/IMgOxが、0.00以上、1.20以下である場合に、潤滑性が向上することを見出した。
 その理由は明確ではないが、金型等と接する酸化物層の表層部において、IMg/IMgOxが低くなる、すなわち、MgO(Mgの酸化物)またはMg(OH)(Mgの水酸化物)の存在割合が高くなることで、MgOまたはMg(OH)が潤滑材として機能して、潤滑性が向上すると考えられる。潤滑性の点では、MgO、Mg(OH)のいずれであっても効果が得られるが、本実施形態に係るめっき鋼板では、主にMgOであると考えられる。
 従来、表面(または、表面から5nmよりも大幅に薄い範囲)であれば、MgOまたはMg(OH)が比較的多く形成されていることはあった。しかしながら、本発明者らの検討の結果、表面から厚み方向に5.0nmの位置(後述するようにめっき層の表面を深さ方向に5.0nm削った位置)において、MgO(Mgの酸化物)またはMg(OH)(Mgの水酸化物)の存在割合が高くなることが重要であることを見出した。
 一方で、酸化物層において、Al(Al酸化物)またはAl(OH)(Al水酸化物)が過剰に形成されると化成処理性が低下する場合がある。優れた化成処理性を確保するためには、表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Alの酸化物または水酸化物の最大検出強度(IAlOx)に対するAl(金属状態)の最大検出強度(IAl)の比であるIAl/IAlOxが、0.77以上であることが望ましい。上限を限定する必要はないが、2.00を超えることは少ないと考えられる。
 酸化物層の、表面から厚み方向に5.0nmの位置のIMg/IMgOx、IAl/IAlOxは、XPSを用いて測定を行う。
 具体的には、アルゴンスパッタ等でめっき層の表面を深さ方向に5.0nm(4.0~6.0nmの範囲であれば許容する)削り、その位置(深さ5.0nm(深さ4.0~6.0nmの範囲であればよい)の位置)でXPS測定を行う。XPS測定に際しては、例えば、アルバック・ファイ社製Quantera SXM型XPS分析装置、またはこれと同等の装置を用いて以下の条件を採用する。
 X線源:mono-Al Kα (1486.6eV)
 真空度:9×10-10torr
 イオン種:Ar
 加速電圧:4kV
 レート:22.7nm/min(SiOのとき)
 XPS測定を行った結果、エネルギー範囲が304~309eVのピークをMg酸化物またはMg水酸化物から得られたピークであると見做し、300~303eVのピークを金属Mgから得られたピークであると見做し、それぞれのピークの最大検出強度を測定して、IMg/IMgOxを算出する。
 IAl/IAlOxについては、エネルギー範囲が73.5~76.5eVのピークをAl酸化物またはAl水酸化物から得られたピークと見做し、72.0~73.4eVのピークを金属Alから得られたピークと見做し、それぞれのピークの最大強度からIAl/IAlOxを算出する。
 酸化物層の厚みは特に限定されないが、例えば5.0nm超、50.0nm以下である。
 酸化物層の厚みは、以下の方法で測定する。めっき鋼板の表面から1~3nmピッチで深さ方向へXPS測定を行い、酸素の最大強度が最表面の最大強度の1/20になるまでの深さを酸化物層の厚みと定義する。
<製造方法>
 次に、本実施形態に係るめっき鋼板の好ましい製造方法について説明する。本実施形態に係るめっき鋼板は、製造方法によらず上記の特徴を有していればその効果は得られる。しかしながら、以下の方法によれば安定して製造できるので好ましい。
 具体的には、本実施形態に係る鋼板は、以下の工程(I)~(III)を含む製造方法によって製造可能である。
(I)鋼板を還元焼鈍する焼鈍工程、
(II)鋼板をAl、Mg、Znを含むめっき浴に浸漬してめっき原板とするめっき工程、
(III)前記めっき原板を、浴温~380℃の温度域を、露点が-10℃以上の不活性ガス雰囲気中で10.0℃/秒以下の平均冷却速度で冷却し、380~100℃の温度域を、露点が-20℃以下の雰囲気中で15℃/秒以上の平均冷却速度で冷却する、制御冷却工程。
 以下、各工程の好ましい条件について説明する。
[焼鈍工程]
 焼鈍工程では、めっき工程に先立って、公知の方法で得られた鋼板(熱延鋼板または冷延鋼板)に対し、還元焼鈍を行う。焼鈍条件については公知の条件でよく、例えば露点が-10℃以上の5%H-Nガス雰囲気下で750~900℃に加熱して、30~240秒保持する。
[めっき工程]
 めっき工程では、鋼板をめっき浴に浸漬してめっき原板とする。めっき浴は、Al:0.5~35.0%、Mg:0.5~15.0%、Si:0~2.0%、Ca:0~2.0%を含み、残部がZn及び不純物からなることが好ましい。めっき浴はさらに、La、Ce、Fe、Sb、Pb、Cu、Sn、Ti、Sr、Ni、Mn、Cr、Nb、Li、Agを必要に応じて含んでもよい。めっき浴の組成から形成されるめっき層の組成を推定可能であるので、得たいめっき層の化学組成に応じてめっき浴の組成を調整すればよい。
[制御冷却工程]
 制御冷却工程では、めっき工程後の(めっき浴から引き上げた)めっき原板を、Nなどのワイピングガスでめっき付着量を調整した後、冷却する。冷却に際しては、めっき浴から引き上げた鋼板(めっき浴温と同等の温度になっている)を、100℃以下まで冷却する。その際、浴温~380℃までの平均冷却速度を10.0℃/秒以下、また、浴温から380℃までの冷却における雰囲気を不活性ガス雰囲気とし、その露点を-10℃以上とする(第一冷却)。また、380~100℃の平均冷却速度を15℃/秒以上とし、雰囲気の露点を-20℃以下とする(第二冷却)。
 380℃までの平均冷却速度が10.0℃/秒超であると、酸化が不十分となり、酸化物層において、IMg/IMgOxが大きくなる。
 また、雰囲気の露点が-10℃未満であると、MgOやMg(OH)よりも優先的にAlの酸化物が形成され、酸化物層においてIMg/IMgOxが大きくなる。Alの酸化物が形成されても、潤滑性の向上には寄与しない。また、Alの酸化物または水酸化物の最大検出強度に対するAlの最大検出強度の比を高め、化成処理性を高める場合、雰囲気露点を0℃以上とすることが好ましい。
 雰囲気について、メカニズムは必ずしも明らかではないが、大気中では、露点が-10℃以上であっても、所定の酸化物層を得ることができない。そのため、雰囲気を、不活性ガス雰囲気とする。不活性ガス雰囲気は、例えば、N雰囲気、Ar雰囲気、He雰囲気である。しかしながら、不活性ガスは、単独では露点が低い(-20℃以上にならない)ので、HOガスを導入することによって露点を制御する。
 380~100℃の平均冷却速度が15℃/秒未満であると、酸化が過剰に進行し、ZnO等の酸化物が成長し、酸化物層において、IMg/IMgOxが小さくなる。
 また、この温度域での冷却の際の雰囲気の露点が-20℃超であると、酸化が過剰に進行し、ZnO等の酸化物が成長し、IMg/IMgOxが小さくなる。
 第二冷却の冷却開始温度は380℃が好ましい(第一冷却完了後直ちに冷却速度を切り替えることが好ましい)が、100℃までの平均冷却速度が15℃/秒未満になるのであれば、第二冷却の開始温度は380~330℃の範囲であってもよい。
 上記の製造方法によれば、本実施形態に係るめっき鋼板が得られる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 焼鈍、めっきに供する鋼板として、板厚1.6mmの冷延鋼板(0.2%C-2.0%Si-2.3%Mn)を準備した。
 この鋼板を100mm×200mm(×板厚)の大きさに切断した後、バッチ式の溶融めっき試験装置を用いて、焼鈍及び溶融めっきを続けて行った。
 焼鈍に際しては、酸素濃度20ppm以下の炉内において、Hガスを5%含有し、残部がNからなるガスからなり、露点0℃である雰囲気の下で、860℃で120秒間焼鈍を行った。
 焼鈍後、鋼板をNガスで空冷して、鋼板温度が浴温+20℃に到達したところで、表1Aに示す浴温のめっき浴に約3秒浸漬させた。
 めっき層が形成されためっき原板に対し、浴温~380℃、及び380~100℃の平均冷却速度及び雰囲気(雰囲気ガス、露点)が表1Bに示す条件になるように、室温まで冷却した。鋼板の温度はめっき原板中心部にスポット溶接した熱電対を用いて測定した。
 形成されためっき層の組成は、表1に示す通りであった。
 得られためっき鋼板について、XPSを用いて、上述の方法で、酸化物層の厚み、酸化物層の表面から5nmの位置の、IMg/IMgOx、及びIAl/IAlOxを測定した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[潤滑性]
 また、得られためっき鋼板について、以下の要領でボールオンディスク試験を行い、潤滑性を評価した。本試験では、荷重Pを30Nとして5mmφのSUS球をサンプルに押し付け、荷重Pを負荷したままサンプルを回転半径10mm、回転速度1rpmで回転させ、SUS球とは直角方向への荷重Fを測定し、摺動距離が200mm時点でのFをPで除することで動摩擦係数を求めた。動摩擦係数に応じて、以下のように評価し、AAまたはAであれば潤滑性に優れると判断した。
AA:動摩擦係数0.2以下
A :動摩擦係数0.2超~0.4
B :動摩擦係数0.4超
[化成処理性]
 また、得られためっき鋼板について、化成処理性を、以下の要領で評価した。
 得られためっき鋼板から50×100mm(×板厚)のサンプルを採取し、このサンプルに、りん酸亜鉛処理を(SD5350システム:日本ペイント・インダストリアルコーディング社製規格)に従い実施し、化成処理皮膜を形成させた。化成処理皮膜が形成されためっき鋼板の表面をSEM観察することで、化成処理皮膜のスケの割合(面積%)を測定した。その際、SEM観察視野において、鋼板が露出した領域の面積率をスケの割合と定義した。スケの割合から、化成処理性を以下のように評価した。
AA:スケなし
A :スケ5%以下
 表1A、表1B、表2から分かるように、発明例であるNo.2~8、10~13、19~22、24、26~30では、優れた潤滑性が得られている。また、これらの内、Al/AlOxの大きい、No.3~8、10~13、19~22、24、26、28、29では、化成処理性にも優れていた。
 これに対し、比較例である、No.1、9、14~18、23、25、31、32では、めっき層の化学組成または、浴温~380℃、380~100℃の冷却条件の少なくとも1つが好ましい範囲を外れたことで、酸化物層のIMg/IMgOxが大きくなり、潤滑性が低下した。
 本発明によれば、Zn-Al-Mg系めっき鋼板であって、潤滑性に優れるめっき鋼板を提供することができる。この鋼板は、プレス成形性が向上するので、自動車構造部材へ好適に適用できる。

Claims (4)

  1.  鋼板と、
     前記鋼板の表面の少なくとも一部に形成されためっき層と、
     前記めっき層の表面の少なくとも一部に形成された酸化物層と、
    を有し、
     前記めっき層が、質量%で、
     Al:0.5~35.0%、
     Mg:0.5~15.0%、
     Si:0~2.0%、
     Ca:0~2.0%、
     Fe:0~2.0%、
     La+Ce:合計で0~0.5%、
     Sb:0~0.5%、
     Pb:0~0.5%、
     Sr:0~0.5%、
     Sn:0~1.0%、
     Cu:0~1.0%、
     Ti:0~1.0%、
     Ni:0~1.0%、
     Mn:0~1.0%、
     Cr:0~1.0%、
     Nb:0~1.0%、
     Zr:0~1.0%、
     Mo:0~1.0%、
     Li:0~1.0%、
     Ag:0~1.0%、
     B:0~0.5%、
     Y:0~0.5%、及び
     P:0~0.5%、
    を含有し、残部がZn及び不純物からなる化学組成を有し、
     前記酸化物層の、表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Mgの酸化物または水酸化物の最大検出強度に対するMgの最大検出強度の比であるIMg/IMgOxが、0.00以上、1.20以下である、
    自動車構造部材用めっき鋼板。
  2.  前記めっき層の前記化学組成が、質量%で、
     Al:6.0~30.0%、
     Mg:3.0~11.0%、
    を含有する、請求項1に記載の自動車構造部材用めっき鋼板。
  3.  前記酸化物層の、前記表面から厚み方向に5.0nmの位置においてXPSで測定を行ったとき、Alの酸化物または水酸化物の最大検出強度に対するAlの最大検出強度の比であるIAl/IAlOxが、0.77以上である、
    請求項1または2に記載の自動車構造部材用めっき鋼板。
  4.  前記IMg/IMgOxが、0.00以上、0.80以下である、
    請求項1~3のいずれか一項に記載の自動車構造部材用めっき鋼板。
PCT/JP2021/048191 2021-01-14 2021-12-24 自動車構造部材用めっき鋼板 WO2022153840A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/250,774 US20230383392A1 (en) 2021-01-14 2021-12-24 Plated steel sheet for automobile structural members
JP2022575510A JPWO2022153840A1 (ja) 2021-01-14 2021-12-24
EP21919726.6A EP4230756A4 (en) 2021-01-14 2021-12-24 CLAD STEEL SHEET FOR AUTOMOTIVE STRUCTURAL ELEMENTS
CN202180080366.2A CN116490626A (zh) 2021-01-14 2021-12-24 汽车构造构件用镀敷钢板
KR1020237017807A KR20230095102A (ko) 2021-01-14 2021-12-24 자동차 구조 부재용 도금 강판
MX2023006041A MX2023006041A (es) 2021-01-14 2021-12-24 Lamina de acero chapada para miembros estructurales de automovil.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004012 2021-01-14
JP2021004012 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022153840A1 true WO2022153840A1 (ja) 2022-07-21

Family

ID=82448453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048191 WO2022153840A1 (ja) 2021-01-14 2021-12-24 自動車構造部材用めっき鋼板

Country Status (7)

Country Link
US (1) US20230383392A1 (ja)
EP (1) EP4230756A4 (ja)
JP (1) JPWO2022153840A1 (ja)
KR (1) KR20230095102A (ja)
CN (1) CN116490626A (ja)
MX (1) MX2023006041A (ja)
WO (1) WO2022153840A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013192A (ja) 2001-06-27 2003-01-15 Nippon Steel Corp 成形性に優れた溶融亜鉛めっき鋼板
JP2004338397A (ja) 2003-04-25 2004-12-02 Nippon Steel Corp 加工性に優れた非脱膜型潤滑めっき鋼板
JP5253090B2 (ja) * 2008-10-28 2013-07-31 日新製鋼株式会社 Mg、Al含有溶融Znめっき鋼板の製造方法
JP2021004012A (ja) 2019-06-27 2021-01-14 株式会社シマノ 自転車用ドライビングシステム、および、自転車用フロントスプロケット組立体
WO2021039971A1 (ja) * 2019-08-29 2021-03-04 日本製鉄株式会社 ホットスタンプ成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748829B2 (ja) * 2013-12-03 2015-07-15 日新製鋼株式会社 溶融Zn合金めっき鋼板およびその製造方法
KR102011207B1 (ko) * 2015-03-31 2019-08-14 닛폰세이테츠 가부시키가이샤 아연계 도금 강판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013192A (ja) 2001-06-27 2003-01-15 Nippon Steel Corp 成形性に優れた溶融亜鉛めっき鋼板
JP2004338397A (ja) 2003-04-25 2004-12-02 Nippon Steel Corp 加工性に優れた非脱膜型潤滑めっき鋼板
JP5253090B2 (ja) * 2008-10-28 2013-07-31 日新製鋼株式会社 Mg、Al含有溶融Znめっき鋼板の製造方法
JP2021004012A (ja) 2019-06-27 2021-01-14 株式会社シマノ 自転車用ドライビングシステム、および、自転車用フロントスプロケット組立体
WO2021039971A1 (ja) * 2019-08-29 2021-03-04 日本製鉄株式会社 ホットスタンプ成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230756A4

Also Published As

Publication number Publication date
MX2023006041A (es) 2023-06-02
CN116490626A (zh) 2023-07-25
US20230383392A1 (en) 2023-11-30
EP4230756A1 (en) 2023-08-23
KR20230095102A (ko) 2023-06-28
EP4230756A4 (en) 2024-04-24
JPWO2022153840A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2020213686A1 (ja) めっき鋼板
TWI686510B (zh) 鍍敷鋼板
WO2013002358A1 (ja) 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法
EP2388353A1 (en) HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE
JP7315826B2 (ja) めっき鋼材、およびめっき鋼材の製造方法
JP6350780B1 (ja) 塗装後耐食性に優れた溶融Zn系めっき鋼板
WO2014155944A1 (ja) 溶融Al-Zn系めっき鋼板及びその製造方法
JP7136342B2 (ja) めっき鋼板
WO2020213688A1 (ja) めっき鋼板
JP7401827B2 (ja) 溶融Zn系めっき鋼板
KR20180039107A (ko) Mg 함유 Zn 합금 피복 강재
CN115867693B (zh) 镀覆钢材
JP4267184B2 (ja) 耐食性、外観に優れた溶融アルミめっき鋼板及びその製造法
JP3318385B2 (ja) プレス加工性と耐めっき剥離性に優れた合金化溶融亜鉛めっき鋼板
WO2021039971A1 (ja) ホットスタンプ成形体
JP5359501B2 (ja) 合金化溶融亜鉛めっき鋼板
JP7453583B2 (ja) Alめっきホットスタンプ鋼材
CN116685706B (zh) 镀覆钢材
WO2022153840A1 (ja) 自動車構造部材用めっき鋼板
WO2021039973A1 (ja) ホットスタンプ成形体
JP4452126B2 (ja) 合金化溶融亜鉛めっき用鋼板
JP7360082B2 (ja) めっき鋼板
WO2005056863A1 (ja) 溶融亜鉛めっき鋼板及びその製造方法
WO2022230399A1 (ja) 鋼板及びめっき鋼板
WO2023063048A1 (ja) ホットスタンプ成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575510

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18250774

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021919726

Country of ref document: EP

Effective date: 20230517

ENP Entry into the national phase

Ref document number: 20237017807

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180080366.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE