CN117136252A - 热压成型用镀覆钢板及其制造方法 - Google Patents

热压成型用镀覆钢板及其制造方法 Download PDF

Info

Publication number
CN117136252A
CN117136252A CN202180091161.4A CN202180091161A CN117136252A CN 117136252 A CN117136252 A CN 117136252A CN 202180091161 A CN202180091161 A CN 202180091161A CN 117136252 A CN117136252 A CN 117136252A
Authority
CN
China
Prior art keywords
steel sheet
plated steel
hot press
plating layer
press forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180091161.4A
Other languages
English (en)
Inventor
黄铉锡
科奇尼姆·吴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN117136252A publication Critical patent/CN117136252A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种具有提高的氢致延迟断裂特性的热压成型用镀覆钢板。公开的镀覆钢板包括:基础钢板;以及镀层,其形成在基础钢板的表面上,以重量%计,所述镀层包含:Si:5.0‑15.0%、Zn:10.0‑30.0%、Fe:4.0‑12.0%、余量的Al和不可避免的杂质。

Description

热压成型用镀覆钢板及其制造方法
技术领域
本发明涉及一种热压成型用镀覆钢板及其制造方法,特别地,涉及一种通过优化成分条件和热处理条件来提高氢致延迟断裂特性的热压成型用镀覆钢板及其制造方法。
背景技术
近年来,随着安全性和燃料效率等的要求增加,用于汽车的轻量化的高强度钢的使用增加,但高强度钢在加工过程中发生材料的断裂或者在加工后发生回弹的现象,因此存在难以进行复杂且精密的形状的产品的成型的问题。
热压成型(Hot Press Forming,HPF)是解决这种问题的方法,近年来应用正在扩大。热压钢板具有以下优点,即通常在加热至800-950℃的状态下进行热加工,从而易于成型,并且通过模具快速冷却时可以提高成型品的强度。
然而,当将钢材加热至高温时,发生钢材的表面氧化,因此存在在冲压成型之后必须增加去除钢板表面的产物的过程的问题。为此,以往提出了在用于热压成型的材料的钢板的表面引入铝镀层或镀锌的方法。
然而,高强度钢镀覆钢板发生氢导致的延迟断裂问题,因此使用受限。具体地,延迟断裂是氢扩散在钢中,在构件的成型结束后降低钢材的延展性和韧性,导致在没有塑性变形的情况下也发生断裂的延迟断裂现象。
特别地,在将高强度钢作为基材的镀铝钢板中,Al和Al-Fe基界面合金层的氢扩散系数非常低,与不引入金属涂覆的钢板相比,延迟断裂的问题更严重。
因此,需要开发一种确保强度和氢致延迟断裂特性,并且可应用于汽车用构件的热压成型用镀覆钢板。
发明内容
要解决的技术问题
本发明的实施方案的目的是提供一种具有提高的氢致延迟断裂特性的热压成型用镀覆钢板及其制造方法。
技术方案
根据本发明的一个实施方案,热压成型用镀覆钢板包括:基础钢板;以及镀层,其形成在所述基础钢板的表面上,以重量%计,所述镀层包含:Si:5.0-15.0%、Zn:10.0-30.0%、Fe:4.0-12.0%、余量的Al和不可避免的杂质。
此外,根据本发明的一个实施方案,以重量%计,所述基础钢板可以包含:C:0.1-0.4%、Mn:0.5-3.0%、Si:0.1-0.8%、B:0.01%以下(0除外)、Ti:0.1%以下(0除外)、余量的Fe和其它不可避免的杂质。
此外,根据本发明的一个实施方案,附着在所述基础钢板的表面的镀层的附着量可以为40-120g/m2
此外,根据本发明的一个实施方案,所述镀层的厚度可以为5-40μm。
此外,根据本发明的一个实施方案,可以设置Al-Fe基界面合金层,所述Al-Fe基界面合金层形成在所述基础钢板和所述镀层之间,以重量%计,所述Al-Fe基界面合金层包含:Al:30.0-60.0%和Si:5.0-20.0%。
此外,根据本发明的一个实施方案,所述镀层可以包含硅的浓度为60%以上、锌的浓度小于20%且长轴的长度为1μm以上的硅晶体。
根据本发明的另一个实施方案,制造热压成型用镀覆钢板的方法包括以下步骤:准备基础钢板,并将基础钢板浸入镀液中以制造镀覆钢板,以重量%计,所述镀液包含:Si:5.0-15.0%、Zn:10.0-30.0%、余量的Al和不可避免的杂质;将所述镀覆钢板加热至超过800℃且低于1100℃;将所述镀覆钢板进行热压成型;以及将所述热压成型的镀覆钢板进行冷却。
此外,根据本发明的一个实施方案,镀覆钢板的加热可以进行超过2分钟至小于15分钟。
此外,根据本发明的一个实施方案,镀覆钢板的加热可以以2-15℃/秒的速度进行。
此外,根据本发明的一个实施方案,在将热压成型的镀覆钢板进行冷却的步骤中,在700-350℃的温度区间中可以以15℃/秒以上的速度进行冷却。
有益效果
根据本发明的实施方案,可以提供一种具有提高的氢致延迟断裂特性的热压成型用镀覆钢板及其制造方法,并且可以应用于汽车用构件。
附图说明
图1是用扫描电子显微镜观察实施例1的镀层的截面的照片。
最佳实施方式
根据本发明的一个实施方案的热压成型用镀覆钢板包括:基础钢板;以及镀层,其形成在所述基础钢板的表面上,以重量%计,所述镀层包含:Si:5.0-15.0%、Zn:10.0-30.0%、Fe:4.0-12.0%、余量的Al和不可避免的杂质。
具体实施方式
以下,通过参考附图,对本发明的实施方案进行详细的说明。以下的实施方案是为了向本发明的所属技术领域的技术人员充分地传递本发明的思想而提出的。本发明并不仅限于其中提出的实施方案,并且可以以其它形式具体化。附图中省略了与说明无关的部分的图示以清楚地说明本发明,并且可以稍微夸大示出构成要素的尺寸以助于理解。
在整个说明书中,当描述某部分:“包含”或“包括”某构成要素时,除非另有特别相反的记载,则表示可以进一步包括其它构成要素,而不排除其它构成要素。除非在文中另有特别说明,否则单数的表述包括复数的表述。
热压成型(HPF)是利用随着钢板的温度增加而软化的特性,在高温下加工成复杂的形状的方法,更具体地,是一种在将钢板加热至奥氏体区以上即可相变的状态后,在加工的同时进行快速冷却,将钢板的组织相变为马氏体,从而可以制造高强度的具有精密的形状的产品的方法。
当将高强度钢加热至高温时,在钢的表面上可能会发生腐蚀或脱碳等表面缺陷,为了防止这种问题,在其表面进行锌基或铝基镀覆,然后进行热压成型。此时,用作镀层的锌(Zn)或铝(Al)起到保护钢板免受外部环境的影响的作用,因此可以提高钢板的耐蚀性。
与镀锌钢板相比,镀铝钢板由于Al的高熔点和形成在镀层上部的致密且薄的Al氧化膜,具有在高温下也不在镀层上形成厚的氧化薄膜的优点。
然而,当将镀铝钢板进行热压成型时,在加热步骤中大气中的水分吸附在钢板的表面并离解成氢气,因此容易发生延迟断裂。在母材的表面上未引入金属涂层的钢板中,在母材的表面上氢可以扩散至大气中,但镀铝钢板中氢难以从母材逸出到外部,因此容易发生延迟断裂。
因此,本发明的发明人确认了在镀覆过程中引入吸附在基材金属的氢容易逸出到外部的镀层结构的同时,在制造过程中抑制氢的吸附来提高镀铝钢板的氢致延迟断裂特性,从而获得了本发明。
以下,通过参考附图,详细说明根据本发明的实施方案。
根据本发明的一个实施方案的热压成型用镀覆钢板包括基础钢板和形成在所述基础钢板的表面上的铝基镀层。
本发明的基础钢板是用于制造热压成型用镀覆钢板的基础钢板,只要是热压成型时发生马氏体相变的钢种,则可以应用。例如,以重量%计,基础钢板包含:C:0.1-0.4%、Mn:0.5-3.0%、Si:0.1-0.8%、B:0.01%以下(0除外)、Ti:0.1%以下(0除外)、余量的Fe和其它不可避免的杂质。
以下,对限制合金成分含量的数值的理由进行说明。以下,除非另有特别说明,否则单位为重量%。
C的含量为0.1-0.4%。
碳(C)是奥氏体相稳定化元素,为了提高氢致延迟断裂特性,可以添加0.1%以上的碳(C)。但是,当碳(C)的含量过多时,考虑到电阻率增加导致焊接性变差的问题,可以将碳(C)的含量的上限限制为0.4%。
Mn的含量为0.5-3.0%。
锰(Mn)是与碳一起使奥氏体组织稳定化的元素,为了在加工过程中抑制α'-马氏体组织的形成,可以添加0.5%以上的锰(Mn)。但是,当锰(Mn)的含量过多时,考虑到不仅成本增加,而且提高强度的效果饱和,可以将锰(Mn)的含量的上限限制为3.0%。
Si的含量为0.1-0.8%。
硅(Si)是用作脱氧剂的元素,为了通过固溶强化来提高钢的屈服强度和拉伸强度,可以添加0.1%以上的硅(Si)。但是,当硅(Si)的含量过多时,由于热轧时在表面上形成大量的硅氧化物,酸洗性降低,并且电阻率增加,存在焊接性变差的问题,因此可以将硅(Si)的含量的上限限制为0.8%。
B的含量为0.01%以下(0除外)。
硼(B)是使奥氏体中的铁素体相变延迟的有效的元素。但是,当硼(B)的含量过多时,存在热加工性降低的问题,因此本发明中期望将硼的含量限制为0.01%以下。
Ti的含量为0.1%以下(0除外)。
钛(Ti)是在钢中与氮反应形成氮化物,从而提高钢的成型性,并在钢中与碳反应形成碳化物,从而提高钢的强度的元素。但是,当钛(Ti)的含量过多时,形成过多的析出物,因此存在使钢的疲劳特性变差的问题,在本发明中,旨在将钛的含量限制为0.1%以下。
本发明的其余成分是铁(Fe)。但是,在通常的制造过程中,可能会从原料或周围环境不可避免地混入并不期望的杂质,因此无法排除该杂质。这些杂质对于常规的制造过程的技术人员而言是众所周知的,因此在本说明书中不特别描述其所有内容。
接着,为了将如上所述的基础钢板用作热压成型用钢板,优选在所述基础钢板上引入镀层。所述镀层可以是通常的铝基镀层,更具体可以是热浸铝镀层或热浸铝合金镀层。
由于铝镀层中存在的纯Al和Al-Fe基界面合金层的氢的扩散系数低,容易发生延迟断裂。
在本发明中,通过在铝镀层中引入Si来抑制Al-Fe合金相的形成,将Zn固溶在铝镀层中,从而使镀层中的氢容易扩散到外部大气环境中。
以重量%计,本发明的铝基镀层包含:Si:5.0-15.0%、Zn:10.0-30.0%、Fe:4.0-12.0%、余量的Al和不可避免的杂质。
以下,对限制镀层合金成分含量的数值的理由进行说明,所述镀层合金形成在本发明的实施方案中的基础钢板的表面上,并有助于提高钢板的耐蚀性和氢致延迟断裂特性。
Si的含量为5.0-15.0%。
硅(Si)是为了调节镀层中包含的Al和基础钢板中包含的Fe的合金化而添加的元素。当Si的含量低时,基材铁的Fe和镀浴的Al发生过度的反应,形成高脆性的Al-Fe相,并且包含过多的这种高脆性的相的镀层在毛坯(Blank)加工或镀覆钢板的处理过程中容易发生镀层的剥离。此外,当在纯Al中添加Si时,引发镀浴的熔点的降低,因此会降低镀浴的温度。因此,为了有效地抑制添加的锌的灰分(ash)的产生等缺陷,可以添加5.0%以上的Si。但是,当Si的含量超过共晶组成而过多时,镀浴温度急剧上升。由于只能保持高的镀浴温度,在操作过程中由于高温而导致镀浴槽中的沉没辊等发生结构劣化,并且操作性变差,因此可以将所述Si的上限限制为15.0%。
Zn的含量为10.0-30.0%。
锌(Zn)是具有牺牲防腐蚀性效果的元素,其提高镀层的基本的耐蚀性,并且是与铝镀层相比,促进镀层中的氢的扩散的元素。此外,锌在热成型中在表面上形成锌氧化物,与致密的铝氧化物相比,这种氧化物具有带有空的空间的多孔形态。在仅包含铝的钢板的情况下,在仅具有表面的致密且坚硬的铝氧化物的结构中,当锌氧化物在表面生成时,形成氢可以扩散至镀层外部的结构,从而起到有助于释放镀层中的氢的作用。为此,在镀层中可以含有15.0%以上的锌,优选可以含有18%以上,更优选可以含有22%以上。但是,当锌(Zn)的含量过多时,焊接时存在由于锌而发生液态金属致脆(Liquid MetalEmbrittlement,LME)的问题,在镀层中可以将锌(Zn)的含量的上限限制为35.0%,优选可以限制为30%,更优选可以限制为27%。
Fe的含量为4.0-12.0%。
铁(Fe)是形成Al-Fe基界面合金层的元素,镀层的Al和基材铁的Fe扩散并在基材金属的表面上均匀地形成Al-Fe基合金相而存在于镀层中。当没有这种合金层时,由于Fe的持续的扩散,界面层变厚,镀层的脆性可能会增加,因此优选包含4%以上的铁(Fe)。但是,当镀层中的Fe的含量过多时,在Fe-Al基金属间化合物中,存在形成除了FeAl2、FeAl3和Fe2Al5之外的合金相的问题,因此可以将铁(Fe)的上限限制为12.0%。
所述镀层的厚度优选为5-40μm,当所述镀层的平均厚度小于5μm时,不能充分确保镀覆钢板的耐蚀性,但当所述镀层的平均厚度超过40μm时,在确保耐蚀性的方面有利,但存在镀覆量过度增加且钢板制造成本上升的问题。
根据情况,本发明的热压成型用镀覆钢板还可以包括基础钢板和形成在铝基镀层的界面上的Al-Fe基界面合金层,在这种情况下,以重量%计,Al-Fe基界面合金层可以包含:Al:30.0-60.0%和Si:5.0-20.0%。合金层中含有的Fe和Mn可以源自热浸镀时的镀浴成分,但可以从基础钢板扩散。
此外,所述镀层可以包含硅的浓度为60%以上、锌的浓度小于20%且长轴的长度为1μm以上的硅晶体。
所述硅晶体可以在镀层中呈现多边形的形状等,在多边形中,长轴是指多边形中的顶点之间的距离最长的长度。
此外,所述镀层的长轴的长度的上限优选为镀层的厚度的4/5以下。这是因为,当硅晶体的长度与镀层的厚度相似时,可能会引起表面不良或镀层剥离。
接着,对根据本发明的另一个方面的制造热压成型用镀覆钢板的方法进行说明。
根据本发明的一个实施方案的制造热压成型用镀覆钢板的方法包括以下步骤:准备基础钢板,并将基础钢板浸入镀液中以制造镀覆钢板,以重量%计,所述镀液包含:Si:5.0-15.0%、Zn:10.0-30.0%、余量的Al和不可避免的杂质;将所述镀覆钢板加热至超过800℃且低于1100℃;将所述镀覆钢板进行热压成型;以及将所述热压成型的镀覆钢板进行冷却。
对限制合金元素的含量的数值的理由的说明如上所述。
将准备的所述基础钢板浸入铝硅镀浴和锌合金镀浴中,从而在所述基础钢板的至少一面上形成镀层。
之后,浸入镀浴的基础钢板经过沉没辊并从锌镀浴中出来。此时,控制从气刀涂布中喷射的气体的流量和流速,从而可以调节基础钢板的表面的镀层的附着量。此时,可以将附着在基础钢板的表面的镀层的附着量控制在40-120g/m2
此外,在制造所述镀覆钢板的步骤中,为了使硅晶体生长,可以包括以10-35℃/秒的冷却速度从600℃冷却至450℃的工艺。仅通过从气刀喷射的气体难以充分诱导镀层的过冷。因此,可以通过所述冷却的工艺诱导镀层的过冷,并且可以实现最初析出的硅晶体的生长。
以下,对热压成型用镀覆钢板的制造方法中的加热、热压成型、冷却时的热处理条件进行详细的说明。
在热压成型过程中,加热条件是使钢板的氢扩散到外部的主要因素。在本发明中,作为用于减少氢致延迟断裂的方法,在热压成型过程中,通过优化加热条件来将钢板中吸附的氢释放到外部。
当热处理时的温度范围过低时,奥氏体相变不充分,因此不能确保强度,存在氢无法充分扩散到外部的问题,因此在本发明中将加热温度控制在超过800℃。与此相比,当热处理时的温度范围过高时,存在钢板的氢的固溶度也增加的问题,因此将加热温度控制在低于1100℃。加热温度可以优选控制在850-1000℃,可以更优选控制在870-970℃。
另外,当加热时间长时,晶体尺寸持续生长,因此存在容易受到氢延迟断裂的影响的问题。此外,当水分吸附在表面而形成氧化物的同时氧以氧化物的形式残留,但离解的氢残留在钢板中,因此容易发生延迟断裂。考虑到上述内容,在本发明中,将加热时间控制在超过2分钟且小于15分钟。加热时间优选可以控制在2-12分钟,更优选可以控制在3-10分钟。
另外,在热压工艺中,为了提高生产性,需要减少材料的加热时间。为此,使用电加热或高频感应加热等。
但是,急速加热方法均引入了当电流流过钢板时由于钢板的电阻而温度上升的原理,由于流过钢板的电流,再次产生磁场,因此母材表面的熔融的金属发生移动。
即使在使用IR等而不是电流来快速加热时,考虑到从表面加热的IR的原理,镀层的表面先被熔融,并且镀层向下流动,最终表面变得不均匀。
在本发明中,作为减少氢致延迟断裂的方法,在加热镀覆钢板时,将升温条件优化为2-15℃/秒的速度,从而将钢板中的氢释放到外部。
最后,进行热压成型,并经过冷却的过程。
此时,可以在700-350℃的温度区间中以15℃/秒以上的速度进行冷却,以在镀覆钢板中确保60%以上的马氏体组织。
如上所述,当控制镀层合金成分和热压成型时的加热条件时,可以提高镀铝钢板的氢致延迟断裂特性。
以下,通过实施例对本发明进行更详细的说明。
将冷轧钢板分别加入到具有下表1的组成的镀浴中,以重量%计,所述冷轧钢板包含:C:0.2%、Mn:2.0%、Si:0.5%、B:0.005%、Ti:0.05%,镀浴温度保持在比熔点高40℃的温度并进行镀覆。浸入镀浴的试片连续地通过气刀去除多余的镀层以调节镀覆量。
对于镀覆量和镀层的成分,用NaOH溶液去除镀层的表面氧化物,并用盐酸溶解镀层,通过电感耦合等离子体质谱计(Inductively Coupled Plasma Spectrometer,ICP)分析进行测量,并记载于表1中。
另外,镀层中包含的Si晶体可以通过扫描电子显微镜(SEM)在3000的倍率下通过能量色散X射线光谱法(EDS)进行分析。
接着,将镀覆的试片加工成200mm*120mm的试片以进行热压成型,将该试片装入气氛温度设定为900℃的箱式加热炉中,并加热5分钟。此时,箱式加热炉的气氛是大气气氛,并且通过测量热电偶并调节电量来均匀地保持气氛温度。对于加热的试片,利用冷却水流动的模具来进行快速冷却,从而完成马氏体相变。
之后,评价延迟断裂特性。具体地,将快速冷却的测试试片加工成180mm的长度和30mm的宽度,并进行弯曲(bending),以施加屈服强度为80%左右的位移,并浸入0.2N盐酸溶液120小时,然后目视观察试片是否产生裂纹,并记载于下表1中。在表1中,当产生裂纹时,记载为“O”,当未产生裂纹时,记载为“X”。
当产生裂纹时,在屈服强度以内的条件下,产生裂纹,因此产生延迟断裂。
[表1]
参考表1,在相同的热处理条件下,随着镀层的组成变化,得到不同的延迟断裂特性。图1是用扫描电子显微镜观察实施例1的镀层截面的照片。具体地,参考表1和图1,在镀层的组成满足本发明提出的合金组成而不产生裂纹的发明钢1至发明钢4的情况下,在镀层中,锌在铝中以固溶的形式存在,硅形成一部分晶体并在镀层中以1μm以上的长轴的长度析出。
判断这是因为,由于在镀层中存在各种晶体,可以在表面和基材金属之间确保各种晶界,这种晶界在加热过程中提供氢可以扩散的通道,从而提高氢引起的延迟断裂特性。此外,固溶有锌的铝使铝晶格扭曲,有助于原子尺寸小的氢在晶格之间移动,并且带来氢扩散到表面并释放的效果。
比较例1是不包含Zn的情况,此时不能在铝镀层中固溶Zn,比较例2至比较例4是Si含量未达到5.0%的情况,此时不能抑制Al-Fe合金相的形成,因此延迟断裂实验时产生裂纹。
接着,对于22MnB5冷轧钢板,进行镀覆以具有下表1的组成,在热压成型的过程中,通过在下表2的条件下进行加热来评价表面材质和延迟断裂特性。
在下表2中,在常规的热压工艺后,当小于拉伸强度的85%时,判定为不合格,合格标记为O,不合格标记为X。
[表2]
为了确认工艺条件,实验中使用的镀层使用主要成分为铝和硅的镀覆钢板和添加有铝、锌和硅的镀覆钢板。加热温度是指炉的气氛温度,加热时间是指将预定的加热温度的炉中放入常温的镀覆钢板的试片后经过的时间。参考表2,当两种镀覆钢板的加热炉气氛温度均低且加热时间均短时,获得了良好的耐延迟断裂性。这是因为,与钢中的氢的影响相比,材质没有达到目标的值,因此材料无法确保充分的拉伸强度。
在镀层中引入硅和锌且在热压成型过程中满足加热条件的实施例的情况下,将钢板中的氢释放到外部,因此不仅可以确保强度,而且可以确保延迟断裂特性。
与此相比,比较例7至比较例9的加热温度低于850℃,比较例10的加热时间为2分钟而未被充分加热,快速冷却时的拉伸强度低,因此不发生延迟断裂。
另外,比较例11是加热时间长的情况,晶体尺寸持续生长,因此发生延迟断裂。
接着,对于22MnB5冷轧钢板相同地进行镀覆以具有下表3的组成,作为热压成型条件的加热,将热电偶附着在200*100mm的试验片上,并使用IR加热器进行加热。此时,接收热电偶的温度并调节IR加热器的功率,并在下表3的条件下调节升温速度。
具体地,测量通过热电偶获得的钢板的温度,当钢板温度达到900℃时,停止升温并保持900℃,以开始试片的升温的时间点为基准测量加热时间。在下表3中,钢板的平均升温速度以达到900℃所需的时间为基准表示。
接着,在为了成型而水冷的模具之间进行挤压来进行快速冷却,并评价表面材质、镀覆表面质量和延迟断裂特性。
[表3]
参考表3,在升温速度为3-10℃/秒的实施例2至实施例4的情况下,通过将钢板中的氢释放到外部,不仅可以确保强度,还可以确保延迟断裂特性。与此相比,在升温速度低至2℃/秒的比较例12的情况下,延迟断裂实验时不产生裂纹,但即使加热5分钟也没有达到钢板的奥氏体相变温度,因此无法确保材料的拉伸强度。
此外,在升温速度为15℃/秒的比较例13的情况下,发生熔融的镀层从表面流下的现象,因此发生镀层的表面阶梯差和颜色不均匀。
根据公开的实施例,在镀层的合金成分和热压成型的情况下,可以通过优化加热条件来提高镀铝钢板的氢致延迟断裂特性。
如上所述,对本发明的示例性的实施例进行说明,但本发明并不限于此,本领域技术人员可以理解在不脱离权利要求书的概念和范围的范围内进行各种改变和变型。
工业实用性
根据本发明的一个实例,可以提供一种具有提高的氢致延迟断裂特性的热压成型用镀覆钢板及其制造方法。

Claims (10)

1.一种热压成型用镀覆钢板,包括:
基础钢板;以及
镀层,其形成在所述基础钢板的表面上,以重量%计,所述镀层包含:Si:5.0-15.0%、Zn:10.0-30.0%、Fe:4.0-12.0%、余量的Al和不可避免的杂质。
2.根据权利要求1所述的热压成型用镀覆钢板,其中,以重量%计,所述基础钢板包含:C:0.1-0.4%、Mn:0.5-3.0%、Si:0.1-0.8%、B:0.01%以下且0除外、Ti:0.1%以下且0除外、余量的Fe和其它不可避免的杂质。
3.根据权利要求1所述的热压成型用镀覆钢板,其中,附着在所述基础钢板的表面的镀层的附着量为40-120g/m2
4.根据权利要求1所述的热压成型用镀覆钢板,其中,所述镀层的厚度为5-40μm。
5.根据权利要求1所述的热压成型用镀覆钢板,其中,所述镀覆钢板设置有Al-Fe基界面合金层,所述Al-Fe基界面合金层形成在所述基础钢板和所述镀层之间,以重量%计,所述Al-Fe基界面合金层包含:Al:30.0-60.0%和Si:5.0-20.0%。
6.根据权利要求1所述的热压成型用镀覆钢板,其中,所述镀层包含硅的浓度为60%以上、锌的浓度小于20%且长轴的长度为1μm以上的硅晶体。
7.一种制造热压成型用镀覆钢板的方法,包括以下步骤:
准备基础钢板,并将基础钢板浸入镀液中以制造镀覆钢板,以重量%计,所述镀液包含:Si:5.0-15.0%、Zn:10.0-30.0%、余量的Al和不可避免的杂质;
将所述镀覆钢板加热至超过800℃且低于1100℃;
将所述镀覆钢板进行热压成型;以及
将热压成型的所述镀覆钢板进行冷却。
8.根据权利要求7所述的制造热压成型用镀覆钢板的方法,其中,镀覆钢板的加热进行超过2分钟且小于15分钟。
9.根据权利要求7所述的制造热压成型用镀覆钢板的方法,其中,镀覆钢板的加热以2-15℃/秒的速度进行。
10.根据权利要求7所述的制造热压成型用镀覆钢板的方法,其中,在将热压成型的镀覆钢板进行冷却的步骤中,在700-350℃的温度区间中以15℃/秒以上的速度进行冷却。
CN202180091161.4A 2020-12-18 2021-12-17 热压成型用镀覆钢板及其制造方法 Pending CN117136252A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2020-0178907 2020-12-18
KR20200178907 2020-12-18
PCT/KR2021/019275 WO2022131848A1 (ko) 2020-12-18 2021-12-17 열간 프레스 성형용 도금강판 및 그 제조 방법

Publications (1)

Publication Number Publication Date
CN117136252A true CN117136252A (zh) 2023-11-28

Family

ID=82059443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180091161.4A Pending CN117136252A (zh) 2020-12-18 2021-12-17 热压成型用镀覆钢板及其制造方法

Country Status (7)

Country Link
US (1) US20240051005A1 (zh)
EP (1) EP4265815A1 (zh)
JP (1) JP2024500439A (zh)
KR (1) KR20230024333A (zh)
CN (1) CN117136252A (zh)
MX (1) MX2023007285A (zh)
WO (1) WO2022131848A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980262A4 (en) * 2013-04-18 2016-11-23 Nippon Steel & Sumitomo Metal Corp PLATED STEEL PLATE FOR HOT PRESSING, METHOD FOR HOT PRESSING A PLATED STEEL PLATE AND AUTOMOTIVE PARTS
WO2017017483A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
KR101858868B1 (ko) * 2016-12-23 2018-05-16 주식회사 포스코 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
KR102153164B1 (ko) * 2017-12-26 2020-09-07 주식회사 포스코 열간 프레스 성형용 도금강판 및 이를 이용한 성형부재
CN113166908B (zh) * 2018-11-30 2023-07-11 日本制铁株式会社 镀铝钢板、热冲压部件及热冲压部件的制造方法
KR20210078277A (ko) * 2019-12-18 2021-06-28 주식회사 포스코 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법

Also Published As

Publication number Publication date
KR20230024333A (ko) 2023-02-20
JP2024500439A (ja) 2024-01-09
US20240051005A1 (en) 2024-02-15
WO2022131848A1 (ko) 2022-06-23
MX2023007285A (es) 2023-09-11
EP4265815A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
JP6836600B2 (ja) ホットスタンプ部材
TWI453300B (zh) 熱壓用鋼板以及使用該熱壓用鋼板的熱壓部材的製造方法
JP5463906B2 (ja) ホットスタンプ用鋼板及びその製造方法
JP4589880B2 (ja) 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
JP2004323970A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6398967B2 (ja) 表面外観及びめっき密着性に優れた高強度溶融めっき熱延鋼板およびその製造方法
JP6187028B2 (ja) 生産性とプレス成形性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
CN108430662B (zh) 耐蚀性优异的热压成型品及其制造方法
JP6052145B2 (ja) 焼付け硬化型溶融亜鉛めっき鋼板
JP2013534566A (ja) オーステナイト鋼の製造方法
WO2002022893A1 (fr) Tole d'acier plaquee trempee a chaud presentant une resistance elevee a la traction et son procede de fabrication
WO2021100842A1 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
WO2021039973A1 (ja) ホットスタンプ成形体
JP7241283B2 (ja) 耐食性及び溶接性に優れた熱間プレス用アルミニウム-鉄系めっき鋼板及びその製造方法
CN114945698B (zh) 镀覆钢材
JP7332967B2 (ja) ホットスタンプ部品
KR101736640B1 (ko) 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
CN117136252A (zh) 热压成型用镀覆钢板及其制造方法
JP6436268B1 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP6870338B2 (ja) 燐酸塩化成処理性に優れたZn−Alめっき鋼板およびその製造方法
CN113840937B (zh) 热冲压成型体及其制造方法
CN114599810B (zh) 热冲压用钢板及热冲压成形体
WO2024122118A1 (ja) めっき鋼板
JP5092858B2 (ja) 溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination