WO2017195269A1 - ホットスタンプ成形体 - Google Patents

ホットスタンプ成形体 Download PDF

Info

Publication number
WO2017195269A1
WO2017195269A1 PCT/JP2016/063856 JP2016063856W WO2017195269A1 WO 2017195269 A1 WO2017195269 A1 WO 2017195269A1 JP 2016063856 W JP2016063856 W JP 2016063856W WO 2017195269 A1 WO2017195269 A1 WO 2017195269A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
layer
base material
average
mass
Prior art date
Application number
PCT/JP2016/063856
Other languages
English (en)
French (fr)
Inventor
晃大 仙石
浩史 竹林
幸司 秋岡
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to RU2018138732A priority Critical patent/RU2710813C1/ru
Priority to CA3020663A priority patent/CA3020663C/en
Priority to JP2018516244A priority patent/JP6566128B2/ja
Priority to BR112018071451A priority patent/BR112018071451A2/pt
Priority to PCT/JP2016/063856 priority patent/WO2017195269A1/ja
Priority to EP16901618.5A priority patent/EP3456854A4/en
Priority to US16/097,771 priority patent/US20190160507A1/en
Priority to KR1020187031574A priority patent/KR20180131589A/ko
Priority to CN201680085368.XA priority patent/CN109072396A/zh
Priority to MX2018013464A priority patent/MX2018013464A/es
Publication of WO2017195269A1 publication Critical patent/WO2017195269A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot stamping molded body.
  • Structural members used in automobiles and the like are sometimes manufactured by hot stamping (hot pressing) in order to increase both strength and dimensional accuracy.
  • hot stamping hot pressing
  • the steel material for hot stamping is heated to Ac 3 or more, and the steel material for hot stamping is rapidly cooled while being pressed with a mold. That is, in the manufacturing, pressing and quenching are performed simultaneously. According to the hot stamp, it is possible to produce a molded article with high dimensional accuracy and high strength.
  • Patent Document 1 discloses a hot-pressed plated steel sheet on which a Zn plating layer is formed
  • Patent Document 2 discloses an automotive member plated steel sheet on which an Al plating layer is formed
  • Patent Literature 3 discloses a Zn-plated steel sheet for hot pressing in which various elements such as Mn are added to the plated layer of the Zn-plated steel sheet.
  • these plated steel sheets have the following problems.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot stamping molded article excellent in fatigue characteristics, phosphate treatment properties, coating film adhesion and weldability.
  • the gist of the present invention is as follows.
  • a hot stamping molded body includes a base material; a plating layer, and the plating layer includes an interface layer and an intermediate layer in order from the base material side to the surface side.
  • the oxide layer, and the interface layer includes ⁇ Fe, Fe 3 Al, and FeAl having a total structure of 99% by area or more, and an average Al content is 8.0% by mass or more and 32.5% by mass.
  • the average Zn content is limited to more than 5% by mass of Zn content of the base material, the remainder of the chemical component contains Fe and impurities, and the average film thickness is 1.0 ⁇ m or more
  • the intermediate layer includes Fe (Al, Zn) 2 and Fe 2 (Al, Zn) 5 having a total structure of 99 area% or more, an average Al content of 30 to 50% by mass, and an average Zn content The amount is 10 to 40% by mass, and the balance of the chemical components contains Fe and impurities.
  • the average film thickness is 5.0 ⁇ m or more, and the oxide layer has an average film thickness of 0.1 to 3.0 ⁇ m.
  • the interface layer may have an average film thickness of 1.0 to 10.0 ⁇ m.
  • the plating layer further includes an average of more than 0 mass% and 10.0 mass% or less of Si, and the intermediate layer In the above, 0 to 50 area% of the Fe (Al, Zn) 2 and the Fe 2 (Al, Zn) 5 may be substituted with Fe (Al, Si).
  • the alloy form of the plating layer, the amount of Al and Zn in the specific layer in the plating layer, and the thickness of the oxide formed as the outermost layer of the plating layer are improved. Yes.
  • the fatigue property improvement of the molded product based on the suppression of the occurrence of LME, the improvement of the phosphate treatment property of the molded product, and the improvement of the coating film adhesion thereby All of the improvement of the weldability of the molded body can be achieved.
  • FIG. 2 is an example of a cross-sectional SEM image showing a processed part of a molded body obtained by subjecting an Al—Zn-based plated steel material to hot V bending immediately after heating under the conditions of Example 1.
  • FIG. It is an example of the cross-sectional SEM image which shows the process part of a molded object which carried out the hot V bending process immediately after heating Zn type plated steel materials on the conditions of Example 1.
  • FIG. It is an example of the cross-sectional SEM image which shows the process part of the molded object which carried out the hot V bending process immediately after heating Al type plated steel materials on the conditions of Example 1.
  • FIG. 6 shows the surface of a molded body when an Al—Zn-based plated steel material is rapidly cooled while being processed with a flat plate mold equipped with a water-cooling jacket immediately after being heated under the conditions of Example 1 and then subjected to phosphate treatment. It is an example of a SEM image (secondary electron image).
  • a hot stamping molded body means what is obtained by performing hot stamping (hot pressing) on a plated steel material for hot stamping.
  • the hot stamped molded body may be simply referred to as “formed body”, and the hot stamped plated steel material may be simply referred to as “steel material” or “plated steel material”.
  • the present inventors examined the fatigue properties (LME resistance) and phosphate treatment properties of hot stamped bodies (Al—Zn-based plated steel materials, Zn-based plated steel materials, and Al-based plated steel materials).
  • the inventors of the present invention have, in order from the base material side to the surface side, the plating layer of the hot stamp molded body includes an interface layer, an intermediate layer, and an oxide layer. Includes a total of 99 area% or more of ⁇ Fe, Fe 3 Al, and FeAl, and the Al content is in the range of 8.0 mass% to 32.5 mass% and decreases as the base material is approached.
  • the Zn content is limited to 5% by mass or less, the remainder of the chemical component contains Fe and impurities, the average film thickness is 1.0 ⁇ m or more, and the intermediate layer has Fe ( Al, Zn) 2 and Fe 2 (Al, Zn) containing 5, 30 to 50 mass% average Al content is 10 to 40 mass% average Zn content, the remainder of the chemical composition of Fe And an impurity, and the average film thickness is 5.0 ⁇ m or more Ri, the oxide layer, when the average film thickness is 0.1 ⁇ m or more 3.0 ⁇ m or less, to obtain a knowledge of the fatigue properties and phosphating of hot stamping member are both good, and.
  • the average film thickness means an average value of the maximum film thickness and the minimum film thickness of a target layer (film).
  • the hot stamp molded body 1 includes a base material 10 and a plating layer 20.
  • base_material of the hot stamping molded object which concerns on this embodiment is demonstrated.
  • the improvement of the LME resistance and the phosphate treatment property, which is a problem of the hot stamped article according to the present embodiment, is realized by the configuration of the plating layer. Therefore, the base material of the hot stamp molded body according to the present embodiment is not particularly limited. However, when the component of the base material is within the range described below, in addition to LME resistance and phosphate treatment property, a molded body having suitable mechanical properties can be obtained.
  • the unit “%” of the content of alloy elements contained in the base material means “mass%”.
  • C preferably 0.05 to 0.40%
  • the strength of the hot stamped molded body is increased.
  • the C content of the base material exceeds 0.40%, the toughness of the base material of the molded body may be insufficient. Therefore, the C content of the base material may be 0.05 to 0.40%.
  • a more preferable lower limit of the C content of the base material is 0.10%, and a still more preferable lower limit is 0.13%.
  • a more preferable upper limit of the C content of the base material is 0.35%.
  • Si (Si: preferably 0.5% or less)
  • Si has the effect of deoxidizing steel.
  • the Si content of the base material may be 0.5% or less.
  • the upper limit value of the Si content of the base material is preferably 0.3%, and the upper limit value of the Si content of the base material is more preferably 0.2%.
  • a more preferable lower limit value of the Si content of the base material can be determined according to a required deoxidation level, for example, 0.05%.
  • Mn manganese (Mn: preferably 0.5 to 2.5%)
  • Mn content of the base material may be 0.5 to 2.5%.
  • a more preferable lower limit value of the Mn content of the base material is 0.6%, and a more preferable lower limit value is 0.7%.
  • a more preferable upper limit value of the Mn content of the base material is 2.4%, and an even more preferable lower limit value is 2.3%.
  • Phosphorus (P) is an impurity contained in steel.
  • the P contained in the base material may segregate at the crystal grain boundaries of the base material to reduce the toughness of the base material of the molded body, and may reduce the delayed fracture resistance of the base material. Therefore, the P content of the base material may be 0.03% or less. It is preferable to reduce the P content of the base material as much as possible.
  • S is an impurity contained in steel.
  • S contained in the base material may form sulfides, thereby reducing the toughness of the base material of the molded body and reducing the delayed fracture resistance of the base material. Therefore, the S content of the base material may be 0.01% or less. It is preferable to reduce the S content of the base material as much as possible.
  • Al content when used with respect to the base material of the molded body according to the present embodiment, this term means sol. It means the content of Al (acid-soluble Al).
  • Aluminum (Al) is generally used for the purpose of deoxidizing steel. However, when the Al content is high, the Ac 3 point of the steel material before hot stamping rises, and the heating temperature necessary for quenching of the steel rises during hot stamping, which is not desirable for hot stamping production. Therefore, the Al content of the base material may be 0.10% or less. A more preferable upper limit value of the Al content of the base material is 0.05%. A more preferable lower limit of the Al content of the base material is 0.01%.
  • N Nitrogen (N: preferably 0.01% or less) is an impurity contained in the steel.
  • N contained in the base material may form nitrides and reduce the toughness of the base material of the molded body. Further, N contained in the base material is combined with B to reduce the amount of solid solution B when B is contained in the base material in order to improve the hardenability of the steel material before hot stamping, and the hardenability of B. The improvement effect may be reduced. Therefore, the N content of the base material may be 0.01% or less. It is preferable to reduce the N content of the base material as much as possible.
  • the base material of the hot stamping molded body of the present embodiment can further contain one or more selected from the group consisting of B and Ti.
  • B preferably 0 to 0.0050% Since B has a function of improving the hardenability of steel, it increases the strength of the base material of the molded body after hot stamping. However, this effect is saturated if the B content of the base material is too high. Therefore, the B content of the base material may be 0 to 0.0050%. A more preferable lower limit of the B content of the base material is 0.0001%.
  • Ti contained in the base material combines with N contained in the base material to form a nitride.
  • Ti and N are bonded in this way, the bonding between B of the base material and N of the base material is suppressed, and a decrease in the hardenability of the base material due to BN formation can be suppressed.
  • Ti contained in the base material has an effect of making the austenite grain size finer when heated in a hot stamp due to its pinning effect, thereby increasing the toughness of the molded body.
  • the Ti content of the base material may be 0 to 0.10%.
  • a preferable lower limit of the Ti content of the base material is 0.01%.
  • the base material constituting the hot stamped molded body of the present embodiment can further contain one or more selected from the group consisting of Cr and Mo.
  • Cr preferably 0 to 0.5%
  • Cr contained in the base material improves the hardenability of the base material of the steel before hot stamping.
  • the base material has too much Cr content, Cr carbide is formed. This Cr carbide is difficult to dissolve during the heating of the hot stamp, may hinder the progress of austenitization, and may reduce the hardenability. Therefore, the Cr content of the base material may be 0 to 0.5%. A more preferable lower limit of the Cr content of the base material is 0.1%.
  • Mo contained in the base material enhances the hardenability of the base material of the steel material before hot stamping.
  • Mo content of the base material may be 0 to 0.50%.
  • a more preferable lower limit of the Mo content of the base material is 0.05%.
  • the base material constituting the hot stamping molded body of this embodiment may further contain one or more selected from the group consisting of Nb and Ni.
  • Nb preferably 0 to 0.10%
  • Nb contained in the base material forms carbides, refines the crystal grains of the base material during hot stamping, and increases the toughness of the molded body.
  • the base material has too much Nb content, the above effect is saturated.
  • the Nb content of the base material is too large, the hardenability of the base material may deteriorate. Therefore, the Nb content may be 0 to 0.10%.
  • a more preferable lower limit of the Nb content of the base material is 0.02%.
  • Ni contained in the base material increases the toughness of the base material of the molded body.
  • the base material Ni further suppresses embrittlement due to the presence of molten Zn during heating with a hot stamp.
  • the Ni content of the base material may be 0 to 1.0%.
  • a more preferable lower limit of the Ni content of the base material is 0.1%.
  • the balance of the chemical composition of the base material constituting the hot stamping molded body of the present embodiment is composed of Fe and impurities.
  • an impurity means what may be contained in the ore or scrap as a raw material when manufacturing a molded object industrially, or the thing which may be mixed due to a manufacturing environment etc.
  • the plating layer 20 of the hot stamp molded body 1 includes an interface layer 21, an intermediate layer 22, and an oxide layer 23 from the base material 10 side of the molded body 1 toward the surface side of the molded body 1. And sequentially.
  • the interface layer is formed adjacent to the base material. Most of the structure of the interface layer is composed of ⁇ Fe, Fe 3 Al, and FeAl. That is, the interface layer of the hot stamping molded body according to the present embodiment is mainly composed of an Fe—Al alloy phase having a low Al content. There may be a slight inclusion in the interface layer due to impurities mixed during plating formation. However, the inventors, when observing the interface layer in the cross section of the plated layer of the hot stamping molded body, if the structure contains ⁇ Fe, Fe 3 Al, and FeAl in a total of 99 area% or more, as described above It was confirmed that the influence of inclusions can be ignored.
  • the average Al content of the interface layer needs to be 8.0 mass% or more and 32.5 mass% or less.
  • the Al content in the interface layer is not uniform, and the Al content in the interface layer decreases as it approaches the base material.
  • the interface layer Zn exists in a solid solution state in the above-described Fe—Al alloy phase.
  • the inventors have found that Zn hardly dissolves in the interface layer of the molded body according to the present embodiment, and the average Zn content of the interface layer is 5% by mass or less. Due to the presence of the interface layer, liquid metal embrittlement cracking (LME) can be suppressed.
  • LME liquid metal embrittlement cracking
  • Zn content of an interface layer may not be uniform, since LME will be suppressed as long as the average Zn content of an interface layer is 5 mass% or less, an interface layer is more than 5 mass% Zn. It may include a region containing. The Zn content in the interface layer is minimized at the interface between the interface layer and the base material. Therefore, the minimum value of the Zn content in the interface layer exceeds the Zn content of the base material.
  • the configuration of the interface layer is schematically shown in FIG.
  • the Al content in the interface layer 21 is not uniform.
  • the Al content at the interface between the base material 10 and the interface layer 21 is the same as the Al content of the base material 10.
  • the Al content increases, and the structure is the ⁇ Fe phase with the smallest Al content, the Fe 3 Al phase with the second smallest Al content, and the Al content third. It changes in the order of few FeAl phases.
  • the Zn content at the interface between the base material 10 and the interface layer 21 is the same as the Zn content of the base material 10.
  • the Zn content also increases as the distance from the interface between the base material 10 and the interface layer 21 increases. However, the amount is kept low, and the average Zn content in the entire interface layer 21 does not exceed 5 mass%. .
  • the average film thickness of the interface layer When the average film thickness of the interface layer is less than 1.0 ⁇ m, the LME suppressing effect cannot be sufficiently obtained. Therefore, the average film thickness of the interface layer needs to be 1.0 ⁇ m or more. When the average film thickness of the interface layer is set to 2.0 ⁇ m or more, the above effect is exhibited at a higher level.
  • the lower limit value of the average film thickness of the interface layer is more preferably 5.0 ⁇ m, 6.0 ⁇ m, or 7.0 ⁇ m. Although it is not necessary to specify the upper limit of the average film thickness of the interface layer, an interface layer having an average film thickness exceeding 15.0 ⁇ m is not preferable because it may deteriorate the performance such as corrosion resistance. Therefore, the upper limit value of the average film thickness of the interface layer is preferably 15.0 ⁇ m, more preferably 10.0 ⁇ m, 9.0 ⁇ m, or 8.0 ⁇ m.
  • the intermediate layer 22 is a layer containing Fe, Al, and Zn, and is formed on the interface layer 21. Most of the structure of the intermediate layer is composed of Fe (Al, Zn) 2 and Fe 2 (Al, Zn) 5 .
  • Fe (Al, Zn) 2 is a phase in which part of Al in FeAl 2, which is a kind of Fe—Al intermetallic compound, is substituted with Zn
  • Fe 2 (Al, Zn) 5 is A part of Al in Fe 2 Al 5, which is a kind of Fe—Al intermetallic compound, is a phase in which Zn is substituted. In some cases, inclusions caused by impurities mixed during the formation of the plating are slightly included in the intermediate layer.
  • the inventors when observing the intermediate layer in the cross section of the plated layer of the hot stamped molded body, contains Fe (Al, Zn) 2 and Fe 2 (Al, Zn) 5 having a total structure of 99 area% or more. In other words, it was confirmed that the influence of the inclusions as described above can be ignored.
  • the chemical component of the intermediate layer includes, by unit mass%, Al having an average of 30% to 50% and Zn having an average of 10% to 40%. Moreover, the average Al content of the intermediate layer exceeds the average Al content of the interface layer.
  • the average Al content of the intermediate layer is 30% by mass or more.
  • the average Al content of the intermediate layer is 50% by mass or less when imparting excellent phosphate processing properties to the molded body. That is, when the average Al content of the intermediate layer is outside the range of 30 to 50% by mass, there is a very high possibility that the configuration of the interface layer or the oxide layer will be inappropriate.
  • the lower limit value of the average Al content of the interface layer is preferably 32% by mass or 35% by mass. In this case, the LME suppressing effect of the interface layer can be expressed more reliably.
  • the preferable upper limit of the average Al content of the interface layer is 50% by mass or 45% by mass, and in this case, the phosphate treatment property of the oxide layer can be further improved.
  • the average Zn content of the intermediate layer is 10% by mass or more.
  • the average Zn content in the intermediate layer is 30% by mass or less. That is, when the average Zn content in the intermediate layer is outside the range of 10 to 40% by mass, there is a very high possibility that the configuration of the interface layer or the oxide layer will be inappropriate.
  • a preferable lower limit of the average Zn content in the intermediate layer is 12% by mass or 13% by mass, and in this case, the phosphate treatment property of the oxide layer can be further improved.
  • a preferable upper limit of the average Zn content of the intermediate layer is 28% by mass or 25% by mass, and in this case, the LME suppressing effect of the interface layer can be more reliably exhibited.
  • the film thickness of the intermediate layer does not directly affect the phosphatability and LME resistance of the molded body. However, when the thickness of the intermediate layer is small, the corrosion resistance performance of the molded body is lowered. Therefore, the thickness of the intermediate layer is preferably 5.0 ⁇ m or more. Moreover, when the film thickness of an intermediate
  • an oxide layer 23 mainly composed of Zn oxide is formed as the outermost surface layer of the molded body on the surface side of the molded body of the intermediate layer.
  • the oxide layer 23 is formed by oxidizing the plating of the hot stamping plated steel material in the heating process when manufacturing the hot stamping molded body.
  • This oxide layer improves the phosphatability of the hot stamping body.
  • the average film thickness of the oxide layer needs to be 0.1 ⁇ m or more.
  • the average thickness of the oxide layer is 3.0 ⁇ m or less.
  • the average film thickness of an oxide layer shall be 2.0 micrometers or less, since performance, such as a corrosion resistance of a molded object and weldability, is exhibited at a high level, it is preferable.
  • the states of the interface layer, the intermediate layer, and the oxide layer can be specified by the following means.
  • the Al content of the interface layer is obtained by cutting the molded body perpendicularly to the surface, polishing the cross section, and analyzing the Al content distribution in the region including the interface layer in this cross section with an analyzer such as EPMA. .
  • the average Zn content of the interface layer, the average Al content and average Zn content of the intermediate layer, and the average Si content of the plating layer are obtained based on the concentration distribution obtained by the above method.
  • the metal structures of the interface layer and the intermediate layer can be obtained by crystal structure analysis using TEM or the like.
  • the thicknesses of the interface layer, the intermediate layer, and the oxide layer can be obtained by taking an enlarged photograph of the above-mentioned cross section with an electron microscope and performing image analysis on the enlarged photograph.
  • the structure of the plating layer of the molded object which concerns on this embodiment is not substantially uniform along the direction parallel to the surface of a molded object.
  • the thicknesses of the interface layer, the intermediate layer, and the oxide layer often differ between the processed region and the unprocessed region. Therefore, the analysis described above must be performed in an unprocessed area of the green body.
  • a molded body in which the state of the plating layer in the unprocessed region is within the above-described range is regarded as the molded body according to the present embodiment.
  • the alloy form of the interface layer and the intermediate layer constituting the plating layer, the Al content and the Zn content in the interface layer and the intermediate layer, and the interface layer are improved.
  • the plating layer is preferably formed so that the total amount of Al and Zn in the plating layer is 20 g / m 2 or more and 100 g / m 2 or less.
  • the total amount of Al and Zn in the plating layer 20 g / m 2 or more, the effects (fatigue properties and phosphate treatment properties) of the interface layer, intermediate layer, and oxide layer described above can be further enhanced. it can.
  • the total amount is 100 g / m 2 or less, the raw material cost of the molded body can be suppressed, the manufacturing cost can be reduced, and the weldability of the hot stamped molded body can be further improved.
  • the more preferable lower limit of the total amount of Al and Zn in the plating layer is 30 g / m 2 .
  • a more preferable upper limit of the total amount of Al and Zn in the plating layer is 90 g / m 2 .
  • the total amount of Al and Zn contained in the plating layer can be measured by dissolving the hot stamped product with hydrochloric acid and subjecting the solution to inductively coupled plasma emission spectroscopy (ICP analysis). By using this method, the amounts of Al and Zn can be obtained individually.
  • ICP analysis inductively coupled plasma emission spectroscopy
  • the plating layer preferably contains an average of more than 0 mass% and 10.0 mass% of Si.
  • the average Si content in the plating layer is set to more than 0% by mass, the adhesion between the base material and the plating layer can be improved.
  • the average Si content is 10.0% by mass or less, it is possible to prevent deterioration in performance such as corrosion resistance and weldability of the hot stamped molded body.
  • the more preferable lower limit of the average Si content of the plating layer is 0.1% by mass or 0.3% by mass.
  • a more preferable upper limit of the average Si content of the plating layer is 8.0% by mass.
  • the hot stamped article according to the present embodiment has excellent characteristics, and therefore the lower limit value of the average Si content of the plating layer is 0% by mass.
  • the phase configuration of the intermediate layer changes.
  • the intermediate layer contains a total of 99 area% or more of Fe (Al, Zn) 2 and Fe 2 (Al, Zn) 5 , but the plating layer has an average of 0 mass.
  • part of Fe (Al, Zn) 2 and Fe 2 (Al, Zn) 5 is replaced with Fe (Al, Si).
  • Fe (Al, Si) is a phase in which a part of Al in FeAl is replaced by Si.
  • the hot stamping molded product according to this embodiment is manufactured so that the average Si content of the plating layer is 10.0% by mass, the amount of Fe (Al, Si) in the intermediate layer is about 50 area%. Therefore, when the plating layer contains an average of more than 0 mass% and 10.0 mass% of Si, the intermediate layer has a total of 99 area% or more of Fe (Al, Zn) 2 , Fe 2 (Al, Zn) 5 and Fe (Al , Si), and the content of Fe (Al, Si) is 0 to 50 area%.
  • the manufacturing method of the hot stamping molded body of this embodiment includes a step of manufacturing a hot stamped plated steel material and a step of hot stamping the hot stamped plated steel material.
  • the step of manufacturing the hot stamped plated steel material includes a step of manufacturing a hot stamped plated steel material and a step of forming an Al—Zn plated layer on the hot stamped plated steel material.
  • the manufacturing method of the hot stamping molded object which concerns on this embodiment includes a rust prevention oil film formation process and a blanking process as needed. Hereinafter, each process is explained in full detail.
  • a plated steel material that is a material of the hot stamping molded body includes a base material and a plating layer.
  • a base material for hot stamped steel is manufactured.
  • a molten steel having the same chemical composition as that of the base material of the hot stamping molded body according to this embodiment exemplified above is manufactured, and a slab is manufactured by a casting method using this molten steel. Or you may manufacture an ingot by the ingot-making method using the molten steel manufactured as mentioned above.
  • the base material (hot rolled sheet) of the hot stamped plated steel material is obtained by hot rolling the slab or the ingot. If necessary, the hot-rolled sheet is subjected to pickling treatment, and the cold-rolled sheet obtained by performing cold rolling on the hot-rolled sheet after pickling treatment is used as a base for the hot stamped plated steel material. It may be a material.
  • plating process In the plating treatment step, an Al—Zn plating layer is formed on the base material of the hot stamped plated steel material to produce a hot stamped plated steel material.
  • the Al content in the plating bath is 40 to 70% by mass, and the Zn content is 30 to 60% by mass.
  • the Al content (concentration) and Zn content (concentration) of the plating bath are substantially the same as the Al content (concentration) and Zn content (concentration) of the plating layer of the hot stamping plated steel material.
  • the average Al content (concentration) and the average Zn content (concentration) of the plating layer of the hot stamping body are lower than the Al content (concentration) and Zn content (concentration) of the plating bath. This is because the Fe concentration in the plating layer increases due to alloying that occurs between Al and Zn of the plating layer and Fe of the base material during hot stamping.
  • the plating layer of the hot stamping plated steel may be referred to as an unalloyed plating layer.
  • the average Al content and the average Zn content in the unalloyed plating layer are analyzed by inductively coupled plasma emission spectroscopy after dissolving the unalloyed plating layer in hydrochloric acid containing an acid corrosion inhibitor (inhibitor). It is measurable by doing.
  • 0.1 to 15.0 mass% Si is added to the unalloyed plated layer of the hot stamped plated steel material. Furthermore, it is preferable to contain.
  • the Si content of the unalloyed plating layer decreases because Fe diffuses into the plating layer during alloying of the base material and plating. Therefore, when the Si content of the unalloyed plating layer is 0 to 15% by mass, the Si content of the alloyed plating layer is 0 to 10% by mass.
  • the formation method of the unalloyed plating layer may be a hot dipping process, spray coating process, vapor deposition, as long as the average Al content and average Zn content in the unalloyed plating layer are controlled as follows: Any other treatment such as plating treatment may be used.
  • the plating process includes immersing the base material of the hot stamped plated steel in a hot dipping bath containing Al, Zn, impurities, and optionally Si. And a step of pulling up the base material of the hot stamping plated steel material to which the plating metal has adhered from the plating bath.
  • the plating treatment may be performed according to a conventional method so that the chemical composition of the obtained unalloyed plating layer is in the range described above.
  • the plating layer is formed with a total weight per unit area of Al and Zn in the plating layer of 20 g / m 2 or more and 100 g / m 2 or less with respect to the base material. It is preferable that In order to secure the total weight per unit area, in this step, the total weight per unit area of Al and Zn in the plating layer when the base material of the hot stamped plated steel material is pulled up from the plating bath is 20 g. It is important to set it to / g 2 or more and 100 g / m 2 or less. Note that the total weight per unit area of Al and Zn contained in the plating layer is slightly reduced during alloying due to oxidation and evaporation. Moreover, in this process, ensuring of the said total amount is realizable by adjusting suitably the pulling-up speed of the steel materials from a plating bath, and the flow volume of the gas of wiping.
  • the hot stamped plated steel material manufactured by the above-described method includes a base material and an unalloyed plated layer, and the unalloyed plated layer comprises 40.0 to 70.0 mass% Al, 30.0 to 60.0% by mass of Zn and 0-15.0% by mass of Si are contained.
  • the hot stamping molded body according to the present embodiment is obtained.
  • the hot stamp condition will be described in detail.
  • Hot stamp process In the hot stamping process, hot stamping is performed on the hot stamping plated steel material.
  • the normal hot stamping is performed by heating a steel material to a hot stamping temperature range (hot working temperature range), then hot working the steel material, and further cooling the steel material.
  • a hot stamping temperature range hot working temperature range
  • the alloying of the plating layer proceeds sufficiently if the steel material is heated to the hot stamp temperature range, the normal hot stamp technology does not place importance on the control of the heating condition of the steel material.
  • the hot stamping plated steel is heated to the alloying temperature range, and (2) the temperature of the hot stamping plated steel is changed to the alloying temperature. (3) The hot stamping plated steel is heated to the hot stamping temperature range, and (4) the hot stamping plated steel is hot worked and cooled. It has been described above that the present inventors have substantially stopped the temperature rise of the steel material within the alloying temperature range and then resumed the temperature rise when raising the temperature of the hot stamped plated steel material to the hot stamp temperature range. It was found to be essential for obtaining a plating layer having a structure.
  • the hot stamping plated steel material is charged into a heating furnace (gas furnace, electric furnace, infrared furnace, etc.).
  • the hot stamped plated steel material is heated to a temperature range of 500 to 750 ° C. (alloying temperature range) and held within this temperature range for 10 to 450 seconds.
  • the base material Fe diffuses into the plating layer, and alloying proceeds.
  • the non-alloyed plating layer changes from the base material side to the surface side of the formed body, including an interface layer, an intermediate layer, and an oxide layer.
  • the above-mentioned holding time is the time when the temperature of the hot stamped plated steel material is within the alloying temperature range. As long as the above holding time condition is satisfied, the temperature of the hot stamped plated steel material may vary within the alloying temperature range during the temperature holding.
  • the rate at which the plated layer is alloyed is extremely small, and the heating time is extremely extended. Is not preferable.
  • the temperature of the hot stamped plated steel is maintained above the alloying temperature range, that is, above 750 ° C., the oxide growth on the surface of the plated layer is excessively promoted during this holding process, and is obtained after HS. The weldability of the molded product is reduced.
  • the heating conditions for heating the plated steel material for hot stamping to the above alloying temperature range are not particularly limited. However, from the viewpoint of productivity, it is desirable that the heating time is short.
  • the temperature of the hot stamped plated steel material is maintained within the alloying temperature range as described above, and thereafter, from Ac 3 point to 950 ° C.
  • the hot stamped plated steel is heated and then hot worked. At this time, it is necessary to limit the time during which the temperature of the hot stamped plated steel material is within the temperature range of Ac 3 to 950 ° C. (oxidation temperature range) to 60 seconds or less. If the hot stamping plated steel material temperature is within the oxidation temperature range, an oxide layer on the surface of the plating layer grows.
  • the oxide film grows too much, and there is a concern that the weldability of the formed body may deteriorate.
  • the lower limit of the time during which the hot stamped plated steel material temperature is within the oxidation temperature range is more than 0 seconds.
  • the hot stamping plated steel material is heated in a non-oxidizing atmosphere such as a 100% nitrogen atmosphere, an oxidized layer is not formed, so the hot stamping plated steel material must be heated in an oxidizing atmosphere such as an air atmosphere. There is.
  • the conditions such as the heating rate and the maximum heating temperature are not particularly specified, and various conditions that allow hot stamping are selected. Can do.
  • the hot stamping plated steel material taken out from the heating furnace is press-molded using a mold.
  • the steel material is quenched by a mold simultaneously with the press molding.
  • a cooling medium for example, water
  • a hot stamping body can be manufactured by the above process.
  • the hot stamped plated steel was heated using a heating furnace.
  • the plated steel material for hot stamping may be heated by energization heating. Even in this case, the steel material is heated for a predetermined time by energization heating, and the steel material is press-molded using a mold.
  • the rust-preventing oil film forming process is to form a rust-preventing oil film by applying rust-preventing oil to the surface of the hot stamping plated steel after the plating process and before the hot stamping process. May be included.
  • the surface of the hot stamped plated steel material may be oxidized.
  • the rust-preventing oil film forming step can suppress the formation of the scale of the molded body. Note that any known technique can be used as a method of forming the rust-preventing oil film.
  • This step is a step of forming the steel material into a specific shape by performing a shearing process and / or a punching process on the plated steel material for hot stamping after the antirust oil film forming step and before the hot stamping step. .
  • the sheared surface of the steel material after blanking is easily oxidized. However, if a rust-preventing oil film is formed in advance on the steel material surface, the rust-preventing oil spreads to some extent on the shear surface. Thereby, the oxidation of the steel material after blanking can be suppressed.
  • the inventors formed an Al—Zn-based plating layer, a Zn-based plating layer, and an Al-based plating layer on the base material 10, respectively.
  • the Al—Zn-based plating layer includes 55.0% by mass of Al and 45.0% by mass of Zn.
  • the Zn-based plating layer is substantially composed of only Zn. In particular, it was made only of Al.
  • a steel material (plated steel material composed of a base material and a plating layer) on which each plating layer is formed is charged into a first heating furnace, heated to 700 ° C., and held for 120 seconds within this temperature range. did. Thereafter, the plated steel material is immediately charged into a second heating furnace and heated to 900 ° C., and then the plated steel material is treated so that the time during which the steel material temperature is in the range of Ac 3 to 950 ° C. is 30 seconds. 2 was removed from the furnace. Immediately after the plated steel material was taken out of the second heating furnace, a hot V bending test was performed on the plated steel material using a hand press machine.
  • the time from the removal of the steel material from the furnace to the start of processing on the steel material was about 5 seconds, and the bending was performed at a steel material temperature of about 800 ° C.
  • the V-bending was performed so that the outer diameter of the portion to be bent increased by about 15% from before the V-bending.
  • the steel material was quenched to quench the steel material.
  • the cooling was performed so that the cooling rate from about 800 ° C. to the martensitic transformation start point (about 410 ° C.) was 50 ° C./second or more.
  • an SEM image of the bent outer side of the processed part of the molded body after cooling was taken, and the fatigue characteristics (LME resistance) of the molded body were evaluated based on whether or not LME was generated.
  • 1 to 3 are cross-sectional photographs of a processed part of a molded body manufactured from an Al—Zn-based plated steel material, a Zn-based plated steel material, and an Al-based plated steel material.
  • the alloyed Al—Zn-based plating layer 30 is formed on the base material 1
  • the alloyed Zn-based plating layer 40 is formed on the base material 1.
  • the alloyed Al-based plating layer 50 was formed on the base material 1.
  • the observed processed part of the molded body is a part where the tensile process is performed, and is an outer part of the V-bend processed part where the occurrence of LME is concerned with respect to the bending center.
  • the martensitic transformation start point (about 410 ° C.) Until the cooling rate was 50 ° C./second or more.
  • the surface of the molded body was adjusted, and the molded body was subjected to phosphate treatment.
  • an SEM image of the surface of the molded body was taken, and the phosphate processability was evaluated based on the degree of formation of the phosphate coating.
  • FIGS. 4 to 6 show that the Al—Zn-based plated steel material, the Zn-based plated steel material, and the Al-based plated steel material taken out from the second heating furnace are rapidly cooled while being processed with a flat plate mold equipped with a water-cooling jacket. It is an example of the SEM image (secondary electron image) which shows the surface of these molded objects at the time of performing an acid salt process.
  • slabs were manufactured by continuous casting using molten steel having the chemical composition shown in Table 1.
  • the slab was hot-rolled to produce a hot-rolled steel material.
  • the hot-rolled steel material was further pickled, and then cold-rolled to produce a cold-rolled steel material.
  • this cold-rolled steel material was made into the base material (plate thickness 1.4mm) used for manufacture of a hot stamping molded object.
  • the Ac 3 point of the base material was approximately 810 ° C.
  • plating was formed on the base material thus manufactured using a plating bath having the composition shown in Table 2 to obtain a steel material for hot stamping.
  • the adhesion amount of plating was controlled so that the total weight of Al and Zn was a value shown in Table 2.
  • This steel was heated to the alloying temperature shown in Table 2, and the temperature was maintained for the alloying time shown in Table 2. Thereafter, the steel material is charged into a heating furnace and heated to a temperature range of Ac 3 to 950 ° C., and then the time during which the temperature of the steel material is within this temperature range becomes the holding time shown in Table 2, Was removed from the furnace.
  • the steel material taken out from the heating furnace was immediately subjected to hot V bending using a hand press.
  • the time from the start of taking out the steel material from the heating furnace to the start of the processing of the steel material was set to 5 seconds.
  • the shape of the mold was such that the outer portion of the bending radius by the V bending process was extended by about 15% at the end of the bending process.
  • the following steps were carried out in order to conduct a phosphate treatment evaluation test and a coating film adhesion evaluation test.
  • the steel material taken out from the heating furnace was immediately hot stamped using a flat plate mold equipped with a water cooling jacket, and then accelerated cooled.
  • the cooling rate was set to a cooling rate of 50 ° C./second or more up to the martensite transformation start point (410 ° C.).
  • the surface adjustment was performed for 20 seconds at room temperature using the surface adjustment processing agent (brand name: Preparen X) by Nippon Parkerizing Co., Ltd. for each hot stamping molded object.
  • each hot stamping molded body was subjected to phosphate treatment using a zinc phosphate treatment solution (trade name: Palbond 3020) manufactured by Nippon Parkerizing Co., Ltd.
  • a zinc phosphate treatment solution (trade name: Palbond 3020) manufactured by Nippon Parkerizing Co., Ltd.
  • the temperature of the treatment liquid was 43 ° C.
  • the hot stamping molded body was immersed in the treatment liquid for 120 seconds.
  • each hot stamping body was electrodeposited with a cationic electrodeposition paint manufactured by Nippon Paint Co., Ltd. by applying a slope of 160V, and further 20 at a baking temperature of 170 ° C. Baked for a minute.
  • the average film thickness of the paint after electrodeposition coating was 10 ⁇ m in all the inventive examples and comparative examples.
  • the states of the interface layer, the intermediate layer, and the oxide layer of the inventive example and the comparative example were specified by the following means.
  • the average Al content and average Zn content of the interface layer, the average Al content and average Zn content of the intermediate layer, and the average Si content of the plating layer are obtained by cutting the molded body perpendicularly to the surface of the molded body, It was obtained by polishing the cross section and analyzing the cross section with an analyzer such as EPMA.
  • the metal structures of the interface layer and the intermediate layer were obtained by crystal structure analysis using TEM or the like. An example in which the metal structure satisfies the provisions of the present invention was described as “OK”, and an example in which the metal structure did not satisfy was described as “NG”.
  • the thicknesses of the interface layer, the intermediate layer, and the oxide layer were obtained by taking an enlarged photograph of the above-mentioned cross section with an electron microscope and performing image analysis on the enlarged photograph. The analysis described above was performed in an unprocessed area of the molded body.
  • the total weight of Al and Zn in the plating layers of the inventive example and the comparative example was measured by high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). That is, a sample was taken from an unprocessed portion (a portion that was not bent) of each invention example and comparative example, and the plating layer was dissolved with a 10% HCl aqueous solution and analyzed. Each element was identified and surveyed by applying plasma energy to each solution, exciting the constituent elements, and measuring the position and intensity of the emitted light lines (spectral lines).
  • ICP-OES high frequency inductively coupled plasma optical emission spectrometry
  • Table 3 shows configurations of invention examples and comparative examples confirmed by the above-described means.
  • the balance of the average composition of the interface layer and the intermediate layer shown in Table 3 was Fe and impurities.
  • the fatigue characteristics of the examples and comparative examples were evaluated by the following means.
  • SEM scanning electron microscope
  • a backscattered electron detector in the cross section of the steel material in the thickness direction of the V-bending portion of the examples and comparative examples.
  • liquid metal embrittlement cracking The presence or absence of occurrence of LME was observed.
  • GOOD favorable
  • the phosphate treatment properties of the examples and comparative examples were evaluated by the following means.
  • the phosphate coating formed on each phosphate-treated sample was dissolved and removed using an ammonium dichromate solution, and the difference in weight of the steel before and after removal of the coating was measured. It was regarded as the amount of coating.
  • the sample whose adhesion amount is 2.0 g / m ⁇ 2 > or more was evaluated as favorable (GOOD) about phosphate processability.
  • the amount of adhesion of the sample of less than 2.0 g / m 2 was evaluated as bad for phosphating properties (BAD).
  • a sample having a coating film peeling rate of less than 5.0% was evaluated as good (GOOD) for coating film adhesion.
  • GOOD coating film peeling rate
  • BAD defective
  • the weldability of the examples and comparative examples was evaluated by the surface resistance value.
  • the surface resistance value of the sample was calculated from the voltage value when a current 2A was passed through the sample at a pressure of 250 kgf using a pressurized DC inverter power supply.
  • a sample having a surface resistance value of 20 m ⁇ or less was evaluated as good for weldability (GOOD).
  • Table 4 shows the fatigue properties (LME resistance), phosphate treatment properties, coating film adhesion, and weldability of the invention examples and comparative examples confirmed by the above-mentioned means.
  • Comparative Example 101 was produced using a plating bath with insufficient Al content, LME could not be prevented. For this reason, the fatigue characteristics of Comparative Example 101 were poor. Since the comparative example 102 was manufactured using the plating bath with insufficient Zn content, the structure of the intermediate layer became inappropriate due to insufficient Zn. For this reason, in the comparative example 102, the phosphate processability was impaired and the coating film adhesion was poor. In Comparative Example 103, since the alloying temperature at the time of hot stamping was too high, the thickness of the oxide layer was excessive, and the weldability was poor.
  • Comparative Example 104 since the alloying temperature at the time of hot stamping was too low, alloying of the plating layer became insufficient, a Zn-rich phase was generated, and LME could not be prevented. For this reason, the fatigue characteristics of Comparative Example 104 were poor.
  • Comparative Example 105 the alloying time at the time of hot stamping was too long, so the thickness of the oxide layer was excessive and the weldability was poor.
  • Comparative Example 106 the alloying time at the time of hot stamping was too short, so heating for alloying was insufficient. For this reason, in the comparative example 106, LME generate
  • Comparative Example 106 since the heating was insufficient, the amount of oxide was small, and phosphate treatment property and coating film adhesion were insufficient.
  • Comparative Example 107 since the alloying temperature and the holding time at the time of hot stamping were excessive, the thickness of the oxide layer was excessive and the weldability was poor.
  • both the fatigue characteristics and the phosphate treatment properties are sufficiently exhibited for the hot stamped molded body in which the plating layer is formed on the surface of the base material. Therefore, the present invention is particularly promising in the field of structural members used in automobiles and the like.

Abstract

 本発明の一態様に係るホットスタンプ成形体は母材とめっき層とを備え、前記めっき層は、前記母材側から表面側に向かって順に、界面層と、中間層と、酸化物層と、を含み、前記界面層は、組織が合計99面積%以上のαFe、FeAl、及びFeAlを含み、平均Al含有量が、前記8.0質量%以上32.5質量%以下の範囲内であり、平均Zn含有量が前記母材のZn含有量超5質量%以下に制限され、化学成分の残部はFe及び不純物を含み、並びに平均膜厚が1.0μm以上であり、前記中間層は、組織が合計99面積%以上のFe(Al、Zn)及びFe(Al、Zn)を含み、平均Al含有量が30~50質量%であり、平均Zn含有量が10~40質量%であり、化学成分の残部はFe及び不純物を含み、並びに平均膜厚が5.0μm以上であり、前記酸化物層は、平均膜厚が0.1~3.0μmである。

Description

ホットスタンプ成形体
 本発明は、ホットスタンプ成形体に関する。
 自動車等に用いられる構造部材(成形体)は、強度及び寸法精度をいずれも高めるために、ホットスタンプ(熱間プレス)により製造されることがある。成形体をホットスタンプによって製造する際には、ホットスタンプ用鋼材をAc点以上に加熱し、金型でホットスタンプ用鋼材をプレス加工しつつ急冷する。つまり、当該製造では、プレス加工と焼入れとを同時に行う。ホットスタンプによれば、寸法精度が高く、かつ、高強度の成形体を製造することができる。
 一方、ホットスタンプにより製造された成形体は、高温で加工されているので、表面に鉄スケールが形成される。このため、ホットスタンプ用鋼板としてめっき鋼板を用いることで、鉄スケールの形成を抑制し、さらには成形体の耐食性を向上させる技術が提案されている(特許文献1から3参照)。例えば、特許文献1にはZnめっき層が形成された熱間プレス用めっき鋼板が開示されており、また特許文献2にはAlめっき層が形成された自動車部材用めっき鋼板が開示されている。さらに、特許文献3には、Znめっき鋼板のめっき層中にMn等の各種元素が添加された熱間プレス用Zn系めっき鋼板が開示されている。しかし、これらめっき鋼板には、以下に示される課題がある。
 特許文献1の技術では、ホットスタンプ後にZnが成形体の表層に残存するので、高い犠牲防食作用が期待できる。しかしながら、特許文献1の技術では、Znが溶融した状態でめっき鋼板が熱間プレス加工されるので、熱間プレス加工中に溶融Znがめっき鋼板の母材に侵入し、母材内部に割れが生ずるおそれがある。この割れは、液体金属脆化割れ(Liquid Metal Embrittlement、以下「LME」と称する場合がある)と呼ばれる。LMEに起因して、成形体の疲労特性が劣化する。
 なお、現状では、LMEの発生を回避するために、めっき鋼板の加工時の加熱条件を適宜制御する必要がある。具体的には、溶融Znのすべてがめっき鋼板の母材中に拡散し、Fe-Zn固溶体となるまで加熱をする方法等が採用されている。しかしながら、これらの方法を実施するためには、長時間のめっき鋼板の加熱が必要であり、その結果生産性が低下するという問題がある。
 特許文献2の技術では、めっき層の成分としてZnよりも融点が高いAlを用いていることから、特許文献1のように溶融金属がめっき鋼材の母材に侵入するおそれは低い。このため、特許文献2の技術によれば、優れた耐LME性が得られ、ひいてはホットスタンプ後に疲労特性が優れる成形体が得られると予想される。しかしながら、Alめっき層が形成された成形体には、自動車用部材の塗装前に行われるりん酸塩処理時にりん酸塩皮膜を形成し難いという問題がある。換言すれば、特許文献2の技術による成形体は、りん酸塩処理性が十分に得られないという問題がある。
 特許文献3の技術では、ホットスタンプ成形体の最表層(酸化物皮膜)を改質して、溶接性を向上させている。しかし、特許文献3の技術においても、LMEが発生してホットスタンプ成形体の疲労特性が十分に得られないおそれがある。また、特許文献3の技術においては、めっき層に添加される元素が、りん酸塩処理性を低下させるおそれがある。
日本国特開2003-73774号公報 日本国特開2003-49256号公報 日本国特開2005-113233号公報
 本発明は、上記事情に鑑みてなされたものであって、疲労特性、りん酸塩処理性、塗膜密着性及び溶接性に優れたホットスタンプ成形体を提供することを目的とする。
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係るホットスタンプ成形体は、母材と;めっき層と;を備え、前記めっき層は、前記母材側から表面側に向かって順に、界面層と、中間層と、酸化物層と、を含み、前記界面層は、組織が合計99面積%以上のαFe、FeAl、及びFeAlを含み、平均Al含有量が、8.0質量%以上32.5質量%以下の範囲内であり、平均Zn含有量が前記母材のZn含有量超5質量%以下に制限され、化学成分の残部はFe及び不純物を含み、並びに平均膜厚が1.0μm以上であり、前記中間層は、組織が合計99面積%以上のFe(Al、Zn)及びFe(Al、Zn)を含み、平均Al含有量が30~50質量%であり、平均Zn含有量が10~40質量%であり、化学成分の残部はFe及び不純物を含み、並びに平均膜厚が5.0μm以上であり、前記酸化物層は、平均膜厚が0.1~3.0μmである。
(2)上記(1)に記載のホットスタンプ成形体では、前記界面層は、平均膜厚が1.0~10.0μmであってもよい。
(3)上記(1)または(2)に記載のホットスタンプ成形体では、前記めっき層中のAl及びZnの単位面積当たりの合計重量が20g/m以上100g/m以下であってもよい。
(4)上記(1)~(3)のいずれか一項に記載のホットスタンプ成形体では、前記めっき層は、平均0質量%超10.0質量%以下のSiをさらに含み、前記中間層において、前記Fe(Al、Zn)及び前記Fe(Al、Zn)のうち0~50面積%が、Fe(Al、Si)に置換されていてもよい。
 本発明に係るホットスタンプ成形体では、めっき層の合金形態、めっき層中の特定層におけるAl、Zn量、及びめっき層の最表層として形成される酸化物の膜厚、についてそれぞれ改良を行っている。その結果、本発明に係るホットスタンプ成形体によれば、LME発生の抑制に基づく成形体の疲労特性改善と、成形体のりん酸塩処理性の改善、及びこれによる塗膜密着性の改善と、成形体の溶接性の改善との全てを達成することができる。
Al-Zn系めっき鋼材を実施例1の条件で加熱した直後に熱間V曲げ加工した、成形体の加工部を示す断面SEM画像の一例である。 Zn系めっき鋼材を実施例1の条件で加熱した直後に熱間V曲げ加工した、成形体の加工部を示す断面SEM画像の一例である。 Al系めっき鋼材を実施例1の条件で加熱した直後に熱間V曲げ加工した、成形体の加工部を示す断面SEM画像の一例である。 Al-Zn系めっき鋼材を、実施例1の条件で加熱した直後に水冷ジャケットを備えた平板金型で加工しつつ急冷し、その後りん酸塩処理を施した場合の、成形体の表面を示すSEM画像(二次電子像)の一例である。 Zn系めっき鋼材を、実施例1の条件で加熱した直後に水冷ジャケットを備えた平板金型で加工しつつ急冷し、その後りん酸塩処理を施した場合の、成形体の表面を示すSEM画像(二次電子像)の一例である。 Al系めっき鋼材を、実施例1の条件で加熱した直後に水冷ジャケットを備えた平板金型で加工しつつ急冷し、その後りん酸塩処理を施した場合の、成形体の表面を示すSEM画像(二次電子像)の一例である。 本実施形態に係るホットスタンプ成形体の表面付近の断面図である。 本実施形態に係るホットスタンプ成形体の表面付近のAl濃度およびZn濃度の概略図である。
 以下、本発明に係るホットスタンプ成形体の実施形態を詳細に説明する。なお、本実施形態に係るホットスタンプ成形体の化学成分に関する単位「%」は、特に断りのない限り「質量%」を意味するものとする。また、本実施形態において、ホットスタンプ成形体とは、ホットスタンプ用めっき鋼材にホットスタンプ加工(熱間プレス加工)を行って得られるものを意味する。以下、ホットスタンプ成形体を単に「成形体」と称し、ホットスタンプ用めっき鋼材を単に「鋼材」または「めっき鋼材」と称する場合がある。
 本発明者らは、ホットスタンプ成形体(Al-Zn系めっき鋼材、Zn系めっき鋼材及びAl系めっき鋼材)の疲労特性(耐LME性)及びりん酸塩処理性について検討した。その結果、本発明者らは、ホットスタンプ成形体のめっき層が、母材側から表面側に向かって順に、界面層と、中間層と、酸化物層と、を含み、界面層は、組織が合計99面積%以上のαFe、FeAl、及びFeAlを含み、Al含有量が、8.0質量%以上32.5質量%以下の範囲内であり且つ母材に近づくにつれて減少し、平均Zn含有量が5質量%以下に制限され、その化学成分の残部はFe及び不純物を含み、並びに平均膜厚が1.0μm以上であり、中間層は、組織が合計99面積%以上のFe(Al、Zn)及びFe(Al、Zn)を含み、平均Al含有量が30~50質量%であり、平均Zn含有量が10~40質量%であり、その化学成分の残部はFe及び不純物を含み、並びに平均膜厚が5.0μm以上であり、酸化物層は、平均膜厚が0.1μm以上3.0μm以下である場合に、ホットスタンプ成形体の疲労特性及びりん酸塩処理性がともに良好である、との知見を得た。なお、本明細書において、平均膜厚とは、対象となる層(膜)の最大膜厚と最小膜厚との平均値を意味するものとする。
<ホットスタンプ成形体>
 以下に、本実施形態に係るホットスタンプ成形体について説明する。本実施形態に係るホットスタンプ成形体1は、図7に示されるように、母材10とめっき層20とを含む。
[母材の成分]
 以下に、本実施形態に係るホットスタンプ成形体の母材の、好ましい成分を説明する。本実施形態に係るホットスタンプ成形体の課題である、耐LME性及びりん酸塩処理性の改善は、めっき層の構成によって実現される。従って、本実施形態に係るホットスタンプ成形体の母材は特に限定されない。しかし、母材の成分が以下に説明する範囲内である場合、耐LME性及びりん酸塩処理性に加えて、好適な機械特性を有する成形体が得られる。以下、母材に含まれる合金元素の含有量の単位「%」は、「質量%」を意味する。
(C:好ましくは0.05~0.40%)
 0.05%以上の炭素(C)が母材に含まれる場合、ホットスタンプ成形体の強度が高められる。一方、母材のC含有量が0.40%超である場合、成形体の母材の靭性が不足する場合がある。従って、母材のC含有量を、0.05~0.40%としてもよい。母材のC含有量のさらに好ましい下限値は0.10%であり、より一層好ましい下限値は0.13%である。母材のC含有量のさらに好ましい上限値は0.35%である。
(Si:好ましくは0.5%以下)
 シリコン(Si)は鋼を脱酸する効果を有する。しかしながら、Si含有量が多くなるとめっきに対する鋼材の濡れ性が低下し、正常にめっき処理できない可能性がある。従って、母材のSi含有量を0.5%以下としてもよい。さらに好ましい母材のSi含有量の上限値は0.3%であり、より一層好ましい母材のSi含有量の上限値は0.2%である。母材のSi含有量のさらに好ましい下限値は、求められる脱酸レベルに応じて定めることができ、例えば0.05%である。
(Mn:好ましくは0.5~2.5%)
 0.5%を超えるマンガン(Mn)が母材に含まれる場合、ホットスタンプ前の鋼材の母材の焼入れ性が高められ、ホットスタンプ後の成形体の母材の強度が高められる。一方、母材のMn含有量を2.5%超とした場合、この効果は飽和する。従って、母材のMn含有量を0.5~2.5%としてもよい。母材のMn含有量のさらに好ましい下限値は0.6%であり、より一層好ましい下限値は0.7%である。母材のMn含有量のさらに好ましい上限値は2.4%であり、より一層好ましい下限値は2.3%である。
(P:好ましくは0.03%以下)
 りん(P)は鋼中に含まれる不純物である。母材に含まれるPは、母材の結晶粒界に偏析して成形体の母材の靭性を低下させ、母材の耐遅れ破壊性を低下させる場合がある。従って、母材のP含有量を0.03%以下にしてもよい。母材のP含有量はできる限り少なくすることが好ましい。
(S:好ましくは0.01%以下)
 硫黄(S)は鋼中に含まれる不純物である。母材に含まれるSは硫化物を形成して成形体の母材の靭性を低下させ、母材の耐遅れ破壊性を低下させる場合がある。従って、母材のS含有量は0.01%以下にしてもよい。母材のS含有量はできる限り少なくすることが好ましい。
(sol.Al:好ましくは0.10%以下)
 用語「Al含有量」が本実施形態に係る成形体の母材に関して用いられる場合、この用語は母材中のsol.Al(酸可溶Al)の含有量を意味する。アルミニウム(Al)は一般に鋼の脱酸目的で使用される。しかしながら、Al含有量が多い場合、ホットスタンプ前の鋼材のAc点が上昇し、ホットスタンプの際に鋼の焼入れに必要な加熱温度が上昇するので、ホットスタンプ製造上は望ましくない。従って、母材のAl含有量は0.10%以下としてもよい。母材のAl含有量のさらに好ましい上限値は0.05%である。母材のAl含有量のさらに好ましい下限値は0.01%である。
(N:好ましくは0.01%以下)
 窒素(N)は鋼中に含まれる不純物である。母材に含まれるNは、窒化物を形成して成形体の母材の靭性を低下させる場合がある。さらに、母材に含まれるNは、ホットスタンプ前の鋼材の焼入れ性を向上させるために母材中にBが含有される場合、Bと結合して固溶B量を減らし、Bの焼入れ性向上効果を低下させる場合がある。従って、母材のN含有量を0.01%以下としてもよい。母材のN含有量はできる限り少なくすることが好ましい。
 本実施形態のホットスタンプ成形体の母材は、さらに、B及びTiからなる群から選択される1種以上を含有することができる。
(B:好ましくは0~0.0050%)
 Bは、鋼の焼入れ性を高める働きを有するので、ホットスタンプ後の成形体の母材の強度を高める。しかしながら、母材のB含有量が多過ぎれば、この効果は飽和する。従って、母材のB含有量を、0~0.0050%としてもよい。母材のB含有量のさらに好ましい下限値は0.0001%である。
(Ti:好ましくは0~0.10%)
 母材に含まれるTiは、母材に含まれるNと結合して窒化物を形成する。このようにTiとNとが結合する場合には、母材のBと母材のNとの結合が抑制され、BN形成による母材の焼入れ性の低下を抑制することができる。さらに、母材に含まれるTiは、そのピン止め効果により、ホットスタンプにおける加熱の際にオーステナイト粒径を微細化し、それにより成形体の靱性等を高める効果も有する。しかしながら、母材のTi含有量が多過ぎれば上記効果が飽和し、さらに、Ti窒化物が過剰に析出して成形体の母材の靭性が低下するおそれがある。従って、母材のTi含有量を0~0.10%としてもよい。母材のTi含有量の好ましい下限値は0.01%である。
 本実施形態のホットスタンプ成形体を構成する母材は、さらに、Cr及びMoから成る群から選択される1種以上を含有することができる。
(Cr:好ましくは0~0.5%)
 母材に含まれるCrは、ホットスタンプ前の鋼材の母材の焼入れ性を高める。しかしながら、母材のCr含有量が多過ぎれば、Cr炭化物が形成される。このCr炭化物は、ホットスタンプの加熱時に溶解し難く、オーステナイト化の進行を妨げ、焼き入れ性を低下させる場合がある。従って、母材のCr含有量を0~0.5%としてもよい。母材のCr含有量のさらに好ましい下限値は0.1%である。
(Mo:好ましくは0~0.50%)
 母材に含まれるMoは、ホットスタンプ前の鋼材の母材の焼入れ性を高める。しかしながら、母材のMo含有量が多過ぎれば、上記効果は飽和する。従って、母材のMo含有量を0~0.50%としてもよい。母材のMo含有量のさらに好ましい下限値は0.05%である。
 本実施形態のホットスタンプ成形体を構成する母材は、さらに、Nb及びNiから成る群から選択される1種以上を含有してもよい。
(Nb:好ましくは0~0.10%)
 母材に含まれるNbは、炭化物を形成して、ホットスタンプ時に母材の結晶粒を微細化し、成形体の靭性を高める。しかしながら、母材のNb含有量が多過ぎれば、上記効果は飽和する。さらに、母材のNb含有量が多過ぎれば、母材の焼入れ性が低下する場合がある。従って、Nb含有量を0~0.10%としてもよい。母材のNb含有量のさらに好ましい下限値は0.02%である。
(Ni:好ましくは0~1.0%)
 母材に含まれるNiは、成形体の母材の靭性を高める。母材のNiは、さらに、ホットスタンプでの加熱時に、溶融Znの存在に起因した脆化を抑制する。しかしながら、母材のNi含有量が多過ぎれば、これらの効果は飽和する。従って、母材のNi含有量を0~1.0%としてもよい。母材のNi含有量のさらに好ましい下限値は0.1%である。
 本実施形態のホットスタンプ成形体を構成する母材の化学組成の残部は、Fe及び不純物からなる。本明細書において、不純物とは、成形体を工業的に製造する際に、原料としての鉱石又はスクラップに含まれ得るもの、或いは、製造環境などに起因して混入され得るものを意味する。
[めっき層]
 次に、本実施形態に係るホットスタンプ成形体1のめっき層20について説明する。成形体1のめっき層20は、図7に示されるように、成形体1の母材10側から成形体1の表面側に向かって、界面層21と、中間層22と、酸化物層23と、を順次含む。
[界面層]
 界面層は、母材に隣接して形成される。界面層の組織の大半は、αFe、FeAl、及びFeAlから構成される。すなわち、本実施形態に係るホットスタンプ成形体の界面層は、主にAl含有量が少ないFe-Al合金相から構成される。なお、めっき形成中に混入した不純物に起因する介在物などが、界面層にわずかに含まれる場合もある。しかし発明者らは、ホットスタンプ成形体のめっき層の断面で界面層を観察した場合に、組織が合計99面積%以上のαFe、FeAl、及びFeAlを含んでいれば、上述のような介在物の影響は無視できる旨を確認した。界面層の組織を上述の如く制御するためには、界面層の平均Al含有量を8.0質量%以上32.5質量%以下とする必要がある。なお、後述するように界面層中のAl含有量は一様ではなく、母材に近づくに連れて界面層のAl含有量は低下する。
 界面層において、Znは上述のFe-Al合金相に固溶した状態で存在している。しかしながら、発明者らが知見したところによれば、本実施形態に係る成形体の界面層にはZnがほとんど固溶せず、界面層の平均Zn含有量は5質量%以下である。界面層の存在により、液体金属脆化割れ(LME)を抑制することができる。なお、界面層のZn含有量も一様ではない場合があるが、界面層の平均Zn含有量が5質量%以下である限りLMEは抑制されるので、界面層は、5質量%超のZnを含有する領域を含んでも良い。界面層中のZn含有量は、界面層と母材との界面において最小となる。従って、界面層中のZn含有量の最小値は、母材のZn含有量超となる。
 界面層の構成を概略的に図8に示す。上述されたように、界面層21中のAl含有量は一様ではない。母材10と界面層21との界面におけるAl含有量は、母材10のAl含有量と同じである。母材10と界面層21との界面から離れるにつれて、Al含有量は増大し、組織はAl量が最も少ないαFe相、Al量が2番目に少ないFeAl相、及びAl量が3番目に少ないFeAl相の順番で変化する。母材10と界面層21との界面におけるZn含有量は、母材10のZn含有量と同じである。Zn含有量も、母材10と界面層21との界面から離れるにつれて増大するが、その量は低く抑えられ、界面層21全体でZn含有量を平均した場合、5質量%を超えることはない。
 界面層の平均膜厚が1.0μm未満である場合、LME抑制効果が十分に得られない。従って、界面層の平均膜厚を1.0μm以上とする必要がある。界面層の平均膜厚を2.0μm以上とした場合には、上記効果がさらに高いレベルで奏される。界面層の平均膜厚の下限値は、さらに好ましくは5.0μm、6.0μm、または7.0μmである。界面層の平均膜厚の上限値を規定する必要は無いが、平均膜厚が15.0μmを超える界面層は、耐食性等の性能を低下させる場合があるので、好ましくない。従って、界面層の平均膜厚の上限値は好ましくは15.0μmであり、さらに好ましくは10.0μm、9.0μm、または8.0μmである。
[中間層]
 中間層22は、Fe、Al、及びZnを含む層であり、界面層21の上に形成される。中間層の組織の大半は、Fe(Al、Zn)及びFe(Al、Zn)から構成される。Fe(Al、Zn)とは、Fe-Al金属間化合物の1種であるFeAlにおけるAlの一部が、Znと置換されている相であり、Fe(Al、Zn)とは、Fe-Al金属間化合物の1種であるFeAlにおけるAlの一部が、Znと置換されている相である。なお、めっき形成中に混入した不純物に起因する介在物などが、中間層にわずかに含まれる場合もある。しかし発明者らは、ホットスタンプ成形体のめっき層の断面で中間層を観察した場合に、組織が合計99面積%以上のFe(Al、Zn)及びFe(Al、Zn)を含んでいれば、上述のような介在物の影響は無視できる旨を確認した。
 中間層では、Al及びZnの含有量はほぼ均一である。中間層の化学成分は、単位質量%で、平均30%以上50%以下のAlと、平均10%以上40%以下のZnとを含む。また、中間層の平均Al含有量は界面層の平均Al含有量を上回る。
 界面層の構成を上述のように制御し、これにより界面層においてLMEを抑制し、成形体に優れた疲労特性を付与した場合、中間層の平均Al含有量は30質量%以上となる。また、酸化層を主にZn酸化物から構成されるものとすることにより、成形体に優れたりん酸塩処理性を付与する場合、中間層の平均Al含有量は50質量%以下となる。すなわち、中間層の平均Al含有量が30~50質量%の範囲外である場合、界面層または酸化層の構成が不適切なものとなる可能性がきわめて高い。界面層の平均Al含有量の下限値は好ましくは32質量%または35質量%であり、この場合には、界面層のLME抑制効果をさらに確実に発現させることができる。また、界面層の平均Al含有量の好ましい上限値は50質量%または45質量%であり、この場合には、酸化層のりん酸塩処理性をさらに確実に向上させることができる。
 成形体の酸化層を主にZn酸化物から構成されるものとし、成形体に優れたりん酸塩処理性を付与する場合、中間層の平均Zn含有量は10質量%以上となる。また、界面層においてLMEを抑制し、優れた疲労特性を成形体に付与した場合、中間層の平均Zn含有量は30質量%以下となる。すなわち、中間層の平均Zn含有量が10~40質量%の範囲外である場合、界面層または酸化層の構成が不適切なものとなる可能性がきわめて高い。中間層の平均Zn含有量の好ましい下限値は12質量%または13質量%であり、この場合には、酸化層のりん酸塩処理性をさらに確実に向上させることができる。中間層の平均Zn含有量の好ましい上限値は28質量%または25質量%であり、この場合には、界面層のLME抑制効果をさらに確実に発現させることができる。
 中間層の膜厚は、成形体のりん酸塩処理性および耐LME性には直接的に影響しない。しかし、中間層の膜厚が小さい場合、成形体の耐食性の性能が下がるので、中間層の膜厚を5.0μm以上とすることが望ましい。また、中間層の膜厚が過剰に大きくなると、製造コストが高くなり、さらにHS加熱時間が長くなる懸念がある。従って、中間層の膜厚は30.0μm以下が望ましい。
[酸化物層]
 さらに、中間層の成形体表面側には、成形体の最表層として、Zn酸化物を主成分とする酸化物層23が形成されている。酸化物層23は、ホットスタンプ成形体を製造する際の加熱過程で、ホットスタンプ用めっき鋼材のめっきが酸化されて生成したものである。この酸化物層が、ホットスタンプ成形体のりん酸塩処理性を向上させる。りん酸塩処理性および塗膜密着性の向上効果を得るためには、酸化物層の平均膜厚を0.1μm以上とする必要がある。但し、酸化物層が厚過ぎると、成形体の耐食性及び溶接性等に悪影響を及ぼすので、酸化物層の平均膜厚は3.0μm以下とする。なお、酸化物層の平均膜厚を2.0μm以下とした場合には、成形体の耐食性や溶接性等の性能が高いレベルで発揮されるため、好ましい。
 界面層、中間層、および酸化物層の状態は、以下の手段によって特定可能である。
 界面層のAl含有量は、成形体を表面に垂直に切断し、断面を研磨し、この断面において界面層を包含する領域におけるAl含有量分布をEPMA等の解析装置で分析することにより得られる。界面層の平均Zn含有量、中間層の平均Al含有量及び平均Zn含有量、並びにめっき層の平均Si含有量は、上述の方法で得られる濃度分布に基づいて得られる。
 界面層及び中間層の金属組織は、TEM等による結晶構造解析により得られる。
 界面層、中間層、及び酸化物層の厚さは、上述の断面の拡大写真を電子顕微鏡で撮影し、この拡大写真を画像解析することにより得られる。
 なお、本実施形態に係る成形体のめっき層の構成は、成形体の表面に平行な方向に沿って実質的に一様ではない。特に、界面層、中間層、及び酸化物層の厚さは、加工された領域と加工されていない領域とで異なることが多い。従って、上述された分析は、成形体の加工されていない領域において実施されなければならない。加工されていない領域におけるめっき層の状態が上述の範囲内である成形体は、本実施形態に係る成形体であるとみなされる。
 以上に示す構成を備える、本実施形態に係るホットスタンプ成形体では、めっき層を構成する界面層及び中間層の合金形態、界面層および中間層中のAl含有量及びZn含有量、並びに界面層、中間層、及び酸化物層の膜厚について改良を行っている。その結果、本実施形態に係るホットスタンプ成形体によれば、LME発生の抑制に基づく成形体の疲労特性改善と、りん酸塩処理性の改善とを両立することができる。
 以上、本実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、発明の趣旨に逸脱しない範囲において、種々の変更をすることが可能である。
 例えば、上記めっき層が、めっき層中のAl及びZnの合計量が20g/m以上100g/m以下となるように形成されていることが好ましい。めっき層中のAl及びZnの合計量を20g/m以上とすることで、上述した界面層、中間層、及び酸化層が有する効果(疲労特性及びりん酸塩処理性)を一層高めることができる。一方、上記合計量を100g/m以下とすることで、成形体の原材料費を抑制して、製造コスト削減を図ることができる、さらにホットスタンプ成形体の溶接性を高めることができる。なお、めっき層中のAl及びZnの合計量のさらに好ましい下限値は30g/mである。めっき層中のAl及びZnの合計量のさらに好ましい上限値は90g/mである。
 めっき層に含まれるAl及びZnの合計量は、ホットスタンプ成形体を塩酸で溶解し、溶解液を誘導結合プラズマ発光分光分析(ICP分析)することで測定可能である。この方法を用いることで、Al及びZnの量を個別に求めることが可能である。ホットスタンプ加熱前のめっき鋼材を溶解する際には、めっき層のみを溶解するために、母材のFeの溶解を抑制するインヒビターを塩酸に添加することが一般的である。しかしながら、ホットスタンプ成形体のめっき層はFeを含有しているので、上記方法では、十分にホットスタンプ成形体のめっき層が溶解しない、もしくは、溶解速度が極めて遅い。そのため、成形体のめっき中Al及びZn量をICP分析にて求める際には、インヒビターなしの塩酸を用い、40~50℃の液温でめっき層を溶解する方法が適している。また、溶解後にはAlやZnといっためっき成分の解け残りがないかを確認するために、溶解後のホットスタンプ成形体の表面をEPMAで組成分析することが望ましい。上述された分析は、成形体の加工されていない領域において実施されなければならない。
 さらに、上記めっき層が、平均0質量%超10.0質量%のSiを含むことが好ましい。めっき層中の平均Si含有量を0質量%超とすることで、母材とめっき層との密着性を高めることができる。一方、上記平均Si含有量を10.0質量%以下とすることで、ホットスタンプ成形体の耐食性及び溶接性等の性能の低下を防止することができる。めっき層の平均Si含有量のさらに好ましい下限値は0.1質量%、または0.3質量%である。めっき層の平均Si含有量のさらに好ましい上限値は8.0質量%である。ただし、めっき層がSiを含まない場合であっても本実施形態に係るホットスタンプ成形体は優れた特性を有するので、めっき層の平均Si含有量の下限値は0質量%である。
 めっき層が平均0質量%超10.0質量%のSiを含む場合、中間層の相の構成が変化する。上述されたように、めっき層がSiを含まない場合、中間層は合計99面積%以上のFe(Al、Zn)及びFe(Al、Zn)を含むが、めっき層が平均0質量%超10.0質量%のSiを含む場合、Fe(Al、Zn)及びFe(Al、Zn)の一部が、Fe(Al、Si)に置換される。Fe(Al、Si)とは、FeAl中のAlの一部がSiに置換された相である。めっき層の平均Si含有量が10.0質量%となるように本実施形態に係るホットスタンプ成形体を製造した場合、中間層におけるFe(Al、Si)の量は約50面積%となる。従って、めっき層が平均0質量%超10.0質量%のSiを含む場合、中間層は合計99面積%以上のFe(Al、Zn)とFe(Al、Zn)とFe(Al、Si)とを含み、Fe(Al、Si)の含有量は0~50面積%となる。
 なお、Siの量が微小である場合、SiはFe(Al、Zn)及びFe(Al、Zn)に固溶し、中間層の構成は変化しない。本発明者らの調査によれば、めっき層の平均Si含有量が0~0.1質量%である場合、Fe(Al、Si)は中間層に生成しないと推定される。また、本発明者らの調査によれば、めっき層が平均0質量%超10.0質量%のSiを含む場合でも、界面層の相構成は変化しないと推定される。従って、めっき層が平均0質量%超10.0質量%のSiを含む場合であっても、界面層は合計99面積%以上のαFe、FeAl、及びFeAlを含む。
<ホットスタンプ成形体の製造方法>
 次に、本実施形態に係るホットスタンプ成形体の製造方法について説明する。本実施形態のホットスタンプ成形体の製造方法は、ホットスタンプ用めっき鋼材を製造する工程と、ホットスタンプ用めっき鋼材にホットスタンプする工程とを含む。ホットスタンプ用めっき鋼材を製造する工程は、ホットスタンプ用めっき鋼材の母材を製造する工程と、ホットスタンプ用めっき鋼材の母材にAl-Znめっき層を形成する工程とを含む。本実施形態に係るホットスタンプ成形体の製造方法は、必要に応じて、防錆油膜形成工程及びブランキング加工工程を含む。以下、各工程を詳述する。
[母材製造工程]
 ホットスタンプ成形体の材料であるめっき鋼材は、母材と、めっき層とを備える。母材製造工程では、ホットスタンプ用めっき鋼材の母材を製造する。例えば、上に例示された本実施形態に係るホットスタンプ成形体の母材の化学組成と同じ化学組成を有する溶鋼を製造し、この溶鋼を用いて、鋳造法によりスラブを製造する。または、上述の通り製造された溶鋼を用いて、造塊法によりインゴットを製造してもよい。次いで、スラブ又はインゴットを熱間圧延することにより、ホットスタンプ用めっき鋼材の母材(熱延板)が得られる。なお、必要に応じて、上記熱延板に対して酸洗処理を行い、酸洗処理後の熱延板に対して冷間圧延を行って得られる冷延板をホットスタンプ用めっき鋼材の母材としてもよい。
[めっき処理工程]
 めっき処理工程では、上記ホットスタンプ用めっき鋼材の母材にAl-Znめっき層を形成して、ホットスタンプ用めっき鋼材を製造する。
 めっき処理工程では、めっき浴中のAl含有量を40~70質量%とし、且つZn含有量を30~60質量%とする。このような組成のめっき浴を用いてホットスタンプ用めっき鋼材のめっきを形成し、且つホットスタンプ用めっき鋼材に後述の条件でホットスタンプすることにより、ホットスタンプ成形体のめっき層の構成を上述のようにすることができる。
 なお、めっき浴のAl含有量(濃度)及びZn含有量(濃度)と、ホットスタンプ用めっき鋼材のめっき層のAl含有量(濃度)及びZn含有量(濃度)とは実質的に同じであるが、ホットスタンプ成形体のめっき層の平均Al含有量(濃度)及び平均Zn含有量(濃度)は、めっき浴のAl含有量(濃度)及びZn含有量(濃度)よりも低くなる。ホットスタンプの間にめっき層のAl及びZnと母材のFeとの間で生じる合金化によって、めっき層中のFe濃度が増加するからである。
 以下、ホットスタンプ用めっき鋼材のめっき層を、未合金化めっき層と称する場合がある。未合金化めっき層中の平均Al含有量及び平均Zn含有量は、未合金化めっき層を、酸腐食抑制剤(インヒビター)入りの塩酸に溶解させた後に、誘導結合プラズマ発光分光分析法によって分析することで測定可能である。また、ホットスタンプ用めっき鋼材の母材と未合金化めっき層との密着性を高めるためには、ホットスタンプ用めっき鋼材の未合金化めっき層に0.1~15.0質量%のSiをさらに含有させることが好ましい。未合金化めっき層のSi含有量は、母材とめっきとの合金化の際にめっき層中にFeが拡散するので、低下する。従って、未合金化めっき層のSi含有量を0~15質量%とした場合、合金化されためっき層のSi含有量は0~10質量%となる。
 未合金化めっき層の形成方法は、未合金化めっき層中の平均Al含有量および平均Zn含有量が以下の通り制御される限り、溶融めっき処理であってもよいし、溶射めっき処理、蒸着めっき処理等の、その他のいかなる処理であってもよい。例えば、溶融めっき処理によって未合金化めっき層を形成する場合、めっき処理工程は、ホットスタンプ用めっき鋼材の母材を、Al、Zn及び不純物を含み、さらに任意にSiを含む溶融めっき浴に浸漬する工程と、めっき金属が付着したホットスタンプ用めっき鋼材の母材をめっき浴から引き上げる工程とを含む。その他の処理によって未合金化めっき層を形成する場合、得られる未合金化めっき層の化学組成が上述された範囲となるように、常法に従ってめっき処理を行えばよい。
 なお、上述したとおり、ホットスタンプ成形体では、めっき層が、母材に対して、めっき層中のAl及びZnの単位面積当たりの合計重量が20g/m以上100g/m以下で、形成されていることが好ましい。この単位面積当たりの合計重量を確保するには、本工程において、ホットスタンプ用めっき鋼材の母材をめっき浴から引き上げた際のめっき層中のAl及びZnの単位面積当たりの合計重量を、20g/m以上100g/m以下とすることが肝要である。なお、めっき層に含まれるAl及びZnの単位面積当たりの合計重量は、酸化および蒸発によって、合金化の際にわずかに減少する。また、本工程においては、めっき浴からの鋼材の引き上げ速度や、ワイピングのガスの流量を適宜調整することにより、上記合計量の確保を実現することができる。
 上述の方法によって製造されたホットスタンプ用めっき鋼材は、母材と未合金化めっき層とを備え、この未合金化めっき層は40.0~70.0質量%のAlと、30.0~60.0質量%のZnと、0~15.0質量%のSiとを含む。このホットスタンプ用めっき鋼材に、後述する条件下でホットスタンプを行うと、本実施形態に係るホットスタンプ成形体が得られる。以下に、ホットスタンプ条件について詳細に説明する。
[ホットスタンプ工程]
 ホットスタンプ工程では、上述のホットスタンプ用めっき鋼材にホットスタンプを行う。通常のホットスタンプは、鋼材をホットスタンプ温度範囲(熱間加工温度範囲)まで加熱し、次いで鋼材を熱間加工し、さらに鋼材を冷却することにより行われる。通常のホットスタンプ技術によれば、製造時間を短縮するために、鋼材の加熱速度をなるべく大きくすることが良いとされる。また、鋼材をホットスタンプ温度範囲まで加熱すればめっき層の合金化が十分に進むので、通常のホットスタンプ技術は、鋼材の加熱条件の制御を重要視していない。しかしながら、本実施形態に係るホットスタンプ部材を製造するためのホットスタンプ工程では(1)ホットスタンプ用めっき鋼材を合金化温度範囲まで加熱し、(2)ホットスタンプ用めっき鋼材の温度を合金化温度範囲で保持し、(3)ホットスタンプ用めっき鋼材をホットスタンプ温度範囲まで加熱し、(4)ホットスタンプ用めっき鋼材を熱間加工及び冷却する。本発明者らは、ホットスタンプ用めっき鋼材をホットスタンプ温度範囲まで昇温させる際に、合金化温度範囲内で鋼材の昇温を略停止させ、その後昇温を再開することが、上述された構成を有するめっき層を得るために必須であることを見いだした。
 ホットスタンプ工程では、まず、ホットスタンプ用めっき鋼材を加熱炉(ガス炉、電気炉、赤外線炉等)に装入する。加熱炉内で、ホットスタンプ用めっき鋼材を500~750℃の温度範囲(合金化温度範囲)まで加熱し、この温度範囲内で10~450秒保持する。温度保持により、めっき層中に母材のFeが拡散して、合金化が進行する。この合金化により、未合金化めっき層は、母材側から成形体の表面側に向かって、界面層と、中間層と、酸化物層とを含むものに変化する。なお、上述の保持時間とは、ホットスタンプ用めっき鋼材の温度が合金化温度範囲内にある時間のことである。上述の保持時間条件が満たされる限り、ホットスタンプ用めっき鋼材の温度は、温度保持中に合金化温度範囲内で変動してもよい。
 ホットスタンプ用めっき鋼材の温度保持が、合金化温度範囲未満(即ち500℃未満)で行われた場合、めっき層が合金化する速度が極めて小さく、加熱時間が極端に延びるため、生産性の観点から好ましくない。ホットスタンプ用めっき鋼材の温度保持が、合金化温度範囲超、即ち750℃超で行われた場合、この保持過程でめっき層の表層での酸化物の成長が過剰に促進され、HS後に得られる成形品の溶接性が低下する。
 ホットスタンプ用めっき鋼材の温度を合金化温度範囲内に保持する時間が10秒未満である場合、めっき層の合金化が完了しないので、上述された界面層、中間層、および酸化層を有するめっき層が得られない。ホットスタンプ用めっき鋼材の温度を合金化温度範囲内に保持する時間が450秒超である場合、酸化物の成長量が過剰となり、また、生産性の低下に繋がる。
 上述の合金化温度範囲内までホットスタンプ用めっき鋼材を加熱する際の加熱条件は特に限定されない。但し、生産性の観点から、加熱時間は短いことが望ましい。
 本実施形態に係るホットスタンプ成形体の製造方法に含まれるホットスタンプでは、ホットスタンプ用めっき鋼材温度を上述のように合金化温度範囲内に保持した後、Ac点~950℃の温度範囲までホットスタンプ用めっき鋼材を加熱し、次いで熱間加工を行う。この際、ホットスタンプ用めっき鋼材温度がAc点~950℃の温度範囲(酸化温度範囲)内にある時間を60秒以下に制限する必要がある。ホットスタンプ用めっき鋼材温度が酸化温度範囲内にあると、めっき層の表層の酸化層が成長する。ホットスタンプ用めっき鋼材温度が酸化温度範囲内にある時間が60秒超である場合、酸化物皮膜が成長し過ぎて、成形体の溶接性の低下が懸念される。一方、酸化物被膜の生成速度は非常に速いので、ホットスタンプ用めっき鋼材温度が酸化温度範囲内にある時間の下限値は0秒超である。ただし、ホットスタンプ用めっき鋼材の加熱が100%窒素雰囲気等の非酸化雰囲気で行われた場合、酸化層が形成されないので、ホットスタンプ用めっき鋼材の加熱は大気雰囲気等の酸化雰囲気で行われる必要がある。
 ホットスタンプ用めっき鋼材温度が酸化温度範囲内にある時間が60秒以下である限り、加熱速度、及び最高加熱温度等の条件は特に規定されず、ホットスタンプを行いうる種々の条件を選択することができる。
 次に、加熱炉から取り出されたホットスタンプ用めっき鋼材を、金型を用いてプレス成型する。本工程では、このプレス成型と同時に、金型によって当該鋼材を焼入れする。金型内には冷却媒体(たとえば水)が循環しており、金型がホットスタンプ用めっき鋼材の抜熱を促して、焼入れがなされる。以上の工程により、ホットスタンプ成形体を製造することができる。
 なお、上記の説明では、加熱炉を用いてホットスタンプ用めっき鋼材を加熱した。しかしながら、通電加熱によりホットスタンプ用めっき鋼材を加熱してもよい。この場合であっても、通電加熱により鋼材を所定時間加熱し、金型を用いて当該鋼材のプレス成型を行う。
 以上は、本実施形態のホットスタンプ成形体の製造方法における必須の工程であるが、以下に当該製造方法における任意選択的な工程を併記する。
[防錆油膜形成工程]
 防錆油膜形成工程は、めっき処理工程後、かつ、ホットスタンプ工程前に、ホットスタンプ用めっき鋼材の表面に防錆油を塗布して防錆油膜を形成するものであり、製造方法に任意に含まれても良い。ホットスタンプ用めっき鋼材が製造されてからホットスタンプが行われるまでの時間が長い場合には、ホットスタンプ用めっき鋼材の表面が酸化するおそれがある。しかしながら、防錆油膜形成工程により防錆油膜が形成されたホットスタンプ用めっき鋼材の表面は酸化し難いので、防錆油膜形成工程は、成形体のスケールの形成を抑制することができる。なお、防錆油膜の形成方法は、公知のいかなる技術を用いることもできる。
[ブランキング加工工程]
 本工程は、防錆油膜形成工程後、かつ、ホットスタンプ工程前に、ホットスタンプ用めっき鋼材に対して剪断加工及び/又は打ち抜き加工を行って、当該鋼材を特定の形状に成形する工程である。ブランキング加工後の鋼材の剪断面は酸化し易い。しかしながら、鋼材表面に事前に防錆油膜が形成されていれば、上記剪断面にも防錆油がある程度広がる。これにより、ブランキング加工後の鋼材の酸化を抑制することができる。
 以上、本発明の実施形態を説明したが、上述した実施形態は本発明の例示にすぎない。従って、本発明は、上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内において、適宜設計変更することができる。
 以下、本発明の効果を発明例により具体的に説明する。なお、本発明は、以下の発明例で用いた条件に限定されるものではない。
 本発明者らは、母材10上にAl-Zn系めっき層、Zn系めっき層及びAl系めっき層を各々形成した。Al-Zn系めっき層は、55.0質量%のAlと、45.0質量%のZnとを含むものとし、Zn系めっき層は実質的にZnのみからなるものとし、Al系めっき層は実質的にAlのみからなるものとした。
 次に、各めっき層が形成された鋼材(母材とめっき層とから構成されるめっき鋼材)を第1の加熱炉に装入し、700℃まで加熱し、この温度範囲内で120秒保持した。その後、めっき鋼材を直ちに第2の加熱炉に装入して900℃まで加熱し、次いで鋼材温度がAc点~950℃の範囲内にある時間が30秒となるように、めっき鋼材を第2の加熱炉から取り出した。めっき鋼材を第2の加熱炉から取り出した直後に、ハンドプレス機を用いてめっき鋼材に熱間V曲げ試験を行った。鋼材を炉から取り出してから、鋼材に加工を開始するまでの時間は5秒程度であり、曲げ加工は鋼材温度800℃程度で行った。V曲げは、曲げられる部分の外径が、V曲げ前から約15%増大するように行われた。その後、鋼材を冷却することにより、鋼材に焼入れした。冷却は、約800℃からマルテンサイト変態開始点(410℃程度)までの冷却速度が50℃/秒以上となるように行われた。最後に、冷却終了後の成形体の加工部の曲げ外側部のSEM画像を撮影し、LMEの発生の有無を根拠に、成形体の疲労特性(耐LME性)を評価した。
 図1から図3は、Al-Zn系めっき鋼材、Zn系めっき鋼材及びAl系めっき鋼材から製造された成形体の加工部の断面写真である。図1の成形体では、母材1に合金化Al-Zn系めっき層30が形成され、図2の成形体では、母材1に合金化Zn系めっき層40が形成され、図3の成形体では、母材1に合金化Al系めっき層50が形成された。なお、観察した成形体の加工部は、引張加工がなされた部分であって、LMEの発生が懸念される、V曲げ加工部の、曲げ中心に対する外側部分である。
 図1から図3によれば、合金化Zn系めっき層40を有する成形体では母材10の内部まで割れが延在しているのに対し、合金化Al-Zn系めっき層30を有する成形体及び合金化Al系めっき層50を有する成形体では、母材10の内部に割れが延在していないことが判る。
 さらに、上記のとおり加熱および温度保持した鋼材を炉から取り出し、水冷ジャケットを備えた平板金型を用いて鋼材を成形した後、冷却速度が遅い部分でも、マルテンサイト変態開始点(410℃程度)まで、50℃/秒以上の冷却速度となるように焼入れした。その後、成形体の表面を調整して、成形体に対してりん酸塩処理を行った。最後に、成形体表面のSEM画像を撮影し、りん酸塩被膜の形成程度を根拠に、りん酸塩処理性を評価した。
 図4から図6は、第2の加熱炉から取り出されたAl-Zn系めっき鋼材、Zn系めっき鋼材及びAl系めっき鋼材を水冷ジャケットを備えた平板金型で加工しつつ急冷し、その後りん酸塩処理を施した場合の、これら成形体の表面を示すSEM画像(二次電子像)の一例である。
 図4から図6によれば、Al-Zn系めっき及びZn系めっきについては、表面全体に化成結晶60(りん酸塩被膜)が形成されているのに対し、Al系めっきについては、表面の一部に化成結晶が形成されていない領域、いわゆる透け領域70が存在することが判る。
 まず、表1に示す化学組成の溶鋼を用いて、連続鋳造法によりスラブを製造した。次いで、スラブを熱間圧延して熱延鋼材を製造し、熱延鋼材をさらに酸洗した後、冷間圧延を行って冷延鋼材を製造した。そして、この冷延鋼材をホットスタンプ成形体の製造に用いる母材(板厚1.4mm)とした。母材のAc点はおよそ810℃であった。
Figure JPOXMLDOC01-appb-T000001
 次に、このように製造した母材に、表2に示す組成のめっき浴を用いてめっきを形成して、ホットスタンプ用鋼材を得た。めっきの付着量は、Al及びZnの合計重量が表2に示される値となるように制御された。この鋼材を、表2に示す合金化温度まで加熱して、表2に示す合金化時間の間温度を保持した。その後、鋼材を加熱炉に装入してAc点~950℃の温度範囲まで加熱し、次いで鋼材の温度がこの温度範囲内にある時間が表2に示す保持時間となるようにして、鋼材を加熱炉から取り出した。
 次いで、熱間V曲げ試験を行うために、以下の工程を実施した。加熱炉から取り出された鋼材に、直ちにハンドプレス機を用いて熱間V曲げ加工を行った。加熱炉から鋼材を取り出し始めてから鋼材の加工を開始するまでの時間は5秒に設定した。また、金型の形状は、V曲げ加工による曲げ半径の外側部分が曲げ加工終了時に15%程延ばされるような形状とした。
 また、りん酸塩処理性評価試験および塗膜密着性評価試験を行うために、以下の工程を実施した。加熱炉から取り出された鋼材に、直ちに水冷ジャケットを備えた平板金型を用いてホットスタンプを行い、次いで加速冷却した。冷却速度は、マルテンサイト変態開始点(410℃)程度まで、50℃/秒以上の冷却速度となるようにした。さらに、各ホットスタンプ成形体に、日本パーカライジング株式会社製の表面調整処理剤(商品名:プレパレンX)を用いて、表面調整を室温で20秒間行った。次いで、日本パーカライジング株式会社製のりん酸亜鉛処理液(商品名:パルボンド3020)を用いて、各ホットスタンプ成形体にりん酸塩処理を行った。りん酸塩処理では、処理液の温度を43℃とし、ホットスタンプ成形体を処理液に120秒間浸漬した。上述のリン酸塩処理を実施した後、各ホットスタンプ成形体に、日本ペイント株式会社製のカチオン型電着塗料を、電圧160Vのスロープ通電で電着塗装し、更に、焼き付け温度170℃で20分間焼き付け塗装した。電着塗装後の塗料の膜厚の平均は、いずれの発明例及び比較例も10μmであった。
Figure JPOXMLDOC01-appb-T000002
 上述の手段によって得られた発明例および比較例の構成を、以下に示す方法によって確認した。
 発明例及び比較例の界面層、中間層、および酸化物層の状態は、以下の手段によって特定した。界面層の平均Al含有量及び平均Zn含有量、中間層の平均Al含有量及び平均Zn含有量、並びにめっき層の平均Si含有量は、成形体を、成形体の表面に垂直に切断し、断面を研磨し、この断面をEPMA等の解析装置で分析することにより得られた。界面層及び中間層の金属組織は、TEM等による結晶構造解析により得られた。金属組織が本発明の規定を満たす例は「OK」と記載され、満たさない例は「NG」と記載された。界面層、中間層、及び酸化物層の厚さは、上述の断面の拡大写真を電子顕微鏡で撮影し、この拡大写真を画像解析することにより得られた。上述された分析は、成形体の加工されていない領域において実施した。
 発明例及び比較例のめっき層中のAl及びZnの合計重量は、高周波誘導結合プラズマ発光分光分析(ICP-OES)により測定した。即ち、各発明例及び比較例の未加工部(V曲げされていない箇所)からサンプルを採取し、10%HCl水溶液でめっき層を溶解し、分析した。各溶液にプラズマのエネルギーを与え、成分元素を励起させ、放出される発光線(スペクトル線)の位置及び強度を測定することで、各元素の同定及び測量を行った。
 上述の手段により確認された発明例および比較例の構成を表3に示す。表3に示される界面層および中間層の平均組成の残部はFeおよび不純物であった。
Figure JPOXMLDOC01-appb-T000003
 さらに、上述の手段によって得られた発明例および比較例の疲労特性(耐LME性)、リン酸塩処理性、塗膜密着性、および溶接性を、以下に示す方法によって確認した。
 実施例及び比較例の疲労特性は以下の手段によって評価した。実施例及び比較例のV曲げ加工された部位の鋼材厚さ方向断面において、走査型電子顕微鏡(SEM)及び反射電子検出器を用いて反射電子像を観察することにより、液体金属脆化割れ(LME)の発生の有無を観察した。そして、クラックが発生していない試料及びクラックが発生しているがめっき層内で終端している試料を、疲労特性について良好(GOOD)と評価した。一方、クラックがめっき層を越えて母材まで延在している試料を、疲労特性について不良(BAD)と評価した。
 実施例及び比較例のリン酸塩処理性は以下の手段によって評価した。りん酸塩処理された各試料に形成されたりん酸塩被膜を、重クロム酸アンモニウム溶液を用いて溶解、除去し、当該被膜の除去前後の鋼材の重量差を測定し、これをりん酸塩被膜の付着量とみなした。そして、付着量が2.0g/m以上の試料を、リン酸塩処理性について良好(GOOD)と評価した。一方、付着量が2.0g/m未満の試料を、リン酸塩処理性について不良(BAD)と評価した。
 実施例及び比較例の塗膜密着性は以下の手段によって評価した。電着塗装された各試料を、50℃の温度を有する5%NaCl水溶液に500時間浸漬した。浸漬後、60mm×120mmの試験領域全面に、ポリエステル製テープを貼り付け、次いで引きはがした。テープの引きはがしにより塗膜が剥離した領域の面積を求め、下記式に基づいて塗膜剥離率(%)を求めた。
 塗膜剥離率=(A2/A1)×100
 A1は試験領域の面積(60mm×120mm=7200mm)であり、A2は塗膜が剥離した領域の面積(mm)である。塗膜剥離率が5.0%未満の試料を、塗膜密着性について良好(GOOD)と評価した。一方、塗膜剥離率が5.0%以上の試料を、塗膜密着性について不良(BAD)と評価した。
 実施例及び比較例の溶接性は、表面抵抗値によって評価した。試料の表面抵抗値は、加圧式直流インバーター電源を用いて、加圧力250kgfにて、電流2Aを試料に流した際の電圧値から算出した。表面抵抗の値が20mΩ以下となる試料を、溶接性について良好(GOOD)と評価した。
 上述の手段により確認された発明例および比較例の疲労特性(耐LME性)、リン酸塩処理性、塗膜密着性、および溶接性を表4に示す。
Figure JPOXMLDOC01-appb-T000004
[評価結果]
 表3に示すように、めっき層の合金形態及び組成についての改良、並びに、めっき層の最表層として形成される酸化物の膜厚についての改良を行っている、発明例のホットスタンプ成形体については、いずれも、LME発生の抑制に基づく成形体の疲労特性改善と、成形体のりん酸塩処理性の改善との両方が達成されていることが判る。
 これに対し、めっき層の合金形態や組成等についての改良を行っていない、比較例のホットスタンプ成形体については、いずれも、疲労特性、りん酸塩処理性、及び溶接性のいずれかが、十分に改善されていないことが判る。
 比較例101は、Al含有量が不足しためっき浴を用いて製造されたので、LMEを防止することができなかった。このため、比較例101の疲労特性は不良であった。
 比較例102は、Zn含有量が不足しためっき浴を用いて製造されたので、中間層の組織がZn不足に起因して不適切となった。このため、比較例102ではリン酸塩処理性が損なわれ、塗膜密着性が不良であった。
 比較例103は、ホットスタンプの際の合金化温度が高すぎたので、酸化物層の膜厚が過剰となり、溶接性が不良であった。
 比較例104は、ホットスタンプの際の合金化温度が低すぎたので、めっき層の合金化が不十分となり、Znリッチ相が生じ、LMEを防止することができなかった。このため、比較例104の疲労特性は不良であった。
 比較例105は、ホットスタンプの際の合金化時間が長すぎたので、酸化物層の膜厚が過剰となり、溶接性が不良であった。
 比較例106は、ホットスタンプの際の合金化時間が短すぎたので、合金化のための加熱が不十分となった。このため、比較例106ではLMEが発生し、疲労特性が低下した。さらに、比較例106では、加熱が不十分であるので酸化物量が少なく、リン酸塩処理性及び塗膜密着性が不足した。
 比較例107は、合金化温度およびホットスタンプの際の保持時間が過剰であったので、酸化物層の膜厚が過剰となり、溶接性が不良であった。
 本発明によれば、母材表面にめっき層が形成されたホットスタンプ成形体について、疲労特性とりん酸塩処理性とがいずれも十分に発揮される。従って、本発明は、特に、自動車等に用いられる構造部材等の分野において有望である。
 1  ホットスタンプ成形体
 10 母材
 20 めっき層
 21 界面層
 22 中間層
 23 酸化物層
 30 Al-Zn系めっき層
 40 Zn系めっき層
 50 Al系めっき層
 60 化成結晶
 70 透け領域

Claims (4)

  1.  母材と;
     めっき層と;
    を備えるホットスタンプ成形体であって、
     前記めっき層は、前記母材側から表面側に向かって順に、界面層と、中間層と、酸化物層と、を含み、
     前記界面層は、組織が合計99面積%以上のαFe、FeAl、及びFeAlを含み、平均Al含有量が、前記8.0質量%以上32.5質量%以下の範囲内であり、平均Zn含有量が前記母材のZn含有量超5質量%以下に制限され、化学成分の残部はFe及び不純物を含み、並びに平均膜厚が1.0μm以上であり、
     前記中間層は、組織が合計99面積%以上のFe(Al、Zn)及びFe(Al、Zn)を含み、平均Al含有量が30~50質量%であり、平均Zn含有量が10~40質量%であり、化学成分の残部はFe及び不純物を含み、並びに平均膜厚が5.0μm以上であり、
     前記酸化物層は、平均膜厚が0.1~3.0μmである
    ことを特徴とするホットスタンプ成形体。
  2.  前記界面層は、平均膜厚が1.0~10.0μmである
    ことを特徴する請求項1に記載のホットスタンプ成形体。
  3.  前記めっき層中のAl及びZnの単位面積当たりの合計重量が20g/m以上100g/m以下である
    ことを特徴とする請求項1又は2に記載のホットスタンプ成形体。
  4.  前記めっき層は、平均0質量%超10.0質量%以下のSiをさらに含み、
     前記中間層において、前記Fe(Al、Zn)及び前記Fe(Al、Zn)のうち0~50面積%が、Fe(Al、Si)に置換されている
    ことを特徴とする請求項1から3のいずれか1項に記載のホットスタンプ成形体。
PCT/JP2016/063856 2016-05-10 2016-05-10 ホットスタンプ成形体 WO2017195269A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2018138732A RU2710813C1 (ru) 2016-05-10 2016-05-10 Горячештампованная сталь
CA3020663A CA3020663C (en) 2016-05-10 2016-05-10 Hot stamped steel
JP2018516244A JP6566128B2 (ja) 2016-05-10 2016-05-10 ホットスタンプ成形体
BR112018071451A BR112018071451A2 (pt) 2016-05-10 2016-05-10 aço estampado a quente
PCT/JP2016/063856 WO2017195269A1 (ja) 2016-05-10 2016-05-10 ホットスタンプ成形体
EP16901618.5A EP3456854A4 (en) 2016-05-10 2016-05-10 HOT STAMPING MOLDING
US16/097,771 US20190160507A1 (en) 2016-05-10 2016-05-10 Hot stamped steel
KR1020187031574A KR20180131589A (ko) 2016-05-10 2016-05-10 핫 스탬프 성형체
CN201680085368.XA CN109072396A (zh) 2016-05-10 2016-05-10 热冲压成型体
MX2018013464A MX2018013464A (es) 2016-05-10 2016-05-10 Acero estampado en caliente.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063856 WO2017195269A1 (ja) 2016-05-10 2016-05-10 ホットスタンプ成形体

Publications (1)

Publication Number Publication Date
WO2017195269A1 true WO2017195269A1 (ja) 2017-11-16

Family

ID=60266417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063856 WO2017195269A1 (ja) 2016-05-10 2016-05-10 ホットスタンプ成形体

Country Status (10)

Country Link
US (1) US20190160507A1 (ja)
EP (1) EP3456854A4 (ja)
JP (1) JP6566128B2 (ja)
KR (1) KR20180131589A (ja)
CN (1) CN109072396A (ja)
BR (1) BR112018071451A2 (ja)
CA (1) CA3020663C (ja)
MX (1) MX2018013464A (ja)
RU (1) RU2710813C1 (ja)
WO (1) WO2017195269A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190078438A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
JP2019116654A (ja) * 2017-12-27 2019-07-18 日本製鉄株式会社 ホットスタンプ用溶融亜鉛めっき鋼板及びホットスタンプ用溶融亜鉛めっき鋼板の製造方法
JP2019116655A (ja) * 2017-12-27 2019-07-18 日本製鉄株式会社 ホットスタンプ成形体及びホットスタンプ成形体の製造方法
WO2020045905A1 (ko) * 2018-08-30 2020-03-05 주식회사 포스코 열간 성형성 및 내식성이 우수한 알루미늄-아연 합금 도금강판 및 그 제조방법
EP3730664A4 (en) * 2017-12-22 2020-12-02 Posco MELTED ALUMINUM ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND WELDABILITY AND ITS MANUFACTURING PROCESS
JP7243949B1 (ja) * 2021-10-29 2023-03-22 Jfeスチール株式会社 熱間プレス部材
JP7243948B1 (ja) * 2021-10-29 2023-03-22 Jfeスチール株式会社 熱間プレス部材
WO2023074115A1 (ja) * 2021-10-29 2023-05-04 Jfeスチール株式会社 熱間プレス部材
WO2023074114A1 (ja) * 2021-10-29 2023-05-04 Jfeスチール株式会社 熱間プレス部材
WO2023149586A1 (ko) * 2022-02-03 2023-08-10 주식회사 포스코 표면 품질이 우수한 열간 프레스 성형용 도금 강판 및 이의 제조방법
US11884998B2 (en) 2017-03-31 2024-01-30 Nippon Steel Corporation Surface treated steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285698B2 (en) 2018-03-20 2022-03-29 Nippon Steel Corporation Hot-stamped body
EP4023787A4 (en) * 2019-08-29 2022-10-12 Nippon Steel Corporation HOT STAMPING MOLDED BODY
US20230220557A1 (en) * 2020-10-30 2023-07-13 Nippon Steel Corporation Zn-PLATED HOT STAMPED PRODUCT
CN116590640A (zh) * 2023-05-17 2023-08-15 宝山钢铁股份有限公司 一种锌基镀层钢板、锌基热冲压部件及其制造方法
CN116641009A (zh) * 2023-05-17 2023-08-25 宝山钢铁股份有限公司 具有优良耐蚀性的锌基镀层钢板、热冲压部件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248602A (ja) * 2009-04-20 2010-11-04 Jfe Steel Corp 熱間プレス用めっき鋼板および熱間プレス成形品
JP2012514695A (ja) * 2009-01-09 2012-06-28 ポスコ 耐食性に優れたアルミニウムめっき鋼板、それを用いた熱間プレス成形製品、及びそれらの製造方法
JP2013515618A (ja) * 2009-12-29 2013-05-09 ポスコ メッキ鋼材の熱間プレス成形方法及びこれを用いた熱間プレス成形品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428351A (en) * 1987-07-23 1989-01-30 Nisshin Steel Co Ltd Method for hot dip aluminizing hardly aluminizable steel sheet
EP1630244B2 (en) * 2003-04-23 2016-08-17 Nippon Steel & Sumitomo Metal Corporation Hot press formed product and method for production thereof
CN101583486B (zh) * 2006-10-30 2014-08-27 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
WO2010085983A1 (en) * 2009-02-02 2010-08-05 Arcelormittal Investigacion Y Desarrollo S.L. Fabrication process of coated stamped parts and parts prepared from the same
KR20130132623A (ko) * 2011-04-01 2013-12-04 신닛테츠스미킨 카부시키카이샤 도장 후 내식성이 우수한 핫 스탬핑 성형된 고강도 부품 및 그 제조 방법
JP5860959B2 (ja) * 2011-06-28 2016-02-16 ポスコ めっき層の安定性に優れた熱間プレス成形用めっき鋼板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514695A (ja) * 2009-01-09 2012-06-28 ポスコ 耐食性に優れたアルミニウムめっき鋼板、それを用いた熱間プレス成形製品、及びそれらの製造方法
JP2010248602A (ja) * 2009-04-20 2010-11-04 Jfe Steel Corp 熱間プレス用めっき鋼板および熱間プレス成形品
JP2013515618A (ja) * 2009-12-29 2013-05-09 ポスコ メッキ鋼材の熱間プレス成形方法及びこれを用いた熱間プレス成形品

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884998B2 (en) 2017-03-31 2024-01-30 Nippon Steel Corporation Surface treated steel sheet
EP3730664A4 (en) * 2017-12-22 2020-12-02 Posco MELTED ALUMINUM ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND WELDABILITY AND ITS MANUFACTURING PROCESS
KR20190078438A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
WO2019132461A1 (ko) * 2017-12-26 2019-07-04 주식회사 포스코 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
US11833778B2 (en) 2017-12-26 2023-12-05 Posco Plating steel sheet for hot press forming, forming member using same, and manufacturing method therefor
JP7140837B2 (ja) 2017-12-26 2022-09-21 ポスコ 熱間プレス成形用めっき鋼板、これを用いた成形部材及びこれらの製造方法
KR102153164B1 (ko) * 2017-12-26 2020-09-07 주식회사 포스코 열간 프레스 성형용 도금강판 및 이를 이용한 성형부재
JP2021509437A (ja) * 2017-12-26 2021-03-25 ポスコPosco 熱間プレス成形用めっき鋼板、これを用いた成形部材及びこれらの製造方法
US11358369B2 (en) 2017-12-26 2022-06-14 Posco Plating steel sheet for hot press forming, forming member using same, and manufacturing method therefor
JP7006257B2 (ja) 2017-12-27 2022-01-24 日本製鉄株式会社 ホットスタンプ成形体及びホットスタンプ成形体の製造方法
JP7006256B2 (ja) 2017-12-27 2022-02-10 日本製鉄株式会社 ホットスタンプ用溶融亜鉛めっき鋼板及びホットスタンプ用溶融亜鉛めっき鋼板の製造方法
JP2019116655A (ja) * 2017-12-27 2019-07-18 日本製鉄株式会社 ホットスタンプ成形体及びホットスタンプ成形体の製造方法
JP2019116654A (ja) * 2017-12-27 2019-07-18 日本製鉄株式会社 ホットスタンプ用溶融亜鉛めっき鋼板及びホットスタンプ用溶融亜鉛めっき鋼板の製造方法
EP3845682A4 (en) * 2018-08-30 2021-07-14 Posco STEEL SHEET PLATED WITH AN ALUMINUM-ZINC ALLOY WITH EXCELLENT HOT WORKABILITY AND CORROSION RESISTANCE AND PROCESS FOR MANUFACTURING THEREOF
CN112639154A (zh) * 2018-08-30 2021-04-09 Posco公司 热成型性和耐蚀性优异的铝-锌合金镀覆钢板及其制造方法
WO2020045905A1 (ko) * 2018-08-30 2020-03-05 주식회사 포스코 열간 성형성 및 내식성이 우수한 알루미늄-아연 합금 도금강판 및 그 제조방법
JP7243949B1 (ja) * 2021-10-29 2023-03-22 Jfeスチール株式会社 熱間プレス部材
JP7243948B1 (ja) * 2021-10-29 2023-03-22 Jfeスチール株式会社 熱間プレス部材
WO2023074115A1 (ja) * 2021-10-29 2023-05-04 Jfeスチール株式会社 熱間プレス部材
WO2023074114A1 (ja) * 2021-10-29 2023-05-04 Jfeスチール株式会社 熱間プレス部材
WO2023149586A1 (ko) * 2022-02-03 2023-08-10 주식회사 포스코 표면 품질이 우수한 열간 프레스 성형용 도금 강판 및 이의 제조방법

Also Published As

Publication number Publication date
RU2710813C1 (ru) 2020-01-14
CN109072396A (zh) 2018-12-21
EP3456854A4 (en) 2019-10-02
CA3020663C (en) 2020-06-02
CA3020663A1 (en) 2017-11-16
US20190160507A1 (en) 2019-05-30
EP3456854A1 (en) 2019-03-20
KR20180131589A (ko) 2018-12-10
BR112018071451A2 (pt) 2019-02-05
JP6566128B2 (ja) 2019-08-28
JPWO2017195269A1 (ja) 2019-01-24
MX2018013464A (es) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6566128B2 (ja) ホットスタンプ成形体
JP6515356B2 (ja) ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体
JP6819771B2 (ja) ホットスタンプ成形体
CN108138282B (zh) 热压用镀锌钢板和热压成形品的制造方法
WO2011025042A1 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
CN111868290A (zh) 热冲压成型体
JP6326761B2 (ja) ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
JP6897757B2 (ja) 表面処理鋼板
CN111868291A (zh) 热冲压成型体
JP6406475B1 (ja) 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
JP6171872B2 (ja) ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
WO2018142849A1 (ja) 高強度溶融亜鉛めっき熱延鋼板およびその製造方法
TWI588293B (zh) 熱壓印成形體
WO2022091351A1 (ja) Zn系めっきホットスタンプ成形品
JP6947335B1 (ja) ホットスタンプ用鋼板およびホットスタンプ成形体
JP7364961B2 (ja) ホットスタンプ成形体
WO2023017844A1 (ja) 接合部品および接合鋼板
TWI676508B (zh) Al系鍍敷鋼板及其製造方法
CN112154225B (zh) Al系镀覆钢板及其制造方法
WO2023135932A1 (ja) 熱間プレス用鋼板、熱間プレス用鋼板の製造方法、熱間プレス部材、および熱間プレス部材の製造方法
JP2019131879A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
TW201837208A (zh) 熱沖壓成形體

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516244

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3020663

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018071451

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187031574

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901618

Country of ref document: EP

Effective date: 20181210

ENP Entry into the national phase

Ref document number: 112018071451

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181018