WO2015152284A1 - ホットスタンプ鋼材 - Google Patents

ホットスタンプ鋼材 Download PDF

Info

Publication number
WO2015152284A1
WO2015152284A1 PCT/JP2015/060235 JP2015060235W WO2015152284A1 WO 2015152284 A1 WO2015152284 A1 WO 2015152284A1 JP 2015060235 W JP2015060235 W JP 2015060235W WO 2015152284 A1 WO2015152284 A1 WO 2015152284A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hot
solid solution
hardness
steel material
Prior art date
Application number
PCT/JP2015/060235
Other languages
English (en)
French (fr)
Inventor
晃大 仙石
浩史 竹林
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CA2943652A priority Critical patent/CA2943652C/en
Priority to CN201580017009.6A priority patent/CN106133153B/zh
Priority to MX2016012674A priority patent/MX2016012674A/es
Priority to KR1020167026509A priority patent/KR101871618B1/ko
Priority to EP15772557.3A priority patent/EP3128017A4/en
Priority to JP2016511955A priority patent/JP6172383B2/ja
Priority to RU2016141558A priority patent/RU2659532C2/ru
Priority to US15/129,640 priority patent/US9932652B2/en
Publication of WO2015152284A1 publication Critical patent/WO2015152284A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/285Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • C25D3/24Electroplating: Baths therefor from solutions of zinc from cyanide baths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness

Definitions

  • the present invention relates to a hot stamped steel material manufactured by hot stamping.
  • Hot stamping is a method of rapidly cooling a steel sheet with a mold while pressing the steel sheet heated to AC3 or higher with a mold. That is, in hot stamping, pressing and quenching are performed simultaneously. According to the hot stamp, a structural member with high shape accuracy and high strength can be manufactured.
  • Steel materials (hot stamp steel materials) manufactured by a manufacturing method including such a hot stamp are disclosed in, for example, Patent Document 1, Patent Document 2, and Patent Document 3.
  • the hot stamped steel materials disclosed in these patent documents are steel materials manufactured by performing hot stamping on a steel sheet provided with a galvanized layer in order to enhance corrosion resistance.
  • hot stamping involves quenching the steel sheet at the same time as pressing.
  • the hot stamp is suitable for manufacturing a structural member having high shape accuracy and high strength. Therefore, generally, the strength (tensile strength) of hot stamped steel is as high as about 1500 MPa or more.
  • tensile strength tensile strength
  • a material having a low strength is preferred in order to increase the shock absorption. It is known that the strength of a hot stamped steel material can be changed to some extent by changing the alloying element amount of the steel plate and hot stamping conditions.
  • Hot stamped steel is required.
  • Patent Documents 1 to 3 described above do not disclose a method for reducing the strength of hot stamped steel.
  • An object of the present invention is to provide a hot stamped steel material having a galvanized layer, which has higher impact absorption than conventional hot stamped steel materials having the same chemical composition and is excellent in corrosion resistance.
  • the gist of the present invention is as follows.
  • the hot stamped steel material according to one aspect of the present invention is a position at a depth of 1 ⁇ 4 of the plate thickness from the surface when water quenching is performed after heating to a temperature of Ac 3 point or higher and holding for 30 minutes.
  • the Vickers hardness is defined as the maximum quenching hardness
  • a base material that is a steel material including a tempered portion having a hardness of 85% or less of the maximum quenching hardness and the tempered portion of the base material is formed.
  • a galvanized layer wherein the galvanized layer includes a solid solution layer composed of a solid solution phase containing Fe and Zn dissolved in Fe, and a lamellar layer composed of the solid solution phase and a capital gamma phase,
  • the area ratio of the lamellar layer in the galvanized layer is 20% or less.
  • the hardness of the tempered portion is 60% or less of the maximum quenching hardness, and the area ratio of the lamella layer in the galvanized layer is 5 It may be up to 20%.
  • the hardness of the tempered portion may be 50% or less of the maximum quenching hardness.
  • the tempered portion may have a Vickers hardness of 180 to 450 Hv.
  • the mold is used after being heated for a predetermined heating time so that the maximum heating temperature becomes Ac 3 point or higher. It is manufactured by simultaneously pressing and quenching by pressing, followed by tempering at a predetermined tempering temperature,
  • the tempering temperature is represented by T in ° C.
  • the Zn concentration in the Fe—Zn solid solution of the steel material after quenching and before tempering is represented by C in unit mass%
  • the tempering temperature may be 700 ° C. to the A c1 point of the base material.
  • a part of the base material may be the tempered portion.
  • the present inventors examined the impact absorption and corrosion resistance of hot stamped steel. As a result, the present inventors obtained the following knowledge.
  • the lower the strength (tensile strength) of hot stamped steel the higher the shock absorption. If tempering is performed on the hot stamped steel, the tensile strength can be reduced as compared with a conventional hot stamped steel having the same chemical composition. That is, the impact absorbability of the hot stamped steel material can be increased.
  • a plurality of steel plates having a thickness of 1.6 mm satisfying a preferable chemical composition described later were prepared.
  • a galvanized layer was formed on these steel plates by hot dip galvanizing.
  • the adhesion amount of galvanization was 60 g / m 2 .
  • Hot stamping was performed on the steel sheet on which the galvanized layer was formed. Specifically, the steel sheet was charged into a heating furnace whose furnace temperature was set to 900 ° C., which is a temperature equal to or higher than the AC3 point of the steel sheet, and heated for 4 minutes. At this time, the steel plate temperature reached 900 ° C. in about 2 minutes after charging into the furnace.
  • points A c1 and A c3 indicate the austenite transformation start temperature and the austenite transformation end temperature when the steel material is heated, respectively.
  • the A c1 point and the A c3 point can be determined by measuring the thermal expansion when the steel material is heated by a four master test or the like. Specifically, it can be determined by observing volumetric shrinkage upon transformation from ferrite to austenite.
  • the martensitic transformation start point can be determined by measuring the thermal expansion when the steel material heated to the austenitizing temperature is rapidly cooled. Specifically, it can be determined by measuring the volume expansion from austenite to martensite.
  • Tempering was performed on each manufactured hot stamping steel.
  • the tempering temperature was different from each hot stamping steel material within the range of 150 ° C. to the Ac 1 point of the base material.
  • the heating time for each hot stamped steel in tempering was 5 minutes.
  • FIG. 1 is a photographic image of a galvanized layer of a hot stamped steel material and its peripheral cross-section when the tempering temperature is 400 ° C.
  • FIG. 4 is an XRD measurement result from the surface of the cross-section.
  • FIG. 2 is a photographic image of a galvanized layer of a hot stamped steel material and its peripheral cross-section when the tempering temperature is 500 ° C.
  • FIG. 5 is an XRD measurement result from the surface of the cross-section.
  • FIG. 3 is a photographic image of a galvanized layer of a hot stamped steel material and its peripheral cross-section when the tempering temperature is 700 ° C.
  • FIG. 6 is an XRD measurement result from the surface of the cross-section.
  • the microstructure of the cross section was observed as follows. That is, the cross-sectional portion was etched with 5% night for 20 to 40 seconds, and after the etching, the microstructure was observed with a 2000 times SEM. Compared with the structure of the plating layer, the presence or absence of an oxide layer has little effect on strength and corrosion resistance. For this reason, in this case, investigations were made focusing on the plating layer.
  • the intensity peak of capital gamma ( ⁇ ), which is an intermetallic compound of Fe 3 Zn 10 , appears at a diffraction angle 2 ⁇ 94.0 °.
  • the broken line L4 in FIGS. 4 to 6 indicates the intensity peak position of the ⁇ -Fe phase.
  • a broken line L3 indicates an intensity peak position of a solid solution phase with a small amount of solid solution Zn (Zn content is 5 to 25% by mass, hereinafter may be referred to as a low Zn solid solution phase).
  • the broken line L2 indicates the intensity peak position of a solid solution phase having a large amount of solid solution Zn (Zn content is 25 to 40% by mass, hereinafter may be referred to as a high Zn solid solution phase).
  • a broken line L1 indicates the intensity peak position of the ⁇ phase. As the intensity peak position shifts from the broken line L4 to L2, the amount of Zn solid solution in the solid solution phase increases.
  • the solid solution layer 10 was formed as the galvanized layer as shown in FIGS.
  • This solid solution layer was composed of a high Zn solid solution phase having an intensity peak position of L2, and did not contain a ⁇ phase.
  • Reference numeral 20 in FIG. 1 is a tempered portion of the base material, and reference numeral 30 is a zinc oxide layer formed on the galvanized layer.
  • the galvanized layer includes a solid solution layer 10, a ⁇ phase formed on the solid solution layer 10, and a low Zn solid solution phase.
  • a lamellar tissue layer (hereinafter referred to as a lamellar layer) 40 was formed.
  • a lamellar layer As a result of the XRD measurement, as shown in FIG. 5, an intensity peak (position of the broken line L3) of the low Zn solid solution phase and an intensity peak of the ⁇ phase (position of the broken line L1) appeared. That is, this lamellar structure layer was a lamellar structure layer (lamellar layer) mainly composed of a ⁇ phase and a low Zn solid solution phase.
  • the galvanized layer includes a solid solution layer (consisting of a high Zn solid solution phase) 10 having an area ratio of 0 to 70% and a lamellar layer 40 having an area ratio of 30% or more. Contained.
  • the galvanized layer is a solid solution with a slight lamellar layer 40 on the surface layer and under the lamellar layer 40 (steel material side). Layer 10 was provided. The area ratio of the lamellar layer 40 in the galvanized layer was 5 to 20%.
  • the XRD measurement as shown in FIG. 6, when the tempering temperature is 500 ° C. to less than 700 ° C., the intensity peak of the solid solution phase that was not detected appears again at the position of the broken line L2, and the tempering temperature is 500 ° C. to Compared with the case of less than 700 ° C., the intensity peak of the ⁇ phase (broken line L1 position) became smaller.
  • the structure of the galvanized layer changed based on the tempering conditions. Therefore, the corrosion resistance of hot stamped steel materials tempered at each tempering temperature was investigated.
  • Corrosion resistance was evaluated by an SST test (Salt Spray Test).
  • SST test was performed by the following method. The back surface and the end surface of the plate-like hot stamped steel material at each tempering temperature were sealed with a polyester tape. Then, the test prescribed
  • FIG. 7 is a diagram showing the weight loss (g / m 2 ) of the hot stamped steel after the SST test (Salt Spray Test).
  • the horizontal axis in FIG. 7 indicates the tempering temperature (° C.), and the vertical axis indicates the corrosion weight loss (g / m 2 ).
  • the corrosion weight loss of the hot stamped steel material having a tempering temperature of 200 to 400 ° C. and 700 ° C. was the same level as that of the hot stamped steel material not subjected to tempering, and was 130 g / m 2 or less.
  • the corrosion weight loss of the plating layer was significantly higher than that in the hot stamping steel without tempering. That is, in the galvanized layer in which the area ratio of the lamella layer is 20% or less, the same corrosion resistance as that of the hot stamped steel material that is not tempered can be secured.
  • the surface of hot stamped steel applied to automobile parts is often painted.
  • the higher the chemical conversion treatment the higher the coating film adhesion.
  • the chemical conversion property was evaluated about the zinc plating layer from which the area ratio of a lamella layer differs. As a result, it has been found that the chemical conversion property is improved when the galvanized layer has a lamellar layer of 5% or more.
  • Tempering was performed on each manufactured hot stamping steel.
  • the tempering temperature was different from each hot stamping steel material within the range of 150 ° C. to the Ac 1 point of the base material.
  • the heating time of each hot stamping steel material in tempering was 5 minutes.
  • the tempering temperature was 500 ° C. to 700 ° C. and the area ratio of the lamella layer was 30% or more.
  • the area ratio of the lamellar layer in the galvanized layer was 5 to 20%.
  • the heating temperature at the time of hot stamping was 8 minutes, the area ratio of the galvanized layer was 5 to 20% even if the tempering temperature was 520 ° C. or 680 ° C.
  • the area ratio of the lamellar layer was changed by the heating time at the time of hot stamping even at the same tempering temperature. The reason is considered as follows.
  • the degree of alloying between Zn in the galvanized layer and Fe in the steel material as a base material depends on the heating time. Change. This is considered to be because the driving force for two-phase separation from the solid solution phase during tempering to the low Zn solid solution phase and the ⁇ phase is reduced depending on the degree of alloying.
  • the inventors have determined that after hot stamping and when the Zn concentration (mass%) in the Fe—Zn solid solution before tempering is C and the tempering temperature is T, When the Zn concentration C (mass%) in the Fe—Zn solid solution and the tempering temperature T (° C.) satisfy the following formula 1 or formula 2, the area ratio of the lamellar layer in the galvanizing is 20% or less. I found out that Furthermore, when the formula 1 is satisfied, it has been found that the area ratio of the lamellar layer is 5 to 20% or more.
  • a c1 ⁇ T ⁇ 700-4.0 ⁇ (35.0-C) (1) T ⁇ 500 + 8.0 ⁇ (32.5 ⁇ C) (2) However, in Formula 2, when C ⁇ 32.5, C 32.5. Preferably, T ⁇ 700 or T ⁇ 500.
  • the concentration (mass%) of Zn in the Fe—Zn solid solution after hot stamping and before tempering was measured by EPMA at any five locations on the plating cross section, and the average of the Zn content at the five locations was measured in the Fe—Zn solid solution. The Zn concentration may be sufficient.
  • EPMA analysis of the plating cross section it is effective to embed and polish the sample in a resin and to process it by etching using argon ions or the like.
  • the strength is lower than the strength (tensile strength) after hot stamping.
  • the present inventors evaluated the hardness of the tempered portion of the base material of the hot stamped steel material that was tempered at each tempering temperature.
  • the structure of the hot stamped steel material is a quenched structure.
  • the Vickers hardness when water quenching is performed after heating the steel material at an austenitizing temperature ( Ac 3 points) or higher for 30 minutes is defined as “maximum quenching hardness”.
  • This maximum quenching hardness is considered to be substantially the same as the hardness of the steel material after hot stamping. Therefore, if the hardness of the tempered portion of the hot stamped steel material is reduced with respect to the maximum quenching hardness obtained by measuring with a steel material having the same chemical composition by the above method, the impact absorption is improved. I can say that.
  • the Vickers hardness of the tempered portion of the base material of the hot stamped steel material tempered at each tempering temperature was measured.
  • the maximum quenching hardness a steel material having the same chemical composition is heated for 30 minutes above the austenitizing temperature and then water quenching is performed, and the Vickers hardness is measured at a depth of 1/4 of the plate thickness from the surface. did.
  • the tempering temperature exceeds 300 ° C., the hardness of the tempered portion is 85% or less of the maximum quenching hardness.
  • the hardness of the tempered portion is 60% or less of the maximum quenching hardness, and if the tempering temperature is 700 ° C. or more, the hardness of the tempered portion is the maximum quenching. It was found that the hardness was 50% or less.
  • the tempering temperature is more than 300 ° C. to less than 500 ° C. or satisfies the above formula 1, the strength of the hot stamped steel is lowered and the corrosion resistance is also maintained. Moreover, if tempering temperature satisfy
  • the hot stamped steel material according to this embodiment has the following characteristics.
  • (A) was the best quenched hardness and define Vickers hardness at a depth position of 1./4 from the surface of the plate thickness of the case of performing water quenching after holding by heating the A c3 point temperature above 30 minutes
  • a base material that is a steel material including a tempered portion having a hardness of 85% or less of the maximum quenching hardness, and a galvanized layer formed on the tempered portion of the base material.
  • the hardness of the tempered portion is preferably 60% or less, more preferably 50% or less, with respect to the maximum quenching hardness.
  • the galvanized layer includes a solid solution layer made of a solid solution phase containing Fe and Zn dissolved in the Fe, and a lamellar layer made of the solid solution phase and a capital gamma phase.
  • the area ratio of the lamellar layer in the galvanized layer is 20% or less, preferably 5 to 20%.
  • the base material is a steel material, and is formed, for example, by hot stamping a steel plate.
  • the base material includes a tempering portion.
  • the tempered portion refers to a portion whose hardness (Vickers hardness) is 85% or less of the maximum quenching hardness of the steel material.
  • the maximum quenching hardness means the Vickers hardness at a position of a depth of 1/4 of the plate thickness from the surface when water quenching is performed after heating for 30 minutes at an austenitizing temperature or higher. This maximum quenching hardness can be measured using another steel material having the same chemical composition (a steel material different from a hot stamped steel material having a tempered portion).
  • the hot stamped steel material according to the present embodiment includes a tempered portion in which the base material has a hardness of 85% or less of the maximum quenching hardness, so that the hot stamped steel material has the same chemical composition and is not tempered. In comparison, since the tensile strength is low, the shock absorption is excellent. Martensite is a structure having high hardness and a large decrease in hardness by tempering.
  • a tempering part contains 95% or more of tempered martensite by volume%, and less than 5 volume% retained austenite.
  • the chemical composition of the base material need not be limited, but preferably has the following chemical composition, for example.
  • the base material has such a chemical composition, it is advantageous to obtain mechanical properties suitable for use in automobile parts.
  • “%” related to elements means mass%.
  • Carbon (C) is an element that increases the strength of the steel material (hot stamp steel material) after hot stamping. If the C content is too low, the above effect cannot be obtained. Therefore, when obtaining this effect, the lower limit of the C content is preferably 0.05%. A more preferable lower limit of the C content is 0.1%. On the other hand, when C content is too high, the toughness of a steel plate will fall. Therefore, it is preferable that the upper limit of the C content is 0.4%. The upper limit with more preferable C content is 0.35%.
  • Si 0.5% or less Silicon (Si) is an element inevitably contained in steel. Si also has the effect of deoxidizing steel. Therefore, the Si content may be 0.05% or more for the purpose of deoxidation. However, when the Si content is high, Si in the steel diffuses during heating in the hot stamp, and an oxide is formed on the steel plate surface. This oxide reduces the phosphate processability. Si further has a function of raising the AC3 point of the steel sheet. When the AC3 point of the steel plate rises, there is a concern that the heating temperature at the time of hot stamping exceeds the evaporation temperature of Zn plating. When the Si content is more than 0.5%, the above problem becomes remarkable. Therefore, the upper limit of the Si content is preferably set to 0.5%. A more preferable upper limit of the Si content is 0.3%.
  • Mn 0.5 to 2.5%
  • Manganese (Mn) is an element that increases the hardenability of steel and increases the strength of hot stamped steel.
  • the lower limit of the Mn content is preferably 0.5%.
  • the minimum with preferable Mn content is 0.6%.
  • the upper limit of the Mn content is preferably 2.5%.
  • the upper limit with more preferable Mn content is 2.4%.
  • Phosphorus (P) is an impurity contained in steel. P segregates at the grain boundaries and lowers the toughness and delayed fracture resistance of the steel. For this reason, the P content is preferably as low as possible. However, when the P content exceeds 0.03%, the influence becomes significant, so the P content may be 0.03% or less.
  • S 0.010% or less Sulfur (S) is an impurity contained in steel. S forms sulfides and reduces the toughness and delayed fracture resistance of steel. For this reason, the S content is preferably as low as possible. However, when the S content exceeds 0.010%, the influence becomes significant, so the S content may be 0.010% or less.
  • Al 0.10% or less
  • Aluminum (Al) is an element effective for deoxidation of steel.
  • the lower limit of the Al content may be 0.01%.
  • the upper limit of the Al content is preferably 0.10%.
  • a more preferable upper limit of the Al content is 0.05%.
  • the Al content in this embodiment is sol.
  • N 0.010% or less Nitrogen (N) is an impurity inevitably contained in steel. N is an element that forms nitrides and lowers the toughness of steel. Moreover, N combines with B and reduces the amount of solid solution B, when B contains. When the amount of solute B decreases, the hardenability decreases. For the above reasons, the N content is preferably as low as possible. However, when the N content exceeds 0.010%, the effect becomes significant, so the N content may be 0.010% or less. .
  • the base material part of the hot stamped steel material according to the present embodiment may have a chemical composition including, for example, the above-described elements and the balance of Fe and impurities.
  • the base material part of the hot stamped steel material according to the present embodiment is optionally replaced with a part of Fe having the above chemical composition for the purpose of improving the strength or toughness, B, Ti, Cr, Mo, One or more elements selected from Nb and Ni may be further contained within a range described later.
  • an impurity means what mixes from the ore as a raw material, a scrap, or a manufacturing environment, when manufacturing steel materials industrially.
  • B 0.0001 to 0.0050% Boron (B) increases the hardenability of steel and increases the strength of hot stamped steel. Therefore, when obtaining this effect, the minimum with preferable B content is 0.0001%. However, if the B content is too high, the effect is saturated. Therefore, even when contained, the upper limit of the B content is preferably 0.0050%.
  • Ti 0.01 to 0.10% Titanium (Ti) combines with N to form nitride (TiN). As a result, the bond between B and N is suppressed, and a decrease in hardenability due to BN formation can be suppressed. Moreover, TiN refines the austenite grain size at the time of hot stamping heating by the pinning effect, and improves the toughness of the steel material. When obtaining these effects, the preferable lower limit of the Ti content is 0.01%. However, if the Ti content is too high, the above effects are saturated, and Ti nitride is excessively precipitated to lower the toughness of the steel. Therefore, even when contained, the upper limit of the Ti content is preferably 0.10%.
  • Chromium (Cr) increases the hardenability of the steel.
  • the preferable lower limit of the Cr content is 0.1%.
  • the upper limit of the Cr content is preferably 0.5%.
  • Mo 0.05 to 0.50% Molybdenum (Mo) increases the hardenability of the steel.
  • the preferable lower limit of the Mo content is 0.05%.
  • the upper limit of the Mo content is preferably 0.50%.
  • Niobium (Nb) forms carbides and refines crystal grains during hot stamping. As crystal grains become finer, the toughness of steel increases. When obtaining this effect, the preferable lower limit of the Nb content is 0.02%. However, if the Nb content is too high, the above effects are saturated and the hardenability is lowered. Therefore, even when contained, the upper limit of the Nb content is preferably 0.10%.
  • Ni 0.1 to 1.0%
  • Nickel (Ni) increases the toughness of the steel. Further, Ni suppresses embrittlement due to molten Zn during heating by hot stamping of a galvanized steel material.
  • the preferred lower limit of the Ni content is 0.1%. However, if the Ni content is too high, the above effects are saturated and the cost is increased. Therefore, even when contained, the upper limit of the Ni content is preferably 1.0%.
  • a part of the base material may be a tempering part, or the whole base material may be a tempering part. That is, the microstructure of the entire base material may be tempered martensite.
  • a skeleton member called a B pillar center pillar
  • a member having both the high strength portion and the shock absorbing property as described above can be obtained.
  • the hot stamped steel material has a galvanized layer, it is excellent in corrosion resistance.
  • the tensile strength of the tempered portion is 600 to 1450 MPa, and the Vickers hardness is 180 to 450 Hv.
  • the strength of the tempered portion of the hot stamped steel is lower than that of a conventional hot stamped steel that does not perform tempering. Therefore, it is excellent in shock absorption compared with the conventional hot stamping steel material.
  • the Vickers hardness of tempered martensite is lower than the Vickers hardness of martensite. Therefore, it can be determined from the Vickers hardness whether the microstructure of the base material (tempered portion) is tempered martensite.
  • the Vickers hardness can be determined by a Vickers hardness test based on JIS Z2244 (2009).
  • the hot stamped steel material according to the present embodiment has a galvanized layer at least on the tempered portion of the base material.
  • the main component of the galvanized layer is a solid solution layer.
  • the galvanized layer includes a solid solution layer and a lamellar layer having an area ratio of 0 to 20%.
  • the solid solution layer consists of a solid solution phase.
  • the solid solution phase contains Fe and Zn dissolved in Fe.
  • the Zn content in the solid solution layer is 25 to 40% by mass. More preferably, the Zn content in the solid solution layer is 30 to 40% by mass.
  • the lamellar layer has a lamellar structure of a solid solution phase and a capital gamma ( ⁇ ) phase.
  • the lamella structure is a structure in which different phases (in the present embodiment, a solid solution phase and a ⁇ phase) are alternately adjacent in layers.
  • the ⁇ phase is an intermetallic compound (Fe 3 Zn 10 ).
  • the Zn content in the solid solution phase of the lamella layer is 5 to 25% by mass, which is lower than the Zn content in the solid solution layer.
  • the lamellar layer is formed on the surface layer of the galvanized layer. When the area ratio of the lamella layer in the galvanized layer exceeds 20%, the corrosion resistance is remarkably lowered.
  • the lamellar layer has a lamellar structure of a solid solution phase (low Zn solid solution phase) and a ⁇ phase as described above. Since the corrosion potential of the solid solution phase is different from the corrosion potential of the ⁇ phase, galvanic corrosion is likely to occur in the lamellar layer, and it is considered that the corrosion resistance is lower than that of the solid solution layer. Therefore, the area ratio of the lamellar layer in the galvanized layer is set to 20% or less.
  • the lamellar layer is more excellent in chemical conversion treatment than the solid solution layer.
  • the following can be considered as the reason.
  • the lamellar layer has a lamellar structure of a solid solution phase (low Zn solid solution phase) and a ⁇ phase.
  • the solid solution phase and the ⁇ phase extend in a direction substantially perpendicular to the surface of the base material.
  • the lamellar layer is formed on the surface layer of the galvanized layer. Therefore, when the surface of the galvanized layer is observed, both a solid solution phase and a ⁇ phase are observed.
  • the surface of the galvanized layer that is, the lamella layer is etched by phosphoric acid.
  • a portion having a high zinc concentration is preferentially etched.
  • the Zn concentration in the ⁇ phase in the lamellar layer is higher than the Zn concentration in the solid solution phase, the ⁇ phase is preferentially etched over the solid solution phase by phosphoric acid. As a result, fine irregularities are formed on the surface of the galvanized layer, and phosphate easily adheres.
  • the phosphatability of a galvanized layer having a lamellar layer as a surface layer is higher than that of a galvanized layer having only a solid solution layer as a surface layer. If the area ratio of the lamella layer in the galvanized layer is 5% or more, the phosphatability of the galvanized layer is high, so the area ratio of the lamella layer in the galvanized layer is 5% or more. Is preferred. That is, when the area ratio of the lamella layer is 5 to 20%, in addition to the corrosion resistance, the chemical conversion treatment property is excellent.
  • the Zn content in the solid solution phase (high Zn solid solution phase, low Zn solid solution phase) can be measured by the following method.
  • the Zn content (mass%) was measured by EPMA (electron beam microanalyzer) at any five locations in the high Zn solid solution phase, and the average of the Zn content at the five locations was determined as the Zn content in the high Zn solid solution phase. It may be defined as an amount.
  • the Zn content can be determined by the same method as in the high Zn solid solution phase.
  • the hot stamped steel material according to this embodiment includes a tempering portion having a hardness of 85% or less of the maximum quenching hardness. Therefore, compared with a hot stamped steel material having the same chemical composition and not tempered, the strength is low and the shock absorption is excellent. Furthermore, the galvanized layer of this embodiment has a small proportion of the lamellar layer whose corrosion resistance is reduced. Therefore, it is possible to maintain the same excellent corrosion resistance as that of the hot stamped steel material that is not tempered.
  • the hot stamped steel material according to the present embodiment is not limited to the manufacturing method as long as it has the base material and the galvanized layer described above, and can exert its effects.
  • the following steps for preparing a steel material as a base material base material preparation step
  • a step for forming a galvanized layer on the base material zinc plating process step
  • a base material provided with a galvanized layer base material provided with a galvanized layer
  • it can manufacture by a manufacturing method provided with the process (hot stamp process) of implementing a hot stamp, and the process (tempering process) of tempering the steel material after hot stamping.
  • preferable examples in each step will be described.
  • a steel plate used as a base material is prepared.
  • molten steel having the preferred chemical composition described above is manufactured.
  • a slab is produced by a casting method such as continuous casting.
  • an ingot may be manufactured by an ingot-making method using molten steel.
  • the manufactured slab or ingot is hot-rolled to manufacture a steel plate (hot rolled steel plate).
  • the hot-rolled steel sheet may be further subjected to pickling treatment, and the hot-rolled steel sheet after the pickling treatment may be cold-rolled to obtain a steel plate (cold-rolled steel plate).
  • hot rolling, pickling, and cold rolling what is necessary is just to perform by a well-known method according to the characteristic requested
  • the above steel plate (hot rolled steel plate or cold rolled steel plate) is subjected to galvanizing treatment to form a galvanized layer on the surface of the steel plate.
  • the method for forming the galvanized layer is not particularly limited, and may be a hot dip galvanizing process, an alloyed hot dip galvanizing process, or an electrogalvanizing process.
  • the formation of the galvanized layer by hot dip galvanizing is performed, for example, as follows. That is, the steel sheet is immersed in a plating bath (hot dip galvanizing bath) to deposit the plating on the surface of the steel sheet. The steel plate with the plating attached is pulled up from the plating bath. Preferably, the plating adhesion amount on the steel sheet surface is adjusted to 20 to 100 g / m 2 . The amount of plating can be adjusted by adjusting the pulling speed of the steel sheet and the flow rate of the wiping gas. The Al concentration in the hot dip galvanizing bath is not particularly limited. Through the above steps, a hot stamping steel plate (GI) having a galvanized layer (hot dip galvanized layer) is produced.
  • GI hot stamping steel plate
  • Formation of a galvanized layer by alloying hot dip galvanizing treatment (hereinafter also referred to as alloying treatment) is performed, for example, in the following manner. That is, the steel sheet on which the hot dip galvanized layer is formed is heated to 470 to 600 ° C. After heating, soaking is performed as necessary, and then cooled. The soaking time is preferably within 30 seconds, but is not limited. Moreover, it may cool, without performing soaking immediately after heating to the said heating temperature. The heating temperature and the soaking time are appropriately set according to the desired Fe concentration in the plating layer. A preferred lower limit of the heating temperature in the alloying treatment is 540 ° C.
  • a hot stamping steel plate (GA) including a galvanized layer (alloyed galvanized layer) is manufactured.
  • the formation of the galvanized layer by electrogalvanizing is performed, for example, in the following manner. That is, any of a known sulfuric acid bath, hydrochloric acid bath, zincate bath, cyan bath, and the like is prepared as an electrogalvanizing bath.
  • the above steel plate is pickled and the steel plate after pickling is immersed in an electrogalvanizing bath.
  • a current is passed through the electrogalvanizing bath with the steel plate as the cathode. Thereby, zinc precipitates on the steel sheet surface, and a galvanized layer (electrogalvanized layer) is formed.
  • a hot stamping steel plate (EG) including an electrogalvanized layer is manufactured.
  • the preferable amount of adhesion of the galvanized layer is the same as that of the hot dip galvanized layer. That is, the preferable adhesion amount of these galvanized layers is 20 to 100 g / m 2 . More preferably, it is 40 to 80 g / m 2 .
  • These galvanized layers contain Zn.
  • the chemical composition of the hot dip galvanized layer and the electrogalvanized layer is composed of Zn and impurities.
  • the chemical composition of the alloyed hot-dip galvanized layer contains 5 to 20% Fe, and the balance consists of Zn and impurities.
  • Hot stamping is performed on the above-described hot stamping steel plate.
  • the heating before quenching in the hot stamping process it is preferable to perform heating mainly using radiant heat for heating.
  • the hot stamping steel plate is charged into a heating furnace (a gas furnace, an electric furnace, an infrared furnace, or the like).
  • the steel sheet for hot stamping is heated to AC 3 point to 950 ° C. (maximum heating temperature) and held at this temperature (soaking).
  • Zn in the plating layer is liquefied, and the molten Zn and Fe in the plating layer are mutually diffused to form a solid solution phase (Fe—Zn solid solution phase).
  • the steel plate is taken out from the heating furnace.
  • Hot stamping pressing and quenching
  • a preferable soaking time is 30 minutes or less.
  • a short time is desirable from the viewpoint of productivity, and a more preferable heating time is 0 to 15 minutes.
  • a steel plate is pressed using a mold in which a cooling medium (for example, water) is circulated.
  • a cooling medium for example, water
  • the steel plate is quenched by heat removal from the mold.
  • the hot stamping steel material is manufactured by the above process.
  • the steel sheet for hot stamping was heated using a heating furnace.
  • the hot stamping steel plate may be heated by energization heating. Even in this case, the steel plate is soaked for a predetermined time by energization heating, and the molten Zn in the galvanized layer is turned into a solid solution phase. After the molten Zn in the galvanized layer becomes a solid solution phase, the steel sheet is pressed using a mold.
  • Tempering is performed on hot stamped steel (steel after hot stamping). By tempering the hot stamped steel material, a tempered portion can be formed in the base material of the hot stamped steel material.
  • a preferable tempering temperature is more than 300 ° C. to less than 500 ° C., or 700 ° C. to the AC1 point of the base material.
  • the main component of the galvanized layer after tempering is a solid solution layer, and the area ratio of the lamellar layer is 0 to 20%.
  • the hardness of the tempered portion of the base material is 85% or less of the maximum quenching hardness.
  • the tempering temperature With 700-4.0 ⁇ (35.0-C) °C ⁇ A c1 point the area ratio of the lamellar layer can be 5 to 20%.
  • the tempering temperature to 700 ° C. or higher, the hardness of the tempered portion of the base material can be 50% or less of the maximum quenching hardness.
  • FIG. 8 is a binary phase diagram of Fe—Zn.
  • the galvanized layer of hot stamped steel manufactured by hot stamping is composed of a solid solution phase in which about 25 to 40% by mass of Zn is dissolved in ⁇ -Fe.
  • a structure composed of two phases of a low Zn solid solution phase in which 5 to 25% by mass of Zn is dissolved in ⁇ -Fe and a ⁇ phase that is, a lamellar layer
  • the solid solution phase of the galvanized layer after hot stamping is a solid solution in which Zn is supersaturated.
  • the Zn concentration in the galvanized layer is 35% by mass in FIG. 8 (corresponding to the point A1 in the figure).
  • the driving force for two-phase separation from the solid solution phase to the low Zn solid solution phase and the ⁇ phase is generated at a lower temperature side than the point B on the boundary line Ax. It gets stronger as the temperature goes away.
  • the diffusion rate in the galvanized layer increases as the temperature increases. Therefore, whether or not a lamellar layer is formed after tempering is determined by the relationship between the driving force for two-phase separation and the diffusion rate. Specifically, the lamellar layer is more easily formed as the driving force for two-phase separation is higher and the diffusion rate is higher.
  • tempering temperature When the temperature of the galvanized layer during tempering (tempering temperature) is in a low temperature range (above 300 ° C. to less than 500 ° C.) (for example, point A1 at 310 ° C.), it is sufficiently far from the boundary line Ax. In this case, the driving force for two-phase separation is high. However, because of the low temperature, the diffusion rate is too low. Therefore, even if tempering is performed, the galvanized layer is not separated into two phases, and a lamellar layer is not formed.
  • the temperature range approaches the boundary line Ax, but has a certain distance (for example, point A2 in the figure). In this case, a driving force for two-phase separation is generated to some extent. Furthermore, since the temperature range has increased, the diffusion rate is high. As a result, the galvanized layer is separated into two phases to form a lamellar layer. In A2 of FIG. 8, it isolate
  • the tempering temperature When the tempering temperature further rises to 700 ° C. or higher, the temperature range becomes near the boundary line Ax. In this case, although the diffusion rate increases as the temperature rises, the driving force for two-phase separation is extremely small. As a result, separation into two phases hardly occurs. However, since the boundary line Ax is not exceeded, a small amount of lamellar layer is formed. Therefore, the area ratio of the lamella layer is 5 to 20%. When the tempering temperature exceeds the boundary line Ax (when the tempering temperature exceeds the Ac1 point), the driving force for the two-phase separation is not generated, so that the lamellar layer is not formed.
  • the tempering temperature is 300 ° C. or less, the diffusion rate is small, so the area ratio of the lamella layer is 20% or less.
  • the strength of the tempered portion is not easily lowered, and the hardness of the tempered portion exceeds 85% of the maximum quenching hardness.
  • the tempering temperature is set to be higher than 300 ° C. to less than 500 ° C. or 700 ° C. to the AC1 point of the base material.
  • the area ratio of the lamella layer in the galvanized layer can be 20% or less, and the hardness of the tempered portion can be 85% or less of the maximum quenching hardness.
  • Tempering can also be performed on only a portion of the hot stamped steel.
  • tempering can be performed on a part of the hot stamped steel by induction heating using high frequency or energization heating.
  • the strength of the same member can be changed between the part that has been tempered and the part that has not been tempered.
  • Such a member can be applied to a member that is required to have high strength in the upper portion and high impact absorbability in the lower portion, such as a B pillar of an automobile. Even in the case of partial tempering, the tempering part is equivalent to the tempering part when the whole is tempered.
  • the hot stamped steel material is quenched while being pressed using a mold after heating, and then over 300 ° C. to 500 + 8.0 ⁇ (32.5-C) ° C. or 700-4.0 ⁇ (35.0-C ) It is tempered in the temperature range from ° C to the AC1 point of the base material.
  • a base material that is a steel material including a tempered portion having a hardness of 85% or less of the maximum quenching hardness, a tempered portion of the base material, and a solid solution layer and a lamella layer are included.
  • a hot stamped steel material including a galvanized layer and having an area ratio of a lamella layer in the galvanized layer of 20% or less can be manufactured.
  • the method for manufacturing a hot stamped steel material according to this embodiment may further include the following steps.
  • a rust-preventing oil film forming step may be further included between the galvanizing treatment step and the hot stamping step.
  • a rust prevention oil film is formed by applying rust prevention oil to the surface of the hot stamping steel plate.
  • the steel sheet for hot stamping may have a long period from when it is rolled to when the hot stamping process is performed. In that case, the surface of the steel sheet for hot stamping may be oxidized. According to this process, since the rust preventive oil film is formed on the surface of the hot stamped steel material, the surface of the steel plate is hardly oxidized, and the generation of scale is suppressed.
  • the above-described manufacturing method may further include a blanking process between the rust preventive oil film forming process and the hot stamping process.
  • the steel sheet for hot stamping is formed into a specific shape (blanking process) by performing shearing and / or punching.
  • bladenking process the shearing surface of the steel plate after blanking is easily oxidized, if a rust-preventing oil film is formed on the steel plate surface, the rust-preventing oil spreads to the shearing surface to some extent. Therefore, the oxidation of the steel plate after blanking is suppressed.
  • the chemical composition of any steel was within the range of the preferred chemical composition of the steel sheet of the present embodiment.
  • a slab was manufactured by continuous casting using molten steel having the above chemical composition.
  • the slab was hot rolled to obtain a hot rolled steel sheet.
  • the hot-rolled steel sheet was pickled and pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.6 mm.
  • the obtained cold-rolled steel sheet was used as a steel sheet used for manufacturing hot stamped steel.
  • the galvanizing treatment was performed on the steel plates with test numbers 1 to 23.
  • test number 6 a hot dip galvanized layer (GI) was formed on the steel sheet by hot dip galvanizing.
  • test numbers other than test number 6 the alloying process was further implemented with respect to the steel plate which has a hot dip galvanization layer, and the galvannealing layer (GA) was formed.
  • the alloying treatment was performed at a maximum temperature of about 530 ° C., heated for about 30 seconds, and then cooled to room temperature.
  • the Fe content in the alloyed hot-dip galvanized layer was 12% by mass.
  • the Fe content was measured by the following measuring method. First, a steel plate sample including an alloyed hot dip galvanized layer was collected. The Fe content (% by mass) was measured with EPMA (electron beam microanalyzer) at any five locations in the alloyed hot-dip galvanized layer in the sample. The average value of the measured values was defined as the Fe content (% by mass) of the alloyed hot-dip galvanized layer with the test number.
  • EPMA electron beam microanalyzer
  • the adhesion amount of these plated layers was measured by the following method. First, a sample including a plating layer was collected from each steel plate, and the sample plating layer was dissolved with hydrochloric acid in accordance with JIS H0401. The plating adhesion amount (g / m 2 ) was determined based on the sample weight before dissolution, the sample weight after dissolution, and the area where the plating layer was formed. The measurement results are shown in Table 2.
  • each steel plate was charged into a heating furnace in which the furnace temperature was set to 900 ° C., which is a temperature equal to or higher than the AC3 point of the steel plate. Heating was performed at 900 ° C., which is a temperature higher than the AC point of A to F for 4 to 8 minutes. At this time, the steel plate temperature reached 900 ° C. in about 2 minutes after charging in the furnace, and each steel plate was soaked at 900 ° C. for 2 to 6 minutes.
  • hot stamped steel steel plate
  • steel plate steel plate
  • quenching was performed so that the cooling rate to the martensite transformation start point was 50 ° C./second or more even in the portion where the cooling rate during hot stamping was slow.
  • the Zn concentration in the Fe—Zn solid solution was determined by EPMA.
  • tempering was performed on test numbers 1 to 14 and 16 to 23 after hot stamping.
  • each steel material was charged into a heat treatment furnace. That is, the whole steel material was tempered.
  • the tempering temperature for each test number was as shown in Table 2, and the heating time was 5 minutes. Tempering was not performed on the steel material of test number 15.
  • hot stamped steel materials having test numbers 1 to 23 were produced.
  • a Vickers hardness test and observation of the microstructure of the galvanized layer were performed on the hot stamped steel materials of these test numbers 1 to 14.
  • the phosphate treatment property evaluation test was done.
  • the area ratio of the lamellar layer was further determined by the following method.
  • the area ratio (%) of the lamellar layer with respect to the area of the whole galvanized layer was calculated
  • the Zn oxide layer (reference numeral 30 in FIG. 1) that floated on the surface was not included in the area of the galvanized layer.
  • Table 2 shows the area ratio (%) of the obtained solid solution layer and lamella layer.
  • the measurement by EPMA was performed by the above-mentioned method with respect to the solid solution layer observed by micro structure observation. As a result, all the observed Zn in the solid solution layer was 25 to 40% by mass.
  • the area ratio of the solid solution layer in the galvanized layer was 80% or more, and the area ratio of the lamellar layer was 20% or less.
  • the corrosion weight loss by the SST test was 130 g / m 2 or less, which was almost the same as the corrosion weight loss of test number 15 in which tempering was not performed.
  • test numbers 1 and 6 to 8 the tempering temperature was too low. Therefore, although the area ratio of the lamella layer was 20% or less, the hardness B1 of the tempered portion was higher than 85% of the maximum quenching hardness B0. In test number 15, since tempering was not performed, B1 was close to B0.
  • Table 3 summarizes the above results and made a comprehensive evaluation.
  • GOOD was evaluated when B1 / B0 ⁇ 100 was 85 (%) or less, and NG when it was more than 85 (%).
  • the corrosion resistance was evaluated as NG when the corrosion weight loss by the SST test was 130 g / m 2 or less, and when it was more than 130 g / m 2 .
  • both hardness and corrosion resistance were GOOD, it was GOOD in total, and if any one was NG, it was judged as NG in total.
  • thermoforming a hot stamped steel material having a galvanized layer which has higher impact absorption than conventional hot stamped steel materials having the same chemical composition and is excellent in corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本発明の目的は、同じ化学組成を有する従来のホットスタンプ鋼材よりも高い衝撃吸収性を有し、かつ、耐食性に優れる、亜鉛めっき層を有するホットスタンプ鋼材を提供することである。 本発明のホットスタンプ鋼材は、Ac3点以上の温度に加熱して30分間保持した後に水焼入れを実施した場合の表面から板厚の1/4の深さの位置におけるビッカース硬さを最高焼入れ硬さと定義した場合、前記最高焼入れ硬さの85%以下の硬さを有する焼戻し部を含む鋼材である母材と、前記母材の前記焼戻し部上に形成される亜鉛めっき層とを備え、前記亜鉛めっき層は、Fe及び前記Feに固溶したZnを含有する固溶体相からなる固溶体層と、前記固溶体相及びキャピタルガンマ相からなるラメラ層とを含み、前記亜鉛めっき層における前記ラメラ層の面積率が20%以下である。

Description

ホットスタンプ鋼材
 本発明は、ホットスタンプにより製造されたホットスタンプ鋼材に関する。
 本願は、2014年03月31日に、日本に出願された特願2014-073814号に基づき優先権を主張し、その内容をここに援用する。
 自動車等に用いられる構造部材を高強度にするために、ホットスタンプにより製造された構造部材を用いる場合がある。ホットスタンプは、AC3点以上に加熱された鋼板を、金型でプレスしつつ、金型で鋼板を急冷する方法である。つまり、ホットスタンプでは、プレス加工と焼入れとを同時に行う。ホットスタンプによれば、形状精度が高く、高強度の構造部材を製造できる。このようなホットスタンプを含む製造方法で製造された鋼材(ホットスタンプ鋼材)はたとえば、特許文献1、特許文献2及び特許文献3に開示されている。これらの特許文献に開示されるホットスタンプ鋼材は、耐食性を高めるために亜鉛めっき層を施した鋼板に対してホットスタンプを実施して製造された鋼材である。
 上述の通り、ホットスタンプでは、鋼板に対し、プレス加工と同時に焼入れを行う。また、ホットスタンプは、形状精度が高く、高強度の構造部材を製造するのに適している。そのため、一般に、ホットスタンプ鋼材の強度(引張強度)は1500MPa程度以上と高い。しかしながら、近年、自動車等の衝突安全性への要求が高まっており、自動車用部材において、強度よりも、衝突時における衝撃吸収性が要求される場合がある。衝撃吸収性を高めるには、一般的に強度が低い材料の方が好ましい。ホットスタンプ鋼材においては、鋼板の合金元素量やホットスタンプ条件を変更することである程度強度を変更できることは知られている。しかしながら、ホットスタンプ工程で、部材によってホットスタンプ条件を変更することは、製造負荷の上昇を招くため好ましくない。そのため、近年、ホットスタンプでの焼入れにより1500MPa程度以上の引張強度が得られるホットスタンプ鋼材と同じ化学組成を有し、従来と同等以上の耐食性を有し、かつ、600~1450MPa程度の強度を有するホットスタンプ鋼材が求められている。
 しかしながら、上述の特許文献1~3には、ホットスタンプ鋼材の強度を低下させる方法については開示されていない。
日本国特開2003-73774号公報 日本国特開2003-129209号公報 日本国特開2003-126921号公報
 本発明は、上記の課題に鑑みてなされた。本発明の目的は、同じ化学組成を有する従来のホットスタンプ鋼材よりも高い衝撃吸収性を有し、かつ、耐食性に優れる、亜鉛めっき層を有するホットスタンプ鋼材を提供することである。
 本発明の要旨は以下の通りである。
 (1)本発明の一態様に係るホットスタンプ鋼材は、Ac3点以上の温度に加熱して30分間保持した後に水焼入れを実施した場合の表面から板厚の1/4の深さの位置におけるビッカース硬さを最高焼入れ硬さと定義した場合、前記最高焼入れ硬さの85%以下の硬さを有する焼戻し部を含む鋼材である母材と、前記母材の前記焼戻し部上に形成される亜鉛めっき層とを備え、前記亜鉛めっき層は、Fe及び前記Feに固溶したZnを含有する固溶体相からなる固溶体層と、前記固溶体相及びキャピタルガンマ相とからなるラメラ層とを含み、前記亜鉛めっき層における前記ラメラ層の面積率が20%以下である。
 (2)上記(1)に記載のホットスタンプ鋼材では、前記焼戻し部の前記硬さが前記最高焼入れ硬さの60%以下であり、前記亜鉛めっき層における前記ラメラ層の前記面積率が、5~20%であってもよい。
 (3)上記(1)または(2)に記載のホットスタンプ鋼材では、前記焼戻し部の前記硬さが前記最高焼入れ硬さの50%以下であってもよい。
 (4)上記(1)~(3)のいずれか一項に記載のホットスタンプ鋼材では、前記焼戻し部のビッカース硬さが180~450Hvであってもよい。
 (5)上記(1)~(4)のいずれか一項に記載のホットスタンプ鋼材では、最高加熱温度がAc3点以上となるように所定の加熱時間で加熱された後、金型を用いたプレス加工によって加工と焼入れとが同時に施され、その後、所定の焼戻し温度で焼戻しが行われることによって製造され、
 前記母材のAc1点をAc1、前記焼戻し温度を単位℃でT、前記焼入れ後かつ前記焼戻し前の鋼材のFe-Zn固溶体中のZn濃度を単位質量%でCと表したとき、下記式aを満足してもよい。
  Ac1≧T≧700-4.0×(35.0-C)  (a)
 (6)上記(5)に記載のホットスタンプ鋼材では、前記焼戻し温度が700℃~前記母材のAc1点であってもよい。
 (7)上記(1)~(6)のいずれか一項に記載のホットスタンプ鋼材は、前記母材のうちの一部が前記焼戻し部であってもよい。
 本発明の上記態様によれば、同じ化学組成を有する従来のホットスタンプ鋼材よりも高い衝撃吸収性を有し、かつ、耐食性に優れる、亜鉛めっき層を有するホットスタンプ鋼材を提供することができる。
亜鉛めっき層を有するホットスタンプ鋼材を400℃で焼戻しした場合の亜鉛めっき層及びその周辺の断面写真画像である。 亜鉛めっき層を有するホットスタンプ鋼材を500℃で焼戻しした場合の亜鉛めっき層及びその周辺の断面写真画像である。 亜鉛めっき層を有するホットスタンプ鋼材を700℃で焼戻しした場合の亜鉛めっき層及びその周辺の断面写真画像である。 図1に示す亜鉛めっき層のXRD測定結果を示す図である。 図2に示す亜鉛めっき層のXRD測定結果を示す図である。 図3に示す亜鉛めっき層のXRD測定結果を示す図である。 異なる焼戻し温度で焼戻しされたホットスタンプ鋼材のSST試験結果を示す図である。 Fe-Zn二元系状態図である。
 本発明者らは、ホットスタンプ鋼材の衝撃吸収性及び耐食性について検討した。その結果、本発明者らは次の知見を得た。
 上述のとおり、一般的にホットスタンプ鋼材の強度(引張強度)が低い方が、衝撃吸収性が高まる。ホットスタンプ鋼材に対して焼戻しを実施すれば、同じ化学組成を有する従来のホットスタンプ鋼材と比較して、引張強度を低下させることができる。すなわち、ホットスタンプ鋼材の衝撃吸収性を高めることができる。
 しかしながら、亜鉛めっき層を含むホットスタンプ鋼材に対して焼戻しを実施すると、亜鉛めっき層の構造が変化する。亜鉛めっき層の構造の変化は、耐食性に影響する。
 従来、亜鉛めっき層を有するホットスタンプ鋼材に対して、焼戻しを行った際の亜鉛めっき層の変化については、報告されていない。そのため、本発明者らは、焼戻し条件が亜鉛めっき層に及ぼす影響、及び亜鉛めっき層の構成が耐食性に及ぼす影響について以下の要領で検討を行った。
 まず、後述の好ましい化学組成を満たす板厚1.6mmの鋼板を複数準備した。次いで、これらの鋼板上に溶融亜鉛めっき法により、亜鉛めっき層を形成した。亜鉛めっきの付着量は、60g/mであった。亜鉛めっき層が形成された鋼板に対して、ホットスタンプを実施した。具体的には、鋼板を鋼板のAC3点以上の温度である900℃に炉温を設定した加熱炉に装入して、4分間加熱した。このとき、炉に装入してから2分程度で鋼板温度が900℃となった。加熱後、水冷ジャケットを備えた平板金型で、鋼板を挟み込んでホットスタンプを行い、ホットスタンプ鋼材を製造した。ホットスタンプ時の冷却速度は遅い部分でも、マルテンサイト変態開始点まで、50℃/秒以上であった。
 ここで、Ac1点及びAc3点は、それぞれ鋼材を加熱した際のオーステナイト変態開始温度、及びオーステナイト変態終了温度を示す。Ac1点及びAc3点は、フォーマスタ試験などによって、鋼材を加熱した際の熱膨張を測定することで決定することができる。具体的には、フェライトからオーステナイトに変態した際の体積収縮を観察することで決定することができる。また、マルテンサイト変態開始点は、オーステナイト化温度まで加熱した鋼材を急冷した際の熱膨張を測定することで決定することができる。具体的には、オーステナイトからマルテンサイトへの体積膨張を測定することにより決定することができる。
 製造された各ホットスタンプ鋼材に対して、焼戻しを実施した。焼戻し温度は150℃~母材のAc1点の範囲内で、各ホットスタンプ鋼材で異なる温度とした。焼戻しにおける各ホットスタンプ鋼材の加熱時間はいずれも5分とした。
 各焼戻し温度で焼戻しを行ったホットスタンプ鋼材について、ミクロ組織観察及び、XRD測定を行った。また、これらの結果に基づいて、亜鉛めっき層の組織を特定した。
 図1は、焼戻し温度が400℃の場合のホットスタンプ鋼材の亜鉛めっき層及びその周辺の断面部の写真画像であり、図4は、その断面部の表面からのXRD測定結果である。図2は、焼戻し温度が500℃の場合のホットスタンプ鋼材の亜鉛めっき層及びその周辺の断面部の写真画像であり、図5は、その断面部の表面からのXRD測定結果である。図3は、焼戻し温度が700℃の場合のホットスタンプ鋼材の亜鉛めっき層及びその周辺の断面部の写真画像であり、図6は、その断面部の表面からのXRD測定結果である。
 断面部のミクロ組織観察は以下の要領で実施した。すなわち、断面部を5%ナイタ-ルで20~40秒エッチングし、エッチング後、2000倍のSEMでミクロ組織を観察した。めっき層の構成に比べて、酸化物層の有無は強度や耐食性にほとんど影響を及ぼさない。そのため、本件ではめっき層に着目して検討を進めた。
 XRD測定は、Co管球を用いて行った。XRDにおいて、通常、α-Feの強度ピークは、回折角2θ=99.7°に現れるが、Zn固溶量が多くなるほど、低角度側にシフトする。また、FeZn10の金属間化合物であるキャピタルガンマ(Γ)の強度ピークは、回折角2θ=94.0°に現れる。図4~図6中の破線L4はα-Fe相の強度ピーク位置を示す。破線L3は固溶Zn量が少ない固溶体相(Zn含有量が5~25質量%、以下、低Zn固溶体相という場合がある)の強度ピーク位置を示す。破線L2は固溶Zn量が多い固溶体相(Zn含有量が25~40質量%、以下、高Zn固溶体相という場合がある)の強度ピーク位置を示す。破線L1はΓ相の強度ピーク位置を示す。強度ピーク位置が破線L4からL2にシフトするにしたがって、固溶体相中のZn固溶量が多くなる。
 焼戻し温度が150℃~500℃未満の場合、図1及び図4に示すとおり、亜鉛めっき層は、固溶体層10を形成した。この固溶体層は、強度ピーク位置がL2である高Zn固溶体相からなり、Γ相を含んでいなかった。図1中の符号20は母材のうちの焼戻し部であり、符号30は亜鉛めっき層上に形成された亜鉛酸化物層である。
 一方、焼戻し温度が500℃~700℃未満の場合、図2に示すように、亜鉛めっき層には、固溶体層10と、固溶体層10上に形成されたΓ相と低Zn固溶体相とからなるラメラ組織の層(以下、ラメラ層という)40が形成された。XRD測定を行った結果、図5に示すように、低Zn固溶体相の強度ピーク(破線L3位置)と、Γ相の強度ピーク(破線L1の位置)とが現れた。すなわち、このラメラ組織の層は、主にΓ相と低Zn固溶体相とからなるラメラ組織の層(ラメラ層)であった。
 焼戻し温度が500℃~700℃未満の場合、亜鉛めっき層は、面積率で0~70%の固溶体層(高Zn固溶体相からなる)10と、面積率で30%以上のラメラ層40とを含有した。
 さらに、焼戻し温度が700℃~母材のAC1点である場合、図3に示すように、亜鉛めっき層は、表層に若干のラメラ層40と、ラメラ層40の下(鋼材側)に固溶体層10を備えていた。亜鉛めっき層に占めるラメラ層40の面積率は5~20%であった。また、XRD測定の結果、図6に示すように、焼戻し温度が500℃~700℃未満の場合には検出されなかった固溶体相の強度ピークが再び破線L2位置で現れ、焼戻し温度が500℃~700℃未満の場合と比較してΓ相の強度ピーク(破線L1位置)が小さくなった。
 以上のとおり、焼戻しの条件に基づいて、亜鉛めっき層の組織は変化した。そこで、各焼戻し温度で焼戻しを実施したホットスタンプ鋼材の耐食性を調査した。
 耐食性は、SST試験(Salt Spray Test)によって評価した。SST試験は次の方法で実施した。
 各焼戻し温度での板状のホットスタンプ鋼材の裏面及び端面を、ポリエステルテープによりシールした。その後、各鋼材の表面に、JIS Z2371「塩水噴霧試験方法」で規定された試験を6日間(144時間)にわたって実施した。試験後の各鋼材の腐食減量を求め、図7を作成した。図7は、上述のホットスタンプ鋼材のSST試験(Salt Spray Test)後の腐食減量(g/m)を示す図である。
 図7中の横軸は焼戻し温度(℃)を示し、縦軸は腐食減量(g/m)を示す。図7を参照して、焼戻し温度200~400℃、及び、700℃であるホットスタンプ鋼材の腐食減量は、焼戻しを実施しないホットスタンプ鋼材と同レベルであり、130g/m以下であった。一方、焼戻し温度が500~600℃のホットスタンプ鋼材では、めっき層の腐食減量は、焼戻しを実施しないホットスタンプ鋼材よりも顕著に高かった。
 すなわち、ラメラ層の面積率が20%以下である亜鉛めっき層では、焼戻しを行わないホットスタンプ鋼材と同等の耐食性が確保できる。
 以上の結果から、固溶体層とラメラ層とを含有する亜鉛めっき層において、ラメラ層の面積率が20%以下(0%を含む)であれば、耐食性が維持できることが判明した。
 また、自動車用部材等に適用されるホットスタンプ鋼材の表面は、塗装される場合が多い。塗装に際しては、化成処理性が高い方が、塗膜密着性が高まる。そこで、ラメラ層の面積率が異なる亜鉛めっき層について、化成処理性を評価した。その結果、亜鉛めっき層が5%以上のラメラ層を有することで、化成処理性が向上することを見出した。
 次に、上記と同様の素材を用いて、ホットスタンプ時の加熱時間を6分または8分とした以外は上記と同じ条件でホットスタンプを行った。そして、それらのホットスタンプ鋼材について、以下のように、焼戻し条件が亜鉛めっき層に及ぼす影響を評価した。
 製造された各ホットスタンプ鋼材に対して、焼戻しを実施した。焼戻し温度は150℃~母材のAc1点の範囲内で、各ホットスタンプ鋼材で異なる温度とした。焼戻しにおける各ホットスタンプ鋼材の加熱時間は5分とした。
 上述の通り、ホットスタンプ時の加熱時間が4分間であった場合には、焼戻し温度が500℃~700℃でラメラ層の面積率が30%以上であったが、ホットスタンプ時の加熱時間が、6分の場合には、焼戻し温度が500℃または690℃であっても、亜鉛めっき層中のラメラ層の面積率は、5~20%であった。また、ホットスタンプ時の加熱温度が8分の場合には、焼戻し温度が520℃または680℃であっても、亜鉛めっき層の面積率は5~20%であった。
 上記の通り、ホットスタンプ時の加熱時間によって、同じ焼戻し温度でもラメラ層の面積率が変化した。その理由としては、以下の通りであると考えられる。すなわち、ホットスタンプの加熱時には、加熱時間によって亜鉛めっき層中のZnと母材である鋼材中のFeとの合金化の度合い(具体的にはFe-Zn固溶体中のFe及びZnの割合)が変化する。合金化の度合いによって、焼戻し時の固溶体相から低Zn固溶体相及びΓ相へ二相分離するための駆動力が低下するためであると考えられる。
 本発明者らは、さらに検討を行った結果、ホットスタンプ後、かつ焼戻し前のFe-Zn固溶体中のZnの濃度(質量%)をC、焼戻し温度をTとした場合に、ホットスタンプ後のFe-Zn固溶体中のZnの濃度C(質量%)と焼戻し温度T(℃)とが、以下の式1または式2を満足する場合に、亜鉛めっき中のラメラ層の面積率が20%以下になることを見出した。さらに、式1を満足する場合には、ラメラ層の面積率が5~20%以上になることを見出した。
 Ac1≧T≧700-4.0×(35.0-C)  (1)
 T≦500+8.0×(32.5-C)  (2)
 ただし、式2において、C≧32.5の場合、C=32.5とする。
 好ましくは、T≧700、またはT<500である。
 ホットスタンプ後、かつ焼戻し前のFe-Zn固溶体中のZnの濃度(質量%)は、めっき断面の任意の5箇所をEPMAで測定し、5箇所のZn含有量の平均をFe-Zn固溶体中のZnの濃度とすればよい。めっき断面のEPMA分析を行う場合、試料を樹脂に埋め込み研磨し、アルゴンイオン等を使用してエッチングによる加工をすることが有効である。
 同じ化学組成を有する従来のホットスタンプ鋼材よりも高い衝撃吸収性を有するためには、ホットスタンプ後の強度(引張強度)よりも、低い強度である必要がある。本発明者らは、各焼戻し温度で焼戻しを実施したホットスタンプ鋼材の母材の焼戻し部の硬さについて評価を行った。
 ホットスタンプでは、金型によって鋼板がプレスと同時に焼入れされる。そのため、ホットスタンプ鋼材の組織は、焼入れ組織となる。本実施形態では、鋼材をオーステナイト化温度(Ac3点)以上で30分間加熱した後、水焼入れを実施した場合のビッカース硬さを「最高焼入れ硬さ」と定義する。この最高焼入れ硬さは、ホットスタンプ後の鋼材の硬さと略同一であると考えられる。そのため、同様の化学成分を有する鋼材にて上記の方法で測定することによって得られる最高焼入れ硬さに対して、ホットスタンプ鋼材の焼戻し部の硬さが低下していれば、衝撃吸収性が向上していると言える。
 そこで、各焼戻し温度で焼戻しを実施したホットスタンプ鋼材の母材の焼戻し部のビッカース硬さを測定した。また、最高焼入れ硬さとして、同様の化学成分を有する鋼材をオーステナイト化温度以上で30分間加熱した後水焼入れを実施し、表面から板厚の1./4の深さにおいてビッカース硬さを測定した。
 その結果、焼戻し温度が300℃を超えれば、焼戻し部の硬さは最高焼入れ硬さの85%以下になることが分かった。また、焼戻し温度が上記式1を満足すれば、焼戻し部の硬さは、最高焼入れ硬さの60%以下になり、焼戻し温度が700℃以上であれば、焼戻し部の硬さは、最高焼入れ硬さの50%以下になることが分かった。
 したがって、焼戻し温度が300℃超~500℃未満であるか、又は、上記の式1を満たしていれば、ホットスタンプ鋼材の強度が低くなり、かつ、耐食性も維持される。また、焼戻し温度が上記の式1を満たしていれば、さらに化成処理性が向上する。より好ましくは、焼戻し温度は700℃以上である。
 以下、本発明の一実施形態に係るホットスタンプ鋼材(本実施形態に係るホットスタンプ鋼材という場合がある)について説明する。
 本実施形態に係るホットスタンプ鋼材は、以下の特徴を有する。
(a)Ac3点以上の温度に加熱して30分間保持した後に水焼入れを実施した場合の表面から板厚の1./4の深さの位置におけるビッカース硬さを最高焼入れ硬さと定義した場合、前記最高焼入れ硬さの85%以下の硬さを有する焼戻し部を含む鋼材である母材と、前記母材の前記焼戻し部上に形成される亜鉛めっき層とを備える。焼戻し部の硬さは、最高焼入れ硬さに対して、好ましくは60%以下、より好ましくは50%以下である。
(b)亜鉛めっき層は、Fe及び前記Feに固溶したZnとを含有する固溶体相からなる固溶体層と、前記固溶体相とキャピタルガンマ相とからなるラメラ層とを含む。
(c)前記亜鉛めっき層における前記ラメラ層の面積率が20%以下、好ましくは、5~20%である。
 これらの特徴は、上記の知見に基づく。
 [母材]
 母材は鋼材であり、たとえば鋼板をホットスタンプすることにより形成される。また、母材は焼戻し部を含む。焼戻し部とは、その硬さ(ビッカース硬さ)が、鋼材の最高焼入れ硬さの85%以下である部分を指す。最高焼入れ硬さとは、オーステナイト化温度以上で30分間加熱した後、水焼入れを実施した場合の表面から板厚の1/4の深さの位置におけるビッカース硬さを意味する。この最高焼入れ硬さは同じ化学成分を有する他の鋼材(焼戻し部を有するホットスタンプ鋼材とは別の鋼材)を用いて測定することができる。
 本実施形態に係るホットスタンプ鋼材は、母材が最高焼入れ硬さの85%以下の硬さを有する焼戻し部を含むことにより、同じ化学組成を有し、かつ、焼戻しを実施しないホットスタンプ鋼材と比較して、引張強度が低いので衝撃吸収性に優れる。
 マルテンサイトは硬さが高く、また焼戻しによって大きく硬さが低下する組織である。母材が水焼き入れした場合にマルテンサイト変態する化学組成を有することで、最高焼入れ硬さの85%以下の硬さを有する焼戻し部を容易に備えることができるので、母材は、Ac3点以上の温度から水焼入れした場合にマルテンサイト変態する化学組成を有することが好ましい。また、焼戻し部は、体積%で95%以上の焼戻しマルテンサイトと5体積%未満の残留オーステナイトとを含むことが好ましい。
 母材の化学組成は限定する必要はないが、例えば、以下の化学組成を有することが好ましい。母材がこのような化学組成を有する場合、自動車用の部材に用いるのに好適な機械特性を得るのに有利である。また、最高焼入れ硬さの85%以下の硬さを有する焼戻し部を備えるのに有利である。以下、元素に関する「%」は、質量%を意味する。
 C:0.05~0.4%
 炭素(C)は、ホットスタンプ後の鋼材(ホットスタンプ鋼材)の強度を高める元素である。C含有量が低すぎれば、上記効果が得られない。そのため、この効果を得る場合、C含有量の下限を0.05%とすることが好ましい。C含有量のより好ましい下限は0.1%である。一方、C含有量が高すぎると、鋼板の靭性が低下する。したがって、C含有量の上限を0.4%とすることが好ましい。C含有量のより好ましい上限は0.35%である。
 Si:0.5%以下
 シリコン(Si)は鋼中に不可避的に含有される元素である。また、Siは鋼を脱酸する効果を有する。そのため、脱酸を目的として、Si含有量を、0.05%以上としてもよい。しかしながら、Si含有量が高いと、ホットスタンプにおける加熱中に鋼中のSiが拡散し、鋼板表面に酸化物が形成される。この酸化物はりん酸塩処理性を低下させる。Siはさらに、鋼板のAC3点を上昇させる働きを有する。鋼板のAC3点が上昇するとホットスタンプ時の加熱温度が、Znめっきの蒸発温度を超えてしまうことが懸念される。Si含有量が0.5%超の場合に、上記の問題が顕著となるので、Si含有量の上限を0.5%とすることが好ましい。より好ましいSi含有量の上限は0.3%である。
 Mn:0.5~2.5%
 マンガン(Mn)は、鋼の焼入れ性を高め、ホットスタンプ鋼材の強度を高める元素である。この効果を得る場合、Mn含有量の下限を0.5%とすることが好ましい。Mn含有量の好ましい下限は0.6%である。一方、Mn含有量が2.5%を超えても、その効果が飽和する。したがって、Mn含有量の上限は2.5%とすることが好ましい。Mn含有量のより好ましい上限は2.4%である。
 P:0.03%以下
 りん(P)は鋼中に含まれる不純物である。Pは粒界に偏析して鋼の靭性及び耐遅れ破壊性を低下させる。そのため、P含有量はなるべく低い方が好ましいが、P含有量が0.03%超となった場合にその影響が顕著となるので、P含有量を0.03%以下としてもよい。
 S:0.010%以下
 硫黄(S)は鋼中に含まれる不純物である。Sは硫化物を形成して鋼の靭性及び耐遅れ破壊性を低下させる。そのため、S含有量はなるべく低い方が好ましいが、S含有量が0.010%超となった場合にその影響が顕著となるので、S含有量を0.010%以下としてもよい。
 sol.Al:0.10%以下
 アルミニウム(Al)は鋼の脱酸に有効な元素である。この効果を得るため、Al含有量の下限を0.01%としてもよい。しかしながら、Al含有量が高すぎると、鋼板のAC3点が上昇して、ホットスタンプ時に必要な加熱温度がZnめっきの蒸発温度を超える場合がある。したがって、Al含有量の上限を0.10%とすることが好ましい。Al含有量のより好ましい上限は0.05%である。本実施形態におけるAl含有量は、sol.Al(酸可溶Al)の含有量である。
 N:0.010%以下
 窒素(N)は鋼中に不可避的に含まれる不純物である。Nは窒化物を形成して鋼の靭性を低下させる元素である。また、Nは、Bが含有される場合、Bと結合して固溶B量を減らす。固溶B量が減ると、焼入れ性が低下する。上記の理由から、N含有量はなるべく低い方が好ましいが、N含有量が0.010%超となった場合にその影響が顕著となるので、N含有量を0.010%以下としてもよい。
 本実施形態に係るホットスタンプ鋼材の母材部は、例えば上述の元素と残部がFe及び不純物からなる化学組成を有していてもよい。しかしながら、本実施形態に係るホットスタンプ鋼材の母材部は、強度または靭性を向上させることを目的として、任意に、上記化学組成のFeの一部に代えて、B、Ti、Cr、Mo、Nb、Niから選択される1種以上の元素を後述する範囲でさらに含有してもよい。
 本実施形態において、不純物とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入するものを意味する。
 B:0.0001~0.0050%
 ボロン(B)は、Bは鋼の焼入れ性を高め、ホットスタンプ鋼材の強度を高める。そのため、この効果を得る場合、B含有量の好ましい下限は0.0001%である。しかしながら、B含有量が高すぎれば、その効果が飽和する。したがって、含有させる場合でも、B含有量の上限を、0.0050%とすることが好ましい。
 Ti:0.01~0.10%
 チタン(Ti)は、Nと結合して窒化物(TiN)を形成する。その結果、BとNとの結合が抑制され、BN形成に起因する焼入れ性の低下を抑制できる。また、TiNはそのピン止め効果により、ホットスタンプ加熱時のオーステナイト粒径を微細化し、鋼材の靱性等を高める。これらの効果を得る場合、Ti含有量の好ましい下限は0.01%である。しかしながら、Ti含有量が高すぎると、上記効果が飽和するとともに、Ti窒化物が過剰に析出して鋼の靭性が低下する。したがって、含有させる場合でも、Ti含有量の上限を0.10%とすることが好ましい。
 Cr:0.1~0.5%
 クロム(Cr)は鋼の焼入れ性を高める。この効果を得る場合、Cr含有量の好ましい下限は0.1%である。しかしながら、Cr含有量が高すぎると、Cr炭化物が形成され、ホットスタンプの加熱時に炭化物が溶解しにくくなる。その結果、鋼のオーステナイト化が進行しにくくなり、焼入れ性が低下する。したがって、含有させる場合でも、Cr含有量の上限を0.5%とすることが好ましい。
 Mo:0.05~0.50%
 モリブデン(Mo)は、鋼の焼入れ性を高める。この効果を得る場合、Mo含有量の好ましい下限は0.05%である。しかしながら、Mo含有量が高すぎると、上記効果が飽和する。したがって、含有させる場合でも、Mo含有量の上限は0.50%とすることが好ましい。
 Nb:0.02~0.10%
 ニオブ(Nb)は、炭化物を形成して、ホットスタンプ時に結晶粒を微細化する。結晶粒が微細化すると、鋼の靭性が高まる。この効果を得る場合、Nb含有量の好ましい下限は0.02%である。しかしながら、Nb含有量が高すぎると、上記効果が飽和するとともに、焼入れ性が低下する。したがって、含有させる場合でも、Nb含有量の上限は0.10%とすることが好ましい。
 Ni:0.1~1.0%
 ニッケル(Ni)は、鋼の靭性を高める。また、Niは、亜鉛めっき鋼材のホットスタンプでの加熱時に、溶融Znに起因した脆化を抑制する。これらの効果を得る場合、Ni含有量の好ましい下限は0.1%である。しかしながら、Ni含有量が高すぎると、上記効果が飽和するとともに、コストの上昇を招く。したがって、含有させる場合でも、Ni含有量の上限は1.0%とすることが好ましい。
 母材は、その一部が焼戻し部であってもよいし、母材全体が焼戻し部であってもよい。つまり、母材全体のミクロ組織が焼戻しマルテンサイトであってもよい。
 近年、テーラードプロパティと呼ばれる、位置によって強度や延性等の性能に対する要求が異なる部材が求められている。例えば自動車部材では、Bピラー(センターピラー)と呼ばれる骨格部材において、乗車エリアを構成する上部では高強度であることが求められ、下部では衝撃吸収性が高いことが求められている。
 亜鉛めっき層を有するホットスタンプ鋼材の母材の一部のみを焼戻し部にすれば、上述のような強度が高い部分と、衝撃吸収性を併せ持った部材を得ることができる。また、ホットスタンプ鋼材が亜鉛めっき層を有するので、耐食性にも優れる。
 焼戻し部の引張強度はたとえば、600~1450MPaであり、ビッカース硬さは180~450Hvである。この場合、ホットスタンプ鋼材の焼戻し部の強度は、焼戻しを実施しない従来のホットスタンプ鋼材と比較して低くなる。そのため、従来のホットスタンプ鋼材に比べて衝撃吸収性に優れる。
 焼戻しマルテンサイトのビッカース硬さは、マルテンサイトのビッカース硬さよりも低い。したがって、ビッカース硬さにより、母材(焼戻し部)のミクロ組織が焼戻しマルテンサイトか否かを判別できる。
 ビッカース硬さは、JIS Z2244(2009)に準拠したビッカース硬さ試験により求めることができる。ビッカース硬さ試験の試験力は10kgf=98.07Nとする。
 [亜鉛めっき層]
 本実施形態に係るホットスタンプ鋼材は、少なくとも母材の焼戻し部上に亜鉛めっき層を有する。亜鉛めっき層の主体は固溶体層である。具体的には、亜鉛めっき層は、固溶体層と、面積率で0~20%のラメラ層とを備える。
 固溶体層は、固溶体相からなる。固溶体相は、Feと、Feに固溶したZnとを含有する。好ましくは、固溶体層中のZn含有量は25~40質量%である。更に好ましくは、固溶体層中のZn含有量は30~40質量%である。
 ラメラ層は、固溶体相とキャピタルガンマ(Γ)相とのラメラ組織を有する。ラメラ組織とは、図2に示すように、異なる相(本実施形態においては固溶体相およびΓ相)が層状に交互に繰り返し隣り合った組織である。Γ相は金属間化合物(FeZn10)である。ラメラ層の固溶体相中のZn含有量は5~25質量%であり、固溶体層中のZn含有量よりも低い。ラメラ層は、亜鉛めっき層の表層に形成される。
 亜鉛めっき層中のラメラ層の面積率が20%を超えると、耐食性が著しく低下する。その理由として、ラメラ層は、上述のとおり、固溶体相(低Zn固溶体相)とΓ相とのラメラ組織を有する。固溶体相の腐食電位は、Γ相の腐食電位と異なるので、ラメラ層ではガルバニック腐食が生じやすく、固溶体層と比較して耐食性が低くなることが考えられる。そのため、亜鉛めっき層におけるラメラ層の面積率を20%以下とする。
 一方、ラメラ層は、固溶体層よりも化成処理性に優れる。その理由として次の事項が考えられる。ラメラ層は、上述のとおり、固溶体相(低Zn固溶体相)とΓ相とのラメラ組織を有する。ラメラ組織内では、固溶体相及びΓ相は、母材の表面に対して略垂直な方向に延びる。また、上述のとおり、ラメラ層は亜鉛めっき層の表層に形成される。したがって、亜鉛めっき層の表面を観察した場合、固溶体相とΓ相との両方が観察される。このようなラメラ組織を有する亜鉛めっき層に対して化成処理(りん酸塩処理)が実施されると、りん酸により亜鉛めっき層の表面、つまり、ラメラ層がエッチングされる。このとき、亜鉛濃度が高い部分が優先的にエッチングされる。ラメラ層におけるΓ相中のZn濃度は、固溶体相中のZn濃度よりも高いので、りん酸により、Γ相が固溶体相よりも優先的にエッチングされる。その結果、亜鉛めっき層の表面には微細な凹凸が形成され、りん酸塩が付着しやすくなる。したがって、ラメラ層を表層に有する亜鉛めっき層のリン酸塩処理性は、表層に固溶体層のみを有する亜鉛めっき層よりも高くなると考えられる。亜鉛めっき層中のラメラ層の面積率が5%以上であれば、亜鉛めっき層のりん酸塩処理性が高くなるので、亜鉛めっき層における、ラメラ層の面積率は、5%以上であることが好ましい。
 すなわち、ラメラ層の面積率が5~20%であれば、耐食性に加えて、化成処理性にも優れる。
 固溶体相(高Zn固溶体相、低Zn固溶体相)中のZn含有量は次の方法で測定できる。高Zn固溶体相中の任意の5箇所で、EPMA(電子線マイクロアナライザ)により、Zn含有量(質量%)を測定し、5箇所のZn含有量の平均を、高Zn固溶体相中のZn含有量と定義すればよい。低Zn固溶体相においても、高Zn固溶体相と同様の方法で、Zn含有量を求めることができる。
 本実施形態によるホットスタンプ鋼材は、最高焼入れ硬さの85%以下の硬さを有する焼戻し部を備える。そのため、同じ化学組成を有し、かつ、焼戻しを実施しないホットスタンプ鋼材と比較して、強度が低く、耐衝撃吸収性に優れる。さらに、本実施形態の亜鉛めっき層は耐食性が低下するラメラ層の占める割合が小さい。そのため、焼戻しを実施しないホットスタンプ鋼材と同程度の優れた耐食性を維持できる。
 [ホットスタンプ鋼材の製造方法]
 本実施形態に係るホットスタンプ鋼材は、上述した母材及び亜鉛めっき層を有していれば、その製造方法には限定されず、その効果を奏することができる。しかしながら、例えば以下に示す、母材である鋼材を準備する工程(母材準備工程)と、母材に亜鉛めっき層を形成する工程(亜鉛めっき処理工程)と、亜鉛めっき層を備える母材に対してホットスタンプを実施する工程(ホットスタンプ工程)と、ホットスタンプ後の鋼材に対して焼戻しを実施する工程(焼戻し工程)とを備える製造方法によって製造することができる。以下、各工程における好ましい例について説明する。
 [母材準備工程]
 初めに、母材として用いる鋼板を準備する。例えば、上述した好ましい化学組成を有する溶鋼を製造する。この溶鋼を用いて、連続鋳造などの鋳造法によりスラブを製造する。スラブの代わりに、溶鋼を用いて造塊法によりインゴットを製造してもよい。製造されたスラブ又はインゴットを熱間圧延して鋼板(熱延鋼板)を製造する。必要に応じて、さらに熱延鋼板に対して酸洗処理を実施し、酸洗処理後の熱延鋼板に対して冷間圧延を実施して鋼板(冷延鋼板)としてもよい。熱間圧延、酸洗、冷間圧延については、適用する部材に要求される特性に合わせて、公知の方法で行えばよい。
 [亜鉛めっき処理工程]
 上述の鋼板(熱延鋼板または冷延鋼板)に対して、亜鉛めっき処理を行い、鋼板の表面に亜鉛めっき層を形成する。亜鉛めっき層の形成方法は、特に限定されず、溶融亜鉛めっき処理であってもよいし、合金化溶融亜鉛めっき処理であってもよいし、電気亜鉛めっき処理であってもよい。
 溶融亜鉛めっき処理による亜鉛めっき層の形成は例えば以下の要領で行う。すなわち、鋼板をめっき浴(溶融亜鉛めっき浴)に浸漬して鋼板表面にめっきを付着させる。めっきが付着した鋼板をめっき浴から引きあげる。好ましくは、鋼板表面のめっき付着量を調整して20~100g/mにする。めっき付着量は、鋼板の引き上げ速度や、ワイピングのガスの流量を調整することにより調整できる。溶融亜鉛めっき浴中のAl濃度は特に限定されない。以上の工程により、亜鉛めっき層(溶融亜鉛めっき層)を備えるホットスタンプ用鋼板(GI)が製造される。
 合金化溶融亜鉛めっき処理(以下、合金化処理ともいう)による亜鉛めっき層の形成は例えば以下の要領で行う。すなわち、上述の溶融亜鉛めっき層が形成された鋼板を、470~600℃に加熱する。加熱後、必要に応じて均熱を行い、その後、冷却する。均熱時間は、30秒以内が好ましいが、限定されない。また、上記加熱温度まで加熱した直後に均熱を行わず、冷却してもよい。めっき層中の所望のFe濃度に応じて、加熱温度及び均熱時間は適宜設定される。合金化処理における加熱温度の好ましい下限は540℃である。以上の合金化処理により、亜鉛めっき層(合金化溶融亜鉛めっき層)を備えるホットスタンプ用鋼板(GA)が製造される。
 電気亜鉛めっき処理による亜鉛めっき層の形成は、例えば以下の要領で行う。すなわち、電気亜鉛めっき浴として、周知の硫酸浴、塩酸浴、ジンケート浴及びシアン浴等のいずれかを準備する。上述の鋼板を酸洗し、酸洗後の鋼板を電気亜鉛めっき浴に浸漬する。鋼板を陰極として、電気亜鉛めっき浴中に電流を流す。これにより、鋼板表面に亜鉛が析出して亜鉛めっき層(電気亜鉛めっき層)が形成される。以上の工程により、電気亜鉛めっき層を備えるホットスタンプ用鋼板(EG)が製造される。
 亜鉛めっき層が合金化溶融亜鉛めっき層の場合、及び、亜鉛めっき層が電気亜鉛めっき層である場合、好ましい亜鉛めっき層の付着量は、溶融亜鉛めっき層の場合と同じである。つまり、これらの亜鉛めっき層の好ましい付着量は20~100g/mである。より好ましくは、40~80g/mである。
 これらの亜鉛めっき層は、Znを含有する。具体的には、溶融亜鉛めっき層及び電気亜鉛めっき層の化学組成は、Zn及び不純物からなる。合金化溶融亜鉛めっき層の化学組成は、5~20%のFeを含有し、残部はZn及び不純物からなる。
 [ホットスタンプ工程]
 上述のホットスタンプ用鋼板に対して、ホットスタンプを実施する。ホットスタンプ工程における焼入れ前の加熱では、主に輻射熱を加熱に利用する加熱を行うことが好ましい。
 具体的には、初めに、ホットスタンプ用鋼板を加熱炉(ガス炉、電気炉、赤外線炉等)に装入する。加熱炉内で、ホットスタンプ用鋼板をAC3点~950℃に加熱(最高加熱温度)し、この温度で保持(均熱)する。加熱によりめっき層中のZnが液化し、めっき層中の溶融ZnとFeとがと相互拡散して固溶体相(Fe-Zn固溶体相)となる。めっき層中の溶融ZnがFe中に固溶化して固相となった後、加熱炉から鋼板を取り出す。加熱炉から取り出された鋼板に対してホットスタンプ(プレス加工および焼入れ)を実施してホットスタンプ鋼材とする。好ましい均熱時間は30分以下である。生産性の観点からは短時間のほうが望ましく、より好ましい加熱時間は0~15分である。
 ホットスタンプでは、内部に冷却媒体(たとえば水)が循環している金型を用いて鋼板をプレスする。鋼板をプレスするとき、金型からの抜熱によって鋼板が焼入れされる。以上の工程により、ホットスタンプ鋼材が製造される。
 上述の説明では、加熱炉を用いてホットスタンプ用鋼板を加熱した。しかしながら、通電加熱によりホットスタンプ用鋼板を加熱してもよい。この場合であっても、通電加熱により鋼板を所定時間均熱し、亜鉛めっき層中の溶融Znを固溶体相にする。亜鉛めっき層中の溶融Znが固溶体相になった後、金型を用いて鋼板をプレスする。
 [焼戻し工程]
 ホットスタンプ鋼材(ホットスタンプ後の鋼材)に対して、焼戻しを実施する。ホットスタンプ鋼材に焼戻しを行うことによって、ホットスタンプ鋼材の母材に焼戻し部を形成することができる。ホットスタンプ後、かつ焼戻し前のFe-Zn固溶体中のZnの濃度(質量%)をCとした場合に、焼戻し温度は、300℃超~500+8.0×(32.5-C)℃(ただし、このとき、C≧32.5であれば、C=32.5とする)、または、700-4.0×(35.0-C)℃~母材のAC1点である。好ましい焼戻し温度は、300℃超~500℃未満、または、700℃~母材のAC1点である。
 上記焼戻し温度の範囲であれば、焼戻し後の亜鉛めっき層の主体は固溶体層となり、ラメラ層の面積率が0~20%となる。さらに、母材の焼戻し部の硬さが最高焼入れ硬さの85%以下になる。
 また、焼戻し温度を700-4.0×(35.0-C)℃~Ac1点とすることで、ラメラ層の面積率を5~20%とすることができる。また、焼戻し温度を700℃以上とすることで、母材の焼戻し部の硬さを最高焼入れ硬さの50%以下にできる。
 焼戻し温度によってラメラ層の面積率が変化するのは、次の理由によると考えられる。
 図8は、Fe-Znの二元系状態図である。ホットスタンプにより製造されたホットスタンプ鋼材の亜鉛めっき層は、α-FeにZnが25~40質量%程度固溶した固溶体相からなる。しかしながら、自由エネルギー的には、室温では、α-Feに5~25質量%のZnが固溶した低Zn固溶体相とΓ相との二相からなる組織(つまり、ラメラ層)が安定である。つまり、ホットスタンプ後の亜鉛めっき層の固溶体相は、Znが過飽和された固溶体である。
 亜鉛めっき層中のZn濃度が図8中の35質量%である場合(図中の地点A1に相当)を仮定する。この亜鉛めっき層の温度を上昇した場合、固溶体相から低Zn固溶体相及びΓ相へ二相分離するための駆動力は、境界線Ax上の地点Bよりも低温側で発生し、地点Bから低温側に離れるほど強くなる。一方、亜鉛めっき層中の拡散速度は、高温になるほど高くなる。したがって、二相分離への駆動力と、拡散速度との関係で、焼戻し後にラメラ層が形成されるか否かが決まる。具体的には、二相分離への駆動力が高く、拡散速度が高いほど、ラメラ層が形成されやすくなる。
 焼戻し時の亜鉛めっき層の温度(焼戻し温度)が低温域(300℃超~500℃未満)である場合(たとえば310℃の地点A1)、境界線Axから十分に遠い。この場合、二相分離への駆動力は高い。しかしながら、低温であるため拡散速度が低すぎる。そのため、焼戻しを実施しても亜鉛めっき層が二相に分離せず、ラメラ層が形成されない。
 焼戻し温度が500℃~700℃未満である場合、温度域が境界線Axに近づくものの、ある程度の距離を有する(例えば図中の地点A2)。この場合、二相分離への駆動力がある程度発生する。さらに、温度域が高くなったため、拡散速度が高い。その結果、亜鉛めっき層は二相に分離してラメラ層を形成する。図8のA2では、Zn含有量が70質量%程度のΓ相(図中C2)と、Zn含有量が10質量%程度の固溶体相(図中C1)とに分離する。その結果、ラメラ層が形成される。
 さらに焼戻し温度が上昇して、700℃以上になると、温度域が境界線Ax近傍になる。この場合、温度上昇により拡散速度は高くなるものの、二相分離への駆動力が極めて小さい。その結果、二相への分離が起りにくい。ただし、境界線Axを超えていないので、少量のラメラ層が形成される。そのため、ラメラ層の面積率は5~20%になる。焼戻し温度が境界線Axを超えると(焼戻し温度がAc1点を超えると)、二相分離の駆動力が発生しないため、ラメラ層は形成されない。
 焼戻し温度が300℃以下である場合、拡散速度が小さいため、ラメラ層の面積率は20%以下になる。一方で、焼戻し部の強度が低下しにくく、焼戻し部の硬さが最高焼入れ硬さの85%を超える。
 したがって、上記のように、亜鉛めっき層中のZn濃度が図8中の35質量%である場合、焼戻し温度を300℃超~500℃未満又は700℃~母材のAC1点とすることにより、亜鉛めっき層中のラメラ層の面積率を20%以下にすることができ、かつ、焼戻し部の硬さを最高焼入れ硬さの85%以下にすることができる。
 焼戻しは、ホットスタンプ鋼材の一部に対してのみ実施することもできる。たとえば、高周波を用いた誘導加熱や、通電加熱により、ホットスタンプ鋼材の一部に対して焼戻しを実施することができる。
 ホットスタンプ鋼材の一部に対してのみ焼戻しを行うことで、同一部材において、焼戻しを行った部分と焼戻しを行わなかった部分とで、強度を変化させることができる。このような部材は、例えば自動車のBピラーのように、上部では高強度であることが求められ下部では衝撃吸収性が高いことが求められる部材に適用することができる。
 なお、部分焼戻しの場合でも、焼戻し部については、全体を焼戻した場合の焼戻し部と同等である。
 上記ホットスタンプ鋼材は、加熱後に金型を用いてプレスしながら焼入れされ、その後、300℃超~500+8.0×(32.5-C)℃又は700-4.0×(35.0-C)℃~母材のAC1点の温度範囲で焼き戻しされて製造される。
 以上の工程によれば、最高焼入れ硬さの85%以下の硬さを有する焼戻し部を含む鋼材である母材と、母材の焼戻し部上に形成され、かつ固溶体層とラメラ層とを含む亜鉛めっき層とを備え、亜鉛めっき層におけるラメラ層の面積率が20%以下であるホットスタンプ鋼材を製造することができる。
  本実施形態に係るホットスタンプ鋼材の製造方法は、さらに、以下の工程を含んでもよい。
 [防錆油膜形成工程]
 上述の製造方法では、さらに、亜鉛めっき処理工程とホットスタンプ工程との間に、防錆油膜形成工程を含んでもよい。
 防錆油膜形成工程では、ホットスタンプ用鋼板の表面に、防錆油を塗布して防錆油膜を形成する。ホットスタンプ用鋼板は、圧延されてからホットスタンプ工程が実施されるまでの期間が長い場合があり得る。その場合、ホットスタンプ用鋼板の表面が酸化する場合があり得る。本工程によればホットスタンプ鋼材の表面に防錆油膜が形成されるので、鋼板の表面が酸化しにくくなり、スケールの発生が抑制される。
 [ブランキング加工工程]
 また、上述の製造方法はさらに、防錆油膜形成工程とホットスタンプ工程との間に、ブランキング加工工程を含んでもよい。
 ブランキング加工工程では、ホットスタンプ用鋼板に対して剪断加工及び/又は打ち抜き加工等を実施して、特定の形状に成形(ブランキング加工)する。ブランキング加工後の鋼板の剪断面は酸化しやすいが、鋼板表面に防錆油膜が形成されていれば、剪断面にも防錆油がある程度広がる。そのため、ブランキング加工後の鋼板の酸化が抑制される。
 表1に示す化学組成を有する鋼No.A~Gの鋼板を準備した。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、いずれの鋼の化学組成も、本実施形態の鋼板の好ましい化学組成の範囲内であった。
 上記化学組成を有する溶鋼を用いて連続鋳造法によりスラブを製造した。スラブを熱間圧延し、熱延鋼板を得た。熱延鋼板を酸洗し、酸洗した後、冷間圧延を実施して、板厚が1.6mmの冷延鋼板を得た。得られた冷延鋼板をホットスタンプ鋼材の製造に利用する鋼板とした。
 最高焼入れ硬さを調査するため、鋼No.A~Gのそれぞれの化学組成を有する鋼板の一部を採取し、Ac3点以上の温度に加熱し、30分間保持した後、水焼入れを実施した。いずれの鋼種の鋼板も、水焼入れ後の組織はフルマルテンサイトであった。
 水焼入れ後の鋼板に対し、ビッカース硬さを測定し、得られたビッカース硬さを各鋼の最高焼入れ硬さ(HV)と定義した。ビッカース硬さ試験は、JIS Z2244(2009)に準拠し、試験力は10kgf=98.07Nとした。
 鋼No.A~Fの化学成分を有する冷延鋼板を用いて、表2中に示す条件で、亜鉛めっき処理、ホットスタンプおよび焼戻しを行い、試験番号1~23のホットスタンプ鋼材を製造した。
 試験番号1~23の鋼板に対して、亜鉛めっき処理を実施した。試験番号6では、溶融亜鉛めっき処理により、鋼板に溶融亜鉛めっき層(GI)を形成した。試験番号6以外の試験番号では、溶融亜鉛めっき層を有する鋼板に対してさらに合金化処理を実施して、合金化溶融亜鉛めっき層(GA)を形成した。合金化処理は最高温度を約530℃とし、約30秒加熱した後、室温まで冷却した。
 合金化溶融亜鉛めっき層内のFe含有量は質量%で12%であった。Fe含有量は次の測定方法により測定した。まず、合金化溶融亜鉛めっき層を含む鋼板のサンプルを採取した。サンプル中の合金化溶融亜鉛めっき層内の任意の5箇所において、EPMA(電子線マイクロアナライザ)によりFe含有量(質量%)を測定した。測定された値の平均値を、その試験番号の合金化溶融亜鉛めっき層のFe含有量(質量%)と定義した。
 これらのめっき層(溶融亜鉛めっき層または合金化溶融亜鉛めっき層)の付着量は次の方法により測定した。まず、各鋼板からめっき層を含むサンプルを採取し、JIS H0401に準拠してサンプルのめっき層を塩酸で溶解した。溶解前のサンプル重量と、溶解後のサンプル重量と、めっき層が形成されていた面積とに基づいて、めっき付着量(g/m)を求めた。測定結果を表2に示す。
 めっき層を形成した後、各試験番号の鋼板に対して、ホットスタンプを実施した。具体的には、各鋼板に対して鋼板のAC3点以上の温度である900℃に炉温を設定した加熱炉に装入し、輻射熱により、鋼No.A~FのAC3点以上の温度である900℃にて4~8分間加熱した。このとき、炉に装入してから2分程度で鋼板温度が900℃となり、さらに、各鋼板を900℃で2分~6分均熱した。
 均熱後、水冷ジャケットを備えた平板金型で鋼板を挟み込むことによってホットスタンプ鋼材(鋼板)を製造した。この際、ホットスタンプ時の冷却速度が遅い部分でも、マルテンサイト変態開始点までの冷却速度が50℃/秒以上となるように焼入れした。ホットスタンプ後に、Fe-Zn固溶体中Zn濃度を、EPMAによって求めた。
 さらに、ホットスタンプ後の試験番号1~14、16~23に対して、焼戻しを実施した。本実施例では、各鋼材を熱処理炉に装入した。つまり、鋼材全体に対して焼戻しを実施した。各試験番号の焼戻し温度は表2に示すとおりとし、加熱時間はいずれも5分とした。試験番号15の鋼材に対しては焼戻しを実施しなかった。以上の工程により、試験番号1~23のホットスタンプ鋼材を製造した。
 これらの試験番号1~14のホットスタンプ鋼材に対し、ビッカース硬さ試験、亜鉛めっき層のミクロ組織観察を行った。また、化成処理性を評価するため、りん酸塩処理性評価試験を行った。
 [ビッカース硬さ試験]
 各試験番号の鋼材(鋼板)の板厚中央部の母材からサンプルを採取した。サンプルの表面(鋼板の圧延方向に垂直な面に相当)に対して、JIS Z2244(2009)に準拠したビッカース硬さ試験を実施した。試験力は10kgf=98.07Nとした。得られたビッカース硬さ(HV10)得られたビッカース硬さB1(HV10)、および、最高焼入れ硬さB0との比である、B1/B0×100(%)を表2に示す。
 [亜鉛めっき層のミクロ組織観察]
 各試験番号の鋼材から、亜鉛めっき層を含むサンプルを採取した。サンプルの表面のうち、圧延方向に垂直な断面を5質量%のナイタールでエッチングした。2000倍のSEMにより、エッチングされた亜鉛めっき層の断面を観察し、固溶体層及びラメラ層の有無を判断した。
 ラメラ層が観察された場合はさらに、次の方法によりラメラ層の面積率を求めた。上記断面のうち任意の5視野(50μm×50μm)において、亜鉛めっき層全体の面積に対する、ラメラ層の面積率(%)を求めた。このとき、表面に浮上して配置されるZn酸化物層(図1中の符号30)は、亜鉛めっき層の面積に含めなかった。得られた固溶体層及びラメラ層の面積率(%)を表2に示す。
 ミクロ組織観察で観察された固溶体層に対して、上述の方法によりEPMAによる測定を実施した。その結果、観察された固溶体層中のZnはいずれも、25~40質量%であった。
 [SST試験(Salt Spray Test)]
 各試験番号のホットスタンプ鋼材に対して、SST試験を次の方法で実施した。各試験番号のホットスタンプ鋼材(鋼板)の裏面及び端面を、ポリエステルテープによりシールした。その後、各鋼材の表面に、JIS Z2371「塩水噴霧試験方法」で規定された試験を6日間(144時間)にわたって実施した。試験後の各鋼材の腐食減量(g/m)を求めた。得られた腐食減量を表2に示す。
 [りん酸塩処理性評価試験]
 各試験番号のホットスタンプ鋼材に対して、日本パーカライジング株式会社製の表面調整処理剤プレパレンX(商品名)を用いて表面調整を室温で20秒実施した。さらに、日本パーカライジング株式会社製のりん酸亜鉛処理液パルボンド3020(商品名)を用いてりん酸塩処理を実施した。処理液の温度は43℃とし、ホットスタンプ鋼材を処理液に120秒間浸漬した。
 りん酸塩処理後、ホットスタンプ鋼材の任意の5視野(125μm×90μm)を1000倍の走査型電子顕微鏡(SEM)で観察し、SEM画像に対して、2値化処理を実施した。2値化された画像において、白色部分には微細な化成結晶が形成されている。微細な化成結晶が多いほど、りん酸塩処理性が高い。そのため、2値化された画像を用いて、白色部分の面積率TRを求めた。面積率TRが焼戻しを行わない場合と同等であれば、OK、面積率TRが30%以上であれば、りん酸塩処理性が向上しているとして、GOODとした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 [試験結果]
 表2を参照して、試験番号2~5、9、10、13、14、16、19、20、21、23では、焼戻し温度が適切であった。そのため、焼戻し部の硬さB1は、最高焼入れ硬さB0の85%以下であった。
 さらに、亜鉛めっき層中の固溶体層の面積率は80%以上であり、ラメラ層の面積率は20%以下であった。その結果、SST試験による腐食減量は130g/m以下であり、焼戻しを実施しなかった試験番号15の腐食減量とほぼ同等であった。
 一方、試験番号1、6~8では、焼戻し温度が低すぎた。そのため、ラメラ層の面積率は20%以下であったものの、焼戻し部の硬さB1が、最高焼入れ硬さB0の85%よりも高かった。また、試験番号15では、焼戻しを行っていないため、B1がB0に近い値となっていた。
 試験番号11及び12、17、18、22は、焼戻し温度が好ましい範囲を外れた結果、亜鉛めっき層中のラメラ層の面積率が20%を越えた。そのため、腐食減量が130g/mを大きく越えた。
 また、亜鉛めっき層中のラメラ層の面積率が5~20%以上の場合には、耐食性は低下せず、化成処理性が向上していた。
 表3に上記の結果を整理し、総合評価を行った。
 硬度については、B1/B0×100が85(%)以下の場合にGOOD、85(%)超の場合に、NGと評価した。また、耐食性については、SST試験による腐食減量が130g/m以下の場合に、GOOD、130g/m超の場合に、NGと評価した。そして、硬度及び耐食性のいずれもがGOODであれば、総合でGOOD、いずれか一つでもNGであれば、総合でNGと判断した。
Figure JPOXMLDOC01-appb-T000003
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 本発明によれば、同じ化学組成を有する従来のホットスタンプ鋼材よりも高い衝撃吸収性を有し、かつ、耐食性に優れる、亜鉛めっき層を有するホットスタンプ鋼材を提供することができる。
10 固溶体層
20 焼戻し部
30 Zn酸化物層
40 ラメラ層

Claims (7)

  1.  Ac3点以上の温度に加熱して30分間保持した後に水焼入れを実施した場合の表面から板厚の1/4の深さの位置におけるビッカース硬さを最高焼入れ硬さと定義した場合、前記最高焼入れ硬さの85%以下の硬さを有する焼戻し部を含む鋼材である母材と、
     前記母材の前記焼戻し部上に形成される亜鉛めっき層とを備え、
     前記亜鉛めっき層は、
     Fe及び前記Feに固溶したZnを含有する固溶体相からなる固溶体層と、前記固溶体相及びキャピタルガンマ相とからなるラメラ層とを含み、
     前記亜鉛めっき層における前記ラメラ層の面積率が20%以下である
    ことを特徴とするホットスタンプ鋼材。
  2.  前記焼戻し部の前記硬さが前記最高焼入れ硬さの60%以下であり、前記亜鉛めっき層における前記ラメラ層の前記面積率が、5~20%であることを特徴とする請求項1に記載のホットスタンプ鋼材。
  3.  前記焼戻し部の前記硬さが前記最高焼入れ硬さの50%以下であることを特徴とする請求項1または2に記載のホットスタンプ鋼材。
  4.  前記焼戻し部のビッカース硬さが180~450Hvであることを特徴とする請求項1~3のいずれか一項に記載のホットスタンプ鋼材。
  5.  最高加熱温度がAc3点以上となるように所定の加熱時間で加熱された後、金型を用いたプレス加工によって加工と焼入れとが同時に施され、その後、所定の焼戻し温度で焼戻しが行われることによって製造され、
     前記母材のAc1点をAc1、前記焼戻し温度を単位℃でT、前記焼入れ後かつ前記焼戻し前の鋼材のFe-Zn固溶体中のZn濃度を単位質量%でCと表したとき、下記式1を満足する
    ことを特徴とする請求項1~4のいずれか一項に記載のホットスタンプ鋼材。
      Ac1≧T≧700-4.0×(35.0-C)  (1)
  6.  前記焼戻し温度が700℃~前記母材のAc1点であることを特徴とする請求項5に記載のホットスタンプ鋼材。
  7.  前記母材のうちの一部が前記焼戻し部であることを特徴とする請求項1~6のいずれか一項に記載のホットスタンプ鋼材。
PCT/JP2015/060235 2014-03-31 2015-03-31 ホットスタンプ鋼材 WO2015152284A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2943652A CA2943652C (en) 2014-03-31 2015-03-31 Hot-stamped steel
CN201580017009.6A CN106133153B (zh) 2014-03-31 2015-03-31 热冲压钢材
MX2016012674A MX2016012674A (es) 2014-03-31 2015-03-31 Material de acero estampado en caliente.
KR1020167026509A KR101871618B1 (ko) 2014-03-31 2015-03-31 핫 스탬프 강재
EP15772557.3A EP3128017A4 (en) 2014-03-31 2015-03-31 Hot-stamped steel material
JP2016511955A JP6172383B2 (ja) 2014-03-31 2015-03-31 ホットスタンプ鋼材
RU2016141558A RU2659532C2 (ru) 2014-03-31 2015-03-31 Горячештампованная сталь
US15/129,640 US9932652B2 (en) 2014-03-31 2015-03-31 Hot-stamped steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073814 2014-03-31
JP2014073814 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152284A1 true WO2015152284A1 (ja) 2015-10-08

Family

ID=54240602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060235 WO2015152284A1 (ja) 2014-03-31 2015-03-31 ホットスタンプ鋼材

Country Status (10)

Country Link
US (1) US9932652B2 (ja)
EP (1) EP3128017A4 (ja)
JP (1) JP6172383B2 (ja)
KR (1) KR101871618B1 (ja)
CN (1) CN106133153B (ja)
CA (1) CA2943652C (ja)
MX (1) MX2016012674A (ja)
RU (1) RU2659532C2 (ja)
TW (1) TWI534272B (ja)
WO (1) WO2015152284A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079484A (ja) * 2016-11-14 2018-05-24 株式会社豊田中央研究所 熱間プレス成形方法および熱間プレス成形品
WO2018151330A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 ホットスタンプ成形体
WO2018151325A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 ホットスタンプ成形体
WO2021191961A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
WO2021191955A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
WO2022091351A1 (ja) * 2020-10-30 2022-05-05 日本製鉄株式会社 Zn系めっきホットスタンプ成形品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399837B (zh) * 2016-07-08 2018-03-13 东北大学 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN110214197A (zh) * 2017-02-20 2019-09-06 日本制铁株式会社 热冲压成形体
US11068380B2 (en) 2018-08-08 2021-07-20 Servicenow, Inc. Capturing and encoding of network transactions for playback in a simulation environment
WO2021193618A1 (ja) * 2020-03-27 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500782A (ja) * 2003-07-22 2007-01-18 ダイムラークライスラー・アクチェンゲゼルシャフト プレス焼入れ部品及びその製造方法
JP2010150612A (ja) * 2008-12-25 2010-07-08 Nippon Steel Corp 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
JP2011173166A (ja) * 2010-02-26 2011-09-08 Aisin Takaoka Ltd 複合型プレス加工装置
WO2011111333A1 (ja) * 2010-03-09 2011-09-15 Jfeスチール株式会社 高強度プレス部材およびその製造方法
JP2012530847A (ja) * 2009-06-24 2012-12-06 ティッセンクルップ ニロスタ ゲゼルシャフト ミット ベシュレンクテル ハフツング 熱間プレス硬化コンポーネントの製造方法、熱間プレス硬化コンポーネントを製造する鋼製品の使用、および熱間プレス硬化コンポーネント
JP2013244507A (ja) * 2012-05-25 2013-12-09 Toyota Motor Corp プレス成形品の通電加熱方法及びそれに用いる通電加熱装置、並びに、プレス製品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582504B2 (ja) 2001-08-31 2004-10-27 住友金属工業株式会社 熱間プレス用めっき鋼板
JP3582511B2 (ja) 2001-10-23 2004-10-27 住友金属工業株式会社 熱間プレス成形用表面処理鋼とその製造方法
JP4039548B2 (ja) 2001-10-23 2008-01-30 住友金属工業株式会社 耐食性に優れた熱間プレス成形品
JP4085876B2 (ja) 2003-04-23 2008-05-14 住友金属工業株式会社 熱間プレス成形品およびその製造方法
JP4072129B2 (ja) 2004-02-24 2008-04-09 新日本製鐵株式会社 亜鉛系めっきが施された熱間プレス鋼材
JP5291617B2 (ja) * 2007-03-28 2013-09-18 旭化成ケミカルズ株式会社 リチウムイオン二次電池用、電気二重層キャパシタ用又は燃料電池用の電極、並びに、それを用いたリチウムイオン二次電池、電気二重層キャパシタ及び燃料電池
ATE554190T1 (de) * 2009-08-25 2012-05-15 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil
WO2011081043A1 (ja) * 2009-12-28 2011-07-07 住友金属工業株式会社 熱間プレス成形部材の製造方法
KR101253885B1 (ko) * 2010-12-27 2013-04-16 주식회사 포스코 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법
US20140004378A1 (en) 2011-03-18 2014-01-02 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamped member and method of production of same
CN103827343B (zh) * 2011-09-30 2016-01-27 新日铁住金株式会社 合金化热浸镀锌钢板
US8833384B2 (en) 2012-08-06 2014-09-16 Schneider Electric Buildings, Llc Advanced valve actuation system with integral freeze protection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500782A (ja) * 2003-07-22 2007-01-18 ダイムラークライスラー・アクチェンゲゼルシャフト プレス焼入れ部品及びその製造方法
JP2010150612A (ja) * 2008-12-25 2010-07-08 Nippon Steel Corp 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
JP2012530847A (ja) * 2009-06-24 2012-12-06 ティッセンクルップ ニロスタ ゲゼルシャフト ミット ベシュレンクテル ハフツング 熱間プレス硬化コンポーネントの製造方法、熱間プレス硬化コンポーネントを製造する鋼製品の使用、および熱間プレス硬化コンポーネント
JP2011173166A (ja) * 2010-02-26 2011-09-08 Aisin Takaoka Ltd 複合型プレス加工装置
WO2011111333A1 (ja) * 2010-03-09 2011-09-15 Jfeスチール株式会社 高強度プレス部材およびその製造方法
JP2013244507A (ja) * 2012-05-25 2013-12-09 Toyota Motor Corp プレス成形品の通電加熱方法及びそれに用いる通電加熱装置、並びに、プレス製品

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079484A (ja) * 2016-11-14 2018-05-24 株式会社豊田中央研究所 熱間プレス成形方法および熱間プレス成形品
WO2018151330A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 ホットスタンプ成形体
WO2018151325A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 ホットスタンプ成形体
JP6384645B1 (ja) * 2017-02-20 2018-09-05 新日鐵住金株式会社 ホットスタンプ成形体
JP6384643B1 (ja) * 2017-02-20 2018-09-05 新日鐵住金株式会社 ホットスタンプ成形体
JPWO2021191961A1 (ja) * 2020-03-23 2021-09-30
WO2021191955A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
JPWO2021191955A1 (ja) * 2020-03-23 2021-09-30
WO2021191961A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
CN114981467A (zh) * 2020-03-23 2022-08-30 日本制铁株式会社 热冲压成型体
CN115066516A (zh) * 2020-03-23 2022-09-16 日本制铁株式会社 热冲压成型体
JP7239059B2 (ja) 2020-03-23 2023-03-14 日本製鉄株式会社 ホットスタンプ成形体
JP7239060B2 (ja) 2020-03-23 2023-03-14 日本製鉄株式会社 ホットスタンプ成形体
CN114981467B (zh) * 2020-03-23 2023-10-31 日本制铁株式会社 热冲压成型体
WO2022091351A1 (ja) * 2020-10-30 2022-05-05 日本製鉄株式会社 Zn系めっきホットスタンプ成形品
JP7469711B2 (ja) 2020-10-30 2024-04-17 日本製鉄株式会社 Zn系めっきホットスタンプ成形品

Also Published As

Publication number Publication date
TW201544604A (zh) 2015-12-01
US20170145532A1 (en) 2017-05-25
JPWO2015152284A1 (ja) 2017-04-13
RU2659532C2 (ru) 2018-07-02
RU2016141558A3 (ja) 2018-05-03
KR101871618B1 (ko) 2018-06-26
US9932652B2 (en) 2018-04-03
MX2016012674A (es) 2016-12-14
KR20160126047A (ko) 2016-11-01
CN106133153A (zh) 2016-11-16
CN106133153B (zh) 2018-11-13
JP6172383B2 (ja) 2017-08-02
CA2943652A1 (en) 2015-10-08
CA2943652C (en) 2020-01-07
EP3128017A4 (en) 2017-10-04
TWI534272B (zh) 2016-05-21
RU2016141558A (ru) 2018-05-03
EP3128017A1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6172383B2 (ja) ホットスタンプ鋼材
JP6288248B2 (ja) ホットスタンプ鋼材
JP6354916B2 (ja) 鋼板及びめっき鋼板
KR101687931B1 (ko) 핫 스탬프 성형체, 냉연 강판 및 핫 스탬프 성형체의 제조 방법
JP4659134B2 (ja) 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法
JP6897882B2 (ja) 熱延鋼板およびその製造方法
WO2013103125A1 (ja) 熱延鋼板およびその製造方法
JP6260411B2 (ja) 緩冷却鋼材
JP6326761B2 (ja) ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
WO2018026016A1 (ja) 鋼板及びめっき鋼板
CA3044511A1 (en) Steel sheet for hot stamping
US20220090247A1 (en) Steel sheet, member, and methods for producing them
JP6032173B2 (ja) 引張最大強度980MPaを有する耐遅れ破壊特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板
WO2023032225A1 (ja) 熱延鋼板
JP2011241431A (ja) 鋼板および表面処理鋼板ならびにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511955

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2943652

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20167026509

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015772557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15129640

Country of ref document: US

Ref document number: 2015772557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/012674

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201607184

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016141558

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022140

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022140

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160926