WO2021039973A1 - ホットスタンプ成形体 - Google Patents

ホットスタンプ成形体 Download PDF

Info

Publication number
WO2021039973A1
WO2021039973A1 PCT/JP2020/032646 JP2020032646W WO2021039973A1 WO 2021039973 A1 WO2021039973 A1 WO 2021039973A1 JP 2020032646 W JP2020032646 W JP 2020032646W WO 2021039973 A1 WO2021039973 A1 WO 2021039973A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
oxide film
hot
less
mass
Prior art date
Application number
PCT/JP2020/032646
Other languages
English (en)
French (fr)
Other versions
WO2021039973A9 (ja
Inventor
卓哉 光延
公平 ▲徳▼田
高橋 武寛
浩史 竹林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2022002089A priority Critical patent/MX2022002089A/es
Priority to US17/636,486 priority patent/US11965250B2/en
Priority to CN202080059400.3A priority patent/CN114341379B/zh
Priority to JP2021543049A priority patent/JP7248930B2/ja
Priority to EP20855906.2A priority patent/EP4023787A4/en
Priority to KR1020227005207A priority patent/KR102627829B1/ko
Publication of WO2021039973A1 publication Critical patent/WO2021039973A1/ja
Publication of WO2021039973A9 publication Critical patent/WO2021039973A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a hot stamped article.
  • the present application claims priority based on Japanese Patent Application No. 2019-157206 filed in Japan on August 29, 2019, the contents of which are incorporated herein by reference.
  • a material having high mechanical strength tends to have low shape freezing property in molding processing such as bending processing, and when processing into a complicated shape, the processing itself becomes difficult.
  • hot stamping method hot stamping method, high temperature pressing method, die quenching method
  • the material to be molded is once heated to a high temperature, and the material softened by heating is pressed and molded, or then cooled at the same time as molding.
  • the material is once heated to a high temperature to be softened and then pressed in a softened state, so that the material can be easily pressed. Therefore, by this hot press working, a press-molded product having both good shape freezing property and high mechanical strength can be obtained.
  • the mechanical strength of the press-molded product can be increased by the quenching effect of cooling after molding.
  • the steel sheet before hot stamping is coated with plating or the like to improve the corrosion resistance and omit the descaling step.
  • Patent Document 1 As such a plated steel material, for example, in Patent Document 1, an Al—Zn-based alloy plating layer containing Al: 20 to 95% by mass, Ca + Mg: 0.01 to 10% by mass, and Si is provided on the surface of the steel sheet.
  • a plated steel sheet for hot pressing which is characterized by having, is disclosed. According to Patent Document 1, scale formation is suppressed during heating before hot pressing, plating does not adhere to the mold during hot pressing, and the obtained hot press member has a good appearance. It is disclosed that it has excellent coating adhesion and corrosion resistance.
  • Patent Document 2 provides a base layer made of steel provided for molding into a part by hot pressing and coated on the metal protective coating formed of Zn or Zn alloy to protect against corrosion.
  • the steel sheet product having the above at least one of the free surfaces of the steel sheet product is coated with an individual cover layer containing an oxide, a nitride, a sulfide, a carbide, a hydrate or a phosphate compound of a base metal.
  • a steel sheet product characterized by this is disclosed.
  • Patent Document 3 discloses a plated steel material in which a plating layer containing an Al—Fe alloy layer and a Zn—Mg—Al alloy layer is provided on the surface of the steel material, and the corrosion resistance is dramatically improved.
  • An object of the present invention is to provide a hot stamped molded product that exhibits excellent adhesiveness.
  • the present inventors control the composition balance of the plating layer of the molten Zn-Al-Mg plated steel sheet and the conditions at the time of manufacturing, and form an oxide film on the surface that contributes to the improvement of the adhesiveness. It was found that an excellent hot-stamped molded product can be obtained.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the hot stamp molded body includes a base material made of iron, a plating layer formed on the surface of the base material, and an oxide film formed on the surface of the plating layer.
  • the chemical composition of the plating layer is, in mass%, Al: 20.00 to 45.00%, Fe: 10.00 to 45.00%, Mg: 4.50 to 15.00%, Si: 0.10 to 3.00%, Ca: 0.05 to 3.00%, Sb: 0 to 0.50%, Pb: 0 to 0.50%, Cu: 0 to 1.00%, Sn: 0 ⁇ 1.00%, Ti: 0 to 1.00%, Sr: 0 to 0.50%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, Mn: 0 to 1.00% , The balance is Zn and impurities, and the chemical composition of the oxide film is atomic%, Mg: 20.0 to 55.0%, Ca: 0.5 to 15.0%, Zn: 0.
  • the hot stamp molded article according to (1) above the chemical composition of the plating layer is mass%, Al: 25.00 to 35.00%, Mg: 6.00 to 10.00%. , 1 or 2 may be contained.
  • the hot stamp molded article according to (1) or (2) above may contain Mg: 35.0 to 55.0% in atomic% of the chemical composition of the oxide film. Good.
  • the hot stamping compact 1 has a base material 2 made of steel, a plating layer 3 formed on the surface of the base material 2, and an oxidation formed on the surface of the plating layer 3. It is provided with a material film 4.
  • the plating layer 3 and the oxide film 4 are formed on only one side of the base material 2, but may be formed on both sides.
  • the base material 2 is made of steel.
  • the base material 2 is, for example, a hot stamping member obtained by hot stamping a steel plate. Therefore, although it has a plate shape in FIG. 1, the shape is not limited. Further, in the hot stamping molded product 1 according to the present embodiment, the plating layer 3 and the oxide film 4 are important, and the chemical composition of the base material 2 and the like are not particularly limited.
  • the steel to be plated and hot stamped may be determined according to the applicable product, the required strength, the plate thickness, and the like.
  • a hot-rolled steel sheet described in JIS G3193: 2008 or a cold-rolled steel sheet described in JIS G3141: 2017 can be used as the base material.
  • Al 20.00-45.00%
  • Al is an essential element for improving the corrosion resistance of the plating layer 3. Further, if the Al content is less than 20.00%, an intermetallic compound mainly composed of Ca and Al, which is a source of Ca to the outermost surface of the plating layer at the time of hot stamping, cannot be produced. As a result, Zn and Mg evaporate, and MgO and ZnO that lower the adhesiveness are formed on the surface of the plating layer, and the adhesiveness is lowered. Therefore, the Al content is set to 20.00% or more. It is preferably 25.00% or more. On the other hand, when the Al content exceeds 45.00% , Al-based oxides such as Al 2 O 3 that lower the adhesiveness are formed, so that the adhesiveness is lowered. Therefore, the Al content is set to 45.00% or less. It is preferably 35.00% or less.
  • Fe 10.00-45.00%
  • the Fe content is set to 10.00% or more.
  • the Fe content is set to 45.00% or less.
  • Mg 4.50 to 15.00%
  • Mg is an element that contributes to the improvement of the corrosion resistance of the plating layer 3. Further, Mg has an effect of suppressing LME cracking because it binds to the Zn component in the plating layer 3 to prevent the generation of liquid phase Zn when the hot stamp is heated. Further, in the hot stamp molded product 1 according to the present embodiment, Mg is an element that forms an oxide film 4 and improves adhesiveness. In order to obtain these effects, the Mg content is set to 4.50% or more. When the Mg content is less than 4.50%, the amount of Al-based oxide that lowers the adhesiveness to the oxide film 4 increases. The Mg content is preferably 6.00% or more.
  • the Mg content exceeds 15.00%, sacrificial anticorrosion works excessively, and the corrosion resistance of the plating layer 3 tends to decrease. In addition, the oxide film 4 becomes brittle and the adhesiveness is lowered. Therefore, the Mg content is set to 15.00% or less. It is preferably 10.00% or less.
  • Si 0.10 to 3.00% Si is an element that forms a compound together with Mg and contributes to the improvement of corrosion resistance. If the Si content is less than 0.10%, Zn and Mg evaporate during hot stamping, and MgO and ZnO that lower the adhesiveness are formed on the surface, so that the adhesiveness is lowered. Therefore, the Si content is set to 0.10% or more. On the other hand, even if the Si content exceeds 3.00%, Zn and Mg evaporate during hot stamping, and MgO and ZnO that lower the adhesiveness are formed on the surface, so that the adhesiveness is lowered. Therefore, the Si content is set to 3.00% or less.
  • Ca 0.05 to 3.00% Ca is an element that enhances adhesiveness when contained in the oxide film 4 together with Mg. If the Ca content is less than 0.05%, Zn and Mg evaporate during hot stamping, and MgO and ZnO that lower the adhesiveness are formed on the surface, so that the adhesiveness is lowered. Therefore, the Ca content is set to 0.05% or more. On the other hand, even if the Ca content exceeds 3.00%, Zn and Mg evaporate during hot stamping, and MgO and ZnO that lower the adhesiveness are formed on the surface, so that the adhesiveness is lowered. Therefore, the Ca content is set to 3.00% or less.
  • the plating layer 3 of the hot stamping molded product 1 basically contains the above elements, and the balance is made of Zn and impurities.
  • the plating layer 3 may contain Sb, Pb, Cu, Sn, Ti, Sr, Cr, Ni, and Mn in the following range in addition to the above elements. Since these elements do not necessarily have to be contained, the lower limit is 0%. The total content of these elements is preferably 5.00% or less.
  • Sb 0 to 0.50%
  • Pb 0 to 0.50%
  • Cu 0 to 1.00%
  • Sn 0 to 1.00%
  • Ti 0 to 1.00%
  • these elements may be contained in the plating layer 3.
  • oxides of these elements are precipitated when the hot stamp is heated, and the surface properties of the hot stamp molded product 1 tend to deteriorate and the adhesiveness tends to decrease.
  • the contents of Sb and Pb are set to 0.50% or less, and the contents of Cu, Sn and Ti are set to 1.00% or less, respectively.
  • the content of Sb and Pb is preferably 0.20% or less, and the content of Cu, Sn and Ti is preferably 0.80% or less, more preferably 0.50% or less.
  • Sr 0 to 0.50%
  • Sr is an element effective for suppressing the formation of top dross formed on the plating bath during production. Further, Sr is an element that suppresses color change of the plated steel sheet after the heat treatment because it suppresses atmospheric oxidation during the heat treatment of hot stamping. Therefore, Sr may be contained. In order to obtain the above effects, the Sr content is preferably 0.05% or more. On the other hand, when the content of Sr is excessive, it adversely affects the coating film swelling width and flow rust in the corrosion test. Therefore, the Sr content is set to 0.50% or less. The Sr content is preferably 0.30% or less, and more preferably 0.10% or less.
  • Cr 0 to 1.00%
  • Mn 0 to 1.00%
  • the contents of Cr, Ni and Mn are preferably 0.01% or more, respectively.
  • the contents of Cr, Ni and Mn are set to 1.00% or less, respectively.
  • the contents of Cr, Ni and Mn are each preferably 0.50% or less, and more preferably 0.10% or less.
  • the chemical composition of the plating layer is measured as follows.
  • the average composition of the plating layer is measured by melting and peeling the plating layer and then analyzing the content of elements contained in the peeled plating layer by inductively coupled plasma atomic emission (ICP) analysis.
  • the plating layer may be peeled off by immersing it in 10% hydrochloric acid containing an inhibitor that suppresses corrosion of the base iron (pickling suppression inhibitor: manufactured by Asahi Chemical Co., Ltd.), and determining that the dissolution is complete when the foaming stops. ..
  • the structure of the plating layer is not limited, but includes, for example, a Fe—Al phase, a Zn—Mg phase, and a Zn—Al—Mg phase.
  • the amount of the plating layer adhered is not limited, but is preferably 10 to 120 g / m 2.
  • the amount of adhesion of the plating layer can be determined from the weight change before and after melting the plating layer at room temperature by the above method.
  • ⁇ Oxide film> [In atomic%, Mg: 20.0 to 55.0%, Ca: 0.5 to 15.0%, Zn: 0 to 15.0%, Al: 0% or more and less than 10.0%. The balance consists of O and impurities totaling 5.0% or less]
  • an oxide mainly composed of Al 2 O 3 is formed on the surface (surface of the plating layer) of the hot stamped molded product obtained by hot stamping a steel material having a plating layer containing Al. This oxide film reduces the adhesiveness.
  • the hot stamping molded product 1 according to the present embodiment the evaporation of Zn and Mg is suppressed during the subsequent hot stamping by plating by a method as described later to control the solidified structure.
  • an oxide film 4 mainly composed of Ca and Mg is formed on the surface of the steel material.
  • This oxide film has excellent adhesiveness. If the Mg content in the oxide film is less than 20.0%, a large amount of Al is contained in the oxide, and the adhesiveness is lowered. Further, if the Mg content is more than 55.0%, the adhesiveness between the adhesive and the oxide is rather lowered, and the adhesiveness is lowered. Further, if the Ca content in the oxide film is less than 0.5%, the strength of the oxide itself is lowered, and the adhesiveness is lowered. On the other hand, if the Ca content is more than 15.0%, the adhesiveness between the adhesive and the oxide is rather lowered, and the adhesiveness is lowered.
  • the Zn content is set to 15.0% or less.
  • the oxide film 4 contains 10.0% or more of Al, the adhesiveness is significantly lowered. Therefore, the Al content is set to less than 10.0%.
  • Zn and Al may not be contained.
  • the balance of the chemical composition of the oxide film 4 consists of O and impurities of 5.0% or less in total. If the impurity element is more than 5.0%, sufficient adhesiveness cannot be obtained. Examples of impurities are Fe, Si, and C.
  • FIG. 2 shows an example of a typical SEM observation image of the oxide film formed on the surface of the hot stamped molded product according to the present embodiment.
  • the oxide film 4 of the hot stamping compact 1 according to the present embodiment is an oxide 11 mainly containing Mg and Ca, and the Al content of the oxide is less than 10.0%. is there. This oxide has a minor crystal grain size of 1 to 10 ⁇ m.
  • the chemical composition of the oxide film is determined by ICP analysis of a solution in which the plating layer is not dissolved and only the oxide film is dissolved, for example, 20% chromium acid, and the film is dissolved, and the average composition of the oxide film is determined. Obtained by measuring.
  • the one-sided adhesion amount of the oxide film is 0.01 to 10 g / m 2. If the one-sided adhesion amount of the oxide film is less than 0.01 g / m 2 , the effect of improving the adhesiveness cannot be sufficiently obtained. On the other hand, if the amount of adhesion on one side exceeds 10 g / m 2 , cracks occur in the oxide layer when subjected to bending or the like, which also causes a decrease in adhesiveness (peeling). Therefore, the amount of adhesion on one side is set to 0.01 to 10 g / m 2 .
  • the opposite surface and end surface other than the surface to be measured are sealed with tape and immersed in the solution to obtain a release solution for only the measurement surface before and after dissolution. It can be obtained from the change in weight.
  • the hot stamped molded article according to the present embodiment can obtain the effect as long as it has the above characteristics regardless of the manufacturing method.
  • stable production can be performed, which is preferable.
  • the hot stamp molded body according to this embodiment is (I) A plating step of immersing a steel material in a plating bath to obtain a plated steel material having a plating layer, (II) A hot stamping process for hot stamping the plated steel material after the plating process, and With (III) In the plating step, in the cooling process after immersion in the plating bath, the average cooling rate of the bath temperature to 450 ° C.
  • the average cooling rate of 450 to 350 ° C. is set to 7 ° C./sec or less, 350. Cool to room temperature so that the average cooling rate at ⁇ 150 ° C is 4 ° C / sec or less. It can be obtained by a manufacturing method.
  • ⁇ Plating process> [Immersion in plating bath]
  • a steel material such as a steel plate to be a base plate is immersed in a plating bath to form a plating layer on the surface.
  • the conditions for immersion in the plating bath are not particularly limited. For example, the surface of the plated original plate at 600 ⁇ 940 ° C. heat reduction treatment, after then air-cooled with N 2 gas and the temperature reached the bath temperature + 20 ° C. of steel, approximately in the plating bath at a bath temperature of 500 ⁇ 750 ° C. 0 .Soak for 2-6 seconds. If the immersion time is less than 0.2 seconds, the plating layer may not be sufficiently formed.
  • the plating bath may be set to contain Zn, Al, Mg and other elements according to the composition of the target plating layer 3. For example, any element containing Al: 30.00 to 75.00%, Mg: 4.00 to 17.00%, Si: 0.20 to 2.00%, and which is desired to be contained in the plating layer as needed. The balance is Zn and impurities.
  • the average cooling rate in the temperature range up to 450 ° C after pulling the plated steel material from the plating bath is Cool to 10 ° C./sec or higher.
  • Average cooling rate of 450 to 350 ° C.: 7 ° C./sec or less Following the above cooling, cooling is performed so that the average cooling rate in the temperature range of 450 ° C. to 350 ° C. is 7 ° C./sec or less.
  • the surface has a low Al content (10 atomic% or less), and an oxide film containing Mg and Ca. Is formed. As a result, the adhesiveness of the hot stamp molded product is improved.
  • Zn (zinc) evaporates due to hot stamping, but in the solidified structure controlled as described above, although the detailed mechanism is not clear, an element having a high vapor pressure.
  • Al, Zn, Ca, and Si-containing intermetallic compounds, which have the effect of suppressing the evaporation of Zn and Mg, are preferentially generated near the surface of the plating layer, so that during subsequent heating of the hot stamp. Evaporation of Zn and Mg can be suppressed.
  • Average cooling rate of 350 to 150 ° C: 4 ° C / sec or less Following the above cooling, if the average cooling rate of 350 ° C to 150 ° C is 4 ° C / sec or less, the solid solution of Al and Zn contained in the solidified structure will be formed. Separation into an Al phase and a Zn phase lowers the melting point of the plating layer, and makes it easier for intermetallic compounds containing Al, Zn, Ca and Si to move to the surface of the plating layer in a molten state during hot stamping heating. .. As a result, it is possible to suppress the evaporation of Zn and Mg more efficiently, and it is possible to efficiently form an oxide film containing Mg and Ca.
  • the average cooling rate of 350 ° C. to 150 ° C. is 4 ° C./sec or less, if the cooling rate in a part of the temperature range is high, a preferable metal structure cannot be obtained. Therefore, the average cooling rate of 350 ° C. to 150 ° C. is 4 ° C./sec or less, the average cooling rate of 350 ° C. to 250 ° C. is 4 ° C./sec or less, and the average cooling rate of 250 to 150 ° C. is 4 ° C./sec. It is preferably less than a second.
  • Hot stamping is performed on the plated steel material (a steel material having a base material and a plating layer formed on the surface thereof) after the plating process.
  • the conditions for hot stamping are not limited, and examples thereof include a method of heating to 750 to 1200 ° C., holding for 0 to 8 minutes, and then sandwiching the plated steel sheet with a flat plate mold at a temperature of about room temperature to quench.
  • Tables 1 to 3 show examples disclosed in the present invention.
  • Various Zn-Al-Mg-based plating baths were built and subjected to hot stamp heating.
  • a steel plate having a thickness of 1.6 mm (including C: 0.2% and Mn: 1.3%) was used as the plating original plate.
  • plating was performed with a batch-type hot-dip galvanizing test apparatus manufactured in-house. The plate temperature was measured using a thermocouple spot-welded to the center of the original plating plate.
  • oxygen concentration 20ppm heat reduction treatment be plated surface at 800 ° C.
  • the plated steel sheet is inserted into a heating furnace at 900 ° C., and after the temperature of the plated steel sheet reaches the furnace temperature of -10 ° C, it is retained for 0 to 8 minutes, and then the flat plate mold is at a temperature of about room temperature.
  • a molded product was produced by sandwiching a plated steel sheet with and quenching it.
  • the chemical composition of the plating layer after hot stamping was as shown in Table 1. No. For 31, hot stamping was performed using a commercially available alloyed hot-dip galvanized steel sheet.
  • the oxide film of the hot stamped molded product of the example of the present invention was composed of Mg and Ca-containing oxides, and had a minor crystal grain size of 1 to 10 ⁇ m.
  • FIG. 2 shows No. 1 in Tables 1 to 3. There are 10 SEM images (BSE images).
  • FIG. 3 shows Example No. 11 (comparative example) SEM image (BSE image). No. In No. 11, coarse Al-containing oxide 12 was observed.
  • Adhesion was evaluated by the following method. Two 100 x 25 mm samples are taken from the hot-stamped galvanized steel sheet, and an adhesive (Penguin Cement # 1066) is applied to the plated steel sheet to have an adhesive area of 12.5 x 25 mm, then bonded and baked at 120 ° C. for 45 minutes. A test piece for evaluating adhesiveness was prepared. The adhesive strength was measured by a tensile shear test using this sample.
  • the comparative example in which the chemical composition of the plating layer was out of the range of the present invention or the production method was not preferable a preferable oxide film could not be obtained and the adhesiveness was inferior.
  • the adhesiveness was inferior even in the comparative example using a commercially available alloyed hot-dip galvanized steel sheet.
  • Hot stamped body Base material 3
  • Plating layer 4 Oxide film 11 Mg, Ca-containing oxide 12 Al-containing oxide

Abstract

このホットスタンプ成形体は、母材と前記母材の表面に形成されためっき層と前記めっき層の表面に形成された酸化物皮膜とを備え、前記めっき層の化学組成が、質量%で、Al:20.00~45.00%、Fe:10.00~45.00%、Mg:4.50~15.00%、Si:0.10~3.00%、Ca:0.05~3.00%、Sb:0~0.50%、Pb:0~0.50%、Cu:0~1.00%、Sn:0~1.00%、Ti:0~1.00%、Sr:0~0.50%、Cr:0~1.00%、Ni:0~1.00%、Mn:0~1.00%を含み、残部がZnおよび不純物であり、前記酸化物皮膜の化学組成が、原子%で、Mg:20.0~55.0%、Ca:0.5~15.0%、Zn:0~15.0%、Al:0%以上、10.0%未満を含み、残部がO及び合計5.0%以下の不純物からなり、前記酸化物皮膜の片面付着量が、0.01~10g/mである。

Description

ホットスタンプ成形体
 本発明は、ホットスタンプ成形体に関する。
 本願は、2019年08月29日に、日本に出願された特願2019-157206号に基づき優先権を主張し、その内容をここに援用する。
 近年、環境保護及び地球温暖化の防止のために、化学燃料の消費を抑制することが要請されている。このような要請は、例えば、移動手段として日々の生活や活動に欠かせない自動車についても例外ではない。このような要請に対し、自動車では、車体の軽量化などによる燃費の向上等が検討されている。自動車の構造の多くは、鉄、特に鋼板により形成されているので、この鋼板を薄くして重量を低減することが、車体の軽量化にとって効果が大きい。しかしながら、単純に鋼板の厚みを薄くして鋼板の重量を低減すると、構造物としての強度が低下し、安全性が低下することが懸念される。そのため、鋼板の厚みを薄くするためには、構造物の強度を低下させないように、使用される鋼板の機械的強度を高くすることが求められる。
 よって、鋼板の機械的強度を高めることにより、以前使用されていた鋼板より薄くしても機械的強度を維持又は高めることが可能な鋼板について、研究開発が行われている。このような鋼板に対する要請は、自動車製造業のみならず、様々な製造業でも同様になされている。
 一般的に、高い機械的強度を有する材料は、曲げ加工等の成形加工において、形状凍結性が低い傾向にあり、複雑な形状に加工する場合、加工そのものが困難となる。この成形性についての問題を解決する手段の一つとして、いわゆる「熱間プレス方法(ホットスタンプ法、高温プレス法、ダイクエンチ法)」が挙げられる。この熱間プレス方法では、成形対象である材料を一旦高温に加熱して、加熱により軟化した材料に対してプレス加工を行って成形した後に、または成形と同時に、冷却する。
 この熱間プレス方法によれば、材料を一旦高温に加熱して軟化させ、材料が軟化した状態でプレス加工するので、材料を容易にプレス加工することができる。従って、この熱間プレス加工により、良好な形状凍結性と高い機械的強度とを両立したプレス成形品が得られる。特に材料が鋼の場合、成形後の冷却による焼入れ効果により、プレス成形品の機械的強度を高めることができる。
 しかしながら、この熱間プレス方法を鋼板に適用した場合、例えば800℃以上の高温に加熱することにより、表面の鉄などが酸化してスケール(酸化物)が発生する。従って、熱間プレス加工を行った後に、このスケールを除去する工程(デスケーリング工程)が必要となり、生産性が低下する。また、耐食性を必要とする部材等では、加工後に部材表面へ防錆処理や金属被覆をする必要があるので、表面清浄化工程、表面処理工程が必要となり、やはり生産性が低下する。
 このような生産性の低下を抑制する方法の例として、ホットスタンプ前の鋼板にめっき等の被覆を施すことで、耐食性を高めるとともに、デスケーリング工程を省略することが考えられている。
 このようなめっき鋼材として、例えば、特許文献1には、鋼板表面に、Al:20~95質量%、Ca+Mg:0.01~10質量%、およびSiを含有するAl-Zn系合金めっき層を有することを特徴とする熱間プレス用めっき鋼板が開示されている。特許文献1によれば、熱間プレス前の加熱時にスケールの生成が抑制され、かつ熱間プレス時に金型にめっきが凝着することなく、また、得られる熱間プレス部材は、外観が良好であり、優れた塗装密着性や耐食性を有すると開示されている。
 また、特許文献2には、ホットプレスによって部品に成形するために提供され、かつその上に腐食から保護するためにZn又はZn合金で形成される金属保護コーティングが塗布されている鋼から成る基層を有する鋼板製品において、前記鋼板製品の自由表面の少なくとも1つに、卑金属の酸化物、窒化物、硫化物、炭化物、水和物又はリン酸塩化合物を含む個別のカバー層が塗布されていることを特徴とする鋼板製品が開示されている。
 また、特許文献3には、鋼材表面に、Al-Fe合金層とZn-Mg-Al合金層とを含むめっき層が備えられた、耐食性を飛躍的に向上しためっき鋼材が開示されている。
 上述のような鋼材がホットスタンプされて得られる部材は自動車部品に適用されることが多く、自動車部品として適用される場合、部材には一般に接着接合が施される。しかしながら、特許文献1~特許文献3では、ホットスタンプ成形体の接着性については何ら検討されていない。
 本発明者らが検討した結果、AlやZnを含むめっき層を有する鋼板にホットスタンプを行って得られた部材に、自動車用として一般的な接着接合を行う場合、接着性(接着耐久性)を確保できない場合があることが分かった。
日本国特開2012-112010号公報 日本国特表2014-514436号公報 日本国特開2017-66459号公報
 本発明は上記の課題に鑑みてなされた。本発明は、優れた接着性を発現するホットスタンプ成形体を提供することを課題とする。
 本発明者らは、溶融Zn-Al-Mgめっき鋼板のめっき層の組成バランスと製造時の条件とを制御して、接着性向上に寄与する酸化物皮膜を表面に形成することで、接着性に優れたホットスタンプ成形体が得られることを知見した。
 本発明は上記知見に基づいて完成され、その要旨は以下の通りである。
 (1)本発明の一態様に係るホットスタンプ成形体は、鋼からなる母材と、前記母材の表面に形成されためっき層と、前記めっき層の表面に形成された酸化物皮膜と、を備え、前記めっき層の化学組成が、質量%で、Al:20.00~45.00%、Fe:10.00~45.00%、Mg:4.50~15.00%、Si:0.10~3.00%、Ca:0.05~3.00%、Sb:0~0.50%、Pb:0~0.50%、Cu:0~1.00%、Sn:0~1.00%、Ti:0~1.00%、Sr:0~0.50%、Cr:0~1.00%、Ni:0~1.00%、Mn:0~1.00%、を含み、残部がZnおよび不純物であり、前記酸化物皮膜の化学組成が、原子%で、Mg:20.0~55.0%、Ca:0.5~15.0%、Zn:0~15.0%、Al:0%以上、10.0%未満を含み、残部がO及び合計5.0%以下の不純物からなり、前記酸化物皮膜の片面付着量が、0.01~10g/mである。
(2)上記(1)に記載のホットスタンプ成形体は、前記めっき層の前記化学組成が、質量%で、Al:25.00~35.00%、Mg:6.00~10.00%、の1種または2種を含有してもよい。
(3)上記(1)または(2)に記載のホットスタンプ成形体は、前記酸化物皮膜の前記化学組成が、原子%で、Mg:35.0~55.0%、を含有してもよい。
 本発明の上記態様によれば、優れた接着性を発現するホットスタンプ成形体を提供することができる。
本実施形態に係るホットスタンプ成形体を示す模式図である。 本実施形態に係るホットスタンプ成形体の酸化物皮膜の一例を示す図である。 実施例No.11(比較例)のホットスタンプ成形体の酸化物皮膜の一例を示す図である。
 本発明の一実施形態に係るホットスタンプ成形体(本実施形態に係るホットスタンプ成形体)について、図面を参照しながら説明する。
 図1を参照し、本実施形態に係るホットスタンプ成形体1は、鋼からなる母材2と、母材2の表面に形成されためっき層3と、めっき層3の表面に形成された酸化物皮膜4とを備える。図1では、めっき層3と酸化物皮膜4とは母材2の片面にのみ形成されているが、両面に形成されていてもよい。
<母材>
 母材2は、鋼からなる。母材2は、例えば鋼板をホットスタンプして得られるホットスタンプ部材である。そのため、図1では、板形状をしているが、その形状は限定されない。
 また、本実施形態に係るホットスタンプ成形体1は、めっき層3及び酸化物皮膜4が重要であり、母材2の化学組成等については特に限定されない。母材2は、適用される製品や要求される強度や板厚等によってめっき、ホットスタンプに供する鋼を決定すればよい。例えば、母材としては、JIS G3193:2008に記載された熱延鋼板やJIS G3141:2017に記載された冷延鋼板を用いることができる。
<めっき層>
[化学組成]
 以下、めっき層の化学組成に関する%は、断りがない限り質量%である。
Al:20.00~45.00%
 Alは、めっき層3の耐食性を向上させるために必須な元素である。また、Al含有量が20.00%未満であると、ホットスタンプ時にめっき層の最表面へのCaの供給源となるCaとAlとを主体とした金属間化合物が生成できなくなる。その結果、ZnやMgが蒸発し、接着性を低下させるMgO、ZnOがめっき層の表面に形成され、接着性が低下する。そのため、Al含有量を20.00%以上とする。好ましくは25.00%以上である。
 一方、Al含有量が45.00%を超えると、接着性を低下させるAl等のAl系酸化物が形成されるので、接着性が低下する。そのため、Al含有量を45.00%以下とする。好ましくは35.00%以下である。
Fe:10.00~45.00%
 ホットスタンプ時に、めっき鋼板を加熱すると、Feが母材2からめっき層3に拡散するので、ホットスタンプ成形体1のめっき層3には必ずFeが含まれる。
 Fe含有量が10.0%未満である場合、スポット溶接性、および溶着性が悪化する傾向にあるので、Fe含有量を、10.00%以上とする。
 一方、Fe含有量が高すぎる場合、耐食性が悪化する傾向にあるので、Fe含有量を、45.00%以下とする。
Mg:4.50~15.00%
 Mgは、めっき層3の耐食性の向上に寄与する元素である。また、Mgは、ホットスタンプの加熱時に、めっき層3中のZn成分と結合して液相Znの発生を防止するので、LME割れを抑制する効果も有する。また、本実施形態に係るホットスタンプ成形体1では、Mgは酸化物皮膜4を形成し、接着性を向上させる元素である。これらの効果を得るため、Mg含有量を4.50%以上とする。Mg含有量が4.50%未満であると、酸化物皮膜4に接着性を低下させるAl系酸化物が増加する。Mg含有量は好ましくは6.00%以上である。
 一方、Mg含有量が15.00%を超えると、過度に犠牲防食が働き、めっき層3の耐食性が低下する傾向がある。また、酸化物皮膜4が脆化して接着性が低下する。そのため、Mg含有量を15.00%以下とする。好ましくは10.00%以下である。
Si:0.10~3.00%
 Siは、Mgとともに化合物を形成して、耐食性の向上に寄与する元素である。また、Si含有量が0.10%未満では、ホットスタンプ時にZnやMgが蒸発し、接着性を低下させるMgO、ZnOが表面に形成されるので、接着性が低下する。そのため、Si含有量を0.10%以上とする。
 一方、Si含有量が3.00%を超えてもホットスタンプ時にZnやMgが蒸発し、接着性を低下させるMgO、ZnOが表面に形成されるので、接着性が低下する。そのため、Si含有量を3.00%以下とする。
Ca:0.05~3.00%
 CaはMgとともに酸化物皮膜4に含有されると、接着性を高める元素である。Ca含有量が0.05%未満では、ホットスタンプ時にZnやMgが蒸発し、接着性を低下させるMgO、ZnOが表面に形成されるので、接着性が低下する。そのため、Ca含有量を0.05%以上とする。
 一方、Ca含有量が3.00%を超えても、ホットスタンプ時にZnやMgが蒸発し、接着性を低下させるMgO、ZnOが表面に形成されるので、接着性が低下する。そのため、Ca含有量を3.00%以下とする。
 本実施形態に係るホットスタンプ成形体1のめっき層3は、上記の元素を含有し、残部がZn及び不純物からなることを基本とする。
 しかしながら、めっき層3は、上記の元素に加えて、Sb、Pb、Cu、Sn、Ti、Sr、Cr、Ni、Mnを下記の範囲で含有してもよい。これらの元素は必ずしも含有する必要がないので、下限は0%である。また、これらの元素の合計含有量は、5.00%以下であることが好ましい。
Sb:0~0.50%
Pb:0~0.50%
Cu:0~1.00%
Sn:0~1.00%
Ti:0~1.00%
 Sb、Pb、Cu、SnおよびTiは、めっき層3中でZnと置換され、MgZn相内で固溶体を形成するが、所定の含有量の範囲内であれば、ホットスタンプ成形体1の特性に悪影響を及ぼさない。よって、これらの元素がめっき層3中に含まれていてもよい。しかしながら、それぞれの元素の含有量が過剰な場合、ホットスタンプの加熱時に、これらの元素の酸化物が析出し、ホットスタンプ成形体1の表面性状が悪化して接着性が低下する傾向がある。また、Pb、Snの含有量が過剰な場合には、溶着性および耐LME性も劣化する。
 そのため、SbおよびPbの含有量は、それぞれ0.50%以下、Cu、SnおよびTiの含有量はそれぞれ1.00%以下とする。SbおよびPbの含有量は0.20%以下とするのが好ましく、Cu、SnおよびTiの含有量は、0.80%以下が好ましく、0.50%以下がより好ましい。
Sr:0~0.50%
 Srは、製造時にめっき浴上に形成されるトップドロスの生成を抑制するために有効な元素である。また、Srは、ホットスタンプの熱処理時に、大気酸化を抑制するので、熱処理後のめっき鋼板の色変化を抑制する元素である。そのため、Srを含有させてもよい。上記の効果を得るためには、Sr含有量は0.05%以上とするのが好ましい。
 一方、Srは、含有量が過剰な場合、腐食試験において塗膜膨れ幅および流れ錆に悪影響を与える。そのため、Sr含有量は0.50%以下とする。Sr含有量は、0.30%以下とするのが好ましく、0.10%以下とするのがより好ましい。
Cr:0~1.00%
Ni:0~1.00%
Mn:0~1.00%
 Cr、NiおよびMnは、めっき鋼板においては、めっき層と母材との界面付近に濃化し、めっき層表面のスパングルを消失させるなどの効果を有する。よって、Cr、NiおよびMnから選択される一種以上が、めっき層中に含まれていてもよい。これらの効果を得る場合、Cr、NiおよびMnの含有量は、それぞれ0.01%以上とするのが好ましい。
 一方、これらの元素の含有量が過剰な場合、塗膜膨れ幅および流れ錆が大きくなり、耐食性が悪化する傾向にある。よって、Cr、NiおよびMnの含有量は、それぞれ1.00%以下とする。Cr、NiおよびMnの含有量は、それぞれ、0.50%以下とするのが好ましく、0.10%以下とするのがより好ましい。
 めっき層の化学組成は、以下のように測定する。
 めっき層の平均組成は、めっき層を溶解して剥離した後、誘導結合プラズマ発光(ICP)分析法により、剥離されためっき層に含まれる元素の含有量を分析することで測定する。めっき層の剥離は、例えば、地鉄の腐食を抑制するインヒビター(酸洗抑制防止剤:朝日化学製)を加えた10%塩酸に浸漬し、発泡が停止したところを溶解完了と判断すればよい。
 めっき層の組織は限定されないが、例えばFe-Al相、Zn-Mg相、Zn-Al-Mg相を含んでいる。また、めっき層の付着量は限定されないが、10~120g/mが好ましい。めっき層の付着量は、上述の方法でめっき層を室温で溶解し、溶解前後の重量変化から求めることができる。
<酸化物皮膜>
[原子%で、Mg:20.0~55.0%、Ca:0.5~15.0%、Zn:0~15.0%、Al:0%以上、10.0%未満、を含み、残部は、O及び合計5.0%以下の不純物からなる]
 通常、Alを含むめっき層を有する鋼材をホットスタンプして得られたホットスタンプ成形体の表面(めっき層の表面)には、主としてAlからなる酸化物が形成される。この酸化物皮膜は接着性を低下させる。
 これに対し、本実施形態に係るホットスタンプ成形体1では、後述するような方法でめっきを行ってその凝固組織を制御することで、その後のホットスタンプ時に、ZnやMgの蒸発が抑制されるとともに、鋼材の表面に、Ca、Mgを主体とする酸化物皮膜4が形成される。この酸化物皮膜は接着性に優れる。
 酸化物皮膜中のMg含有量が20.0%未満であると、酸化物中にAlが多く含有されることとなって接着性が低下する。また、Mg含有量が55.0%超であると、かえって接着剤と酸化物との密着性が低下することとなって接着性が低下する。
 また、酸化物皮膜中のCa含有量が0.5%未満であると、酸化物そのものの強度が低下する結果となって接着性が低下する。また、Ca含有量が15.0%超であると、かえって接着剤と酸化物との密着性が低下することとなって接着性が低下する。
 また、酸化物皮膜4にZnが15.0%超含まれると、接着性が大きく低下する。そのため、Zn含有量を15.0%以下とする。また、酸化物皮膜4にAlが10.0%以上含まれると、接着性が大きく低下する。そのため、Al含有量を10.0%未満とする。Zn及びAlは含まれなくてもよい。
 酸化物皮膜4の化学組成の残部は、O及び合計5.0%以下の不純物からなる。
 不純物元素が5.0%超であると十分な接着性が得られなくなる。不純物としては、例えば、Fe、Si、Cである。
 図2に本実施形態に係るホットスタンプ成形体の表面に形成された酸化物皮膜の代表的なSEM観察画像の一例を示す。図2に示すように、本実施形態に係るホットスタンプ成形体1の酸化物皮膜4は、主としてMg、Caを含有する酸化物11であり、酸化物のAl含有量は10.0%未満である。この酸化物は、結晶粒径が、短径で1~10μmである。
 酸化物皮膜の化学組成は、めっき層は溶解せず酸化物皮膜のみを溶解する薬剤、例えば、20%クロム酸で溶解し、皮膜が溶解した溶液をICP分析し、酸化物皮膜の平均組成を測定することで得られる。
[片面付着量]
 酸化物皮膜の片面付着量が、0.01~10g/mである
 酸化物皮膜の片面付着量が0.01g/m未満では、接着性の向上効果が十分に得られない。一方、片面付着量が10g/mを超えると曲げ加工などを受けた際に酸化物層内で亀裂が生じ、これも接着性の低下(剥離)の原因となる。そのため、片面付着量を0.01~10g/mとする。
 片面付着量を溶解する方法で求める場合、測定する面以外の、反対側の面及び端面をテープでシールして、溶解液に浸漬することで測定面のみの剥離液を得て、溶解前後の重量変化から求めることができる。
<製造方法>
 本実施形態に係るホットスタンプ成形体は、製造方法に依らず、上記の特徴を有していればその効果が得られる。しかしながら、以下の工程を含む製造方法によれば安定して製造することができるので好ましい。
 すなわち、本実施形態に係るホットスタンプ成形体は、
(I)鋼材をめっき浴に浸漬してめっき層を有するめっき鋼材を得るめっき工程と、
(II)めっき工程後のめっき鋼材にホットスタンプを行うホットスタンプ工程と、
を備え、
(III)めっき工程において、めっき浴浸漬後の冷却過程で、浴温~450℃の平均冷却速度を10℃/秒以上とし、450~350℃の平均冷却速度を7℃/秒以下とし、350~150℃の平均冷却速度を4℃/秒以下とするように、室温まで冷却する、
製造方法によって得ることができる。
<めっき工程>
[めっき浴への浸漬]
 めっき工程では、原板となる鋼板等の鋼材を、めっき浴に浸漬することで、表面にめっき層を形成させる。
 めっき浴への浸漬の条件については特に限定されない。例えば、600~940℃でめっき原板の表面を加熱還元処理し、Nガスで空冷して鋼材の温度が浴温+20℃に到達した後、500~750℃の浴温のめっき浴に約0.2~6秒浸漬する。
 浸漬時間が、0.2秒未満では、めっき層が十分に形成されない場合がある。一方、浸漬時間が6秒超では、めっき層と鋼材が過剰に合金化し、めっき層中に多量のFeが含有されることとなる。過剰のFeがめっき層に含有された場合、ホットスタンプの加熱中にZn及びMgの蒸発を抑制することが困難となる。そのため、浸漬時間が6秒超の場合には、所定の組成を有する酸化物皮膜が得られなくなり、ホットスタンプ成形体の接着性が低下する。
 めっき浴は目的とするめっき層3の組成に応じて、Zn、Al、Mg及びその他の元素を含むように設定すればよい。例えば、Al:30.00~75.00%、Mg:4.00~17.00%、Si:0.20~2.00%、を含み、必要に応じてめっき層に含有させたい任意元素を含み、残部がZnと不純物である。
[冷却]
浴温~450℃の平均冷却速度:10℃/秒以上
 本実施形態に係るホットスタンプ成形体の製造方法では、めっき浴からめっき鋼材を引き上げた後、450℃までの温度域の平均冷却速度が10℃/秒以上となるように冷却する。この温度域での平均冷却速度を10℃/秒以上とすることで、めっき鋼材の表面にAl酸化物が形成されることを抑制できる。
450~350℃の平均冷却速度:7℃/秒以下
 上記冷却に引き続き、450℃~350℃の温度域の平均冷却速度が7℃/秒以下となるように冷却を行う。
 この温度域での冷却速度を低くして凝固組織を制御することで、引き続いて行われるホットスタンプ工程において、表面にAl含有量が少なく(10原子%以下)、Mg、Caを含む酸化物皮膜が形成される。その結果、ホットスタンプ成形体の接着性が向上する。
 また、亜鉛系のめっき層の場合、ホットスタンプによってZn(亜鉛)が蒸発することが懸念されるが、上記の通り制御された凝固組織では、詳細な機構は明らかでないものの、蒸気圧が高い元素であるZn及びMgの蒸発を抑制する効果を有するAl、Zn、CaならびにSiを含有する金属間化合物がめっき層の表面近傍に優先的に生成することで、引き続き行われるホットスタンプの加熱時のZn及びMgの蒸発を抑制することができる。
350~150℃の平均冷却速度:4℃/秒以下
 上記冷却に引き続き、350℃~150℃の平均冷却速度を4℃/秒以下とすると、凝固組織に含有されるAlとZnとの固溶体がAl相とZn相に分離することでめっき層の融点が低下し、Al、Zn、CaならびにSiを含有する金属間化合物がホットスタンプ加熱中に溶融状態にあるめっき層の表面に移動しやすくなる。その結果として、より効率的にZn及びMgの蒸発を抑制することが可能となり、MgとCaとを含有した酸化物皮膜の効率的な形成が可能となる。
 ただし、350℃~150℃の平均冷却速度が4℃/秒以下であっても、一部の温度域の冷却速度が速いと好ましい金属組織が得られなくなる。そのため、350℃~150℃の平均冷却速度が4℃/秒以下であって、350℃~250℃の平均冷却速度が4℃/秒以下、かつ250~150℃の平均冷却速度が4℃/秒以下であることが好ましい。
<ホットスタンプ工程>
 めっき工程後のめっき鋼材(母材とその表面上に形成されためっき層とを有する鋼材)にホットスタンプを行う。
 ホットスタンプの条件は限定されないが、例えば、750~1200℃に加熱し、0~8分保持した後、室温程度の温度にある平板金型でめっき鋼板を挟み込んで急冷する方法が挙げられる。
 上記の製造方法によれば、本実施形態に係るホットスタンプ成形体を得ることができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1~表3に本発明で開示する実施例を示す。種々のZn-Al-Mg系めっき浴を建浴し、ホットスタンプ加熱に供した。めっき原板には、板厚1.6mmの鋼板(C:0.2%、Mn:1.3%を含む)を用いた。原板を100mm×200mmに切断した後、自社製のバッチ式の溶融めっき試験装置でめっきを施した。板温はめっき原板中心部にスポット溶接した熱電対を用いて測定した。
 めっき浴浸漬前、酸素濃度20ppm以下の炉内においてN-5%Hガス雰囲気にて800℃でめっき原板表面を加熱還元処理し、Nガスで空冷して浸漬板温度が浴温+20℃に到達した後、表2に示す浴温のめっき浴に約3秒浸漬した。めっき浴浸漬後、引上速度20~200mm/秒で引上げた。
 引上げ時、Nワイピングガスでめっき付着量を表2のように制御した。めっき浴から鋼板を引上げた後、表2に示す条件でめっき浴温から室温まで冷却した。
 作製しためっき鋼板に対し、ホットスタンプ加熱と金型急冷とを施した。加熱条件は、900℃の加熱炉中にめっき鋼板を挿入し、めっき鋼板の温度が炉内温度-10℃に到達してから0~8分保定した後、室温程度の温度にある平板金型でめっき鋼板を挟み込み急冷することで成形品を作製した。
 上述した方法で調査した結果、ホットスタンプ後のめっき層の化学組成は、表1に示す通りであった。
 No.31については、市販の合金化溶融亜鉛めっき鋼板を用いてホットスタンプを行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<酸化物皮膜の評価>
 ホットスタンプ加熱中に形成された酸化物の状態を調査するため、作製したサンプルを20%クロム酸で溶解し、酸化物皮膜が溶解した溶液をICP分析し、酸化物皮膜の平均組成を測定した。また、溶解前後の重量変化から片面当たり付着量を測定したところ、酸化物皮膜の片面付着量は、No.31を除いていずれも0.01~10g/mであった。
 酸化物皮膜の分析結果を表2に示す。
 また、ホットスタンプ後のサンプルを25mm(C方向)×15mm(L方向)に切断し、SEMを用いて、サンプル表面の酸化物皮膜の形状について観察を行った。本発明例のホットスタンプ成形体の酸化物皮膜は、Mg、Ca含有酸化物からなり、結晶粒径が短径で1~10μmであった。例えば、図2は、表1~表3中、No.10のSEM像(BSE像)である。
 一方、図3は、実施例No.11(比較例)のSEM像(BSE像)である。No.11では、粗大なAl含有酸化物12が観察された。
<接着性>
 以下の方法で接着性を評価した。
 ホットスタンプ後のめっき鋼板から100×25mmのサンプルを2枚採取し、接着剤(ペンギンセメント#1066)を接着面積が12.5×25mmとなる塗布した後に張り合わせ、120℃で45分間焼き付けることで接着性評価用の試験片を作製した。この、サンプルを用いて引張せん断試験で接着強度を測定した。引張速度5mm/min、チャック間距離112.5mmの引張せん断試験に供し、得られた応力ひずみ曲線における最大応力を接着強度とし、接着強度が高いほど接着性に優れるとした。
 接着強度が30~25MPaの場合を「AA」、25未満~20MPaの場合を「A」、20未満~15MPaの場合を「B」とした。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明例であるNo.3、5~10、17~20、23~26、28、29は、本発明で開示するMgとCaとを含有する酸化物皮膜がZn-Al-Mg系めっき相の上に得られ、優れた接着性を示していた。
 一方、めっき層の化学組成が本発明範囲外、または、製造方法が好ましくなかった比較例では、好ましい酸化物皮膜が得られず、接着性が劣位であった。
 また、市販の合金化溶融亜鉛めっき鋼板を用いた比較例でも接着性は劣位であった。
  1 ホットスタンプ成形体
  2 母材
  3 めっき層
  4 酸化物皮膜
  11 Mg、Ca含有酸化物
  12 Al含有酸化物

Claims (3)

  1.  鋼からなる母材と、
     前記母材の表面に形成されためっき層と、
     前記めっき層の表面に形成された酸化物皮膜と、
    を備え、
     前記めっき層の化学組成が、質量%で、
     Al:20.00~45.00%、
     Fe:10.00~45.00%、
     Mg:4.50~15.00%、
     Si:0.10~3.00%、
     Ca:0.05~3.00%、
     Sb:0~0.50%、
     Pb:0~0.50%、
     Cu:0~1.00%、
     Sn:0~1.00%、
     Ti:0~1.00%、
     Sr:0~0.50%、
     Cr:0~1.00%、
     Ni:0~1.00%、
     Mn:0~1.00%、
    を含み、残部がZnおよび不純物であり、
     前記酸化物皮膜の化学組成が、原子%で、
     Mg:20.0~55.0%、
     Ca:0.5~15.0%、
     Zn:0~15.0%、
     Al:0%以上、10.0%未満、
    を含み、残部がO及び合計5.0%以下の不純物からなり、
     前記酸化物皮膜の片面付着量が、0.01~10g/mである、
    ことを特徴とするホットスタンプ成形体。
  2.  前記めっき層の前記化学組成が、質量%で、
     Al:25.00~35.00%、
     Mg:6.00~10.00%、
    の1種または2種を含有することを特徴とする、
    請求項1に記載のホットスタンプ成形体。
  3.  前記酸化物皮膜の前記化学組成が、原子%で、
     Mg:35.0~55.0%、
    を含有することを特徴とする、
    請求項1または2に記載のホットスタンプ成形体。
PCT/JP2020/032646 2019-08-29 2020-08-28 ホットスタンプ成形体 WO2021039973A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2022002089A MX2022002089A (es) 2019-08-29 2020-08-28 Acero estampado en caliente.
US17/636,486 US11965250B2 (en) 2019-08-29 2020-08-28 Hot stamped steel
CN202080059400.3A CN114341379B (zh) 2019-08-29 2020-08-28 热冲压成形体
JP2021543049A JP7248930B2 (ja) 2019-08-29 2020-08-28 ホットスタンプ成形体
EP20855906.2A EP4023787A4 (en) 2019-08-29 2020-08-28 HOT STAMPING MOLDED BODY
KR1020227005207A KR102627829B1 (ko) 2019-08-29 2020-08-28 핫 스탬프 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-157206 2019-08-29
JP2019157206 2019-08-29

Publications (2)

Publication Number Publication Date
WO2021039973A1 true WO2021039973A1 (ja) 2021-03-04
WO2021039973A9 WO2021039973A9 (ja) 2022-03-10

Family

ID=74685956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032646 WO2021039973A1 (ja) 2019-08-29 2020-08-28 ホットスタンプ成形体

Country Status (7)

Country Link
US (1) US11965250B2 (ja)
EP (1) EP4023787A4 (ja)
JP (1) JP7248930B2 (ja)
KR (1) KR102627829B1 (ja)
CN (1) CN114341379B (ja)
MX (1) MX2022002089A (ja)
WO (1) WO2021039973A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163075A1 (ja) * 2022-02-22 2023-08-31 日本製鉄株式会社 めっき鋼材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180428A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 高強度焼き入れ成形体及びその製造方法
JP2012112010A (ja) 2010-11-26 2012-06-14 Jfe Steel Corp 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材
JP2017066459A (ja) 2015-09-29 2017-04-06 新日鐵住金株式会社 めっき鋼材
WO2018139620A1 (ja) * 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
WO2018221738A1 (ja) * 2017-06-02 2018-12-06 新日鐵住金株式会社 ホットスタンプ部材
JP2019157206A (ja) 2018-03-13 2019-09-19 三井E&S造船株式会社 油槽船原油タンクの防食方法および油槽船原油タンク用防食塗料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001140A1 (de) 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
KR20150073531A (ko) 2013-12-23 2015-07-01 주식회사 포스코 내식성 및 용접성이 우수한 열간 프레스 성형용 강판, 성형부재 및 그 제조방법
WO2017195269A1 (ja) * 2016-05-10 2017-11-16 新日鐵住金株式会社 ホットスタンプ成形体
TWI588293B (zh) 2016-05-10 2017-06-21 新日鐵住金股份有限公司 熱壓印成形體
RU2019134830A (ru) 2017-03-31 2021-04-30 Ниппон Стил Корпорейшн Горячештампованная заготовка
WO2019180852A1 (ja) 2018-03-20 2019-09-26 日本製鉄株式会社 ホットスタンプ成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180428A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 高強度焼き入れ成形体及びその製造方法
JP2012112010A (ja) 2010-11-26 2012-06-14 Jfe Steel Corp 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材
JP2017066459A (ja) 2015-09-29 2017-04-06 新日鐵住金株式会社 めっき鋼材
WO2018139620A1 (ja) * 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
WO2018221738A1 (ja) * 2017-06-02 2018-12-06 新日鐵住金株式会社 ホットスタンプ部材
JP2019157206A (ja) 2018-03-13 2019-09-19 三井E&S造船株式会社 油槽船原油タンクの防食方法および油槽船原油タンク用防食塗料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163075A1 (ja) * 2022-02-22 2023-08-31 日本製鉄株式会社 めっき鋼材
JP7381984B1 (ja) 2022-02-22 2023-11-16 日本製鉄株式会社 めっき鋼材
TWI830609B (zh) * 2022-02-22 2024-01-21 日商日本製鐵股份有限公司 鍍敷鋼材

Also Published As

Publication number Publication date
KR20220035208A (ko) 2022-03-21
US20220298646A1 (en) 2022-09-22
KR102627829B1 (ko) 2024-01-23
JP7248930B2 (ja) 2023-03-30
EP4023787A4 (en) 2022-10-12
JPWO2021039973A1 (ja) 2021-03-04
WO2021039973A9 (ja) 2022-03-10
CN114341379A (zh) 2022-04-12
US11965250B2 (en) 2024-04-23
EP4023787A1 (en) 2022-07-06
CN114341379B (zh) 2022-10-25
MX2022002089A (es) 2022-03-17

Similar Documents

Publication Publication Date Title
JP6836600B2 (ja) ホットスタンプ部材
JP6813133B2 (ja) アルミめっき鋼板、ホットスタンプ部材及びホットスタンプ部材の製造方法
CA3020663C (en) Hot stamped steel
WO2012053694A1 (ko) 도금성, 도금 밀착성 및 스폿 용접성이 우수한 용융아연도금강판 및 그 제조방법
CN115461488B (zh) 热冲压成形体
WO2021039971A1 (ja) ホットスタンプ成形体
JP2005272967A (ja) めっき欠陥の少ない溶融Al系めっき鋼板の製造方法
WO2021039973A1 (ja) ホットスタンプ成形体
CN114945698B (zh) 镀覆钢材
JP4720618B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
JP7440771B2 (ja) ホットスタンプ成形体
JP5320899B2 (ja) めっき密着性に優れた合金化溶融亜鉛めっき鋼板
CN115461487B (zh) 热冲压成形体
WO2023135982A1 (ja) めっき鋼板
WO2022154082A1 (ja) めっき鋼材
JP2005336545A (ja) 合金化溶融亜鉛めっき用鋼板
JP5644059B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
CN117136252A (zh) 热压成型用镀覆钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543049

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227005207

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855906

Country of ref document: EP

Effective date: 20220329