WO2022091351A1 - Zn系めっきホットスタンプ成形品 - Google Patents
Zn系めっきホットスタンプ成形品 Download PDFInfo
- Publication number
- WO2022091351A1 WO2022091351A1 PCT/JP2020/040848 JP2020040848W WO2022091351A1 WO 2022091351 A1 WO2022091351 A1 WO 2022091351A1 JP 2020040848 W JP2020040848 W JP 2020040848W WO 2022091351 A1 WO2022091351 A1 WO 2022091351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- content
- phase
- steel material
- thickness
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 141
- 239000010959 steel Substances 0.000 claims abstract description 141
- 238000007747 plating Methods 0.000 claims abstract description 113
- 239000000463 material Substances 0.000 claims abstract description 109
- 239000006104 solid solution Substances 0.000 claims abstract description 56
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 230000008520 organization Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 214
- 239000011701 zinc Substances 0.000 description 208
- 239000011572 manganese Substances 0.000 description 89
- 239000012071 phase Substances 0.000 description 74
- 230000007797 corrosion Effects 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 239000000126 substance Substances 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000005246 galvanizing Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000002344 surface layer Substances 0.000 description 11
- 239000011651 chromium Substances 0.000 description 10
- 238000010422 painting Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000004070 electrodeposition Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910001335 Galvanized steel Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000008397 galvanized steel Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/285—Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to a Zn-based plated hot stamped product.
- Hot stamping is a quenching process that uses heat removal from the mold at the same time as hot forming by press working a blank that has been heated to a temperature above the austenite single phase range (Ac 3 points), for example, about 900 ° C. This is a technology for producing high-strength press-molded products with high shape freezeability by quenching).
- the Zn component remains on the surface layer of the steel sheet after hot stamping, so that the effect of improving corrosion resistance can be obtained as compared with the hot stamping material of non-plated steel sheet.
- hot stamping materials there is a need to apply hot stamping materials to members that require high rust resistance, and further improvement in corrosion resistance of hot stamping molded products is desired.
- hot stamping materials have mainly been applied as reinforcing materials for skeletal members, and have been used in positions that cannot be seen from the outside after being assembled in automobiles, but they improve the appearance quality after hot stamping. Therefore, it is hoped that the application will be expanded to visible positions in the future.
- a hot-dip galvanized steel sheet is used for hot stamping, a pattern like a hexagonal shell or a spider web (so-called hexagonal pattern) is generated on the surface, and this suppression is required.
- the ⁇ phase is Zn: 70 to 85% by mass
- Fe about 15 to 30% by mass
- the Fe—Zn solid solution is Zn: It is 10 to 40% by mass and Fe: 60 to 90% by mass.
- ⁇ phase nor the Fe-Zn solid solution is excellent in both sacrificial anticorrosion performance and plating adhesion. Further, a configuration having both corrosion resistance and adhesion to a steel plate which is a steel material has not been known.
- the present invention has been made in view of the above, and an object of the present invention is to provide a Zn-based plated hot stamped product which can secure plating adhesion and corrosion resistance with a steel material and has an excellent appearance.
- the present inventors have found that the hexagonal pattern is formed by local oxidation of Mn, and the formation state of the oxide film formed on the outermost layer during hot stamp heating and the volume change due to the change in the plating phase under the oxide. It was found that it is important to control the flow and flow. Further, the present inventors are excellent in controlling the ratio of the upper layer thickness to the lower layer thickness of the plating layer in which the upper layer is the ⁇ phase and the Fe—Zn solid solution and the lower layer is the Fe—Zn solid solution within a specific range. It was found that both corrosion resistance after painting and excellent plating adhesion can be achieved.
- the present invention has been further studied based on the above findings, and the gist thereof is as follows.
- the Zn-based plated hot stamped product according to one aspect of the present invention is formed on a steel material, a Zn-containing Zn-based plating layer formed on the surface of the steel material, and the surface of the Zn-based plating layer.
- a Zn-based plated hot stamped product comprising an oxide layer containing Zn and Mn, wherein the upper layer, which is a region on the surface side of the Zn-based plated layer, is a ⁇ phase and a Fe—Zn solid solution.
- the ratio of the ⁇ phase in the two-phase structure of the ⁇ phase and the Fe—Zn solid solution in the upper layer may be 20% to 80%.
- the Zn content of the Zn-based plated layer may be 30.0% or more in mass%.
- the Zn-based plated hot stamped product according to any one of (1) to (3) above may have a plate thickness of 1.0 mm to 3.2 mm.
- the presence of the ⁇ phase is important for improving the corrosion resistance after painting, but since the ⁇ phase is an intermetallic compound, it is hard and brittle. Thought.
- the Fe—Zn solid solution is considered to have high plastic deformability because it is a metal in which Zn is solidly dissolved in ferrite. Therefore, from the viewpoint of plating adhesion, the presence of Fe—Zn solid solution was considered to be important.
- the present inventors diligently studied the reduction of the hexagonal pattern, and as a result, the hexagonal pattern is formed by the local oxidation of Mn diffused from the underlying steel material to the surface of the hot stamped product by hot stamping. It was found that it is important to control the volume change and flow due to the formation state of the oxide film formed on the outermost layer during hot stamp heating and the change of the plating phase under the oxide.
- Al contained in the plating is oxidized as the plating melts at the initial stage of hot stamp heating, so that the Al oxide layer is mainly formed on the outermost layer with a thickness of several tens of nm and then Zn. It was found that oxides and Mn oxides are generated, but Mn oxides are locally generated at the place where the Al oxide layer is broken, so that they can be visually recognized as a turtle shell pattern. Based on the above, as a result of diligent studies on a method for suppressing the hexagonal pattern, the maximum value of Mn content on the surface of the Zn-based plated hot stamped product Max. Mn and the minimum value Min. The Mn content ratio (Max. Mn / Min.
- Mn which is the ratio of Mn, is equal to or less than a specific value, and the average value of the Mn content of the molded product Ave. It has been found that if Mn is within a certain range, the formation of the oxide layer and the reaction of the plating layer can be uniformly promoted, the formation of the hexagonal pattern is suppressed, and a good appearance can be obtained.
- the present inventors are excellent in controlling the ratio of the upper layer thickness to the lower layer thickness of the plating layer in which the upper layer is the ⁇ phase and the Fe—Zn solid solution and the lower layer is the Fe—Zn solid solution within a specific range. It was found that both corrosion resistance after painting and excellent plating adhesion can be achieved. The present invention has been completed based on the above findings.
- the Zn-based plated hot stamp molded product 100 according to the present embodiment will be described with reference to FIG. 1.
- the Zn-based plated hot stamped product 100 according to the present embodiment includes a steel material 1, a Zn-based plated layer 2, and an oxide layer 3.
- the Zn-based plating layer 2 includes a lower layer 21 and an upper layer 22.
- the upper layer 22, which is a region on the surface layer side of the Zn-based plating layer 2, is a two-phase structure in which the Fe—Zn solid solution 15 is distributed in an island shape in the ⁇ phase (capital gamma phase) 14.
- the lower layer 21, which is a region on the steel material side of the Zn-based plating layer 2 is a single-phase structure of a Fe—Zn solid solution.
- the thickness of the Zn-based plating layer 2 is about several to several tens of ⁇ m.
- the thickness of the oxide layer 3 is mostly about several hundred nm to several ⁇ m, which is smaller than the thickness of the Zn-based plating layer 2.
- FIG. 1 is an enlarged view of the thickness of the oxide layer 3.
- the steel material 1 will be described.
- the chemical composition of the steel material 1 is not particularly limited, but as an example of the chemical composition of the steel material of the steel plate for automobiles, for example, in terms of mass%, C: 0.05% to 0.45%, Si: 0.50.
- Mn 0.50 to 2.50%, P: 0.030% or less, S: 0.015% or less, Al: 0.100% or less, N: 0.010% or less, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Cr: 0 to 0.50%, Mo: 0 to 0.50%, Nb: 0 to 0.10%, V: 0 to 0.10%, Ti: 0 to 0.10%, B: 0 to 0.0050%, Ca: 0 to 0.0100%, REM: 0 to 0.0100%, and the balance is iron and impurities.
- the chemical composition of these elements will be described.
- Carbon (C) is an element that enhances the strength of a Zn-based plated hot stamped product after hot stamping. If the C content in the steel material 1 is too low, the above effect cannot be obtained. Therefore, the lower limit of the C content in the steel material 1 is preferably 0.05%. The preferred lower limit of the C content is 0.10% or 0.15%. On the other hand, if the C content in the steel material 1 is too high, the toughness of the steel sheet is lowered. Therefore, the upper limit of the C content is preferably 0.45%. The preferred upper limit of the C content is 0.40% or 0.35%.
- Si Silicon (Si) is an element inevitably contained in the steel material 1. Further, Si has the effect of deoxidizing the steel material 1. However, if the Si content in the steel material 1 is too high, Si in the steel material 1 diffuses during heating in the hot stamp, and an oxide is formed on the surface of the steel material 1. This oxide reduces phosphate treatment. Si also has a function of raising the Ac 3 points of the steel material 1, and when the Ac 3 points rise, the heating temperature at the time of hot stamping may exceed the evaporation temperature of Zn. When the Si content of the steel material 1 exceeds 0.50%, the above problem becomes remarkable. Therefore, the upper limit of the Si content is preferably 0.50%. The upper limit of the more preferable Si content is 0.40% or 0.30%. It is not necessary to specify the lower limit of the Si content, but the lower limit may be 0.05% for sufficient deoxidation.
- Manganese (Mn) is an element that enhances the hardenability of the steel material 1 and enhances the strength of the Zn-based plated hot stamped product 100. If the Mn content is too low, the effect cannot be obtained. In order to obtain the effect, it is preferable to set the lower limit of the Mn content of the steel material 1 to 0.50%. The preferable lower limit of the Mn content of the steel material 1 is 0.60% or 0.80%. On the other hand, if the Mn content is too high, the effect is saturated. Therefore, the upper limit of the Mn content of the steel material 1 is preferably 2.50%. The preferable upper limit of the Mn content of the steel material 1 is 2.30% or 2.00%.
- Phosphorus (P) is an impurity contained in the steel material 1. P segregates at the grain boundaries of the steel material 1 to reduce the toughness of the steel and lower the delayed fracture resistance. Therefore, it is preferable that the P content of the steel material 1 is as low as possible, but when the P content exceeds 0.030%, the effect becomes remarkable. Therefore, the upper limit of the P content in the steel material 1 may be 0.030%. The lower limit of the P content is 0%.
- S 0.015% or less
- Sulfur (S) is an impurity contained in the steel material 1.
- S forms a sulfide to reduce the toughness of the steel and the delayed fracture resistance. Therefore, the upper limit of the S content is 0.015%. It is preferable that the S content is as low as possible. The lower limit of the S content is 0%.
- Aluminum (Al) is an effective element for deoxidizing steel. It is not necessary to specify the lower limit of the Al content in particular, and the lower limit is 0%, but the Al content of the steel material 1 may be 0.005% or more or 0.010% or more for deoxidation. On the other hand, if the Al content is too high, the Ac 3 points of the steel sheet may rise, and the required heating temperature at the time of hot stamping may exceed the evaporation temperature of the Zn-based plating layer 2. Therefore, the upper limit of the Al content of the steel material 1 is preferably 0.100%. A more preferable upper limit of the Al content of the steel material 1 is 0.070% or 0.050%.
- the Al content in the present specification means the content of so-called total Al (T-Al).
- N 0.010% or less
- Nitrogen (N) is an impurity inevitably contained in the steel material 1.
- N is an element that forms a nitride and lowers the toughness of the steel material 1.
- B is contained, N has the effect of binding to B and reducing the amount of solid solution B.
- the hardenability is lowered. Therefore, it is preferable that the N content of the steel material 1 is as low as possible.
- the N content of the steel material 1 exceeds 0.010%, the effect becomes remarkable. Therefore, the upper limit of the N content of the steel material 1 may be 0.010%. It is not necessary to specify the lower limit of the N content, and the lower limit of the N content is 0%.
- the chemical composition of the steel material 1 of the present embodiment may have, for example, a chemical composition in which the above-mentioned element and the balance are Fe and impurities.
- the impurities are those mixed or intentionally added from ore, scrap, or the manufacturing environment as a raw material when the steel material is industrially manufactured, and this is carried out. Examples of elements are permitted as long as the characteristics of the Zn-based plated hot stamped product 100 according to the form are not impaired.
- the steel material 1 constituting the Zn-based plated hot stamped product 100 according to the present embodiment has Cu, Ni, Cr, Mo, Nb, V, Ti, B, Ca, as optional elements instead of a part of Fe. It may contain one or more selected from REM. The following elements are optional elements. The lower limit of the content of these elements is 0%.
- Cu is an element that can be dissolved in steel to increase its strength without impairing its toughness. However, if the content is excessive, minute cracks may be generated on the surface during rolling or the like. Therefore, the Cu content is preferably 1.00% or less or 0.60% or less, and more preferably 0.40% or less or 0.25% or less. In order to sufficiently obtain the above effects, the Cu content is preferably 0.01% or more, more preferably 0.05% or more.
- Nickel (Ni) enhances the toughness of steel material 1.
- Ni suppresses embrittlement caused by the liquid phase Zn when heated by hot stamping.
- the preferable lower limit of the Ni content of the steel material 1 is 0.10%.
- the upper limit of the Ni content is preferably 1.00%.
- Chromium (Cr) is an element that enhances the hardenability of steel materials.
- the preferable lower limit of the Cr content of the steel material 1 is 0.10%.
- the upper limit of the Cr content of the steel material 1 is preferably 0.50%.
- Molybdenum Molybdenum (Mo) is an element that enhances the hardenability of steel material 1.
- the preferable lower limit of the Mo content of the steel material 1 is 0.05%.
- the upper limit of the Mo content of the steel material 1 is preferably 0.50%.
- Nb 0 to 0.10%, V: 0 to 0.10%, Ti: 0 to 0.10%
- Nb, V and Ti contribute to the improvement of the strength of the steel sheet by the precipitation of carbides
- one selected from these may be contained alone or in combination of two or more, if necessary.
- the content of these elements may be 0.10% or less. If necessary, the content of these elements may be 0.08% or less, 0.05% or less, or 0.03% or less, respectively.
- B 0% to 0.0050% Boron (B) is an element that enhances the hardenability of steel and enhances the strength of the Zn-based plated hot stamped product 100.
- the preferable lower limit of the B content of the steel material 1 is 0.0001%.
- the upper limit of the B content of the steel material 1 is preferably 0.0050%.
- Ca and REM are elements that control the morphology of non-metal inclusions that are the starting point of fracture and cause deterioration of workability and improve workability, they may be contained as necessary. However, if the content of these elements is excessive, the effect is saturated and the raw material cost increases. Therefore, the Ca content and the REM content are preferably 0.0100% or less, respectively. If necessary, the content of these elements may be 0.0060% or less, 0.0040% or less, or 0.0030% or less, respectively.
- REM is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the REM content means the total amount of the above elements.
- the chemical composition of the steel material 1 described above may be measured by a general analysis method.
- ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscopy
- C and S may be measured by using the combustion-infrared absorption method
- N may be measured by using the inert gas melting-thermal conductivity method.
- the plating layer on the surface may be removed by mechanical grinding and then the chemical composition may be analyzed.
- the Zn-based plating layer 2 of the Zn-based plating hot stamp molded product 100 includes a lower layer 21 and an upper layer 22.
- the lower layer 21 on the steel material side of the Zn-based plating layer 2 has a single-phase structure of a Fe—Zn solid solution.
- the crystal structure of the Fe—Zn solid solution is the same as that of ⁇ —Fe.
- the Fe—Zn solid solution contains Fe and Zn dissolved in Fe.
- the ⁇ phase 14 is a metal phase mainly composed of Fe 3 Zn 10 , which is a metal compound of Fe and Zn.
- the thickness of the upper layer 22 and the thickness of the lower layer 21 of the Zn-based plated layer 2 satisfy the following formula (1). 0.20 ⁇ Upper layer thickness / (Upper layer thickness + Lower layer thickness) ⁇ 0.80 ... (1)
- the corrosion resistance of the Zn-based plating hot stamped product 100 and the plating adhesion with the steel material can be ensured.
- upper layer thickness / (upper layer thickness + lower layer thickness) is smaller than 0.20, the ratio of the ⁇ phase 14 in the Zn-based plating layer 2 may be small, and sufficient corrosion resistance may not be obtained. be. Further, if “upper layer thickness / (upper layer thickness + lower layer thickness)” is larger than 0.80, the adhesion between the lower layer 21 and the steel material 3 may decrease and sufficient plating adhesion may not be obtained. be.
- the ratio of the ⁇ phase 14 in the two-phase structure of the ⁇ phase 14 of the upper layer 22 of the Zn-based plating layer 2 and the Fe—Zn solid solution 15 (the ratio of the ⁇ phase to the ⁇ phase 14 and the Fe—Zn solid solution 15 inside the upper layer 22) It is preferably 20% or more and 80% or less.
- the corrosion resistance after painting may decrease. Further, when the ratio of the ⁇ phase to the ⁇ phase 14 and the Fe—Zn solid solution 15 inside the upper layer 22 exceeds 80%, the ratio of the hard and brittle ⁇ phase increases, so that the workability of the upper layer 22 deteriorates. As a result, the adhesion between the upper layer 22 and the lower layer 21 may decrease, and the plating adhesion may decrease.
- the lower limit of "upper layer thickness / (upper layer thickness + lower layer thickness)" may be 25%, 30% or 35%, and the upper limit thereof may be 75%, 70% or 65%.
- the SEM image when the thickness of the upper layer 22 is measured is divided into squares with a pitch of 1 ⁇ m ⁇ 1 ⁇ m as shown in FIG. 4, and only the ⁇ phase and only the Fe—Zn solid solution.
- ⁇ phase and Fe-Zn solid solution can be divided into three types, the number of squares of each of the ⁇ phase and Fe-Zn solid solution can be counted, and the ⁇ phase ratio can be calculated from the ratio of the squares. ..
- the masses with a pitch of 1 ⁇ m ⁇ 1 ⁇ m may be further subdivided and the area fraction may be measured more accurately, but the ⁇ phase and Fe- 0.5 mass may be added to each of the Zn solid solutions.
- the Zn-based plating layer 2 has a mass% and a Zn content of 30.0% or more. If necessary, the lower limit of the Zn content may be 35.0%, 40.0%, or 50.0%. The upper limit of the Zn content is preferably 80.0%. If necessary, the upper limit of the Zn content may be 78.0% or 75.0%.
- the chemical composition of the Zn-based plating layer 2 (however, excluding Zn) is, for example,% by mass and Fe: 20.0 to 70.0%. , Al: 0 to 1.0%, Si: 0 to 1.0%, Mg: 0 to 1.0%, Mn: 0 to 1.0%, Ni: 0 to 1.0%, Sb: 0 to 1.0%, balance: preferably impurities.
- the Zn-based plating layer 2 has an Fe content in the range of 95.0% or less, and the analysis position of the chemical composition of the Zn-based plating layer 2 is at the center of the thickness of the Zn-based plating layer 2. Center of film thickness).
- the method for analyzing the chemical composition is as follows. From the surface of the Zn-based plated hot stamped product 100 to the thickness direction of the Zn-based plated hot stamped product 100 (that is, from the surface of the Zn-based plated hot stamped product 100 to the center of the plate thickness) by GDS (glow discharge emission analysis). The Fe content is measured in the direction toward the direction), and the range from the surface of the Zn-based plated hot stamped product 100 to the Fe content exceeding 95.0% is specified.
- the center of the distance from the position where the Fe content first became 95.0% to the surface (this range is the Zn-based plating layer 2) (that is, the thickness of the Zn-based plating layer 2).
- the content of each element in the center) is analyzed by GDS, and the analyzed value is taken as the chemical composition of the Zn-based plating layer 2. Since there is an oxide layer on the surface side of the Zn-based plated hot stamp molded product 100, the position where the Zn content is 80.0% (in the case of a plurality, the position closest to the surface) is the position of the Zn-based plating layer 2. It is regarded as the surface position.
- the position where the Zn content is 80% is the position where the Zn-based plating layer 2 and the oxide are. It is the boundary of layer 3.
- the outermost surface layer is regarded as the surface position of the Zn-based plating layer 2 and the Zn-based plating layer 2 is formed. Identify the center of thickness (center of film thickness).
- Observation of the ⁇ phase 14 and the Fe—Zn solid solutions 12 and 15 can be performed as follows. A sample cut to a size of about 20 mm square is embedded in a resin so that the Zn-based plating layer 2 can be observed from a cross section, and then a mirror surface is finished by mechanical polishing. This resin-embedded sample is observed at a magnification of 2000 times with a backscattered electron (BSE) image and a secondary electron (Secandary Electron) image using a scanning electron microscope (SEM).
- BSE backscattered electron
- SEM secondary electron microscope
- the plating layer of the present embodiment has a two-layer structure
- the lower layer 21 in contact with the steel material 1 has a single-phase structure of Fe—Zn solid solution 12
- the upper layer 22 has a two-phase structure of ⁇ -phase 14 and Fe—Zn solid solution 15.
- the method of discriminating between the upper layer 22 and the lower layer 21 will be described by taking as an example that the upper layer 22 has a two-phase structure of the ⁇ phase 14 and the Fe—Zn solid solution 15.
- the part closest to the steel material 1 in the thickness direction was subtracted in the direction perpendicular to the thickness direction of the steel material 1 (that is, in the direction parallel to the surface).
- the virtual line is defined as a boundary line between the upper layer 22 and the lower layer 21.
- the thickness of the upper layer 22 is the shortest distance from the outermost layer portion of the upper layer 22 (that is, the portion of the Zn-based plating layer 2 farthest from the steel material 1 in the thickness direction) to the boundary line.
- the thickness of the lower layer 21 is the portion farthest from the surface layer side in the thickness direction of the Zn-based plating layer 2 at the interface between the Zn-based plating layer 2 and the steel material 1 from the boundary line. It is the shortest distance to.). This work is performed in any five fields of view, the upper layer thickness and the lower layer thickness are measured, and the average value is taken as the upper layer thickness and the lower layer thickness.
- the Zn-based plated hot stamped product 100 includes an oxide layer 3 containing Zn and Mn.
- the average value of the Mn content on the surface of the oxide layer 3 (the surface of the hot stamped product 100) Ave. Mn is 0.5 to 7.5% by mass. That is, Ave. Mn is mass% and satisfies the following equation (2).
- Ave. Of the more preferable oxide layer 3 Mn is 1.0% or more. Mn in the oxide layer 3 is diffused from the steel material 1 to the surface of the oxide layer 3 at the time of hot stamping.
- Ave. Of the oxide layer 3 Mn is preferably 7.0% or less.
- Ave. Of the oxide layer 3 Mn is more preferably 6.5% or less. Ave. Of the oxide layer 3 When Mn is 0.5% or more and 7.0% or less, the occurrence of hexagonal pattern can be suppressed.
- Ave. Mn 0.5 to 7.5 ... (2)
- the Mn content ratio of Mn is 10.0 or less. That is, Max. Mn / Min. Mn satisfies the following equation (3).
- the Mn content ratio is more preferably 8.0 or less.
- the Mn content ratio is more preferably 5.0 or less.
- the lower limit of this Mn content ratio is 1.0. If necessary, the lower limit may be 1.2, 1.3 or 1.5. Max. Mn / Min. Mn ⁇ 10.0 ... (3)
- the Mn content of the oxide layer in the Zn-based plated hot stamp molded product 100 can be measured by the following method.
- the surface of the Zn-based plated hot stamped product 100 is observed using an electron probe microanalyzer (for example, EPMA-1720H manufactured by Shimadzu Corporation).
- the acceleration voltage is 15 kV
- the beam current is 100 nA
- the beam diameter is the minimum condition of the device (however, it is 1 to 4 ⁇ m).
- the Mn content is measured under the conditions of a measurement length of 40 mm, a measurement pitch of 20 ⁇ m (2000-point measurement), and a measurement time of 1.0 sec / point.
- the oxide layer 3 containing Zn and Mn is present on the surface of the Zn-based plated hot stamped product 100.
- the presence of the oxide layer 3 can be confirmed by the secondary electron image obtained by SEM-SE observation. It is not necessary to confirm the type of oxide contained in the oxide layer 3 because it is very complicated and technically difficult.
- the Mn content (Max.Mn, Min.Mn and Ave.Mn) on the surface of the hot stamped product 100 as described above satisfies the formulas (2) and (3), the oxide layer It is assumed that 3 exists.
- the plate thickness of the hot stamp molded product 100 used for automobile members is often 1.0 to 3.2 mm. Therefore, it is preferable that the plate thickness of the hot stamp molded product 100 is 1.0 to 3.2 mm. Further, the plate thickness may be 1.0 to 2.6 mm, if necessary.
- the steel material For example, a molten steel having the above-mentioned preferable range of chemical composition is produced.
- a slab is manufactured by a casting method such as continuous casting using the manufactured molten steel.
- the heating temperature of the slab is preferably 1100 ° C. or higher. There is no particular upper limit for heating the slab. In order to heat the slab above 1300 ° C, it is necessary to input a large amount of energy, which causes a significant increase in manufacturing cost. For this reason, the heating temperature of the slab is preferably 1300 ° C. or lower.
- Hot rolling after heating the slab, cooling after hot rolling, and winding may be performed by a general method, and are not particularly limited.
- the hot-rolled steel sheet is subjected to a known pickling treatment. After the pickling treatment, cold rolling may be performed if necessary. It may be carried out by a known method according to the characteristics required for the applied member.
- Zn-based plating By performing Zn-based plating on the above-mentioned hot-rolled steel sheet or cold-rolled steel sheet, a Zn-based plated layer is formed on the surface of the steel sheet to obtain a steel material for hot stamping.
- the method for forming the Zn-based plating layer is not particularly limited, but the hot-dip galvanizing treatment is preferable for forming the Zn-based plating.
- the plating adhesion amount of the Zn-based plating layer of the hot stamping steel material is 80 g / m 2 or more and 150 g / m 2 or less. If the plating adhesion amount of the Zn-based plating layer is 80 g / m 2 or more, the effect of improving the corrosion resistance of the hot stamped product can be obtained, which is desirable. If it is 150 g / m 2 or less, a good appearance can be obtained after the plating treatment. (If the amount of plating adhered is larger than 150 g / m 2 , the plating may drip and the appearance may be deteriorated, and the appearance of the hot stamped product may be deteriorated when hot-dip galvanizing is performed).
- the Zn-based plated layer of the steel material for hot stamping is a hot-dip galvanized steel sheet (GI) having a small amount of oxide in the molded product when hot stamped.
- the plating adhesion amount of the Zn-based plating layer of the steel material for hot stamping is 0.02% of the inhibitor (Ibit 700A, Asahi Chemical Co., Ltd.) that suppresses the dissolution of Fe in the above-mentioned hot-rolled steel sheet or cold-rolled steel sheet. It can be calculated from the weight change before and after dissolution by immersing all the Zn-based plating layers in the contained 5% aqueous HCl solution at room temperature for 10 minutes. However, whether or not the dissolution of the Zn-based plating layer is completed is determined based on the completion of foaming due to the generation of hydrogen during dissolution.
- the inhibitor Ibit 700A, Asahi Chemical Co., Ltd.
- the chemical composition of the Zn-based plating layer of the steel material for hot stamping is, for example, in mass%, Al: 0.1% to 1.0%, Fe: 0.1% to 20.0%, Si: 0% to 0. .5%, Mg: 0% to 0.5%, Mn: 0% to 0.5%, Pb: 0% to 0.5%, Sb: 0% to 0.5%, balance: Zn and impurities can do.
- the Zn content in the balance is preferably 80% or more.
- the surface roughness Ra ( ⁇ m) of the hot stamping steel material and the plate thickness t (mm) of the hot stamping steel material are adjusted to satisfy the following equation (4) by temper rolling.
- a person skilled in the art can adjust Ra / t within the range of the following equation (4) by controlling the surface roughness Ra ( ⁇ m) and the elongation rate of the tempered rolled roll.
- Ra / t can be adjusted within the range of the following equation (4) by temper rolling with a temper rolling roll having Ra ⁇ 2.5 ⁇ m and an elongation rate of about 1.5%.
- Ra / t value is larger than 0.25, the appearance quality may deteriorate due to the formation of the hexagonal pattern. Further, when the value of Ra / t is smaller than 0.05, the thickness of the Fe—Zn solid solution 15 in the lower layer 21 increases, and the ratio of the thickness between the upper layer 22 and the lower layer 21 may not be obtained. It is more preferable that Ra is 0.3 ⁇ m or less.
- Hot stamping process Hot stamping is performed on the steel material for hot stamping provided with the above-mentioned Zn-based plating layer. The details will be described below.
- the Fe—Zn solid solution parameter P defined by the following equation (5) is 0.5 ⁇ in the hot stamping step.
- the steel material for hot stamping is heated so as to satisfy P ⁇ 2.5.
- P [(T-782) ⁇ ⁇ (t 2 -t 1 ) / 2 + (t-t 2 ) ⁇ ] ⁇ W 2 ...
- T means the furnace temperature set temperature (heating temperature) (° C.)
- t means the time (heating time) (sec) from inserting the steel sheet into the heating furnace to carrying it out
- t 1 means.
- the temperature of the steel sheet means the time (sec) when the temperature of the steel sheet reaches 782 ° C
- t 2 means the time when the temperature reaches the heating temperature (T) -10 ° C (T-10 ° C arrival time) (sec)
- W means the time (sec).
- the P value is less than 0.5, the interface of the Zn-based plating layer 2 on the steel material side is not covered by the lower layer 21 made of the Fe—Zn solid solution, and the plating adhesion may decrease.
- the P value is 0.5 or more in order to prevent such a state.
- the P value exceeds 2.5, the ratio of the Fe—Zn solid solution in the Zn-based plating layer 2 increases, and the corrosion resistance after coating decreases. Therefore, the P value is 2.5 or less.
- the heating temperature T is less than Ac 3 , quenching is not possible. Therefore, the heating temperature is preferably Ac 3 points or more.
- the heating temperature is 950 ° C. or higher, the surface oxidation (formation of Zn oxide) of the Zn-based plated hot stamped product 100 proceeds excessively, and the Mn content ratio becomes more than 10.0. Therefore, the heating temperature T is preferably less than 950 ° C.
- the Ac 3 points (° C.) are represented by the following equation (6).
- Ac 3 912-230.5 x C + 31.6 x Si-20.4 x Mn-14.8 x Cr-18.1 x Ni + 16.8 x Mo-39.8 x Cu ... (6)
- the element symbol in the above formula is the content of the element in mass%, and if it is not contained, 0 is substituted.
- the heating time is less than 240 seconds, quenching may not be possible. Therefore, the heating time is preferably 240 seconds or more. If the heating time exceeds 600 seconds, surface oxidation (formation of Zn oxide) of the Zn-based plated hot stamped product 100 may proceed excessively. Therefore, the heating time is preferably 600 seconds or less.
- the steel material for hot stamping is usually pressed using a die in which a cooling medium (for example, water) circulates inside.
- a cooling medium for example, water
- the hot stamping steel is quenched by the heat removed from the die.
- the upper layer of the two-phase structure of the ⁇ phase and the Fe—Zn solid solution, the lower layer of the single phase of the Fe—Zn solid solution, and the “upper layer thickness / (upper layer thickness + lower layer thickness)” is 0.20 to 0.
- the temperature at which the pressing of the steel material for hot stamping is started is the lower limit of the temperature at which the liquid phase Zn contained in the Zn-based plating layer is completely solidified (about) in order to obtain the Zn-based plating layer 2 to be 80.
- the temperature is 750 ° C.) or lower and exceeds the upper limit of the temperature range in which the ⁇ phase becomes a single layer.
- the specific temperature range for example, by conducting a preliminary test in advance, the temperature range in which the above-mentioned structure is formed can be easily obtained. Rapid cooling may be started, that is, hot stamping may be started from the temperature range obtained in this way.
- the average cooling rate from the quenching start temperature to 450 ° C is less than 20 ° C / s, sufficient strength cannot be obtained. Therefore, the average cooling rate from the quenching start temperature to 450 ° C. is 20 ° C./s or more.
- the average cooling rate from 450 ° C to 200 ° C is preferably 15 ° C / s or higher.
- the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited.
- the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
- the chemical composition is C: 0.20%, Si: 0.19%, Mn: 1.31%, P: 0.010%, S: 0.005%, Cu: 0.01%, Ni: 0. 01%, Cr: 0.20%, Mo: 0.01%, Ti: 0.01%, B: 0.0002%, N: 0.002%, Ca: 0.0002%, REM: 0.0002
- the above hot-rolled steel sheet is cold-rolled to the plate thickness shown in Table 1, then annealed, and Zn-based plating (hot-dip galvanizing) is performed under the conditions shown in Table 1 to partially melt the hot-rolled steel sheet.
- Zn-based plating hot-dip galvanizing
- the zinc-plated steel sheets No. 17 and 18 were alloyed to obtain plated steel sheets.
- the obtained plated steel sheet was temper-rolled so as to have Ra shown in Table 1 to obtain a steel material for hot stamping.
- the steel material for hot stamping obtained by the above method was hot stamped under the conditions shown in Table 1 to obtain a Zn-based plated hot stamped product.
- the P value of each condition is shown in Table 1.
- the amount of plating adhered to the Zn-based plating layer of the steel material for hot stamping was measured as follows.
- An inhibitor Ibit 700A, Asahi
- Ibit 700A, Asahi that suppresses the dissolution of Fe in a hot-rolled steel sheet after covering the surface opposite to the evaluation surface with masking tape on the sample (30 mm ⁇ 30 mm) cut out from the hot stamping steel material obtained above.
- Chemical Industry Co., Ltd. was immersed in a 5% HCl aqueous solution containing 0.02% at room temperature for 10 minutes to dissolve all the Zn-based plating layers, and the calculation was made from the weight change before and after the dissolution. Whether or not the dissolution of all the plated layers was completed was determined based on the completion of foaming due to hydrogen generation during dissolution. Table 1 shows the results obtained.
- the cross-section of the Zn-based plating layer was observed at a magnification of 2000 times using a sample that had been embedded in resin and then polished so that the cross-section of the Zn-based plating layer of the molded product could be observed.
- the virtual line drawn perpendicular to the thickness direction of the steel material was used as the boundary between the upper layer and the lower layer.
- the thickness of the upper layer is the shortest distance from the outermost layer of the upper layer to this virtual line.
- the thickness of the lower layer is the shortest distance from the boundary between the upper layer and the lower layer to the position on the steel material side of the interface between the Zn-based plating layer and the steel material to the virtual line.
- Five visual fields were arbitrarily observed for each sample, the upper layer thickness and the lower layer thickness were measured, and the average value was taken as the upper layer thickness and the lower layer thickness. The results are shown in Table 2.
- the acceleration voltage is 15 kV
- the beam current is 100 nA
- the beam diameter is measured on the surface of the Zn-based plated hot stamped product at 4 ⁇ m, which is the minimum condition of the device.
- the measurement was performed under the conditions of a length of 40 mm, a measurement pitch of 20 ⁇ m (measurement at 2000 points), and a measurement time of 1.0 sec / point.
- the maximum value of the measured value of the Mn content (each Mn content in the 200 region) is set to Max. Mn, the minimum value is Min.
- Mn the Mn content ratio (Max. Mn / Min. Mn) was calculated, and the average value of the measured values of the Mn content was Ave. It was designated as Mn.
- the results obtained are shown in Table 2.
- the chemical composition of the Zn-based plating layer 2 is all mass%, Zn: 30 to 80%, Fe: 20.0 to 70. .0%, Al: 0 to 1.0%, Si: 0 to 1.0%, Mg: 0 to 1.0%, Mn: 0 to 1.0%, Ni: 0 to 1.0%, Sb : It was in the range of 0 to 1.0%.
- the corrosion resistance after painting was evaluated by the following method.
- the surface of the Zn-based plated hot stamped product (plate-shaped) was adjusted at room temperature for 20 seconds using a surface adjusting agent (trade name: Prepare X) manufactured by Nihon Parkerizing Co., Ltd.
- a phosphate treatment was performed using a zinc phosphate treatment solution (trade name: Palbond 3020) manufactured by Nihon Parkerizing Co., Ltd.
- the temperature of the treatment liquid was set to 43 ° C.
- the Zn-based plated hot stamp molded product was immersed in the treatment liquid for 120 seconds.
- a phosphate film was formed on the surface of the steel material.
- a cationic electrodeposition paint manufactured by Nippon Paint Co., Ltd. is applied to the plate-shaped hot-pressed steel material (molded product) of each test number by energizing a slope with a voltage of 160 V. It was applied and coated, and then baked and coated at a baking temperature of 170 ° C. for 20 minutes. The film thickness of the paint after electrodeposition coating was controlled on the plated steel sheet before hot stamping under the condition that the electrodeposition coating was 15 ⁇ m.
- a cross cut is made in the steel sheet (molded product) after electrodeposition coating so that it reaches the steel material of the base material, and a composite corrosion test (neutral salt spray cycle test specified by JIS H8502 (1999)).
- a corrosion evaluation test was conducted in which one cycle was salt spray (35 ° C., 2h), drying (60 ° C., 25% RH, 4h), and wetting (50 ° C., 98% RH, 2h).
- a 5% saline solution was used for the salt spray.
- Corrosion resistance was evaluated based on the coating swelling width, and those having a coating swelling width of 3 mm or less after performing a 180-cycle composite corrosion test were evaluated as "OK", and those having a coating swelling width larger than 3 mm were evaluated as "NG”. The results are shown in Table 2.
- the chipping resistance evaluation was performed by the following method. It was cut into 70 mm ⁇ 150 mm, degreased, chemically formed, and coated with 3 coats for automobiles. The three-coat coating was electrodeposition coating, intermediate coating, and top coating from the steel plate side. Crushed stone (0.3 to 0.5 g) was vertically irradiated with an air pressure of 2 kgf / cm 2 while being kept cooled at ⁇ 20 ° C. 10 stones were irradiated per sample. The chipping marks were observed and the position of the peeling interface was evaluated.
- the hexagonal pattern evaluation (appearance quality evaluation) was performed by the following method. For hot stamping materials made of 100 mm x 100 mm, “OK” means that no linear unevenness is visually confirmed on the surface, and “NG” means that even one piece shows linear unevenness. ". The results are shown in Table 2.
- Nos. 2 to 7, 10 and 13 to 16 were excellent in corrosion resistance after painting, plating adhesion, and appearance quality.
- the Zn-based plated hot stamped product of No. 1 did not satisfy the requirements for the ratio of the upper layer and the lower layer, so that the plating adhesion was inferior.
- the Zn-based plated hot stamped products of 8 and 9 did not satisfy the ratio of the upper layer and the lower layer and the Mn content ratio, so that the corrosion resistance after painting and the appearance quality were inferior.
- the Zn-based plated hot stamped product of No. 17 did not satisfy the ratio of the upper layer and the lower layer, and therefore had low corrosion resistance after painting. Moreover, since alloyed hot dip galvanizing (GA) was used, the appearance quality was inferior.
- the Zn-based plated hot stamped product of the present invention has excellent post-painting corrosion resistance, plating adhesion, and appearance, and therefore has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
Abstract
このZn系めっきホットスタンプ成形品は、鋼材と、Zn系めっき層と、酸化物層と、を備えたZn系めっきホットスタンプ成形品であって、前記Zn系めっき層の表面側の領域である上層がΓ相とFe-Zn固溶体との二相組織であり、前記Zn系めっき層の前記上層を除く領域である下層がFe-Zn固溶体の単相組織であり、前記上層厚さと前記下層厚さが下記の式を満たし、前記Zn系めっきホットスタンプ成形品の表面のMn含有量の最大値Max.Mnと最小値Min.Mnとの比Max.Mn/Min.MnであるMn含有量比が10.0以下であり、平均値Ave.Mnが質量%で0.5~7.5%である。 0.20 ≦ 上層厚さ/(上層厚さ+下層厚さ) ≦ 0.80
Description
本発明は、Zn系めっきホットスタンプ成形品に関する。
自動車用部材の分野では燃費や衝突安全性の向上を目的として、高強度化のニーズが高まっており、その解決法としてホットスタンプ技術の適用が拡大している。ホットスタンプとは、オーステナイト単相域となる温度(Ac3点)以上、例えば900℃程度まで加熱したブランクをプレス加工することで、熱間成形と同時に金型からの抜熱を利用した急冷(焼入れ)により、形状凍結性が高く、高強度のプレス成型品を製造する技術である。
また、ホットスタンプの加熱時に酸化鉄などのスケールが生成するため、ホットスタンプ成形後にショットブラスト等によりスケールを除去する必要があるが、特許文献1に記載されているように、めっき鋼板を使用することでスケールの生成を抑制し、スケール除去工程を省略できるため、ホットスタンプ用のZn系めっき鋼板の適用が拡大している。
Zn系めっき鋼板を用いると、ホットスタンプ後に鋼板表層にZn成分が残存するため、非めっき鋼板のホットスタンプ材と比較して耐食性の向上効果も得られる。近年では、高い防錆性が求められる部材にもホットスタンプ材の適用ニーズがあり、ホットスタンプ成形品の更なる耐食性向上が望まれる。
また、これまではホットスタンプ材は骨格部材の補強材としての適用が主であり、自動車に組付けた後には外から見えない位置で用いられていたが、ホットスタンプ後の外観品位を向上することで、今後は視認される位置にも適用拡大することも望まれる。しかしながら、従来から、溶融亜鉛めっき鋼板をホットスタンプに用いた場合には表面に、亀の甲羅若しくは蜘蛛の巣のような模様(いわゆる亀甲模様)が発生するため、この抑制が求められる。
ところで、Γ相及びFe-Zn固溶体を備えるZn系めっきホットスタンプ成形品においては、Γ相はZn:70~85質量%、Fe:15~30質量%程度であり、Fe-Zn固溶体はZn:10~40質量%、Fe:60~90質量%である。
Γ相とFe-Zn固溶体はともに、犠牲防食性能とめっき密着性の双方が優れているわけではない。また、耐食性と鋼材である鋼板との密着性を兼ね備える構成は知られていなかった。
本発明は、上記に鑑みてなされた発明であり、鋼材とのめっき密着性および耐食性を確保でき、かつ、外観に優れるZn系めっきホットスタンプ成形品を提供することを目的とする。
本発明者らは、亀甲模様はMnの局所的な酸化により形成されることを見出し、ホットスタンプ加熱中の最表層で生成する酸化膜の形成状態および酸化物下でのめっき相変化による体積変化や流動を制御することが重要であるとの知見を得た。また、本発明者らは、上層がΓ相およびFe-Zn固溶体であり、下層がFe-Zn固溶体であるめっき層の上層厚さと下層厚さの比率を特定の範囲に制御することで優れた塗装後耐食性および優れためっき密着性を両立できることを見出した。
本発明は、上記の知見に基づき、さらに検討を進めてなされたものであり、その要旨は以下のとおりである。
(1)本発明の一態様に係るZn系めっきホットスタンプ成形品は、鋼材と、前記鋼材の表面に形成された、Znを含有するZn系めっき層と、前記Zn系めっき層の表面に形成されたZnおよびMnを含有する酸化物層と、を備えたZn系めっきホットスタンプ成形品であって、前記Zn系めっき層の表面側の領域である上層がΓ相とFe-Zn固溶体との二相組織であり、前記Zn系めっき層の前記上層を除く領域である下層がFe-Zn固溶体の単相組織であり、前記上層の厚さと前記下層の厚さとの厚さが下記の式(1)を満たし、前記Zn系めっきホットスタンプ成形品の表面のMn含有量の最大値Max.Mn、最小値Min.Mnと平均値Ave.Mが、質量%で下記の式(2)および(3)を満たす。
0.20≦上層厚さ/(上層厚さ+下層厚さ)≦0.80・・・(1)
Ave.Mn=0.5~7.5 ・・・(2)
Max.Mn/Min.Mn≦10.0 ・・・(3)
(2)上記(1)に記載のZn系めっきホットスタンプ成形品は、前記上層のΓ相とFe-Zn固溶体の二相組織中のΓ相比率が20%~80%であってもよい。
(3)上記(1)または(2)に記載のZn系めっきホットスタンプ成形品は、前記Zn系めっき層のZn含有量が、質量%で、30.0%以上であってもよい。
(4)上記(1)~(3)のいずれか1つに記載のZn系めっきホットスタンプ成形品は、板厚が1.0mm~3.2mmであってもよい。
(1)本発明の一態様に係るZn系めっきホットスタンプ成形品は、鋼材と、前記鋼材の表面に形成された、Znを含有するZn系めっき層と、前記Zn系めっき層の表面に形成されたZnおよびMnを含有する酸化物層と、を備えたZn系めっきホットスタンプ成形品であって、前記Zn系めっき層の表面側の領域である上層がΓ相とFe-Zn固溶体との二相組織であり、前記Zn系めっき層の前記上層を除く領域である下層がFe-Zn固溶体の単相組織であり、前記上層の厚さと前記下層の厚さとの厚さが下記の式(1)を満たし、前記Zn系めっきホットスタンプ成形品の表面のMn含有量の最大値Max.Mn、最小値Min.Mnと平均値Ave.Mが、質量%で下記の式(2)および(3)を満たす。
0.20≦上層厚さ/(上層厚さ+下層厚さ)≦0.80・・・(1)
Ave.Mn=0.5~7.5 ・・・(2)
Max.Mn/Min.Mn≦10.0 ・・・(3)
(2)上記(1)に記載のZn系めっきホットスタンプ成形品は、前記上層のΓ相とFe-Zn固溶体の二相組織中のΓ相比率が20%~80%であってもよい。
(3)上記(1)または(2)に記載のZn系めっきホットスタンプ成形品は、前記Zn系めっき層のZn含有量が、質量%で、30.0%以上であってもよい。
(4)上記(1)~(3)のいずれか1つに記載のZn系めっきホットスタンプ成形品は、板厚が1.0mm~3.2mmであってもよい。
本発明の上記態様によれば、鋼材とのめっき密着性および耐食性を確保でき、かつ、外観に優れたZn系めっきホットスタンプ成形品を提供することができる。
本発明者らは、Γ相はZn濃度が高く犠牲防食性能が高いため、塗装後耐食性の向上にΓ相の存在が重要であるが、Γ相は金属間化合物であることから硬くて脆いと考えた。これに対して、Fe-Zn固溶体は、フェライトにZnが固溶している金属であることから、塑性変形能が高いと考えた。そこで、めっき密着性の観点からは、Fe-Zn固溶体の存在が重要であると考えた。本発明者らは、この考えに基づき、亀甲模様の低減について鋭意検討した結果、亀甲模様はホットスタンプによって下地の鋼材からホットスタンプ成形品の表面まで拡散したMnの局所的な酸化により形成されることを見出し、ホットスタンプ加熱中の最表層で生成する酸化膜の形成状態および酸化物下でのめっき相変化による体積変化や流動を制御することが重要であることを見出した。
具体的には、ホットスタンプ加熱初期にめっきの溶融に伴ってめっき中に含有するAlが酸化することで、主にAl酸化物層が最表層に数十nmの厚さで形成された後にZn酸化物やMn酸化物が生成するが、Al酸化物層が破壊された箇所で局所的にMn酸化物が生成することで、亀甲模様として視認されることが分かった。以上のことを基に、亀甲模様の抑制方法を鋭意検討した結果、Zn系めっきホットスタンプ成形品の表面のMn含有量の最大値Max.Mnと最小値Min.Mnの比であるMn含有量比(Max.Mn/Min.Mn)が特定の値以下であり、前記成形品のMn含有量の平均値Ave.Mnが、ある特定の範囲内にあれば、均一に酸化物層の形成およびめっき層の反応を進めることができ、亀甲模様の生成を抑制して良好な外観を得られることを見出した。
また、本発明者らは、上層がΓ相およびFe-Zn固溶体であり、下層がFe-Zn固溶体であるめっき層の上層厚さと下層厚さの比率を特定の範囲に制御することで優れた塗装後耐食性および優れためっき密着性を両立できることを見出した。本発明は、上記の知見に基づいて、完成した。
図1を参照し、本実施形態に係るZn系めっきホットスタンプ成形品100を説明する。本実施形態に係るZn系めっきホットスタンプ成形品100は、鋼材1とZn系めっき層2と酸化物層3とを備える。Zn系めっき層2は、下層21と上層22とを備える。Zn系めっき層2の表層側の領域である上層22は、Γ相(キャピタルガンマ相)14の中にFe-Zn固溶体15が島状に分布した2相組織である。Zn系めっき層2の鋼材側の領域である下層21は、Fe-Zn固溶体の単相組織である。以下、各構成について説明する。なお、Zn系めっき層2の厚さは数~数十μm程度である。一方、酸化物層3の厚さは数百nm~数μm程度が大半であり、Zn系めっき層2の厚さに比べ小さい。しかしながら、図示の都合上、図1は酸化物層3の厚さは拡大された図としている。
(鋼材)
鋼材1について説明する。鋼材1の化学組成は、特に限定する必要はないが、自動車用鋼板の鋼材の化学組成の一例として、例えば、質量%で、C:0.05%~0.45%、Si:0.50%以下、Mn:0.50~2.50%、P:0.030%以下、S:0.015%以下、Al:0.100%以下、N:0.010%以下、Cu:0~1.00%、Ni:0~1.00%、Cr:0~0.50%、Mo:0~0.50%、Nb:0~0.10%、V:0~0.10%、Ti:0~0.10%、B:0~0.0050%、Ca:0~0.0100%、REM:0~0.0100%、残部が鉄及び不純物を挙げることできる。以下、これらの元素の化学組成について説明する。
鋼材1について説明する。鋼材1の化学組成は、特に限定する必要はないが、自動車用鋼板の鋼材の化学組成の一例として、例えば、質量%で、C:0.05%~0.45%、Si:0.50%以下、Mn:0.50~2.50%、P:0.030%以下、S:0.015%以下、Al:0.100%以下、N:0.010%以下、Cu:0~1.00%、Ni:0~1.00%、Cr:0~0.50%、Mo:0~0.50%、Nb:0~0.10%、V:0~0.10%、Ti:0~0.10%、B:0~0.0050%、Ca:0~0.0100%、REM:0~0.0100%、残部が鉄及び不純物を挙げることできる。以下、これらの元素の化学組成について説明する。
「C:0.05%~0.45%」
炭素(C)は、ホットスタンプ後のZn系めっきホットスタンプ成形品の強度を高める元素である。鋼材1中のC含有量が低すぎれば、上記効果が得られない。そのため、鋼材1中のC含有量の下限は0.05%とすることが好ましい。C含有量の好ましい下限は0.10%又は0.15%である。一方、鋼材1中のC含有量が高すぎれば、鋼板の靭性が低下する。したがって、C含有量の上限は、0.45%とすることが好ましい。C含有量の好ましい上限は0.40%又は0.35%である。
炭素(C)は、ホットスタンプ後のZn系めっきホットスタンプ成形品の強度を高める元素である。鋼材1中のC含有量が低すぎれば、上記効果が得られない。そのため、鋼材1中のC含有量の下限は0.05%とすることが好ましい。C含有量の好ましい下限は0.10%又は0.15%である。一方、鋼材1中のC含有量が高すぎれば、鋼板の靭性が低下する。したがって、C含有量の上限は、0.45%とすることが好ましい。C含有量の好ましい上限は0.40%又は0.35%である。
「Si:0.50%以下」
シリコン(Si)は鋼材1中に不可避的に含有される元素である。また、Siは鋼材1を脱酸する効果を有する。しかしながら、鋼材1中のSi含有量が高すぎれば、ホットスタンプにおける加熱中に鋼材1中のSiが拡散し、鋼材1表面に酸化物を形成する。この酸化物はりん酸塩処理性を低下させる。Siはさらに、鋼材1のAc3点を上昇させる働きがあり、Ac3点が上昇するとホットスタンプ時の加熱温度が、Znの蒸発温度を超えてしまう場合がある。鋼材1のSi含有量が0.50%超の場合に、上記の問題が顕著となることから、Si含有量の上限は0.50%とすることが好ましい。より好ましいSi含有量の上限は0.40%又は0.30%である。Si含有量の下限を特に規定する必要はないが、十分な脱酸のため、その下限を0.05%としてもよい。
シリコン(Si)は鋼材1中に不可避的に含有される元素である。また、Siは鋼材1を脱酸する効果を有する。しかしながら、鋼材1中のSi含有量が高すぎれば、ホットスタンプにおける加熱中に鋼材1中のSiが拡散し、鋼材1表面に酸化物を形成する。この酸化物はりん酸塩処理性を低下させる。Siはさらに、鋼材1のAc3点を上昇させる働きがあり、Ac3点が上昇するとホットスタンプ時の加熱温度が、Znの蒸発温度を超えてしまう場合がある。鋼材1のSi含有量が0.50%超の場合に、上記の問題が顕著となることから、Si含有量の上限は0.50%とすることが好ましい。より好ましいSi含有量の上限は0.40%又は0.30%である。Si含有量の下限を特に規定する必要はないが、十分な脱酸のため、その下限を0.05%としてもよい。
「Mn:0.50%~2.50%」
マンガン(Mn)は、鋼材1の焼入れ性を高め、Zn系めっきホットスタンプ成形品100の強度を高める元素である。Mn含有量が低すぎれば、その効果が得られない。その効果を得る場合、鋼材1のMn含有量の下限を0.50%とすることが好ましい。鋼材1のMn含有量の好ましい下限は0.60%又は0.80%である。一方、Mn含有量が高すぎれば、その効果が飽和する。したがって、鋼材1のMn含有量の上限は、2.50%とすることが好ましい。鋼材1のMn含有量の好ましい上限は2.30%又は2.00%である。
マンガン(Mn)は、鋼材1の焼入れ性を高め、Zn系めっきホットスタンプ成形品100の強度を高める元素である。Mn含有量が低すぎれば、その効果が得られない。その効果を得る場合、鋼材1のMn含有量の下限を0.50%とすることが好ましい。鋼材1のMn含有量の好ましい下限は0.60%又は0.80%である。一方、Mn含有量が高すぎれば、その効果が飽和する。したがって、鋼材1のMn含有量の上限は、2.50%とすることが好ましい。鋼材1のMn含有量の好ましい上限は2.30%又は2.00%である。
「P:0.030%以下」
りん(P)は、鋼材1中に含まれる不純物である。Pは鋼材1の粒界に偏析して鋼の靭性を低下し、耐遅れ破壊性を低下する。したがって、鋼材1のP含有量はなるべく低いほうが好ましいが、P含有量が0.030%超となった場合、その影響が顕著となる。そのため、鋼材1中のP含有量の上限を0.030%としてもよい。P含有量の下限は0%である。
りん(P)は、鋼材1中に含まれる不純物である。Pは鋼材1の粒界に偏析して鋼の靭性を低下し、耐遅れ破壊性を低下する。したがって、鋼材1のP含有量はなるべく低いほうが好ましいが、P含有量が0.030%超となった場合、その影響が顕著となる。そのため、鋼材1中のP含有量の上限を0.030%としてもよい。P含有量の下限は0%である。
「S:0.015%以下」
硫黄(S)は、鋼材1中に含まれる不純物である。Sは硫化物を形成して鋼の靭性を低下し、耐遅れ破壊性を低下する。したがって、S含有量の上限は0.015%である。S含有量はなるべく低い方が好ましい。S含有量の下限は0%である。
硫黄(S)は、鋼材1中に含まれる不純物である。Sは硫化物を形成して鋼の靭性を低下し、耐遅れ破壊性を低下する。したがって、S含有量の上限は0.015%である。S含有量はなるべく低い方が好ましい。S含有量の下限は0%である。
「Al:0.100%以下」
アルミニウム(Al)は鋼の脱酸に有効な元素である。Al含有量の下限を特に規定する必要はなくその下限は0%であるが、脱酸のために、鋼材1のAl含有量を0.005%以上又は0.010%以上としてもよい。一方、Al含有量が高すぎれば鋼板のAc3点が上昇して、ホットスタンプ時の必要な加熱温度がZn系めっき層2の蒸発温度を超える場合がある。したがって、鋼材1のAl含有量の上限は0.100%とすることが好ましい。鋼材1のAl含有量のより好ましい上限は0.070%又は0.050%である。本明細書におけるAl含有量は、いわゆるtotal Al(T-Al)の含有量を意味する。
アルミニウム(Al)は鋼の脱酸に有効な元素である。Al含有量の下限を特に規定する必要はなくその下限は0%であるが、脱酸のために、鋼材1のAl含有量を0.005%以上又は0.010%以上としてもよい。一方、Al含有量が高すぎれば鋼板のAc3点が上昇して、ホットスタンプ時の必要な加熱温度がZn系めっき層2の蒸発温度を超える場合がある。したがって、鋼材1のAl含有量の上限は0.100%とすることが好ましい。鋼材1のAl含有量のより好ましい上限は0.070%又は0.050%である。本明細書におけるAl含有量は、いわゆるtotal Al(T-Al)の含有量を意味する。
「N:0.010%以下」
窒素(N)は、鋼材1中に不可避的に含まれる不純物である。Nは窒化物を形成して鋼材1の靭性を低下する元素である。Nは、Bが含有される場合、Bと結合して固溶B量を減らす効果を有する。固溶B量が減ることで、焼入れ性が低下する。したがって、鋼材1のN含有量はなるべく低い方が好ましい。鋼材1のN含有量が0.010%超となった場合、その影響が顕著になることから、鋼材1のN含有量の上限は0.010%としてもよい。N含有量の下限を特に規定する必要はなく、N含有量の下限は0%である。
窒素(N)は、鋼材1中に不可避的に含まれる不純物である。Nは窒化物を形成して鋼材1の靭性を低下する元素である。Nは、Bが含有される場合、Bと結合して固溶B量を減らす効果を有する。固溶B量が減ることで、焼入れ性が低下する。したがって、鋼材1のN含有量はなるべく低い方が好ましい。鋼材1のN含有量が0.010%超となった場合、その影響が顕著になることから、鋼材1のN含有量の上限は0.010%としてもよい。N含有量の下限を特に規定する必要はなく、N含有量の下限は0%である。
本実施形態の鋼材1の化学組成は、例えば、上述の元素と残部がFe及び不純物からなる化学組成を有していてもよい。本明細書において、不純物とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入し、あるいは、意図的に添加されたものであって本実施形態に係るZn系めっきホットスタンプ成形品100の特性を阻害しない範囲で許容される元素が例示される。
本実施形態に係るZn系めっきホットスタンプ成形品100を構成する鋼材1は、Feの一部に代えて、任意元素として、Cu、Ni、Cr、Mo、Nb、V,Ti、B、Ca、REMから選択される1種又は2種以上を含有してもよい。以下の元素は任意元素であり。それらの元素の含有量の下限は0%である。
[Cu:0~1.00%]
Cuは鋼に固溶して靱性を損なわずに強度を高めることができる元素である。しかし、その含有量が過剰であると圧延時などの際、表面に微小な割れを発生させることがある。このため、Cu含有量は1.00%以下または0.60%以下であるのが好ましく、0.40%以下または0.25%以下がより好ましい。上記効果を十分に得るためには、Cu含有量は0.01%以上であるのが好ましく、0.05%以上であるのがより好ましい。
Cuは鋼に固溶して靱性を損なわずに強度を高めることができる元素である。しかし、その含有量が過剰であると圧延時などの際、表面に微小な割れを発生させることがある。このため、Cu含有量は1.00%以下または0.60%以下であるのが好ましく、0.40%以下または0.25%以下がより好ましい。上記効果を十分に得るためには、Cu含有量は0.01%以上であるのが好ましく、0.05%以上であるのがより好ましい。
「Ni:0%~1.00%」
ニッケル(Ni)は鋼材1の靭性を高める。また、Niは、ホットスタンプでの加熱時に、液相Znに起因した脆化を抑制する。これらの効果を得る場合、鋼材1のNi含有量の好ましい下限は0.10%である。しかしながら、鋼材1のNi含有量が高すぎれば、上記効果が飽和する。したがって、Ni含有量の上限は、1.00%とすることが好ましい。
ニッケル(Ni)は鋼材1の靭性を高める。また、Niは、ホットスタンプでの加熱時に、液相Znに起因した脆化を抑制する。これらの効果を得る場合、鋼材1のNi含有量の好ましい下限は0.10%である。しかしながら、鋼材1のNi含有量が高すぎれば、上記効果が飽和する。したがって、Ni含有量の上限は、1.00%とすることが好ましい。
「Cr:0%~0.50%」
クロム(Cr)は鋼材の焼入れ性を高める元素である。この効果を得る場合、鋼材1のCr含有量の好ましい下限は0.10%である。しかしながら、鋼材1のCr含有量が高すぎれば、Cr炭化物が形成され、ホットスタンプの加熱時に炭化物が溶解しにくくなる。そのため、鋼材1のオーステナイト化が進行しにくくなり、焼き入れ性が低下する。したがって、鋼材1のCr含有量の上限は、0.50%とすることが好ましい。
クロム(Cr)は鋼材の焼入れ性を高める元素である。この効果を得る場合、鋼材1のCr含有量の好ましい下限は0.10%である。しかしながら、鋼材1のCr含有量が高すぎれば、Cr炭化物が形成され、ホットスタンプの加熱時に炭化物が溶解しにくくなる。そのため、鋼材1のオーステナイト化が進行しにくくなり、焼き入れ性が低下する。したがって、鋼材1のCr含有量の上限は、0.50%とすることが好ましい。
「Mo:0%~0.50%」
モリブデン(Mo)は鋼材1の焼入れ性を高める元素である。この効果を得る場合、鋼材1のMo含有量の好ましい下限は0.05%である。しかしながら、鋼材1のMo含有量が高すぎれば、上記効果が飽和する。したがって、鋼材1のMo含有量の上限は0.50%とすることが好ましい。
モリブデン(Mo)は鋼材1の焼入れ性を高める元素である。この効果を得る場合、鋼材1のMo含有量の好ましい下限は0.05%である。しかしながら、鋼材1のMo含有量が高すぎれば、上記効果が飽和する。したがって、鋼材1のMo含有量の上限は0.50%とすることが好ましい。
[Nb:0~0.10%、V:0~0.10%、Ti:0~0.10%]
Nb、VおよびTiは、炭化物析出により鋼板強度の向上に寄与するため、必要に応じてこれらから選択される1種を単独で、または2種以上を複合して含有してもよい。しかしながら、いずれの元素も過剰に含有すると、多量の炭化物が生成し、鋼板の靱性を低下させる。そのため、これらの元素の含有量は0.10%以下としてもよい。必要に応じ、これらの元素の含有量は、それぞれ0.08%以下、0.05%以下または0.03%以下としてもよい。
Nb、VおよびTiは、炭化物析出により鋼板強度の向上に寄与するため、必要に応じてこれらから選択される1種を単独で、または2種以上を複合して含有してもよい。しかしながら、いずれの元素も過剰に含有すると、多量の炭化物が生成し、鋼板の靱性を低下させる。そのため、これらの元素の含有量は0.10%以下としてもよい。必要に応じ、これらの元素の含有量は、それぞれ0.08%以下、0.05%以下または0.03%以下としてもよい。
「B:0%~0.0050%」
ボロン(B)は鋼の焼入れ性を高め、Zn系めっきホットスタンプ成形品100の強度を高める元素である。この効果を得る場合、鋼材1のB含有量の好ましい下限は0.0001%である。しかしながら、鋼材1のB含有量が高すぎれば、その効果が飽和する。したがって、鋼材1のB含有量の上限は、0.0050%とすることが好ましい。
ボロン(B)は鋼の焼入れ性を高め、Zn系めっきホットスタンプ成形品100の強度を高める元素である。この効果を得る場合、鋼材1のB含有量の好ましい下限は0.0001%である。しかしながら、鋼材1のB含有量が高すぎれば、その効果が飽和する。したがって、鋼材1のB含有量の上限は、0.0050%とすることが好ましい。
[Ca:0~0.0100%、REM:0~0.0100%]
CaおよびREMは、破壊の起点となり加工性を劣化させる原因となる非金属介在物の形態を制御し、加工性を向上させる元素であるため、必要に応じて含有してもよい。しかし、それらの元素の含有量が過剰であると効果が飽和して原料コストが嵩む。そのため、Ca含有量及びREM含有量はそれぞれ0.0100%以下とすることが好ましい。必要に応じ、これらの元素の含有量は、それぞれ0.0060%以下、0.0040%以下または0.0030%以下としてもよい。REMはSc、Yおよびランタノイドの合計17元素の総称であり、REM含有量は上記元素の合計量を意味する。
CaおよびREMは、破壊の起点となり加工性を劣化させる原因となる非金属介在物の形態を制御し、加工性を向上させる元素であるため、必要に応じて含有してもよい。しかし、それらの元素の含有量が過剰であると効果が飽和して原料コストが嵩む。そのため、Ca含有量及びREM含有量はそれぞれ0.0100%以下とすることが好ましい。必要に応じ、これらの元素の含有量は、それぞれ0.0060%以下、0.0040%以下または0.0030%以下としてもよい。REMはSc、Yおよびランタノイドの合計17元素の総称であり、REM含有量は上記元素の合計量を意味する。
上述した鋼材1の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。表面のめっき層は機械研削により除去してから化学組成の分析を行えばよい。
(Zn系めっき層)
本実施形態に係るZn系めっきホットスタンプ成形品100のZn系めっき層2は、下層21と上層22とを備える。Zn系めっき層2の表層側の領域である上層22は、キャピタルガンマ相(Γ相)14の中にFe-Zn固溶体15が島状に分布した2相組織である。Zn系めっき層2の鋼材側である下層21は、Fe-Zn固溶体の単相組織である。Fe-Zn固溶体の結晶構造はα―Feと同じである。Fe-Zn固溶体は、FeとFeに固溶したZnとを含有する。Γ相14は、FeとZnとの金属化合物であるFe3Zn10を主体とする金属相である。表層側の上層22をΓ相14およびFe-Zn固溶体15の2相組織とすることで、塗装後耐食性が向上する。
本実施形態に係るZn系めっきホットスタンプ成形品100のZn系めっき層2は、下層21と上層22とを備える。Zn系めっき層2の表層側の領域である上層22は、キャピタルガンマ相(Γ相)14の中にFe-Zn固溶体15が島状に分布した2相組織である。Zn系めっき層2の鋼材側である下層21は、Fe-Zn固溶体の単相組織である。Fe-Zn固溶体の結晶構造はα―Feと同じである。Fe-Zn固溶体は、FeとFeに固溶したZnとを含有する。Γ相14は、FeとZnとの金属化合物であるFe3Zn10を主体とする金属相である。表層側の上層22をΓ相14およびFe-Zn固溶体15の2相組織とすることで、塗装後耐食性が向上する。
Zn系めっきホットスタンプ成形品100において、Zn系めっき層2の上層22の厚さと下層21の厚さとが下記の式(1)を満たす。
0.20≦ 上層厚さ/(上層厚さ+下層厚さ)≦ 0.80・・・(1)
Zn系めっき層2の上層22と下層21とが上記の式を満たすことで、Zn系めっきホットスタンプ成形品100の耐食性と鋼材とのめっき密着性を確保できる。
0.20≦ 上層厚さ/(上層厚さ+下層厚さ)≦ 0.80・・・(1)
Zn系めっき層2の上層22と下層21とが上記の式を満たすことで、Zn系めっきホットスタンプ成形品100の耐食性と鋼材とのめっき密着性を確保できる。
「上層厚さ/(上層厚さ+下層厚さ)」が0.20よりも小さいと、Zn系めっき層2中のΓ相14の比率が少なくなることで十分な耐食性を得られない場合がある。また、「上層厚さ/(上層厚さ+下層厚さ)」が0.80よりも大きいと、下層21と鋼材3との密着性が低下して十分なめっき密着性が得られない場合がある。
Zn系めっき層2の上層22のΓ相14およびFe-Zn固溶体15の二相組織中のΓ相14の比率(上層22内部のΓ相14およびFe-Zn固溶体15に対するΓ相の比率)が20%以上80%以下とすることが好ましい。上層22内部のΓ相14およびFe-Zn固溶体15に対するΓ相の比率が20%以上80%以下とすることで、下層21と上層22とのめっき密着性(Zn系めっき層2内での破壊に対する耐久性)を向上できる。上層22内部のΓ相14およびFe-Zn固溶体15に対するΓ相の比率が20%未満であると、塗装後耐食性が低下する場合がある。また、上層22内部のΓ相14およびFe-Zn固溶体15に対するΓ相の比率が80%を超えると、硬くて脆いΓ相の比率が多くなるので、上層22の加工性が低下する。これによって、上層22と下層21との密着性が低下し、めっき密着性が低下する場合がある。必要に応じて、「上層厚さ/(上層厚さ+下層厚さ)」の下限を25%、30%又は35%としてもよく、その上限を75%、70%又は65%としてもよい。
上層22内部のΓ相14比率に関しては、上層22の厚さを測定した際のSEM画像について、図4のように1μm×1μmピッチのマス目に分けて、Γ相のみ、Fe-Zn固溶体のみ、Γ相とFe-Zn固溶体の両方の3タイプに分けて、Γ相とFe-Zn固溶体のそれぞれのマス目の数をカウントして、そのマス目の割合からΓ相比率を算出すればよい。なお、Γ相とFe-Zn固溶体の両方が含まれるマスについては、1μm×1μmピッチのマス目を更に細分化してより正確にその面積分率を測定してもよいが、Γ相とFe-Zn固溶体のそれぞれに0.5マスを計上してもよい。
なお、本実施形態において、Zn系めっき層2は、質量%で、Zn含有量が30.0%以上である。必要に応じ、Zn含有量の下限を35.0%、40.0%、又は50.0%としてもよい。Zn含有量の上限は80.0%とすることが好ましい。必要に応じて、Zn含有量の上限を78.0%又は75.0%としてもよい。Zn以外の元素の含有量を特に規定する必要はないが、Zn系めっき層2の化学組成(ただし、Znを除く。)は、例えば、質量%で、Fe:20.0~70.0%、Al:0~1.0%、Si:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.0%、Sb:0~1.0%、残部:不純物とすることが好ましい。
本実施形態に係るZn系めっき層2とは、Fe含有量が95.0%以下の範囲とし、Zn系めっき層2の化学組成の分析位置は、Zn系めっき層2の厚さの中心(膜厚の中心)とする。前記化学組成の分析方法は、以下のとおりとする。Zn系めっきホットスタンプ成形品100の表面から、GDS(グロー放電発光分析)によりZn系めっきホットスタンプ成形品100の厚さ方向(つまり、Zn系めっきホットスタンプ成形品100の表面から板厚中央に向かう方向)にFe含有量の測定を行い、Zn系めっきホットスタンプ成形品100の表面からFe含有量が95.0%を超えるまでの範囲を特定する。その後、最初にFe含有量が95.0%となった位置から表面までの範囲(この範囲がZn系めっき層2である。)の距離の中心(つまり、Zn系めっき層2の厚さの中心)における各元素の含有量をGDSで分析し、その分析値をZn系めっき層2の化学組成とする。Zn系めっきホットスタンプ成形品100のさらに表面側には酸化層があるため、Zn含有量が80.0%となる位置(複数ある場合は、最も表面に近い位置)をZn系めっき層2の表面位置と見做す。なお、Zn系めっき層2のZn含有量が30%程度の場合でも、酸化物層にはZnが濃化しているため、Zn含有量が80%となる位置をZn系めっき層2と酸化物層3の境界としている。
ただし、Zn含有量が80.0%を超える領域がホットスタンプ成形品の最表層にない場合には、最表層をZn系めっき層2の表面位置と見做して、Zn系めっき層2の厚さの中心(膜厚の中心)を特定する。
ただし、Zn含有量が80.0%を超える領域がホットスタンプ成形品の最表層にない場合には、最表層をZn系めっき層2の表面位置と見做して、Zn系めっき層2の厚さの中心(膜厚の中心)を特定する。
Γ相14とFe-Zn固溶体12、15の観察は、以下のようにして行うことができる。Zn系めっき層2を断面から観察できるように、20mm角程度に切断した試料を樹脂に埋め込んだ後に、機械研磨により鏡面に仕上げを行う。この樹脂埋め込みサンプルを走査型電子顕微鏡(Scanning Electron Microscope、SEM)を用いて、反射電子(Backscattered Electron、BSE)像および二次電子(Secandary Electron)像にて、2000倍に拡大して観察する。このSEM-BSE観察では、原子量が大きい元素はコントラストが明るく(白く)観察されるため、このコントラストの違いによりΓ相、Fe-Zn固溶体および鋼材をそれぞれ識別することができる。具体的には、Feと比べて原子量の大きいZnを多く含むΓ相が白く観察され、Fe-Zn固溶体は黒く、また鋼材についてはさらに黒く観察される。図2の(a)と(b)のコントラストを変えた反射電子像からも判るように、反射電子像のコントラストの違いでΓ相14、Fe-Zn固溶体12、15および鋼材1を容易に区別できる。また、上述したようにΓ相14、Fe-Zn固溶体12、15および鋼材1をSEM-BSE観察(つまり、反射電子像)のコントラストの違いで観察する場合には、軽元素を多く含む酸化物は黒くなり、周囲の樹脂と判別できない。そのため、SEM-BSE観察と同じ視野をSEM-SE観察(つまり、図2の(c)のような二次電子像として観察)することで、めっき層の表層側に形成している酸化物層を観察できる。
なお、本実施形態のめっき層は2層構造であり、鋼材1と接する下層21はFe-Zn固溶体12の単相組織であり、上層22がΓ相14及びFe-Zn固溶体15の2相組織である。上層22がΓ相14及びFe-Zn固溶体15の2相組織である例にして、上層22および下層21の判別方法を説明する。
図3に示されるように、白く観察されるΓ相14において厚さ方向に最も鋼材1に近い箇所から、鋼材1の厚さ方向に垂直な方向(つまり、表面と平行な方向に)引いた仮想線を、上層22と下層21との境界線とする。上層22の厚さは、上層22の最表層の箇所(つまり、Zn系めっき層2で厚さ方向に最も鋼材1から離れた箇所に相当する。)から前記境界線までの最短距離とする。下層21の厚さは、前記境界線から、Zn系めっき層2と鋼材1との界面で最も鋼材中心側の箇所(つまり、Zn系めっき層2で厚さ方向に最も表層側から離れた個所に相当する。)までの最短距離とする。この作業を任意の5視野で行い、上層厚さ及び下層厚さを測定してその平均値を上層厚さおよび下層厚さとする。
なお、本実施形態のめっき層は2層構造であり、鋼材1と接する下層21はFe-Zn固溶体12の単相組織であり、上層22がΓ相14及びFe-Zn固溶体15の2相組織である。上層22がΓ相14及びFe-Zn固溶体15の2相組織である例にして、上層22および下層21の判別方法を説明する。
図3に示されるように、白く観察されるΓ相14において厚さ方向に最も鋼材1に近い箇所から、鋼材1の厚さ方向に垂直な方向(つまり、表面と平行な方向に)引いた仮想線を、上層22と下層21との境界線とする。上層22の厚さは、上層22の最表層の箇所(つまり、Zn系めっき層2で厚さ方向に最も鋼材1から離れた箇所に相当する。)から前記境界線までの最短距離とする。下層21の厚さは、前記境界線から、Zn系めっき層2と鋼材1との界面で最も鋼材中心側の箇所(つまり、Zn系めっき層2で厚さ方向に最も表層側から離れた個所に相当する。)までの最短距離とする。この作業を任意の5視野で行い、上層厚さ及び下層厚さを測定してその平均値を上層厚さおよび下層厚さとする。
(酸化物層)
本実施形態に係るZn系めっきホットスタンプ成形品100は、ZnおよびMnを含有する酸化物層3を備える。酸化物層3の表面(ホットスタンプ成形品100の表面)のMn含有量の平均値Ave.Mnは、質量%で、0.5~7.5%である。即ち、Ave.Mnは、質量%で、下記(2)式を満足する。より好ましい酸化物層3のAve.Mnは、1.0%以上である。酸化物層3中のMnは、ホットスタンプ時に、鋼材1から酸化物層3の表面まで拡散したものである。酸化物層3のAve.Mnは7.0%以下が好ましい。酸化物層3のAve.Mnは、さらに好ましくは、6.5%以下である。酸化物層3のAve.Mnが0.5%以上、7.0%以下であれば、亀甲模様の発生を抑制することができる。
Ave.Mn=0.5~7.5 ・・・(2)
本実施形態に係るZn系めっきホットスタンプ成形品100は、ZnおよびMnを含有する酸化物層3を備える。酸化物層3の表面(ホットスタンプ成形品100の表面)のMn含有量の平均値Ave.Mnは、質量%で、0.5~7.5%である。即ち、Ave.Mnは、質量%で、下記(2)式を満足する。より好ましい酸化物層3のAve.Mnは、1.0%以上である。酸化物層3中のMnは、ホットスタンプ時に、鋼材1から酸化物層3の表面まで拡散したものである。酸化物層3のAve.Mnは7.0%以下が好ましい。酸化物層3のAve.Mnは、さらに好ましくは、6.5%以下である。酸化物層3のAve.Mnが0.5%以上、7.0%以下であれば、亀甲模様の発生を抑制することができる。
Ave.Mn=0.5~7.5 ・・・(2)
Zn系めっきホットスタンプ成形品100の表面(酸化物層3の表面)のMn含有量の最大値Max.Mnと最小値Min.Mnとの比Max.Mn/Min.MnであるMn含有量比が10.0以下である。即ち、Max.Mn/Min.Mnは下記(3)式を満足する。Mn含有量比が10.0以下であれば、ホットスタンプ後の亀甲模様を低減することができ、優れた外観品位を得ることができる。Mn含有量比は、より好ましくは8.0以下である。Mn含有量比は、さらに好ましくは5.0以下である。このMn含有量比の下限は1.0である。必要に応じて、その下限を1.2、1.3又は1.5としてもよい。
Max.Mn/Min.Mn≦10.0 ・・・(3)
Max.Mn/Min.Mn≦10.0 ・・・(3)
Zn系めっきホットスタンプ成形品100における酸化物層のMn含有量は、以下の方法で測定することができる。電子線マイクロアナライザ(例えば、島津製作所製EPMA-1720H)を用いて、Zn系めっきホットスタンプ成形品100の表面を観察する。この際、加速電圧15kV、ビーム電流100nA、ビーム径を装置の最小条件(ただし、1~4μmとする。)とする。Zn系めっきホットスタンプ成形品100の表面において、測定長さを40mm、測定ピッチ20μm(2000点測定)、測定時間1.0sec/pointの条件で、Mn含有量を測定する。表層の粗さ等による影響を除外するために、測定範囲の隣接する各10点(200μm分=0.2mm分)を1つの領域として平均化し、その領域のMn含有量とする。Mn含有量の測定値(200の領域の各Mn含有量)の最大値をMax.Mn、最小値をMin.Mnとして、Mn含有量比(Max.Mn/Min.Mn)を算出する。Mn含有量の測定値の平均値をAve.Mnとする。
なお、ホットスタンプ成形品に樹脂等の塗装が被覆されている場合には、剥離剤を使用して塗装を溶解して除去した後に、上述した方法で酸化物のMn含有量を測定することとする。その際には、塗装残りを最小限となり、かつ表層の酸化物を除去してしまわないように、塗装の種類や厚みによって剥離条件を選定する必要がある。
なお、本実施形態において、Zn系めっきホットスタンプ成形品100の表面には、ZnおよびMnを含有する酸化物層3が存在する。図2の(c)のように、SEM-SE観察により得られた二次電子像により、酸化物層3の存在を確認できる。この酸化物層3に含まれる酸化物の種類を確認することは非常に煩雑であり、技術的難易度も高いため、確認の必要はない。上記のようなホットスタンプ成形品100の表面のMn含有量(Max.Mn、Min.MnおよびAve.Mn)が式(2)および式(3)を満たすことを確認することで、酸化物層3が存在すると見做すこととする。
なお、ホットスタンプ成形品に樹脂等の塗装が被覆されている場合には、剥離剤を使用して塗装を溶解して除去した後に、上述した方法で酸化物のMn含有量を測定することとする。その際には、塗装残りを最小限となり、かつ表層の酸化物を除去してしまわないように、塗装の種類や厚みによって剥離条件を選定する必要がある。
なお、本実施形態において、Zn系めっきホットスタンプ成形品100の表面には、ZnおよびMnを含有する酸化物層3が存在する。図2の(c)のように、SEM-SE観察により得られた二次電子像により、酸化物層3の存在を確認できる。この酸化物層3に含まれる酸化物の種類を確認することは非常に煩雑であり、技術的難易度も高いため、確認の必要はない。上記のようなホットスタンプ成形品100の表面のMn含有量(Max.Mn、Min.MnおよびAve.Mn)が式(2)および式(3)を満たすことを確認することで、酸化物層3が存在すると見做すこととする。
(板厚)
自動車用部材に使用されるホットスタンプ成形品100の板厚は、1.0~3.2mmが多い。このため、ホットスタンプ成形品100の板厚を1.0~3.2mmとすることが好ましい。また、必要に応じて、板厚を1.0~2.6mmとしてもよい。
自動車用部材に使用されるホットスタンプ成形品100の板厚は、1.0~3.2mmが多い。このため、ホットスタンプ成形品100の板厚を1.0~3.2mmとすることが好ましい。また、必要に応じて、板厚を1.0~2.6mmとしてもよい。
(製造方法)
次に、Zn系めっきホットスタンプ成形品100の製造方法について説明する。本実施形態に係るZn系めっきホットスタンプ成形品100の製造方法は、下記の方法に限定されない。
次に、Zn系めっきホットスタンプ成形品100の製造方法について説明する。本実施形態に係るZn系めっきホットスタンプ成形品100の製造方法は、下記の方法に限定されない。
(スラブ加熱温度:1100~1300℃)
初めに、鋼材を準備する。たとえば、上述した好ましい範囲の化学組成を有する溶鋼を製造する。製造された溶鋼を用いて、連続鋳造などの鋳造法によりスラブを製造する。スラブの加熱温度は1100℃以上とすることが好ましい。スラブの加熱については、特に上限を定めない。1300℃を超えてスラブを加熱するには、多量のエネルギーを投入する必要があり、製造コストの大幅な増加を招く。このことから、スラブの加熱温度は1300℃以下とすることが好ましい。
初めに、鋼材を準備する。たとえば、上述した好ましい範囲の化学組成を有する溶鋼を製造する。製造された溶鋼を用いて、連続鋳造などの鋳造法によりスラブを製造する。スラブの加熱温度は1100℃以上とすることが好ましい。スラブの加熱については、特に上限を定めない。1300℃を超えてスラブを加熱するには、多量のエネルギーを投入する必要があり、製造コストの大幅な増加を招く。このことから、スラブの加熱温度は1300℃以下とすることが好ましい。
スラブを加熱した後の熱間圧延、熱間圧延後の冷却、および巻取りは一般的な方法で行えばよく、特に限定しない。
鋼材を巻取り後、必要に応じて、巻取り後焼鈍を行う。巻取り後、または巻取り後焼鈍の後、熱間圧延鋼板に対し、公知の酸洗処理を行う。酸洗処理後、必要に応じて、冷間圧延を行ってもよい。適用する部材に要求される特性に応じて、公知の方法で行えばよい。
(Zn系めっき)
上述の熱間圧延鋼板もしくは冷間圧延鋼板に対して、Zn系めっきを行うことで、鋼板の表面にZn系めっき層を形成し、ホットスタンプ用鋼材を得る。Zn系めっき層の形成方法は、特に限定されないが、Zn系めっきの形成は、溶融亜鉛めっき処理が好ましい。
上述の熱間圧延鋼板もしくは冷間圧延鋼板に対して、Zn系めっきを行うことで、鋼板の表面にZn系めっき層を形成し、ホットスタンプ用鋼材を得る。Zn系めっき層の形成方法は、特に限定されないが、Zn系めっきの形成は、溶融亜鉛めっき処理が好ましい。
ホットスタンプ用鋼材のZn系めっき層のめっき付着量は、80g/m2以上、150g/m2以下とすることが望ましい。Zn系めっき層のめっき付着量が、80g/m2以上であれば、ホットスタンプ成形品の耐食性の向上効果が得られるので望ましい、150g/m2以下であればめっき処理後に良好な外観が得られるため好ましい(150g/m2よりもめっき付着量を多くすると、溶融亜鉛メッキをした場合にはめっきが垂れて外観が悪くなり、ホットスタンプ成形品の外観も悪くなる場合がある)。なお、ホットスタンプ用鋼材のZn系めっき層はホットスタンプした際に成形品の酸化物量が少ない溶融亜鉛めっき鋼板(GI)である。合金化溶融亜鉛めっき(GA)は、ホットスタンプした際に成形品に生成する酸化物量が多く、外観が悪くなるため本発明のZn系めっき層として適さない。したがって、ホットスタンプ成形品100の素材であるホットスタンプ用鋼材としては、合金化溶融亜鉛めっき鋼板(GA)は好ましくなく、溶融亜鉛めっき鋼板(GI)とすることが好ましい。合金化溶融亜鉛めっき鋼板(GA)を用いて、ホットスタンプ成形品100を製造しても、Ave.Mn=0.5~7.5を満たすことができず、その結果、優れた外観を得るという目標を満たすことができない。
ホットスタンプ用鋼材のZn系めっき層のめっき付着量は、上記の熱間圧延鋼板もしくは冷間圧延鋼板中のFeの溶解を抑制するインヒビター(イビット700A、朝日化学工業株式会社)を0.02%含有した5%のHCl水溶液に常温で10分間浸漬して全てのZn系めっき層を溶解し、溶解前後の重量変化から算出して求めることができる。ただし、Zn系めっき層の溶解が終了したか否かは、溶解している際の水素発生に起因する発泡の終了に基づいて判断する。
ホットスタンプ用鋼材のZn系めっき層の化学組成は、例えば、質量%で、Al:0.1%~1.0%、Fe:0.1%~20.0%、Si:0%~0.5%、Mg:0%~0.5%、Mn:0%~0.5%、Pb:0%~0.5%、Sb:0%~0.5%、残部:Zn及び不純物とすることができる。残部中のZn含有量は、80%以上とすることが好ましい。
Zn系めっき層の形成後、調質圧延によって、ホットスタンプ用鋼材の表面粗さRa(μm)とホットスタンプ用鋼材の板厚t(mm)とが下記(4)式を満足ように調整することが好ましい。当業者であれば、調質圧延ロールの表面粗さRa(μm)と伸び率とを制御することで、Ra/tを下記(4)式の範囲に調整することができる。例えば、Ra≦2.5μmの調質圧延ロールで伸び率1.5%程度の調質圧延によって、Ra/tを下記(4)式の範囲に調整することができる。
0.05 ≦ Ra/t ≦ 0.25 ・・・(4)
0.05 ≦ Ra/t ≦ 0.25 ・・・(4)
Ra/tの値が0.25よりも大きいと、亀甲模様の形成による外観品位の劣化する場合がある。また、Ra/tの値が0.05よりも小さいと、下層21のFe-Zn固溶体15の厚さが増加し、上層22と下層21との厚さの割合が得られない場合がある。なお、Raは0.3μm以下であることがより好ましい。
(ホットスタンプ工程)
上述のZn系めっき層を備えるホットスタンプ用鋼材に対して、ホットスタンプを実施する。以下に、その詳細を説明する。
上述のZn系めっき層を備えるホットスタンプ用鋼材に対して、ホットスタンプを実施する。以下に、その詳細を説明する。
Zn系めっき層2の下層21の厚さと上層22の厚さとの比率にするためには、ホットスタンプ工程において、下記(5)式で定義されるFe-Zn固溶体化パラメーターPが0.5≦P≦2.5を満たすようにホットスタンプ用鋼材を加熱する。
P=[(T-782)×{(t2-t1)/2+(t-t2)}]÷W2・・・(5)
ここで、Tは炉温設定温度(加熱温度)(℃)を意味し、tは鋼板を加熱炉に挿入してから搬出するまでの時間(加熱時間)(sec)を意味し、t1は鋼板の温度が782℃に到達した時間(sec)を意味し、t2は、加熱温度(T)-10℃に到達した時間(T-10℃到達時間)(sec)を意味し、Wは、めっき付着量(g/m2)を意味する。
P=[(T-782)×{(t2-t1)/2+(t-t2)}]÷W2・・・(5)
ここで、Tは炉温設定温度(加熱温度)(℃)を意味し、tは鋼板を加熱炉に挿入してから搬出するまでの時間(加熱時間)(sec)を意味し、t1は鋼板の温度が782℃に到達した時間(sec)を意味し、t2は、加熱温度(T)-10℃に到達した時間(T-10℃到達時間)(sec)を意味し、Wは、めっき付着量(g/m2)を意味する。
P値が0.5未満の場合、Zn系めっき層2の鋼材側の界面をFe-Zn固溶体からなる下層21が覆っている状態とならず、めっき密着性が低下する場合がある。このような状態とならないようにするため、P値は0.5以上である。
P値が2.5超の場合、Zn系めっき層2中のFe-Zn固溶体の比率が増加し、塗装後耐食性が低下する。そのため、P値は、2.5以下である。
加熱温度TがAc3未満であると、焼入れができない。そのため、加熱温度はAc3点以上が好ましい。加熱温度が950℃以上の場合、Zn系めっきホットスタンプ成形品100の表面酸化(Zn酸化物の形成)が過度に進み、Mn含有量比が10.0超となる。そのため、加熱温度Tは、950℃未満であることが好ましい。なお、Ac3点(℃)は下記(6)式で表される。
Ac3=912-230.5×C+31.6×Si-20.4×Mn-14.8×Cr-18.1×Ni+16.8×Mo-39.8×Cu・・・(6)
なお、上記式中の元素記号は、当該元素の質量%での含有量であり、含有しない場合は0を代入する。
Ac3=912-230.5×C+31.6×Si-20.4×Mn-14.8×Cr-18.1×Ni+16.8×Mo-39.8×Cu・・・(6)
なお、上記式中の元素記号は、当該元素の質量%での含有量であり、含有しない場合は0を代入する。
加熱時間は240秒未満の場合であると、焼入れができない場合がある。そのため、加熱時間は240秒以上が好ましい。加熱時間が600秒超の場合、Zn系めっきホットスタンプ成形品100の表面酸化(Zn酸化物の形成)が過度に進む場合がある。そのため、加熱時間は600秒以下が好ましい。
ホットスタンプでは、通常、内部に冷却媒体(たとえば水)が循環している金型を用いてホットスタンプ用鋼材をプレスする。ホットスタンプ用鋼材をプレスするとき、金型からの抜熱によってホットスタンプ用鋼材が焼入れされる。以上の工程により、Zn系めっきホットスタンプ成形品100が製造される。
Γ相とFe-Zn固溶体との二相組織の上層とし、Fe-Zn固溶体の単相の下層とし、且つ「上層厚さ/(上層厚さ+下層厚さ)」を0.20~0.80となるZn系めっき層2とするために、ホットスタンプ用鋼材のプレスを開始する温度(急冷開始温度)は、Zn系めっき層に含まれる液相Znが完全に凝固する温度の下限(約750℃)以下で、且つΓ相の単層となる温度範囲の上限を超える温度とする。具体的な温度範囲については、例えば、予め予備試験を行うことなどにより、上記の組織となる温度範囲を容易に求めることができる。このようにして求めた温度範囲から急冷開始つまりホットスタンプ加工を開始すればよい。
急冷開始温度から450℃までの平均冷却速度が、20℃/s未満の場合、十分な強度が得られない。そのため、急冷開始温度から450℃までの平均冷却速度は、20℃/s以上である。
また、450℃から200℃までの平均冷却速度は15℃/s以上が好ましい。
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
化学組成が、C:0.20%、Si:0.19%、Mn:1.31%、P:0.010%、S:0.005%、Cu:0.01%、Ni:0.01%、Cr:0.20%、Mo:0.01%、Ti:0.01%、B:0.0002%、N:0.002%、Ca:0.0002%、REM:0.0002%、Al:0.020%及び残部が鉄及び不純物(Ac3:842℃)の化学組成を有する溶鋼を鋳造して得たスラブを加熱し、熱間圧延をした後、巻取った。その後、得られた鋼材を酸洗し熱間圧延鋼材を得た。
上記の熱間圧延鋼板に対し、表1に記載の板厚まで冷間圧延した後に、焼鈍して、表1に記載の条件で、Zn系めっき(溶融亜鉛めっき)を行い、一部の溶融亜鉛めっき鋼板(No.17および18)に対し合金化処理を行い、めっき鋼板を得た。
得られためっき鋼板に対し、表1に記載のRaとなるように調質圧延を行い、ホットスタンプ用鋼材を得た。
上記の方法で得たホットスタンプ用鋼材に対し、表1の条件でホットスタンプを行い、Zn系めっきホットスタンプ成形品を得た。各条件のP値を表1に示す。
(Zn系めっき層の付着量)
ホットスタンプ用鋼材のZn系めっき層のめっき付着量の測定は、以下のようにして行った。上記で得たホットスタンプ用鋼材から切り出した試料(30mm×30mm)を評価面と反対面をマスキングテープにより被覆した上で、熱間圧延鋼板中のFeの溶解を抑制するインヒビター(イビット700A、朝日化学工業株式会社)を0.02%含有した5%のHCl水溶液に常温で10分間浸漬して全てのZn系めっき層を溶解し、溶解前後の重量変化から算出した。全めっき層の溶解が終了したか否かは、溶解している際の水素発生に起因する発泡の終了に基づいて決定した。表1に得られた結果を示す。
ホットスタンプ用鋼材のZn系めっき層のめっき付着量の測定は、以下のようにして行った。上記で得たホットスタンプ用鋼材から切り出した試料(30mm×30mm)を評価面と反対面をマスキングテープにより被覆した上で、熱間圧延鋼板中のFeの溶解を抑制するインヒビター(イビット700A、朝日化学工業株式会社)を0.02%含有した5%のHCl水溶液に常温で10分間浸漬して全てのZn系めっき層を溶解し、溶解前後の重量変化から算出した。全めっき層の溶解が終了したか否かは、溶解している際の水素発生に起因する発泡の終了に基づいて決定した。表1に得られた結果を示す。
(上層厚さと下層厚さ)
Zn系めっきホットスタンプ成形品のZn系めっき層断面を観察できるように、樹脂に埋め込んだのちに研磨した試料を用いて、倍率2000倍にてZn系めっき層断面を観察した。白色に観察されるΓ相が含まれる領域において最も鋼材に近い箇所において、鋼材の厚さ方向に垂直に引いた仮想線を上層と下層の境界とした。上層厚さは上層の最表層からこの仮想線までの最短距離とした。下層厚さは、上層と下層との境界からZn系めっき層と鋼材との界面の最も鋼材側の位置から仮想線までの最短距離とした。各試料について任意に5視野を観察して、上層厚さ及び下層厚さを測定してその平均値を上層厚さおよび下層厚さとした。結果を表2に示す。
Zn系めっきホットスタンプ成形品のZn系めっき層断面を観察できるように、樹脂に埋め込んだのちに研磨した試料を用いて、倍率2000倍にてZn系めっき層断面を観察した。白色に観察されるΓ相が含まれる領域において最も鋼材に近い箇所において、鋼材の厚さ方向に垂直に引いた仮想線を上層と下層の境界とした。上層厚さは上層の最表層からこの仮想線までの最短距離とした。下層厚さは、上層と下層との境界からZn系めっき層と鋼材との界面の最も鋼材側の位置から仮想線までの最短距離とした。各試料について任意に5視野を観察して、上層厚さ及び下層厚さを測定してその平均値を上層厚さおよび下層厚さとした。結果を表2に示す。
(Γ相比率)
Zn系めっきホットスタンプ成形品のZn系めっき層上層内部のΓ相比率については、上記の上層厚さを測定した際のSEM画像について、1μm×1μmピッチのマス目に分けて、Γ相のみ、Fe-Zn固溶体のみ、Γ相とFe-Zn固溶体の両方の3タイプに分けて、Γ相とFe-Zn固溶体のそれぞれのマス目の数をカウントして、そのマス目の割合からΓ相比率を算出した。なお、Γ相とFe-Zn固溶体の両方が含まれるマスについては、Γ相とFe-Zn固溶体のそれぞれに0.5マスを計上することとした。結果を表2に示す。
Zn系めっきホットスタンプ成形品のZn系めっき層上層内部のΓ相比率については、上記の上層厚さを測定した際のSEM画像について、1μm×1μmピッチのマス目に分けて、Γ相のみ、Fe-Zn固溶体のみ、Γ相とFe-Zn固溶体の両方の3タイプに分けて、Γ相とFe-Zn固溶体のそれぞれのマス目の数をカウントして、そのマス目の割合からΓ相比率を算出した。なお、Γ相とFe-Zn固溶体の両方が含まれるマスについては、Γ相とFe-Zn固溶体のそれぞれに0.5マスを計上することとした。結果を表2に示す。
(Mn含有量)
電子線マイクロアナライザ(島津製作所製EPMA-1720H)を用いて、Zn系めっきホットスタンプ成形品の表面に対し、加速電圧15kV、ビーム電流100nA、ビーム径を装置の最小条件である4μmにて、測定長さを40mm、測定ピッチ20μm(2000点測定)、測定時間1.0sec/pointの条件で測定した。表層の粗さ等による影響を除外するために、測定範囲の隣接する各10点(200μm分=0.2mm分)を1つの領域として平均化し、その領域のMn含有量とした。Mn含有量の測定値(200の領域の各Mn含有量)の最大値をMax.Mn、最小値をMin.Mnとして、Mn含有量比(Max.Mn/Min.Mn)を算出し、Mn含有量の測定値の平均値をAve.Mnとした。得られた結果を表2に示す。
なお、前述のGDSによる方法によりZn系めっき層2の化学組成を分析した結果、Zn系めっき層2の化学組成はすべて、質量%で、Zn:30~80%、Fe:20.0~70.0%、Al:0~1.0%、Si:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.0%、Sb:0~1.0%の範囲内であった。
電子線マイクロアナライザ(島津製作所製EPMA-1720H)を用いて、Zn系めっきホットスタンプ成形品の表面に対し、加速電圧15kV、ビーム電流100nA、ビーム径を装置の最小条件である4μmにて、測定長さを40mm、測定ピッチ20μm(2000点測定)、測定時間1.0sec/pointの条件で測定した。表層の粗さ等による影響を除外するために、測定範囲の隣接する各10点(200μm分=0.2mm分)を1つの領域として平均化し、その領域のMn含有量とした。Mn含有量の測定値(200の領域の各Mn含有量)の最大値をMax.Mn、最小値をMin.Mnとして、Mn含有量比(Max.Mn/Min.Mn)を算出し、Mn含有量の測定値の平均値をAve.Mnとした。得られた結果を表2に示す。
なお、前述のGDSによる方法によりZn系めっき層2の化学組成を分析した結果、Zn系めっき層2の化学組成はすべて、質量%で、Zn:30~80%、Fe:20.0~70.0%、Al:0~1.0%、Si:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.0%、Sb:0~1.0%の範囲内であった。
(塗装後耐食性)
塗装後耐食性評価については、以下の方法で行った。Zn系めっきホットスタンプ成形品(板状)に対して、日本パーカライジング株式会社製の表面調整処理剤(商品名:プレパレンX)を用いて、表面調整を室温で20秒間行った。次いで、日本パーカライジング株式会社製のりん酸亜鉛処理液(商品名:パルボンド3020)を用いて、りん酸塩処理を行った。具体的には、処理液の温度を43℃とし、Zn系めっきホットスタンプ成形品を処理液に120秒間浸漬した。これにより、鋼材表面にりん酸塩被膜が形成された。
塗装後耐食性評価については、以下の方法で行った。Zn系めっきホットスタンプ成形品(板状)に対して、日本パーカライジング株式会社製の表面調整処理剤(商品名:プレパレンX)を用いて、表面調整を室温で20秒間行った。次いで、日本パーカライジング株式会社製のりん酸亜鉛処理液(商品名:パルボンド3020)を用いて、りん酸塩処理を行った。具体的には、処理液の温度を43℃とし、Zn系めっきホットスタンプ成形品を処理液に120秒間浸漬した。これにより、鋼材表面にりん酸塩被膜が形成された。
上述のリン酸塩処理を実施した後、各試験番号の板状の熱間プレス鋼材(成形品)に対して、日本ペイント株式会社製のカチオン型電着塗料を、電圧160Vのスロープ通電で電着塗装し、更に、焼き付け温度170℃で20分間焼き付け塗装した。電着塗装後の塗料の膜厚制御は、ホットスタンプ成形前のめっき鋼板にて、電着塗装が15μmとなる条件にて実施した。
電着塗装した後の鋼板(成形品)に対して、素地の鋼材にまで到達するようにクロスカットをいれ、複合腐食試験(JIS H 8502(1999)で規定される中性塩水噴霧サイクル試験)を実施した。具体的には、塩水噴霧(35℃、2h)、乾燥(60℃、25%RH、4h)、湿潤(50℃、98%RH、2h)を1サイクルとする腐食評価試験を行った。なお、塩水噴霧には5%食塩水を使用した。塗装膨れ幅にて耐食性を評価し、180サイクルの複合腐食試験を実施した後の塗装膨れ幅が3mm以下のものを「OK」、3mmよりも大きいものを「NG」と評価した。結果を表2に示す。
(めっき密着性)
耐チッピング性評価(めっき密着性評価)については以下の方法で行った。70mm×150mmに切出し、自動車用の脱脂、化成、3コート塗装を行った。3コート塗装は、鋼板側から電着塗装、中塗塗装、上塗塗装とした。-20℃に冷却保持した状態で、砕石(0.3~0.5g)をエアー圧2kgf/cm2で垂直に照射した。1サンプルにつき10個の石を照射した。チッピング痕を観察し、その剥離界面の位置を評価した。剥離界面がめっき層より上(めっき-化成皮膜の界面、または電着塗装-中塗塗装の界面)のものを「OK」、めっき内部での剥離があるもの及びめっき-地鉄での界面剥離が1つでもあるものを「NG」と評価した。結果を表2に示す。
耐チッピング性評価(めっき密着性評価)については以下の方法で行った。70mm×150mmに切出し、自動車用の脱脂、化成、3コート塗装を行った。3コート塗装は、鋼板側から電着塗装、中塗塗装、上塗塗装とした。-20℃に冷却保持した状態で、砕石(0.3~0.5g)をエアー圧2kgf/cm2で垂直に照射した。1サンプルにつき10個の石を照射した。チッピング痕を観察し、その剥離界面の位置を評価した。剥離界面がめっき層より上(めっき-化成皮膜の界面、または電着塗装-中塗塗装の界面)のものを「OK」、めっき内部での剥離があるもの及びめっき-地鉄での界面剥離が1つでもあるものを「NG」と評価した。結果を表2に示す。
(外観品位)
亀甲模様評価(外観品位評価)については以下の方法で行った。100mm×100mmで作製したホットスタンプ材に対して、目視にて表面に線状のむらが形成していることが確認されないものを「OK」、1本でも線状のむらが確認されるものを「NG」とした。結果を表2に示す。
亀甲模様評価(外観品位評価)については以下の方法で行った。100mm×100mmで作製したホットスタンプ材に対して、目視にて表面に線状のむらが形成していることが確認されないものを「OK」、1本でも線状のむらが確認されるものを「NG」とした。結果を表2に示す。
本発明の要件を満足するNo.2~7、10、13~16は、塗装後耐食性、めっき密着性、および外観品位に優れていた。
No.1のZn系めっきホットスタンプ成形品は、上層および下層の比の要件を満足しなかったので、めっき密着性が劣位であった。
No.8および9のZn系めっきホットスタンプ成形品は、上層および下層の比、Mn含有量比を満足しなかったので、塗装後耐食性および外観品位が劣位であった。
No.11のZn系めっきホットスタンプ成形品は、Mn含有量比を満足しなかったので、外観品位が劣位であった。
No.12のZn系めっきホットスタンプ成形品は、上層および下層の比を満足しなかったので、塗装後耐食性が劣位であった。
No.17のZn系めっきホットスタンプ成形品は、上層および下層の比を満足しなかったので、塗装後耐食性が低かった。また、合金化溶融亜鉛めっき(GA)を用いていたので外観品位が劣位であった。
No.18のZn系めっきホットスタンプ成形品は、合金化溶融亜鉛めっき(GA)を用いていたので、外観品位が劣位であった。
本発明のZn系めっきホットスタンプ成形品は、優れた塗装後耐食性、めっき密着性および外観を有するので、産業上の利用可能性が高い。
1 鋼材
2 Zn系めっき層
3 酸化物層
14 Γ相
12、15 Fe-Zn固溶体
21 下層
22 上層
100 ホットスタンプ成形品
2 Zn系めっき層
3 酸化物層
14 Γ相
12、15 Fe-Zn固溶体
21 下層
22 上層
100 ホットスタンプ成形品
Claims (4)
- 鋼材と、
前記鋼材の表面に形成された、Znを含有するZn系めっき層と、
前記Zn系めっき層の表面に形成されたZnおよびMnを含有する酸化物層と、
を備えたZn系めっきホットスタンプ成形品であって、
前記Zn系めっき層の表面側の領域である上層がΓ相とFe-Zn固溶体との二相組織であり、前記Zn系めっき層の前記上層を除く領域である下層がFe-Zn固溶体の単相組織であり、
前記上層厚さと前記下層厚さが下記の式(1)を満たし、
前記Zn系めっきホットスタンプ成形品の表面のMn含有量の最大値Max.Mn、最小値Min.Mnと平均値Ave.Mnが、質量%で、下記の式(2)および式(3)を満たすZn系めっきホットスタンプ成形品。
0.20≦上層厚さ/(上層厚さ+下層厚さ)≦0.80 ・・・(1)
Ave.Mn=0.5~7.5 ・・・(2)
Max.Mn/Min.Mn≦10.0 ・・・(3) - 前記上層のΓ相とFe-Zn固溶体の二相組織中のΓ相比率が20~80%である請求項1に記載のZn系めっきホットスタンプ成形品。
- 前記Zn系めっき層のZn含有量が、質量%で、30.0%以上であることを特徴とする請求項1又は2に記載のZn系めっきホットスタンプ成形品。
- 板厚が1.0~3.2mmである、請求項1~3のいずれか1項に記載のZn系めっきホットスタンプ成形品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/010,883 US20230220557A1 (en) | 2020-10-30 | 2020-10-30 | Zn-PLATED HOT STAMPED PRODUCT |
EP20959869.7A EP4239098B1 (en) | 2020-10-30 | 2020-10-30 | Zn-plated hot-stamped product |
CN202080104118.2A CN116034177A (zh) | 2020-10-30 | 2020-10-30 | Zn系镀覆热冲压成型品 |
JP2022558758A JP7469711B2 (ja) | 2020-10-30 | 2020-10-30 | Zn系めっきホットスタンプ成形品 |
PCT/JP2020/040848 WO2022091351A1 (ja) | 2020-10-30 | 2020-10-30 | Zn系めっきホットスタンプ成形品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/040848 WO2022091351A1 (ja) | 2020-10-30 | 2020-10-30 | Zn系めっきホットスタンプ成形品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022091351A1 true WO2022091351A1 (ja) | 2022-05-05 |
Family
ID=81382123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040848 WO2022091351A1 (ja) | 2020-10-30 | 2020-10-30 | Zn系めっきホットスタンプ成形品 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230220557A1 (ja) |
EP (1) | EP4239098B1 (ja) |
JP (1) | JP7469711B2 (ja) |
CN (1) | CN116034177A (ja) |
WO (1) | WO2022091351A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023222442A1 (en) * | 2022-05-19 | 2023-11-23 | Tata Steel Ijmuiden B.V. | Method for connecting a hot formed steel article to a steel object |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582511B2 (ja) | 1974-06-28 | 1983-01-17 | 松下電器産業株式会社 | テレビションカメラの切換装置 |
JP2007182608A (ja) * | 2006-01-06 | 2007-07-19 | Nippon Steel Corp | 耐食性、耐疲労性に優れた高強度焼き入れ成形体の製造方法および製造設備 |
JP2007211276A (ja) * | 2006-02-08 | 2007-08-23 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法 |
WO2015152284A1 (ja) * | 2014-03-31 | 2015-10-08 | 新日鐵住金株式会社 | ホットスタンプ鋼材 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6566128B2 (ja) * | 2016-05-10 | 2019-08-28 | 日本製鉄株式会社 | ホットスタンプ成形体 |
WO2019186891A1 (ja) * | 2018-03-29 | 2019-10-03 | 日本製鉄株式会社 | 亜鉛系めっき鋼板および熱処理鋼材 |
-
2020
- 2020-10-30 US US18/010,883 patent/US20230220557A1/en active Pending
- 2020-10-30 CN CN202080104118.2A patent/CN116034177A/zh active Pending
- 2020-10-30 JP JP2022558758A patent/JP7469711B2/ja active Active
- 2020-10-30 EP EP20959869.7A patent/EP4239098B1/en active Active
- 2020-10-30 WO PCT/JP2020/040848 patent/WO2022091351A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582511B2 (ja) | 1974-06-28 | 1983-01-17 | 松下電器産業株式会社 | テレビションカメラの切換装置 |
JP2007182608A (ja) * | 2006-01-06 | 2007-07-19 | Nippon Steel Corp | 耐食性、耐疲労性に優れた高強度焼き入れ成形体の製造方法および製造設備 |
JP2007211276A (ja) * | 2006-02-08 | 2007-08-23 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法 |
WO2015152284A1 (ja) * | 2014-03-31 | 2015-10-08 | 新日鐵住金株式会社 | ホットスタンプ鋼材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4239098A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023222442A1 (en) * | 2022-05-19 | 2023-11-23 | Tata Steel Ijmuiden B.V. | Method for connecting a hot formed steel article to a steel object |
Also Published As
Publication number | Publication date |
---|---|
JP7469711B2 (ja) | 2024-04-17 |
JPWO2022091351A1 (ja) | 2022-05-05 |
CN116034177A (zh) | 2023-04-28 |
US20230220557A1 (en) | 2023-07-13 |
EP4239098B1 (en) | 2024-10-16 |
EP4239098A4 (en) | 2023-12-06 |
EP4239098A1 (en) | 2023-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3663425B1 (en) | Hot-dip galvanized steel sheet | |
JP6566128B2 (ja) | ホットスタンプ成形体 | |
EP3663426B1 (en) | Hot-dip galvanized steel sheet | |
WO2017057570A1 (ja) | 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法 | |
CN111936658A (zh) | 高强度钢板及其制造方法 | |
JP4837604B2 (ja) | 合金化溶融亜鉛めっき鋼板 | |
KR20140031337A (ko) | 합금화 용융 아연 도금층 및 그것을 가진 강판 및 그 제조 방법 | |
US20230416888A1 (en) | Al plated welded pipe for hardening use and al plated hollow member and method for producing same | |
JP6376310B1 (ja) | 高強度溶融亜鉛めっき熱延鋼板およびその製造方法 | |
JP6897757B2 (ja) | 表面処理鋼板 | |
CN108603262B (zh) | 高屈服比型高强度镀锌钢板及其制造方法 | |
CN115715332A (zh) | 镀锌钢板、构件和它们的制造方法 | |
JP7160203B2 (ja) | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体 | |
WO2022091351A1 (ja) | Zn系めっきホットスタンプ成形品 | |
WO2021191961A1 (ja) | ホットスタンプ成形体 | |
JP7173368B2 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法 | |
WO2023017844A1 (ja) | 接合部品および接合鋼板 | |
WO2021002422A1 (ja) | ホットスタンプ成形体 | |
JP5092858B2 (ja) | 溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板 | |
WO2023145146A1 (ja) | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 | |
WO2023132350A1 (ja) | ホットスタンプ用鋼板、ホットスタンプ用鋼板の製造方法、及びホットスタンプ成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20959869 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022558758 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020959869 Country of ref document: EP Effective date: 20230530 |