WO2022131128A1 - 中空樹脂粒子、その製造方法、およびその用途 - Google Patents

中空樹脂粒子、その製造方法、およびその用途 Download PDF

Info

Publication number
WO2022131128A1
WO2022131128A1 PCT/JP2021/045348 JP2021045348W WO2022131128A1 WO 2022131128 A1 WO2022131128 A1 WO 2022131128A1 JP 2021045348 W JP2021045348 W JP 2021045348W WO 2022131128 A1 WO2022131128 A1 WO 2022131128A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
resin particles
hollow resin
particles
weight
Prior art date
Application number
PCT/JP2021/045348
Other languages
English (en)
French (fr)
Inventor
春彦 松浦
晋弥 松野
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2022569927A priority Critical patent/JPWO2022131128A1/ja
Priority to KR1020237019185A priority patent/KR20230104261A/ko
Priority to US18/267,299 priority patent/US20240059847A1/en
Priority to CN202180084267.1A priority patent/CN116635433A/zh
Priority to EP21906491.2A priority patent/EP4265648A1/en
Publication of WO2022131128A1 publication Critical patent/WO2022131128A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09D171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09D171/12Polyphenylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides

Definitions

  • the present invention relates to hollow resin particles, a method for producing the same, and an application thereof.
  • resin particles are used for various purposes such as imparting light scattering to transparent resin, matting paints and inks, imparting scratch resistance, imparting slipperiness of cosmetics, and preventing film blocking. There is.
  • Control of the particle shape of resin particles is being studied for the purpose of imparting various performances.
  • hollow resin particles having a hollow portion introduced inside the particles have been studied.
  • Patent Document 1 shows that hollow resin particles are suitable for the purpose of imparting concealing properties to coating agents such as paints and paper coating compositions.
  • hollow resin particles are lightweight because the inside of the particles is hollow, and because light is diffusely reflected in the hollow portion, they are excellent in optical properties such as hiding power, whiteness, and gloss, and have a heat insulating effect. It has also been shown to have.
  • Patent Document 1 specifically describes that styrene-based hollow resin particles can be obtained by suspension polymerization of divinylbenzene together with saturated hydrocarbons having 8 to 18 carbon atoms.
  • Patent Document 2 shows that hollow resin particles are used in many fields such as thermal recording materials such as thermal recording paper and thermal transfer receiving paper, pesticides, pharmaceuticals, fragrances, liquid crystals, and adhesives. ..
  • a monomer mainly composed of an acrylic polyfunctional monomer such as trimethylolpropane tri (meth) acrylate and dipentaerythritol hexaacrylate is suspended and polymerized together with a hydrophobic solvent to obtain an acrylic type. It is described that the hollow resin particles of the above can be obtained.
  • the shell is composed of a radically reactive monofunctional monomer and a crosslinkable monomer, and hollow particles having a single-phase structure are suitable for lowering the dielectric and low dielectric loss tangent of the insulating layer of the multilayer printed circuit board. It is shown that.
  • Patent Document 3 states that styrene-based hollow resin particles can be obtained by suspend-polymerizing divinylbenzene together with saturated hydrocarbons having 8 to 18 carbon atoms (more specifically, hexadecane) as hollow resin particles. Is described.
  • Patent Document 4 shows that the spherical porous resin powder (porous particles) has the effect of preventing makeup from coming off due to sebum and sweat secreted from the skin and maintaining a refreshing feeling.
  • Patent Document 4 describes acrylic porous particles made of methyl methacrylate or trimethylolpropane tri (meth) acrylate as the porous particles.
  • Patent Document 5 since the porous resin particles are lightweight and have excellent dispersibility, they are cosmetics, light diffusing agents, matting agents, diagnostic agents, pore-imparting agents, adsorbents, lightweight agents, and heat insulating materials. It has been shown to be used in heat insulating paints, white pigments, inkjet acceptors, sustained release agents, etc. Patent Document 5 specifically describes acrylic porous particles made of methyl methacrylate or the like.
  • Patent Document 6 shows that the porous hollow polymer particles (hollow porous particles) are excellent in sustained release of fragrance, light diffusivity, liquid absorption, bodily sensation, solvent resistance, and mechanical strength. ing.
  • a monomer mainly composed of an acrylic monomer such as methyl methacrylate and trimethylolpropane tri (meth) acrylate is suspended and polymerized together with a hydrophobic solvent to obtain an acrylic monomer. It is described that hollow porous particles of the above can be obtained.
  • Patent Document 7 shows that porous hollow polymer particles (hollow porous particles) have excellent mechanical strength and can be effectively used as a pore-forming agent. Specifically, Patent Document 7 describes acrylic by suspend-polymerizing a monomer containing an acrylic monomer such as methyl methacrylate and trimethylolpropane tri (meth) acrylate as a main component together with a hydrophobic solvent. It is described that hollow porous particles of the system can be obtained.
  • Patent Document 8 discloses engineering plastic particles as particles having higher heat resistance and solvent resistance than particles made of a vinyl-based polymer (general-purpose polymer) made from acrylic, styrene, or the like. Patent Document 8 specifically describes particles made of polyamide, polyphenylene ether, polyetherimide, polyarylate, polyamideimide, and epoxy resin.
  • the hollow particles, porous particles, and hollow porous particles described in Patent Documents 1 to 7 are made of a vinyl-based polymer (general-purpose polymer) made from acrylic, styrene, or the like, and cannot be said to have sufficient heat resistance.
  • Patent Document 8 Although the particles described in Patent Document 8 have excellent heat resistance, no approach has been taken regarding particle structure control such as porous, hollow, and hollow porous.
  • JP-A-2002-08503 Japanese Patent No. 65132373 Japanese Patent No. 4171489 Japanese Unexamined Patent Application Publication No. 2003-081738 Japanese Unexamined Patent Publication No. 2014-111728 Japanese Unexamined Patent Publication No. 2009-120806 Japanese Patent No. 4445495 Japanese Patent No. 5387996
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide hollow resin particles having a hollow portion in the particles and capable of exhibiting excellent heat resistance. To do. Another object of the present invention is to provide a method for easily producing such hollow resin particles. Further, it is to provide the use of such hollow resin particles.
  • the hollow resin particles according to the embodiment of the present invention are Hollow resin particles having a hollow portion inside the particles. It has an ether structure represented by the formula (1) and has an ether structure. The average particle size is 0.1 ⁇ m to 100 ⁇ m.
  • the hollow portion comprises one hollow region.
  • the hollow portion is composed of a plurality of hollow regions.
  • the hollow portion has a porous structure.
  • the hollow resin particles according to the embodiment of the present invention have a shell portion and the hollow portion surrounded by the shell portion.
  • the 5% thermogravimetric reduction temperature when the hollow resin particles are heated at 10 ° C./min under a nitrogen atmosphere is 300 ° C. or higher.
  • the hollow resin particles according to the embodiment of the present invention are used in the resin composition for semiconductor members.
  • the hollow resin particles according to the embodiment of the present invention are used in the coating composition.
  • the hollow resin particles according to the embodiment of the present invention are used in the heat insulating resin composition.
  • the hollow resin particles according to the embodiment of the present invention are used in the light diffusing resin composition.
  • the hollow resin particles according to the embodiment of the present invention are used for the light diffusion film.
  • the resin composition for a semiconductor member according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the coating composition according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the heat insulating resin composition according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the light diffusible resin composition according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the light diffusion film according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the manufacturing method according to the embodiment of the present invention A method for producing hollow resin particles according to an embodiment of the present invention. 20 parts by weight to 100 parts by weight of the compound (A) having an ether structure represented by the formula (1) and a monomer (B) that reacts with the compound (A) by 80 parts by weight to 0 parts by weight (compound (A) and monomer) The total amount of (B) is 100 parts by weight) is reacted in an aqueous medium in the presence of a non-reactive solvent.
  • hollow resin particles having a hollow portion in the particles and capable of exhibiting excellent heat resistance. Further, it is possible to provide a method for easily producing such hollow resin particles. Further, it is possible to provide the use of such hollow resin particles.
  • FIG. It is a schematic sectional drawing explaining the structure of a hollow part. It is sectional drawing of the hollow resin particle (1) obtained in Example 1.
  • FIG. It is sectional drawing of the hollow resin particle (2) obtained in Example 2.
  • FIG. It is sectional drawing of the hollow resin particle (3) obtained in Example 3.
  • FIG. It is sectional drawing of the hollow resin particle (4) obtained in Example 4.
  • FIG. It is sectional drawing of the hollow resin particle (5) obtained in Example 5.
  • FIG. It is sectional drawing of the hollow resin particle (6) obtained in Example 6.
  • FIG. It is sectional drawing of the hollow resin particle (7) obtained in Example 7.
  • FIG. It is sectional drawing of the hollow resin particle (8) obtained in Example 8.
  • FIG. It is sectional drawing of the hollow resin particle (9) obtained in Example 9.
  • FIG. It is sectional drawing of the hollow resin particle (10) obtained in Example 10.
  • FIG. It is a TEM photograph figure of the hollow resin particle (11) obtained in Example 11.
  • FIG. It is a TEM photograph figure of the hollow resin particle (12) obtained in Example 12.
  • FIG. It is sectional drawing of the resin particle (13) having a porous structure obtained in Example 13.
  • FIG. It is sectional drawing of the hollow resin particle (16) obtained in Example 16.
  • FIG. It is sectional drawing of the hollow resin particle (17) obtained in Example 17.
  • FIG. It is sectional drawing of the particle (C1) obtained in the comparative example 1.
  • FIG. It is an ultraviolet-visible-near-infrared spectroscopic reflection spectrum diagram of the hollow resin particle (1) obtained in Example 1.
  • FIG. It is an ultraviolet-visible-near-infrared spectroscopic reflection spectrum diagram of the hollow resin particle (1) obtained in Example 1.
  • FIG. It is an ultraviolet-visible-near-infrared
  • the hollow resin particles according to the embodiment of the present invention are hollow resin particles having a hollow portion in the particles.
  • the term "hollow” as used herein means a state in which the inside is filled with a substance other than a resin, for example, a gas or a liquid, and is preferably filled with a gas in that the effects of the present invention can be further exhibited. It means the state of being.
  • the hollow resin particles according to the embodiment of the present invention have a hollow portion inside the particle, even if the hollow portion inside the particle has a structure in which the hollow portion inside the particle is open to the outside of the particle on a part of the particle surface.
  • it may have a structure having a shell portion and a hollow portion surrounded by the shell portion.
  • the hollow portion may consist of one hollow region as shown in the schematic cross-sectional view of FIG. 1 (a), or may be composed of a plurality of hollow regions as shown in the schematic cross-sectional view of FIG. 1 (b). It may consist of.
  • the hollow portion may have a porous structure as shown in the schematic cross-sectional views of FIGS. 1 (c) and 1 (d).
  • the hollow portion may be composed of one hollow region (continuous hole) or a plurality of hollow regions (independent pores).
  • the hollow portion When the hollow portion has a porous structure, as shown in FIG. 1 (c), it may have a structure in which the hollow portion inside the particle is open to the outside of the particle in a part of the particle surface. , As shown in FIG. 1D, it may have a structure having a shell portion and a hollow portion surrounded by the shell portion.
  • the average particle size of the hollow resin particles according to the embodiment of the present invention is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.1 ⁇ m to 80 ⁇ m, still more preferably 0.2 ⁇ m to 50 ⁇ m, and particularly preferably 0.2 ⁇ m to 50 ⁇ m. It is 0.3 ⁇ m to 20 ⁇ m. If the average particle size of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the average particle diameter of the hollow resin particles according to the embodiment of the present invention is out of the above range and is too small, the thickness of the resin layer constituting the hollow portion becomes relatively thin, so that the hollow resin particles have sufficient strength. There is a risk that it will not be.
  • the average particle size of the hollow resin particles according to the embodiment of the present invention is too large outside the above range, phase separation between the polymer and the solvent generated by the polymerization of the monomer components during suspension polymerization may be difficult to occur. This may make it difficult to form hollow portions.
  • the hollow resin particles according to the embodiment of the present invention have a 5% thermogravimetric reduction temperature of preferably 300 ° C. or higher, more preferably 320 ° C. or higher when the temperature is raised at 10 ° C./min under a nitrogen atmosphere. It is more preferably 340 ° C. or higher, and particularly preferably 360 ° C. or higher.
  • the upper limit of the 5% thermogravimetric reduction temperature is practically preferably 500 ° C. or lower. If the 5% thermogravimetric reduction temperature of the hollow resin particles according to the embodiment of the present invention when the temperature is raised at 10 ° C./min under a nitrogen atmosphere is within the above range, the hollow resin particles according to the embodiment of the present invention are excellent. Can develop heat resistance. If the 5% thermogravimetric reduction temperature of the hollow resin particles according to the embodiment of the present invention when the temperature is raised at 10 ° C./min under a nitrogen atmosphere is too small outside the above range, the heat resistance may be insufficient. There is.
  • the hollow resin particles according to the embodiment of the present invention have a water content of preferably 0.50% by weight or less after the hollow resin particles are allowed to stand at 40 ° C. and 95% RH for 96 hours. It is more preferably 0.45% by weight or less, further preferably 0.40% by weight or less, and particularly preferably 0.35% by weight or less. The lower the water content, the better, preferably 0% by weight or more. If the water content of the hollow resin particles after being allowed to stand in an atmosphere of 40 ° C. and 95% RH for 96 hours is within the above range, the effect of the present invention can be more exhibited. If the water content of the hollow resin particles is too large outside the above range after being allowed to stand at 40 ° C. and 95% RH for 96 hours, the water absorption rate of the hollow resin particles may increase.
  • the hollow resin particles according to the embodiment of the present invention have an ether structure represented by the formula (1).
  • the resin portion of the hollow resin particles according to the embodiment of the present invention has an ether structure represented by the formula (1).
  • the hollow resin particles according to the embodiment of the present invention preferably contain a polymer (P) having an ether structure represented by the formula (1).
  • a polymer (P) having an ether structure represented by the formula (1) When the hollow resin particles according to the embodiment of the present invention contain such a polymer (P), the effect of the present invention can be further exhibited.
  • the polymer (P) may be only one kind or two or more kinds.
  • the content ratio of the polymer (P) in the hollow resin particles according to the embodiment of the present invention is preferably 60% by weight to 100% by weight, more preferably 70% by weight, in that the effect of the present invention can be more exhibited. It is ⁇ 100% by weight, more preferably 80% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight.
  • the hollow resin particles according to the embodiment of the present invention may contain any suitable other components as long as the effects of the present invention are not impaired.
  • any suitable polymer can be adopted as long as it has an ether structure represented by the formula (1), as long as the effect of the present invention is not impaired.
  • Such a polymer (P) preferably reacts with the compound (A) having an ether structure represented by the formula (1) and the compound (A) in that the effects of the present invention can be more exhibited. Examples include the polymer obtained by the reaction of the monomer (B).
  • the compound (A) having an ether structure represented by the formula (1) may be only one kind or two or more kinds.
  • the monomer (B) that reacts with the compound having an ether structure represented by the formula (1) may be only one kind or two or more kinds.
  • the ratio of the compound (A) to the monomer (B) is preferably a parts by weight (compound (A): monomer (B)) when the total amount of the compound (A) and the monomer (B) is 100 parts by weight. Is (20 parts by weight to 100 parts by weight): (80 parts by weight to 0 parts by weight).
  • One embodiment of the above preferred ratio is more preferably (50 parts by weight to 90 parts by weight) :( 50 parts by weight to 10 parts by weight), and still more preferably (55 parts by weight to 80 parts by weight) :( 45 parts by weight to 20 parts by weight), and particularly preferably (60 parts by weight to 70 parts by weight) :( 40 parts by weight to 30 parts by weight).
  • Another embodiment of the above preferred ratio is more preferably (20 parts by weight to 80 parts by weight) :( 80 parts by weight to 20 parts by weight), and still more preferably (30 parts by weight to 70 parts by weight). : (70 parts by weight to 30 parts by weight), particularly preferably (40 parts by weight to 60 parts by weight) :( 60 parts by weight to 40 parts by weight).
  • any suitable compound can be adopted as long as it has an ether structure represented by the formula (1), as long as the effect of the present invention is not impaired.
  • Preferred examples of such compound (A) include polyphenylene ether in that the effects of the present invention can be further exhibited.
  • Commercially available products of polyphenylene ether include, for example, the product name "Noril” (manufactured by SABIC Co., Ltd.), the product name "Yupiace” (manufactured by Mitsubishi Chemical Corporation), the product name "Zylon” (manufactured by Asahi Kasei Co., Ltd.), and the product name "OPE-2St” (manufactured by Mitsubishi Gas Chemical Corporation) can be mentioned.
  • the polyphenylene ether is preferably an oligomer and has a number average molecular weight (Mn) of 500 because of its compatibility with a non-reactive solvent described later and the fact that hollow resin particles having excellent heat resistance can be more easily produced. It is preferably ⁇ 3500.
  • Examples of the monomer (B) include a crosslinkable monomer and a monofunctional monomer.
  • a monomer that reacts with the terminal group of compound (A) is preferable in that the effects of the present invention can be further exhibited.
  • crosslinkable monomer examples include polyfunctional (meth) acrylic acid esters such as ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and glycerin tri (meth) acrylate; N, N'-methylenebis (meth).
  • Polyfunctional acrylamide derivatives such as acrylamide, N, N'-ethylenebis (meth) acrylamide;
  • Polyfunctional allyl derivatives such as diallylamine and tetraallyloxyetane;
  • Aromatic crosslinkable monomers such as divinylbenzene, divinylnaphthalene and diallylphthalate; Can be mentioned.
  • an aromatic crosslinkable monomer is preferable, and divinylbenzene is more preferable, in that the effect of the present invention can be more exhibited.
  • the crosslinkable monomer may be only one kind or two or more kinds.
  • Examples of the monofunctional monomer include alkyl (meth) acrylic acid esters having 1 to 16 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate; styrene, ⁇ .
  • -Aromatic monofunctional monomers such as methylstyrene, ethylvinylbenzene, vinyltoluene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, vinylbiphenyl, vinylnaphthalene; dimethylmaleate, diethylfumarate, dimethylfuma Examples thereof include dicarboxylic acid ester-based monomers such as rate and diethyl fumarate; maleic anhydride; N-vinylcarbazole; and (meth) acrylonitrile;
  • the monofunctional monomer an aromatic monofunctional monomer is preferable, and styrene and ethylvinylbenzene are more preferable, in that the effect of the present invention can be more exhibited.
  • the monofunctional monomer may be only one kind or two or more kinds.
  • the polymer (P) can be typically formed by the reaction of the compound (A) and the monomer (B).
  • the reaction between the compound (A) and the monomer (B) can be carried out by any appropriate reaction as long as the effects of the present invention are not impaired.
  • a reaction is preferably a suspension polymerization reaction.
  • an oil phase is added to an aqueous phase and suspended to carry out the polymerization reaction.
  • the aqueous phase and the oil phase may contain any suitable solvent as long as the effects of the present invention are not impaired.
  • a solvent include an aqueous medium and a non-reactive solvent as described later.
  • the solvent may be only one kind or two or more kinds.
  • any suitable additive (C) that does not fall under any of the compound (A) and the monomer (B) as long as the effect of the present invention is not impaired.
  • the additive (C) may be only one kind or two or more kinds.
  • the additive referred to here does not include a solvent such as an aqueous medium or a non-reactive solvent as described later.
  • the content ratio of the additive (C) is preferably 0% by weight to 40% by weight, more preferably 0% by weight to 30% by weight, based on the total amount of the compound (A) and the monomer (B). Yes, more preferably 0% by weight to 20% by weight, and particularly preferably 0% by weight to 10% by weight.
  • any appropriate additive can be adopted as long as the effect of the present invention is not impaired.
  • examples of such an additive (C) include a non-crosslinking polymer, a dispersion stabilizer, a surfactant, and a polymerization initiator.
  • the phase separation between the polymer (P) produced as the reaction proceeds and the solvent can be promoted, and shell formation can be promoted.
  • non-crosslinkable polymer examples include at least one selected from the group consisting of polyolefins, styrene-based polymers, (meth) acrylic acid-based polymers, and styrene- (meth) acrylic acid-based polymers.
  • polystyrene resin examples include polyethylene, polypropylene, poly ⁇ -olefin and the like. From the viewpoint of solubility in the monomer composition, it is preferable to use a side chain crystalline polyolefin using a long-chain ⁇ -olefin as a raw material, a low molecular weight polyolefin produced by a metallocene catalyst, or an olefin oligomer.
  • styrene polymer examples include polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer and the like.
  • Examples of the (meth) acrylic acid-based polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, and polypropyl (meth) acrylate.
  • styrene- (meth) acrylic acid-based polymer examples include a styrene-methyl (meth) acrylate copolymer, a styrene-ethyl (meth) acrylate copolymer, a styrene-butyl (meth) acrylate copolymer, and a styrene-propyl. Examples thereof include (meth) acrylate copolymers.
  • the relative permittivity of the hollow resin particles according to the embodiment of the present invention is preferably 1.0 to 2.5, more preferably 1.0 to 2.4, and further preferably 1.0 to 2.3. Is. If the relative permittivity of the hollow resin particles according to the embodiment of the present invention is within the above range, the effect of the present invention can be more exhibited. When the relative permittivity of the hollow resin particles according to the embodiment of the present invention exceeds 2.5, even if the hollow resin particles are mixed with the thermosetting resin, for example, a sufficient low dielectric constant effect cannot be obtained.
  • the relative permittivity of the hollow resin particles according to the embodiment of the present invention can be calculated with reference to, for example, "dielectric constant of the mixed system" (Applied Physics, Vol. 27, No. 8 (1958)).
  • the relative permittivity of the mixed system of the dispersion medium and the hollow resin particles is ⁇
  • the relative permittivity of the base material for example, a resin composition such as polyimide or epoxy
  • the relative permittivity of the hollow resin particles is ⁇ 1.
  • the volume fraction ⁇ of the hollow resin particles in the mixed system of the dispersion medium and the hollow resin particles can be obtained as follows.
  • the density of hollow resin particles use a pycnometer (TQC 50 mL specific gravity bottle manufactured by Cortec Co., Ltd.) and the product name "ARUFON (trademark) UP-1080" (manufactured by Toa Synthetic Co., Ltd., density 1.05 g / cm 3 ), which is a liquid polymer. It can be obtained experimentally by using it.
  • the hollow resin particles and ARUFON UP-1080 are defoamed using a planetary stirring defoaming machine (KURABO Industries, Ltd., "Mazelstar KK-250") so that the ratio of the hollow resin particles is 10% by weight. Stir to make an evaluation mixture.
  • the evaluation mixture is filled in a pycnometer having a capacity of 50 mL, and the weight of the filled evaluation mixture is calculated by subtracting the weight of the empty pycnometer from the weight of the pycnometer filled with the mixture. From this value, the density of the hollow resin particles can be calculated using the following formula.
  • the hollow resin particles according to the embodiment of the present invention can be typically used in various applications requiring heat resistance. Such applications include, for example, paint compositions, cosmetics, paper coating compositions, heat insulating compositions, light diffusing compositions, light diffusing films, and semiconductor members (for example, semiconductor packages and semiconductor modules). Can be mentioned.
  • the hollow resin particles according to the embodiment of the present invention can be suitably used for a resin composition for a semiconductor member because they can exhibit excellent heat resistance and can achieve low dielectric constant and low dielectric loss tangent.
  • the resin composition for a semiconductor member according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the semiconductor member means a member constituting a semiconductor, and examples thereof include a semiconductor package and a semiconductor module.
  • the resin composition for a semiconductor member means a resin composition used for a semiconductor member.
  • a semiconductor package is an IC chip as an essential component, and is a mold resin, an underfill material, a mold underfill material, a die bond material, a prepreg for a semiconductor package substrate, a metal-clad laminate for a semiconductor package substrate, and a printed circuit board for a semiconductor package. It is constructed using at least one member selected from the build-up materials of.
  • a semiconductor module is a prepreg for a printed circuit board, a metal-clad laminate for a printed circuit board, a build-up material for a printed circuit board, a solder resist material, a coverlay film, an electromagnetic wave shielding film, and a print, with a semiconductor package as an essential component. It is configured by using at least one member selected from the adhesive sheet for a circuit board.
  • the hollow resin particles according to the embodiment of the present invention can give an excellent appearance to the coating film containing the hollow resin particles, they can be suitably used for a coating composition.
  • the coating composition according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the coating composition according to the embodiment of the present invention preferably contains at least one selected from a binder resin and a UV curable resin.
  • the binder resin may be only one kind or two or more kinds.
  • the UV curable resin may be only one kind or two or more kinds.
  • any suitable binder resin can be used as long as the effects of the present invention are not impaired.
  • a binder resin include an organic solvent or a resin soluble in water, and an emulsion-type aqueous resin that can be dispersed in water.
  • Specific examples of the binder resin include acrylic resin, alkyd resin, polyester resin, polyurethane resin, chlorinated polyolefin resin, and amorphous polyolefin resin.
  • any suitable UV curable resin can be adopted as long as the effect of the present invention is not impaired.
  • examples of such a UV curable resin include polyfunctional (meth) acrylate resin and polyfunctional urethane acrylate resin, and polyfunctional (meth) acrylate resin is preferable, and three or more (meth) in one molecule.
  • a polyfunctional (meth) acrylate resin having an acryloyl group is more preferable.
  • Specific examples of the polyfunctional (meth) acrylate resin having three or more (meth) acryloyl groups in one molecule include trimethylolpropantri (meth) acrylate and trimethylol ethanetri (meth) acrylate.
  • examples thereof include (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, and tripentaerythritol hexaacrylate.
  • the content ratio thereof may be any appropriate content ratio depending on the purpose.
  • the present invention is based on the total amount of at least one selected from the binder resin (in the case of an emulsion type aqueous resin, solid content equivalent) and the UV curable resin and the hollow resin particles according to the embodiment of the present invention.
  • the hollow resin particles according to the embodiment of the invention are preferably 5% by weight to 50% by weight, more preferably 10% by weight to 50% by weight, still more preferably 20% by weight to 40% by weight.
  • a photopolymerization initiator is preferably used in combination.
  • the photopolymerization initiator any suitable photopolymerization initiator can be adopted as long as the effects of the present invention are not impaired.
  • photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphinoxides, ketals, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, anthraquinones, thioxanthones, and azo compounds.
  • Peroxides (described in JP-A-2001-139663, etc.), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, Examples include ⁇ -acyloxym ester.
  • the coating composition according to the embodiment of the present invention may contain a solvent.
  • the solvent may be only one kind or two or more kinds.
  • any appropriate content ratio may be adopted depending on the purpose.
  • any suitable solvent can be adopted as long as the effect of the present invention is not impaired.
  • a solvent is preferably a solvent capable of dissolving or dispersing a binder resin or a UV curable resin.
  • examples of such a solvent include hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; dioxane, Ether-based solvents such as ethylene glycol diethyl ether and ethylene glycol monobutyl ether; and examples of water-based paints include water and alcohols.
  • the coating composition according to the embodiment of the present invention may be diluted in order to adjust the viscosity, if necessary.
  • the diluent any suitable diluent may be adopted depending on the purpose. Examples of such a diluent include the above-mentioned solvent.
  • the diluent may be only one kind or two or more kinds.
  • the coating composition according to the embodiment of the present invention has other components such as a coating surface adjusting agent, a fluidity adjusting agent, an ultraviolet absorber, a light stabilizer, a curing catalyst, an extender pigment, a coloring pigment, and a metal, if necessary. Pigments, mica powder pigments and dyes may be included.
  • any appropriate coating method may be adopted as the coating method depending on the purpose.
  • a coating method include a spray coating method, a roll coating method, a brush coating method, a coating reverse roll coating method, a gravure coating method, a die coating method, a comma coating method, and a spray coating method.
  • any appropriate forming method can be adopted as the forming method depending on the purpose.
  • a forming method for example, an arbitrary coated surface of a base material is coated to prepare a coated film, the coated film is dried, and then the coated film is cured as necessary.
  • a method of forming a coating film may be mentioned.
  • the base material include metal, wood, glass, and plastic (PET (polyethylene terephthalate), PC (polycarbonate), acrylic resin, TAC (triacetyl cellulose), and the like).
  • the hollow resin particles according to the embodiment of the present invention can impart excellent heat insulating properties to the coating film containing the hollow resin particles, they can be suitably used for a heat insulating resin composition.
  • the coating film containing hollow resin particles according to the embodiment of the present invention can exhibit excellent reflectance in the wavelength range from ultraviolet light to near infrared light.
  • the heat insulating resin composition according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the heat insulating resin composition according to the embodiment of the present invention preferably contains at least one selected from a binder resin and a UV curable resin.
  • a binder resin and a UV curable resin the above-mentioned description of the coating composition can be referred to.
  • the heat insulating resin composition according to the embodiment of the present invention may contain a solvent.
  • the solvent the above description of the coating composition may be incorporated.
  • the heat insulating resin composition according to the embodiment of the present invention may be diluted in order to adjust the viscosity, if necessary.
  • the above description of the coating composition may be incorporated.
  • the heat insulating resin composition according to the embodiment of the present invention has other components such as a coating surface adjusting agent, a fluidity adjusting agent, an ultraviolet absorber, a light stabilizer, a curing catalyst, an extender pigment, and a coloring pigment, if necessary. , Metal pigments, mica powder pigments, dyes may be contained.
  • the above-mentioned description of the coating composition can be referred to.
  • the hollow resin particles according to the embodiment of the present invention can impart excellent light diffusivity to the coating film containing the hollow resin particles, they can be suitably used for a light diffusible resin composition.
  • the light diffusible resin composition according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the light diffusible resin composition according to the embodiment of the present invention preferably contains at least one selected from a binder resin and a UV curable resin.
  • a binder resin and a UV curable resin the above-mentioned description of the coating composition can be referred to.
  • the light diffusible resin composition according to the embodiment of the present invention may contain a solvent.
  • the solvent the above description of the coating composition may be incorporated.
  • the light diffusible resin composition according to the embodiment of the present invention may be diluted in order to adjust the viscosity, if necessary.
  • the above description of the coating composition may be incorporated.
  • the light diffusing resin composition according to the embodiment of the present invention has other components such as a coating surface adjusting agent, a fluidity adjusting agent, an ultraviolet absorber, a light stabilizer, a curing catalyst, an extender pigment, and a coloring, if necessary. Pigments, metal pigments, mica powder pigments, and dyes may be contained.
  • the above-mentioned description of the coating composition can be referred to.
  • the hollow resin particles according to the embodiment of the present invention can impart excellent light diffusivity to a film having a coating film containing the hollow resin particles, they can also be suitably used for a light diffusing film.
  • the light diffusion film according to the embodiment of the present invention contains hollow resin particles according to the embodiment of the present invention.
  • the light diffusing film according to the embodiment of the present invention includes a light diffusing layer and a base material formed from the light diffusing resin composition according to the embodiment of the present invention.
  • the light diffusing layer may or may not be the outermost layer of the light diffusing film.
  • the light diffusing film according to the embodiment of the present invention may contain any suitable other layer depending on the purpose. Examples of such other layers include a protective layer, a hard coat layer, a flattening layer, a high refractive index layer, an insulating layer, a conductive resin layer, a conductive metal fine particle layer, a conductive metal oxide fine particle layer, and a primer. Layers are mentioned.
  • Examples of the base material include metal, wood, glass, plastic film, plastic sheet, plastic lens, plastic panel, cathode line tube, fluorescent display tube, and liquid crystal display board.
  • Examples of the plastic constituting the plastic film, the plastic sheet, the plastic lens, and the plastic panel include PET (polyethylene terephthalate), PC (polycarbonate), acrylic resin, and TAC (triacetyl cellulose).
  • the method for producing hollow resin particles according to the embodiment of the present invention is a method of producing 20 parts by weight to 100 parts by weight of a compound (A) having an ether structure represented by the formula (1) and a monomer (B) that reacts with the compound (A). 80 parts by weight to 0 parts by weight (the total amount of the compound (A) and the monomer (B) is 100 parts by weight) is reacted in an aqueous medium in the presence of a non-reactive solvent.
  • hollow resin particles according to the embodiment of the present invention can be easily manufactured.
  • hollow resin particles according to the embodiment of the present invention By reacting the compound (A) and the monomer (B) in an aqueous medium in the presence of a non-reactive solvent, hollow resin particles according to the embodiment of the present invention can be obtained.
  • the hollow resin particles according to the embodiment of the present invention can be produced by subjecting the compound (A) and the monomer (B) to a suspension polymerization reaction.
  • the suspension polymerization is typically a suspension polymerization using an aqueous phase containing an aqueous medium and an oil phase containing the compound (A), the monomer (B) and a non-reactive solvent, and is preferably aqueous.
  • a suspension polymerization is carried out by adding an oil phase containing a compound (A), a monomer (B) and a non-reactive solvent to an aqueous phase containing a medium, dispersing the mixture, and heating the phase.
  • any appropriate dispersion method can be adopted as long as the oil phase can be present in the aqueous phase in the form of droplets, as long as the effect of the present invention is not impaired.
  • a dispersion method is typically a dispersion method using a homomixer or a homogenizer, and examples thereof include a polytron homogenizer, an ultrasonic homogenizer, and a high-pressure homogenizer.
  • any appropriate polymerization temperature can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired.
  • the polymerization temperature is preferably 30 ° C to 80 ° C.
  • any appropriate polymerization time can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired.
  • the polymerization time is preferably 1 hour to 48 hours.
  • Post-heating which is preferably performed after polymerization, is a suitable treatment for obtaining hollow resin particles having a high degree of perfection.
  • any appropriate temperature can be adopted as long as the effect of the present invention is not impaired.
  • the temperature for such post-heating is preferably 70 ° C to 120 ° C.
  • any appropriate time can be adopted as long as the effect of the present invention is not impaired.
  • the time for such post-heating is preferably 1 hour to 24 hours.
  • the content ratio of compound (A) and monomer (B) is ⁇ 1.
  • the explanation in the item of ⁇ Polymer (P)> of "Structure and characteristics of hollow resin particles" can be used as it is.
  • aqueous medium examples include water, a mixed medium of water and a lower alcohol (methanol, ethanol, etc.).
  • any appropriate amount can be adopted as long as the effect of the present invention is not impaired.
  • the amount of such an aqueous medium used is typically an amount at which the reaction appropriately proceeds in a suspension polymerization reaction carried out by adding an oil phase to an aqueous phase and suspending the mixture, and the compound (A) and the monomer are used.
  • the total amount of (B) and the non-reactive solvent is preferably 100 parts by weight to 5000 parts by weight, and more preferably 150 parts by weight to 2000 parts by weight with respect to 100 parts by weight.
  • the non-reactive solvent is a solvent that does not cause a chemical reaction with either the compound (A) having an ether structure represented by the formula (1) and the monomer (B) that reacts with the compound (A), and is preferable.
  • the non-reactive solvent typically acts as a hollowing agent that provides airspace to the particles. Examples of the non-reactive solvent include heptane, hexane, cyclohexane, methyl acetate, ethyl acetate, methyl ethyl ketone, chloroform and carbon tetrachloride.
  • the boiling point of the non-reactive solvent is preferably less than 100 ° C. because it can be easily removed from the hollow resin particles.
  • the non-reactive solvent as the hollowing agent may be a single solvent or a mixed solvent.
  • the amount of the non-reactive solvent added is preferably 20 parts by weight to 250 parts by weight with respect to 100 parts by weight of the total amount of the compound (A) and the monomer (B).
  • any suitable additive (C) that does not fall under any of the compound (A) and the monomer (B) as long as the effect of the present invention is not impaired. ) May be used.
  • the additive (C) may be only one kind or two or more kinds.
  • the additive referred to here does not include a solvent such as an aqueous medium or a non-reactive solvent.
  • the content ratio of the additive (C) is preferably 0% by weight to 40% by weight, more preferably 0% by weight to 30% by weight, based on the total amount of the compound (A) and the monomer (B). Yes, more preferably 0% by weight to 20% by weight, and particularly preferably 0% by weight to 10% by weight.
  • any appropriate additive can be adopted as long as the effect of the present invention is not impaired.
  • examples of such an additive (C) include a non-crosslinking polymer, a dispersion stabilizer, a surfactant, and a polymerization initiator.
  • dispersion stabilizer examples include polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, etc.), polyvinylpyrrolidone and the like.
  • Inorganic water-soluble polymer compounds such as sodium tripolyphosphate can also be used.
  • phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate
  • pyrophosphates such as calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate, zinc pyrophosphate
  • calcium carbonate, magnesium carbonate, calcium hydroxide examples of the dispersion stabilizer.
  • Magnesium hydroxide, aluminum hydroxide, calcium metasilicate, calcium sulfate, barium sulfate, colloidal silica and other sparingly water-soluble inorganic compounds; and the like can also be used.
  • Magnesium pyrophosphate is preferred because it is relatively easy to remove from the hollow resin particles and does not easily remain on the surface of the hollow resin particles.
  • the amount of the dispersion stabilizer added is preferably 0.5 part by weight to 10 parts by weight with respect to 100 parts by weight of the aqueous medium.
  • the dispersion stabilizer may be only one kind or two or more kinds.
  • surfactant examples include anionic surfactants, cationic surfactants, amphoteric ionic surfactants, nonionic surfactants and the like.
  • anionic surfactant examples include an alkyl sulfate ester salt, an alkyl phosphate ester salt, an alkylbenzene sulfonate, an alkylnaphthalene sulfonate, an alkane sulfonate, an alkyldiphenyl ether sulfonate, a dialkyl sulfosuccinate, and a monoalkyl.
  • Non-reactive anionic surfactants such as sulfosuccinate, polyoxyethylene alkylphenyl ether phosphate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate ester ammonium salt, polyoxyethylene alkylpropenylphenyl ether
  • reactive anionic surfactants such as ammonium sulfate ester ammonium salts and polyoxyalkylene alkenyl ether ammonium sulfate.
  • the surfactant is not limited to the salt structure, and for example, an alkyl sulfate ester or an alkyl phosphoric acid ester can also be used. Specific examples thereof include lauryl sulfate and lauryl phosphoric acid.
  • cationic surfactant examples include cationicity such as alkyltrimethylammonium salt, alkyltriethylammonium salt, dialkyldimethylammonium salt, dialkyldiethylammonium salt, and N-polyoxyalkylene-N, N, N-trialkylammonium salt.
  • surfactants include surfactants.
  • amphoteric ionic surfactant examples include lauryldimethylamine oxide, phosphoric acid ester salt, and phosphite ester-based surfactant.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, and oxyethylene.
  • examples include oxypropylene block polymer.
  • the amount of the surfactant added is preferably 0.01% by weight to 5% by weight with respect to the total amount of the compound (A), the monomer (B) and the non-reactive solvent.
  • the surfactant may be only one kind or two or more kinds.
  • the structure of the hollow resin particles according to the embodiment of the present invention can be controlled by controlling the content ratio of the surfactant.
  • any suitable polymerization initiator can be adopted as long as the effect of the present invention is not impaired.
  • examples of such a polymerization initiator include lauroyl peroxide, benzoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and t-butylperoxy-2-.
  • Organic peroxides such as ethyl hexanoate and di-t-butyl peroxide; 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile, 2,2'-azobis (2) , 4-Dimethylvaleronitrile) and other azo compounds;
  • the content ratio of the polymerization initiator is preferably in the range of 0.1% by weight to 5% by weight with respect to the total amount of the compound (A) and the monomer (B).
  • the polymerization initiator may be only one kind or two or more kinds.
  • part means “part by weight”
  • % means “% by weight”.
  • volume average particle size of the particles was measured by the Coulter method as follows.
  • the volume average particle diameter of the particles was measured by Coulter Multisizer (registered trademark) 3 (measuring device manufactured by Beckman Coulter Co., Ltd.). Measurements were performed using apertures calibrated according to the Multisizer® 3 User's Manual published by Beckman Coulter, Inc.
  • the aperture used for measurement if the assumed volume average particle diameter of the particles to be measured is 1 ⁇ m or more and 10 ⁇ m or less, an aperture having a size of 50 ⁇ m is selected, and the assumed volume average particle diameter of the particles to be measured is larger than 10 ⁇ m.
  • the Current (aperture current) is set to -800
  • the Gain (gain) is set to 4
  • the Current (aperture current) is-. 1600
  • Gain was set to 2
  • 0.1 g of particles were placed in 10 ml of a 0.1 wt% nonionic surfactant aqueous solution in a touch mixer (manufactured by Yamato Scientific Co., Ltd., "TOUCHMIXER MT-31") and an ultrasonic cleaner (Vell Co., Ltd.).
  • a dispersion liquid was used, which was dispersed using "ULTRASONIC CLEANER VS-150" manufactured by Vokuria.
  • the inside of the beaker was gently stirred so as not to allow air bubbles to enter, and the measurement was completed when 100,000 particles were measured.
  • the volume average particle diameter of the particles was taken as the arithmetic mean in the volume-based particle size distribution of 100,000 particles.
  • the Z average particle size of the hollow resin particles or particles was measured by using a dynamic light scattering method, and the measured Z average particle size was used as the obtained average particle size of the hollow resin particles or particles. That is, first, the obtained slurry-shaped hollow resin particles or particles are diluted with ion-exchanged water, and the aqueous dispersion adjusted to 0.1% by weight is irradiated with laser light and scattered from the hollow resin particles or particles. The scattered light intensity was measured over time in microseconds.
  • the scattering intensity distribution caused by the detected hollow resin particles or particles was applied to the normal distribution, and the Z average particle size of the hollow resin particles or particles was obtained by a cumulant analysis method for calculating the average particle size.
  • the measurement of the Z average particle size can be easily carried out with a commercially available particle size measuring device.
  • the Z average particle size was measured using a particle size measuring device (“Zetasizer Nano ZS” manufactured by Malvern).
  • a commercially available particle size measuring device is equipped with data analysis software, and the data analysis software can automatically analyze the measurement data to calculate the Z average particle size.
  • ⁇ Cross section observation> The dried particles were mixed with a photocurable resin D-800 (manufactured by JEOL Ltd.) and irradiated with ultraviolet light to obtain a cured product. Then, the cured product was cut with nippers, the cross-sectional portion was smoothed using a cutter, and the sample was coated using an "Auto Fine Coater JFC-1300" sputtering device manufactured by JEOL Ltd. Next, a cross section of the sample was photographed using a secondary electron detector of a "SU1510" scanning electron microscope manufactured by Hitachi High-Technologies Corporation.
  • ⁇ TEM measurement Observation of hollow resin particles or hollow particles and their shape> Hollow resin particles or particles as dry powder were surface-treated (10 Pa, 5 mA, 10 seconds) using a "Osmium Coater Neoc-Pro" coating device manufactured by Meiwaforsis Co., Ltd. Next, the hollow resin particles or particles were observed with a TEM (transmission electron microscope, manufactured by Hitachi High-Technologies Corporation, "H-7600") to confirm the presence or absence of hollowness and the shape of the hollow resin particles or particles. At this time, the acceleration voltage was set to 80 kV, and the magnification was set to 5000 times or 10,000 times.
  • thermogravimetric reduction temperature when the temperature is raised at 10 ° C / min in a nitrogen atmosphere
  • the 5% thermogravimetric reduction temperature was measured using a "TG / DTA6200, AST-2" differential thermal thermogravimetric simultaneous measuring device manufactured by SII Nanotechnology Co., Ltd.
  • the sampling method and temperature conditions were as follows. The bottom of the platinum measuring container was filled with 10.5 ⁇ 0.5 mg of the sample so as not to have a gap, and used as a sample for measurement.
  • a 5% thermogravimetric reduction temperature was measured using alumina as a reference substance under a nitrogen gas flow rate of 230 mL / min.
  • the TG / DTA curve was obtained by heating the sample from 30 ° C. to 500 ° C. at a heating rate of 10 ° C./min. From this obtained curve, the temperature at the time of 5% weight loss was calculated using the analysis software attached to the device, and the temperature was taken as the 5% thermogravimetric loss temperature.
  • Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 2.5 g, divinylbenzene (DVB) 810 (Nittetsu) Made by Chemical & Materials Co., Ltd., 81% content, 19% ethylvinylbenzene (EVB) 2.5 g, heptane 5.0 g, 2,2'-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator ) (Product name "V-65”, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 0.05 g and 0.004 g of lauryl phosphate were mixed to prepare an oil phase.
  • the obtained particles (1) were a mixture of hollow resin particles in which the hollow surrounded by the shell was composed of one hollow region and hollow resin particles in which the hollow surrounded by the shell was composed of a porous structure. did it.
  • the average particle size of the obtained particles (1) was 16.3 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (1) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 306 ° C. Table 1 shows the blending amount and the like.
  • Example 2 3.0 g of bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Corporation) as a compound having an ether structure represented by the formula (1), divinylbenzene (DVB) 810 (Japan).
  • the same procedure as in Example 1 was carried out in the same manner as in Example 1 except that the product was manufactured by Iron Chemical & Materials Co., Ltd., containing 81%, and 19% was ethylvinylbenzene (EVB)) to obtain particles (2).
  • a cross-sectional photograph of the obtained particles (2) is shown in FIG. It was confirmed that the obtained particles (2) were hollow resin particles in which the hollow surrounded by the shell was composed of one hollow region.
  • the average particle size of the obtained particles (2) was 15.2 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (2) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 320 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 3 3.5 g of bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Corporation) as a compound having an ether structure represented by the formula (1), divinylbenzene (DVB) 810 (Japan).
  • the same procedure as in Example 1 was carried out in the same manner as in Example 1 except that the content was 81% and 19% was ethylvinylbenzene (EVB) manufactured by Iron Chemical & Materials Co., Ltd. to obtain particles (3).
  • a cross-sectional photograph of the obtained particles (3) is shown in FIG. It was confirmed that the obtained particles (3) were hollow resin particles in which the hollow surrounded by the shell was composed of one hollow region.
  • the average particle size of the obtained particles (3) was 13.9 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (3) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 309 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 4 Instead of 2.5 g of a bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), the table is represented by the formula (1). Similar to Example 1 except that 2.5 g of reactive low molecular weight polyphenylene ether (trade name "Noryl (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) as a compound having an ether structure is used. This was performed to obtain particles (4). A cross-sectional photograph of the obtained particles (4) is shown in FIG. It was confirmed that the obtained particles (4) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • a bifunctional polyphenylene ether oligomer trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • the table is represented by the formula (1). Similar to Example 1 except that 2.5 g of reactive low molecular weight polyphen
  • the average particle size of the obtained particles (4) was 16.5 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (4) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 373 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 5 The bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1) is replaced with 3.0 g by the formula (1). Same as Example 2 except that 3.0 g of reactive low molecular weight polyphenylene ether (trade name "Noryl (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) as a compound having an ether structure represented by the present invention was used. To obtain the particles (5). A cross-sectional photograph of the obtained particles (5) is shown in FIG. It was confirmed that the obtained particles (5) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • OPE-2St 1200 manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • the average particle size of the obtained particles (5) was 15.6 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (5) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 420 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 6 Except that 0.004 g of lauryl phosphoric acid was not added to the oil phase and 30 g of a 1.5 wt% aqueous solution of polyvinyl alcohol (GH-14L) was used instead of 32 g of a 2 wt% aqueous dispersion of magnesium pyrophosphate as an aqueous phase.
  • G-14L polyvinyl alcohol
  • Example 6 A cross-sectional photograph of the obtained particles (6) is shown in FIG. It was confirmed that the obtained particles (6) were a mixture of hollow resin particles in which the hollow surrounded by the shell was composed of one hollow region and hollow resin particles in which the hollow surrounded by the shell was composed of a porous structure. did it.
  • the average particle size of the obtained particles (6) was 20.7 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (6) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 302 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 7 Except that 0.004 g of lauryl phosphoric acid was not added to the oil phase and 30 g of a 1.5 wt% aqueous solution of polyvinyl alcohol (GH-14L) was used instead of 32 g of a 2 wt% aqueous dispersion of magnesium pyrophosphate as an aqueous phase.
  • G-14L polyvinyl alcohol
  • Example 7 was carried out in the same manner as in Example 2 to obtain particles (7).
  • a cross-sectional photograph of the obtained particles (7) is shown in FIG. It was confirmed that the obtained particles (7) were hollow resin particles in which the hollow surrounded by the shell was composed of one hollow region.
  • the average particle size of the obtained particles (7) was 18.3 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (7) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 315 ° C. Table 1 shows the blending amount and the like.
  • Example 8 Except that 0.004 g of lauryl phosphoric acid was not added to the oil phase and 30 g of a 1.5 wt% aqueous solution of polyvinyl alcohol (GH-14L) was used instead of 32 g of a 2 wt% aqueous dispersion of magnesium pyrophosphate as an aqueous phase.
  • G-14L polyvinyl alcohol
  • Example 8 was carried out in the same manner as in Example 5 to obtain particles (8).
  • a cross-sectional photograph of the obtained particles (8) is shown in FIG. It was confirmed that the obtained particles (8) were hollow resin particles having a porous structure in the hollow surrounded by the shell. The average particle size of the obtained particles (8) was 19.4 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (8) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 411 ° C. Table 1 shows the blending amount and the like.
  • Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 2.5 g, divinylbenzene (DVB) 810 (Nittetsu). Reaction as a compound having an ether structure represented by the formula (1) instead of 2.5 g of ethylvinylbenzene (EVB) and 5.0 g of heptane, manufactured by Chemical & Materials Co., Ltd., containing 81%.
  • OPE-2St 1200 manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • Low molecular weight polyphenylene ether (trade name "Noryl (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) 1.8 g, divinylbenzene (DVB) 810 (manufactured by Nittetsu Chemical & Materials Co., Ltd., 81% containing product, 19% was carried out in the same manner as in Example 1 except that 1.2 g of ethylvinylbenzene (EVB), 5.0 g of heptane and 2.0 g of toluene were used to obtain particles (9). A cross-sectional photograph of the obtained particles (9) is shown in FIG.
  • EVB ethylvinylbenzene
  • the obtained particles (9) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • the average particle size of the obtained particles (9) was 15.1 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (9) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 415 ° C. Table 1 shows the blending amount and the like.
  • Example 10 Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 2.5 g, divinylbenzene (DVB) 810 (Nittetsu) Reactive low molecular weight polyphenylene ether (trade name "Noryl (registered trademark) SA9000” as a compound having an ether structure represented by the formula (1) instead of 2.5 g and 5.0 g of heptane (manufactured by Chemical & Materials Co., Ltd.) -111 resin ", SABIC Co., Ltd.) 4.0 g, divinylbenzene (DVB) 810 (manufactured by Nittetsu Chemical & Materials Co., Ltd., 81% containing product, 19% ethylvinylbenzene (EVB)) 1.0 g, heptane
  • OPE-2St 1200 manufactured
  • a cross-sectional photograph of the obtained particles (10) is shown in FIG. It was confirmed that the obtained particles (10) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • the average particle size of the obtained particles (10) was 13.1 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (10) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 428 ° C. Table 1 shows the blending amount and the like.
  • Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 1.5 g, divinylbenzene (DVB) 810 (Nittetsu) Chemical & Material Co., Ltd., 81% content product, 19% is a mixture of 1.5 g of ethylvinylbenzene (EVB), 3.0 g of heptane, and 0.09 g of parloyl L (manufactured by Nichiyu Co., Ltd.) as a polymerization initiator. Then, an oil phase was prepared.
  • DVD divinylbenzene
  • EVB ethylvinylbenzene
  • heptane ethylvinylbenzene
  • parloyl L manufactured by Nichiyu Co., Ltd.
  • the average particle size of the obtained particles (11) was 320 nm.
  • the 5% thermogravimetric reduction temperature of the obtained particles (11) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 315 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 12 Reactive low molecular weight polyphenylene ether as a compound having an ether structure represented by the formula (1) (trade name "Toluene (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) 1.08 g, divinylbenzene (DVB) 810 (manufactured by Nittetsu Chemical & Materials Co., Ltd., 81% containing product, 19% is ethylvinylbenzene (EVB)) 0.72 g, heptane 3.0 g, toluene 1.2 g, parloyl L (Nichiyu) as a polymerization initiator (Manufactured by Co., Ltd.) 0.03 g was mixed to prepare an oil phase.
  • Toluene (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd. 1.08 g
  • divinylbenzene (DVB) 810 manufactured by Nittetsu
  • the average particle size of the obtained particles (12) was 379 nm.
  • the 5% thermogravimetric reduction temperature of the obtained particles (12) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 399 ° C.
  • Table 1 shows the blending amount and the like.
  • Example 13 The same procedure as in Example 5 was carried out except that 0.15 g of sodium lauryl sulfate was added to the aqueous phase instead of 0.004 g of lauryl phosphate to obtain particles (13).
  • a cross-sectional photograph of the obtained particles (13) is shown in FIG. It was confirmed that the obtained particles (13) were resin particles having a porous structure.
  • the average particle size of the obtained particles (13) was 5.4 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (13) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 415 ° C. Table 1 shows the blending amount and the like.
  • Example 14 2.0 g of bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Corporation) as a compound having an ether structure represented by the formula (1), divinylbenzene (DVB) 810 (Japan).
  • the same procedure as in Example 1 was carried out in the same manner as in Example 1 except that the content was 81% and 19% was ethylvinylbenzene (EVB) manufactured by Iron Chemical & Materials Co., Ltd. to obtain particles (14).
  • a cross-sectional photograph of the obtained particles (14) is shown in FIG. It was confirmed that the obtained particles (14) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • the average particle size of the obtained particles (14) was 14.4 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (14) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 312 ° C.
  • Table 1 shows the blending amount and the like.
  • Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 2.5 g, divinylbenzene (DVB) 810 (Nittetsu) Reactive low molecular weight polyphenylene ether as a compound having an ether structure represented by the formula (1) in place of 2.5 g of ethylvinylbenzene (EVB), which is manufactured by Chemical & Materials Co., Ltd. and contains 81%.
  • OPE-2St 1200 manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • Example 1 Provides a product name "Noryl (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) 2.0 g, divinylbenzene (DVB) 810 (manufactured by Nittetsu Chemical & Materials Co., Ltd., 81% containing product, 19% ethylvinyl)
  • EVB divinylbenzene
  • EVB benzene
  • a cross-sectional photograph of the obtained particles (15) is shown in FIG. It was confirmed that the obtained particles (15) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • the average particle size of the obtained particles (15) was 12.7 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (15) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 366 ° C. Table 1 shows the blending amount and the like.
  • Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 2.5 g, divinylbenzene (DVB) 810 (Nittetsu) Reactive low molecular weight polyphenylene ether as a compound having an ether structure represented by the formula (1) in place of 2.5 g of ethylvinylbenzene (EVB), which is manufactured by Chemical & Materials Co., Ltd. and contains 81%.
  • OPE-2St 1200 manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • Example 1 Polymer name "Noryl (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) 1.5 g, divinylbenzene (DVB) 810 (manufactured by Nittetsu Chemical & Materials Co., Ltd., 81% containing product, 19% ethylvinyl)
  • EVB divinylbenzene
  • Bifunctional polyphenylene ether oligomer (trade name "OPE-2St 1200", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) as a compound having an ether structure represented by the formula (1), 2.5 g, divinylbenzene (DVB) 810 (Nittetsu) Reactive low molecular weight polyphenylene ether as a compound having an ether structure represented by the formula (1) in place of 2.5 g of ethylvinylbenzene (EVB), which is manufactured by Chemical & Materials Co., Ltd. and contains 81%.
  • OPE-2St 1200 manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • Example 1 (Product name "Noryl (registered trademark) SA9000-111 resin", manufactured by SABIC Co., Ltd.) 1.0 g, divinylbenzene (DVB) 810 (manufactured by Nittetsu Chemical & Materials Co., Ltd., 81% containing product, 19% ethylvinyl)
  • DVD divinylbenzene
  • EVB benzene
  • a cross-sectional photograph of the obtained particles (17) is shown in FIG. It was confirmed that the obtained particles (17) were hollow resin particles having a porous structure in the hollow surrounded by the shell.
  • the average particle size of the obtained particles (17) was 11.3 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (17) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 382 ° C. Table 1 shows the blending amount and the like.
  • the obtained particles (C1) were hollow resin particles in which the hollow surrounded by the shell was composed of one hollow region.
  • the average particle size of the obtained particles (C1) was 8.3 ⁇ m.
  • the 5% thermogravimetric reduction temperature of the obtained particles (C1) when the temperature was raised at 10 ° C./min under a nitrogen atmosphere was 245 ° C. Table 1 shows the blending amount and the like.
  • ⁇ Performance evaluation 1 Relative permittivity / dielectric loss tangent evaluation 1> 0.4 g of particles obtained in each example and comparative example and 10 g of ultra-high heat resistant polyimide varnish (trade name "SPIXAREA HR (registered trademark) 002", manufactured by SOMAR Corporation) were added to a planetary stirring defoamer (KURABO stock). A mixture for evaluation was prepared by defoaming and stirring using "Mazelstar KK-250") manufactured by the company. The evaluation mixture is applied to a glass plate having a thickness of 5 mm using an applicator set to a wet thickness of 250 ⁇ m, and then heated at 120 ° C. for 10 minutes, 180 ° C.
  • the hollow resin particles provided by the present invention have the effect of lowering the relative permittivity and the dielectric loss tangent of the base material, and the purpose is to reduce the dielectric constant and the dielectric loss tangent of the semiconductor material. It turns out that it is effective against.
  • ⁇ Permittivity evaluation 2 Relative permittivity / dielectric loss tangent evaluation 2> 0.425 g of particles obtained in Examples and Comparative Examples, 12.1 g of ethyl acetate, and 1.7 g of solvent-soluble polyimide KPI-MX300F (manufactured by Kawamura Sangyo Co., Ltd.) were added to a planetary stirring defoamer (KURABO). A mixture for evaluation was prepared by defoaming and stirring using "Mazelstar KK-250") manufactured by Co., Ltd. After applying the evaluation mixture to a glass plate having a thickness of 5 mm using an applicator set to a wet thickness of 250 ⁇ m, the mixture is applied at 60 ° C.
  • the hollow resin particles provided by the present invention have the effect of lowering the relative permittivity and the dielectric loss tangent of the base material, and the purpose is to reduce the dielectric constant and the dielectric loss tangent of the semiconductor material. It turns out that it is effective against.
  • ⁇ Performance evaluation 3 Moisture content evaluation> The particles obtained in each Example and Comparative Example were subjected to moisture absorption treatment under the following conditions. The particles obtained in each Example and Comparative Example were placed in a constant temperature and humidity chamber having a temperature of 40 ⁇ 1 ° C. and a relative humidity of 95%, and taken out after 96 hours (temperature 20 ⁇ 1 ° C., humidity 65 ⁇ 5). %) was cooled for 30 minutes. After cooling, the water content was measured.
  • the hollow resin particles provided by the present invention have a lower water content after the moisture absorption treatment as compared with the conventional hollow resin particles, and aim for lower dielectric constant and lower dielectric loss tangent of the semiconductor material. It turns out that it is also suitable for the purpose.
  • ⁇ Performance evaluation 4 Insulation evaluation> 2.5 g of the particles (1) obtained in Example 1 was added to 10 g of a commercially available water-based paint (manufactured by Asahipen Co., Ltd., trade name "water-based versatile color clear"), and a planetary stirring defoamer (KURABO Ltd.) A paint for evaluation was prepared by defoaming and stirring using "Mazelstar KK-250"). The evaluation paint was applied to the black side of the concealment rate test paper with an applicator set to a wet thickness of 250 ⁇ m, and then sufficiently dried at room temperature to obtain a sample plate for light reflectivity evaluation.
  • the reflectance of the sample plate for light reflectance evaluation with respect to ultraviolet light, visible light, and near-infrared light was evaluated in the following point order.
  • An ultraviolet-visible near-infrared spectrophotometer (“Solid Spec3700” manufactured by Shimadzu Corporation) is used as a reflectance measuring device, and the ultraviolet light to near-infrared light (wavelength) of the coated surface of the sample plate for light reflectivity evaluation is used.
  • the reflection characteristics 300 nm to 2500 nm
  • the measurement was performed using a 60 mm ⁇ integrating sphere and Spectralon as a standard white plate. The obtained results are shown in FIG. As shown in FIG. 20, it was found that the reflectance was as high as 40% or more at almost all wavelengths from ultraviolet light to near infrared light.
  • ⁇ Performance evaluation 5 Coating film appearance evaluation> 2 parts by weight of the particles (1) obtained in Example 1 and 20 parts by weight of a commercially available acrylic water-based glossy paint (manufactured by Campe Papio Co., Ltd., trade name "Super Hit") are mixed with a stirring defoaming device.
  • the paint composition was obtained by mixing for 3 minutes and defoaming for 1 minute.
  • the obtained coating composition was applied onto an ABS resin (acrylonitrile-butadiene-styrene resin) plate using a coating device set with a blade having a clearance of 75 ⁇ m, and then dried to obtain a coating film. Further, the obtained coating composition was spray-coated on an acrylic plate having a thickness of 3 mm to prepare a matte coating film having a thickness of 50 ⁇ m.
  • the obtained coating film had no bumps (protrusions) and had good matting properties.
  • ⁇ Performance evaluation 6 Light diffusivity evaluation> Particles (1) obtained in Example 1 7.5 parts by weight, acrylic resin (manufactured by DIC Corporation, trade name "Acrydic A811") 30 parts by weight, cross-linking agent (manufactured by DIC Corporation, trade name “VM-” D ”) 10 parts by weight and 50 parts by weight of butyl acetate as a solvent were mixed for 3 minutes using a stirring defoaming device and defoamed for 1 minute to obtain a light diffusible resin composition.
  • the obtained light diffusing resin composition was applied onto a PET film having a thickness of 125 ⁇ m using a coating device set with a blade having a clearance of 50 ⁇ m, and then dried at 70 ° C.
  • the hollow resin particles according to the embodiment of the present invention and the hollow resin particles obtained by the production method according to the embodiment of the present invention can be used for various applications requiring heat resistance.
  • the hollow resin particles according to the embodiment of the present invention and the hollow resin particles obtained by the production method according to the embodiment of the present invention are, for example, resin compositions for semiconductor members, coating compositions, heat insulating compositions, light diffusing compositions, and the like. It can be applied to applications of light diffusing films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyethers (AREA)
  • Paints Or Removers (AREA)

Abstract

粒子内に中空部分を有する中空樹脂粒子であって、優れた耐熱性を発現できる、中空樹脂粒子を提供する。また、そのような中空樹脂粒子を簡易に製造する方法を提供する。さらに、そのような中空樹脂粒子の用途を提供する。 本発明の実施形態による中空樹脂粒子は、粒子内に中空部分を有する中空樹脂粒子であって、式(1)により表されるエーテル構造を有し、平均粒子径が0.1μm~100μmである。 【化1】

Description

中空樹脂粒子、その製造方法、およびその用途
 本発明は、中空樹脂粒子、その製造方法、およびその用途に関する。
 樹脂粒子は、その特徴を活かして、透明樹脂への光散乱性付与、塗料・インクの艶消し、耐スクラッチ性付与、化粧品の滑り性付与、フィルムのブロッキング防止など、様々な用途に使用されている。
 各種性能の付与を目的に、樹脂粒子の粒子形状の制御が検討されている。例えば、粒子内部に中空部分を導入した中空樹脂粒子が検討されている。
 特許文献1には、塗料や紙塗工用組成物等のコーティング剤に隠蔽性を付与する目的に対して中空樹脂粒子が好適であることが示されている。特許文献1には、中空樹脂粒子は、粒子内部が中空であるため、軽量であり、中空部分で光が乱反射するために、隠蔽性、白色度、光沢などの光学的性質に優れ、断熱効果も有することが示されている。特許文献1には、具体的には、ジビニルベンゼンを炭素数8~18の飽和炭化水素類と共に懸濁重合することでスチレン系の中空樹脂粒子が得られることが記載されている。
 特許文献2には、中空樹脂粒子が、感熱記録紙や熱転写受容紙などの感熱記録材料、農薬、医薬、香料、液晶、接着剤などの多くの分野に用いられていることが示されている。特許文献2には、トリメチロールプロパントリ(メタ)アクリレートやジペンタエリスリトールヘキサアクリレートをはじめとするアクリル系多官能モノマーを主成分としたモノマーを、疎水性溶剤と共に懸濁重合することで、アクリル系の中空樹脂粒子が得られることが記載されている。
 特許文献3には、シェルがラジカル反応性の単官能モノマーおよび架橋性モノマーからなり、単相構造を有する中空粒子が、多層プリント基板の絶縁層の低誘電化・低誘電正接化に好適であることが示されている。特許文献3には、中空樹脂粒子として、ジビニルベンゼンを炭素数8~18の飽和炭化水素類(より具体的には、ヘキサデカン)と共に懸濁重合することで、スチレン系中空樹脂粒子が得られることが記載されている。
 特許文献4には、球状多孔性樹脂粉体(多孔質粒子)が、皮膚から分泌される皮脂や汗により起こる化粧崩れを防ぎ、さっぱり感を持続させる効果を有することが示されている。特許文献4には、多孔質粒子として、メタクリル酸メチルやトリメチロールプロパントリ(メタ)アクリレートからなるアクリル系多孔質粒子が記載されている。
 特許文献5には、多孔質樹脂粒子が、軽量かつ分散性に優れていることから、化粧料、光拡散剤、艶消し剤、診断薬、気孔付与剤、吸着剤、軽量化剤、断熱材、断熱塗料、白色顔料、インクジェット受理剤、徐放剤などに使用されることが示されている。特許文献5には、具体的には、メタクリル酸メチル等からなるアクリル系多孔質粒子が記載されている。
 特許文献6には、多孔質中空ポリマー粒子(中空多孔質粒子)が、香料の徐放性、光拡散性、液体吸収性、体感性、耐溶剤性、及び機械的強度に優れることが示されている。特許文献6には、具体的には、メタクリル酸メチルやトリメチロールプロパントリ(メタ)アクリレートはじめとするアクリル系モノマーを主成分としたモノマーを、疎水性溶剤と共に懸濁重合することで、アクリル系の中空多孔質粒子が得られることが記載されている。
 特許文献7には、多孔質中空ポリマー粒子(中空多孔質粒子)が、機械的強度に優れ、造孔剤として有効に使用できることが示されている。特許文献7には、具体的には、メタクリル酸メチルやトリメチロールプロパントリ(メタ)アクリレートをはじめとするアクリル系モノマーを主成分としたモノマーを、疎水性溶剤と共に懸濁重合することで、アクリル系の中空多孔質粒子が得られることが記載されている。
 特許文献8には、アクリル、スチレン等を原料とするビニル系重合体(汎用ポリマー)からなる粒子と比べて耐熱性、耐溶剤性が高い粒子として、エンプラ系粒子が示されている。特許文献8には、具体的には、ポリアミド、ポリフェニレンエーテル、ポリエーテルイミド、ポリアリレート、ポリアミドイミド、エポキシ樹脂からなる粒子が記載されている。
 最近、各種用途において耐熱性の高い樹脂粒子が求められている。
 特許文献1~7に記載の中空粒子、多孔質粒子、中空多孔質粒子は、アクリル、スチレン等を原料とするビニル系重合体(汎用ポリマー)からなり、耐熱性が十分とは言えない。
 特許文献8に記載の粒子は、耐熱性に優れるものの、多孔質状、中空状、中空多孔質状といった粒子構造制御に関してのアプローチがなされていない。
特開2002-080503号公報 特許第6513273号公報 特許第4171489号公報 特開2003-081738号公報 特開2014-111728号公報 特開2009-120806号公報 特許第4445495号公報 特許第5387796号公報
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、粒子内に中空部分を有する中空樹脂粒子であって、優れた耐熱性を発現できる、中空樹脂粒子を提供することにある。また、そのような中空樹脂粒子を簡易に製造する方法を提供することにある。さらに、そのような中空樹脂粒子の用途を提供することにある。
 本発明の実施形態による中空樹脂粒子は、
 粒子内に中空部分を有する中空樹脂粒子であって、
 式(1)により表されるエーテル構造を有し、
 平均粒子径が0.1μm~100μmである。
Figure JPOXMLDOC01-appb-C000003
 一つの実施形態においては、上記中空部分が1つの中空領域からなる。
 一つの実施形態においては、上記中空部分が複数の中空領域からなる。
 一つの実施形態においては、上記中空部分が多孔質構造である。
 一つの実施形態においては、本発明の実施形態による中空樹脂粒子は、シェル部と該シェル部により囲われた上記中空部分を有する。
 一つの実施形態においては、上記中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度が300℃以上である。
 一つの実施形態においては、本発明の実施形態による中空樹脂粒子は、半導体部材用樹脂組成物に用いる。
 一つの実施形態においては、本発明の実施形態による中空樹脂粒子は、塗料組成物に用いる。
 一つの実施形態においては、本発明の実施形態による中空樹脂粒子は、断熱性樹脂組成物に用いる。
 一つの実施形態においては、本発明の実施形態による中空樹脂粒子は、光拡散性樹脂組成物に用いる。
 一つの実施形態においては、本発明の実施形態による中空樹脂粒子は、光拡散フィルムに用いる。
 本発明の実施形態による半導体部材用樹脂組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による塗料組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による断熱性樹脂組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による光拡散性樹脂組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による光拡散フィルムは、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による製造方法は、
 本発明の実施形態による中空樹脂粒子の製造方法であって、
 式(1)により表されるエーテル構造を有する化合物(A)20重量部~100重量部と該化合物(A)と反応するモノマー(B)80重量部~0重量部(化合物(A)とモノマー(B)の合計量を100重量部とする)を、非反応性溶剤の存在下、水系媒体中で反応させる。
Figure JPOXMLDOC01-appb-C000004
 本発明の実施形態によれば、粒子内に中空部分を有する中空樹脂粒子であって、優れた耐熱性を発現できる、中空樹脂粒子を提供することができる。また、そのような中空樹脂粒子を簡易に製造する方法を提供することができる。さらに、そのような中空樹脂粒子の用途を提供することができる。
中空部分の構造を説明する概略断面図である。 実施例1で得られた中空樹脂粒子(1)の断面写真図である。 実施例2で得られた中空樹脂粒子(2)の断面写真図である。 実施例3で得られた中空樹脂粒子(3)の断面写真図である。 実施例4で得られた中空樹脂粒子(4)の断面写真図である。 実施例5で得られた中空樹脂粒子(5)の断面写真図である。 実施例6で得られた中空樹脂粒子(6)の断面写真図である。 実施例7で得られた中空樹脂粒子(7)の断面写真図である。 実施例8で得られた中空樹脂粒子(8)の断面写真図である。 実施例9で得られた中空樹脂粒子(9)の断面写真図である。 実施例10で得られた中空樹脂粒子(10)の断面写真図である。 実施例11で得られた中空樹脂粒子(11)のTEM写真図である。 実施例12で得られた中空樹脂粒子(12)のTEM写真図である。 実施例13で得られた多孔質構造からなる樹脂粒子(13)の断面写真図である。 実施例14で得られた中空樹脂粒子(14)の断面写真図である。 実施例15で得られた中空樹脂粒子(15)の断面写真図である。 実施例16で得られた中空樹脂粒子(16)の断面写真図である。 実施例17で得られた中空樹脂粒子(17)の断面写真図である。 比較例1で得られた粒子(C1)の断面写真図である。 実施例1で得られた中空樹脂粒子(1)の紫外可視近赤外分光反射スペクトル図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
≪≪1.中空樹脂粒子≫≫
≪1-1.中空樹脂粒子の構造と特性≫
 本発明の実施形態による中空樹脂粒子は、粒子内に中空部分を有する中空樹脂粒子である。ここでいう中空とは、内部が樹脂以外の物質、例えば、気体や液体等で満たされている状態を意味し、本発明の効果をより発現させ得る点で、好ましくは、気体で満たされている状態を意味する。
 本発明の実施形態による中空樹脂粒子は、粒子内に中空部分を有していれば、粒子表面の一部において粒子内の中空部分が粒子外にオープンになっている構造を有していてもよいし、シェル部と該シェル部により囲まれた中空部分を有する構造を有していてもよい。
 中空部分は、図1(a)の概略断面図に示すように、1つの中空領域からなるものであってもよいし、図1(b)の概略断面図に示すように、複数の中空領域からなるものであってもよい。
 中空部分は、図1(c)、(d)の概略断面図に示すように、多孔質構造からなるものであってもよい。このように中空部分が多孔質構造である場合、中空部分が1つの中空領域(連続孔)からなる場合と複数の中空領域(独立孔)からなるものがあり得る。
 中空部分が多孔質構造である場合は、図1(c)に示すように、粒子表面の一部において粒子内の中空部分が粒子外にオープンになっている構造を有していてもよいし、図1(d)に示すように、シェル部と該シェル部により囲まれた中空部分を有する構造を有していてもよい。
 本発明の実施形態による中空樹脂粒子の平均粒子径は、好ましくは0.1μm~100μmであり、より好ましくは0.1μm~80μmであり、さらに好ましくは0.2μm~50μmであり、特に好ましくは0.3μm~20μmである。中空樹脂粒子の平均粒子径が上記範囲内にあれば、本発明の効果がより発現し得る。本発明の実施形態による中空樹脂粒子の平均粒子径が、上記範囲を外れて小さすぎる場合、中空部分を構成する樹脂層の厚みが相対的に薄くなるため、十分な強度を有する中空樹脂粒子とならないおそれがある。本発明の実施形態による中空樹脂粒子の平均粒子径が、上記範囲を外れて大きすぎる場合、懸濁重合中にモノマー成分が重合して生じるポリマーと溶剤との相分離が生じにくくなるおそれがあり、これによって中空部分の形成が困難となるおそれがある。
 本発明の実施形態による中空樹脂粒子は、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度が、好ましくは300℃以上であり、より好ましくは320℃以上であり、さらに好ましくは340℃以上であり、特に好ましくは360℃以上である。上記5%熱重量減少温度の上限は、現実的には、好ましくは500℃以下である。本発明の実施形態による中空樹脂粒子の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度が上記範囲内にあれば、本発明の実施形態による中空樹脂粒子は優れた耐熱性を発現できる。本発明の実施形態による中空樹脂粒子の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度が、上記範囲を外れて小さすぎると、耐熱性が不十分となるおそれがある。
 本発明の実施形態による中空樹脂粒子は、該中空樹脂粒子を、40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が、好ましくは0.50重量%以下であり、より好ましくは0.45重量%以下であり、さらに好ましくは0.40重量%以下であり、特に好ましくは0.35重量%以下である。上記水分含有率は低ければ低いほどよく、好ましくは0重量%以上である。中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が上記範囲を外れて大きすぎると、中空樹脂粒子の吸水率が高くなるおそれがある。
 本発明の実施形態による中空樹脂粒子は、式(1)により表されるエーテル構造を有する。具体的には、本発明の実施形態による中空樹脂粒子の樹脂部分は、式(1)により表されるエーテル構造を有する。
Figure JPOXMLDOC01-appb-C000005
 本発明の実施形態による中空樹脂粒子は、好ましくは、式(1)により表されるエーテル構造を有するポリマー(P)を含む。本発明の実施形態による中空樹脂粒子が、このようなポリマー(P)を含むことにより、本発明の効果がより発現し得る。
 ポリマー(P)は、1種のみであってもよいし、2種以上であってもよい。
 本発明の実施形態による中空樹脂粒子中のポリマー(P)の含有割合は、本発明の効果をより発現させ得る点で、好ましくは60重量%~100重量%であり、より好ましくは70重量%~100重量%であり、さらに好ましくは80重量%~100重量%であり、特に好ましくは90重量%~100重量%である。
 本発明の実施形態による中空樹脂粒子は、本発明の効果を損なわない範囲で、任意の適切な他の成分を含んでいてもよい。
<ポリマー(P)>
 ポリマー(P)としては、式(1)により表されるエーテル構造を有していれば、本発明の効果を損なわない範囲で、任意の適切なポリマーを採用し得る。本発明の効果をより発現し得る点で、このようなポリマー(P)としては、好ましくは、式(1)により表されるエーテル構造を有する化合物(A)と該化合物(A)と反応するモノマー(B)の反応によって得られるポリマーが挙げられる。
 式(1)により表されるエーテル構造を有する化合物(A)は、1種のみであってもよいし、2種以上であってもよい。
 式(1)により表されるエーテル構造を有する化合物と反応するモノマー(B)は、1種のみであってもよいし、2種以上であってもよい。
 化合物(A)とモノマー(B)の比率は、化合物(A)とモノマー(B)の合計量を100重量部とした場合、重量部比(化合物(A):モノマー(B))で、好ましくは(20重量部~100重量部):(80重量部~0重量部)である。
 上記好ましい比率の一つの実施形態としては、より好ましくは(50重量部~90重量部):(50重量部~10重量部)であり、さらに好ましくは(55重量部~80重量部):(45重量部~20重量部)であり、特に好ましくは(60重量部~70重量部):(40重量部~30重量部)である。
 上記好ましい比率の別の一つの実施形態としては、より好ましくは(20重量部~80重量部):(80重量部~20重量部)であり、さらに好ましくは(30重量部~70重量部):(70重量部~30重量部)であり、特に好ましくは(40重量部~60重量部):(60重量部~40重量部)である。
 化合物(A)の含有割合が、上記範囲を外れて小さすぎると、耐熱性が不十分となるおそれがある。
 化合物(A)としては、式(1)により表されるエーテル構造を有していれば、本発明の効果を損なわない範囲で、任意の適切な化合物を採用し得る。本発明の効果をより発現し得る点で、このような化合物(A)としては、好ましくは、ポリフェニレンエーテルが挙げられる。ポリフェニレンエーテルの市販品としては、例えば、商品名「ノリル」(SABIC株式会社製)、商品名「ユピエース」(三菱化学株式会社製)、商品名「ザイロン」(旭化成株式会社製)、商品名「OPE-2St」(三菱瓦斯化学株式会社製)が挙げられる。
 後述の非反応性溶剤との相溶性の点や、耐熱性に優れた中空樹脂粒子をより簡便に作成可能な点から、ポリフェニレンエーテルはオリゴマーであることが好ましく、数平均分子量(Mn)が500~3500であることが好ましい。
 モノマー(B)としては、例えば、架橋性モノマー、単官能モノマーが挙げられる。本発明の効果をより発現し得る点で、化合物(A)の末端基と反応するモノマーが好ましい。
 架橋性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の多官能(メタ)アクリル酸エステル;N,N’-メチレンビス(メタ)アクリルアミド、N,N’-エチレンビス(メタ)アクリルアミド等の多官能アクリルアミド誘導体;ジアリルアミン、テトラアリロキシエタン等の多官能アリル誘導体;ジビニルベンゼン、ジビニルナフタレン、ジアリルフタレート等の芳香族系架橋性モノマー;が挙げられる。本発明の効果をより発現し得る点で、架橋性モノマーとしては、芳香族系架橋性モノマーが好ましく、ジビニルベンゼンがより好ましい。架橋性モノマーは、1種のみであってもよいし、2種以上であってもよい。
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等の炭素数1~16のアルキル(メタ)アクリル酸エステル;スチレン、α-メチルスチレン、エチルビニルベンゼン、ビニルトルエン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、ビニルビフェニル、ビニルナフタレン等の芳香族系単官能モノマー;ジメチルマレエート、ジエチルフマレート、ジメチルフマレート、ジエチルフマレート等のジカルボン酸エステル系モノマー;無水マレイン酸;N-ビニルカルバゾール;(メタ)アクリロニトリル;が挙げられる。本発明の効果をより発現し得る点で、単官能モノマーとしては、芳香族系単官能モノマーが好ましく、スチレン、エチルビニルベンゼンがより好ましい。単官能モノマーは、1種のみであってもよいし、2種以上であってもよい。
 ポリマー(P)は、代表的には、化合物(A)とモノマー(B)の反応によって形成し得る。
 化合物(A)とモノマー(B)の反応は、本発明の効果を損なわない範囲で、任意の適切な反応によって行うことができる。このような反応としては、好ましくは、懸濁重合反応である。
 懸濁重合反応を行う際には、代表的には、水相に油相を加えて懸濁させて重合反応を行う。水相や油相には、本発明の効果を損なわない範囲で、任意の適切な溶剤を含んでいてもよい。このような溶剤としては、例えば、後述するような水系媒体や非反応性溶剤が挙げられる。溶剤は、1種のみであってもよいし、2種以上であってもよい。
 化合物(A)とモノマー(B)の反応を行う際には、本発明の効果を損なわない範囲で、化合物(A)及びモノマー(B)のいずれにも該当しない任意の適切な添加剤(C)を用いてもよい。添加剤(C)は、1種のみであってもよいし、2種以上であってもよい。ここでいう添加剤には、後述するような水系媒体や非反応性溶剤などの溶剤は含まない。
 添加剤(C)の含有割合は、化合物(A)とモノマー(B)の合計量に対して、好ましくは0重量%~~40重量%であり、より好ましくは0重量%~30重量%であり、さらに好ましくは0重量%~20重量%であり、特に好ましくは0重量%~10重量%である。
 添加剤(C)としては、本発明の効果を損なわない範囲で、任意の適切な添加剤を採用し得る。このような添加剤(C)としては、例えば、非架橋性ポリマー、分散安定剤、界面活性剤、重合開始剤が挙げられる。
 添加剤(C)として非架橋性ポリマーを含むことにより、反応進行に伴い生成するポリマー(P)と溶剤との相分離が促され、シェル形成が促進し得る。
 非架橋性ポリマーとしては、例えば、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、スチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種が挙げられる。
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリα-オレフィンなどが挙げられる。モノマー組成物への溶解性の観点から、原料に長鎖のα-オレフィンを使用した側鎖結晶性ポリオレフィン、メタロセン触媒で製造された低分子量ポリオレフィンやオレフィンオリゴマーの使用が好ましい。
 スチレン系ポリマーとしては、例えば、ポリスチレン、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。
 (メタ)アクリル酸系ポリマーとしては、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリプロピル(メタ)アクリレートなどが挙げられる。
 スチレン-(メタ)アクリル酸系ポリマーとしては、例えば、スチレン-メチル(メタ)アクリレート共重合体、スチレン-エチル(メタ)アクリレート共重合体、スチレン-ブチル(メタ)アクリレート共重合体、スチレン-プロピル(メタ)アクリレート共重合体などが挙げられる。
≪1-2.中空樹脂粒子の比誘電率≫
 本発明の実施形態による中空樹脂粒子の比誘電率は、好ましくは1.0~2.5であり、より好ましくは1.0~2.4であり、さらに好ましくは1.0~2.3である。本発明の実施形態による中空樹脂粒子の比誘電率が上記範囲内にあれば、本発明の効果がより発現し得る。本発明の実施形態による中空樹脂粒子の比誘電率が2.5を上回る場合、中空樹脂粒子を、例えば、熱硬化性樹脂に混在させても、十分な低誘電化効果を得ることができない。
 本発明の実施形態による中空樹脂粒子の比誘電率は、例えば「混合系の誘電率」(応用物理、第27巻、第8号(1958))を参考に算出することができる。分散媒と中空樹脂粒子の混合系の比誘電率をε、分散媒となる基材(例えば、ポリイミドやエポキシ等の樹脂組成物)の比誘電率をε、中空樹脂粒子の比誘電率をε、混合系中の中空樹脂粒子の体積率をφとした場合、下記式が成り立つ。すなわち、ε、ε、φを実験的に求めれば、中空樹脂粒子の比誘電率εを算出することができる。
Figure JPOXMLDOC01-appb-M000006
 なお、分散媒と中空樹脂粒子の混合系中の中空樹脂粒子の体積率φは以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000007
 中空樹脂粒子の密度はピクノメーター(コーテック株式会社製、TQC50mL比重瓶)と液状ポリマーである製品名「ARUFON(商標) UP―1080」(東亜合成株式会社製、密度1.05g/cm)を用いて実験的に求めることができる。具体的には、中空樹脂粒子の割合が10重量%となるよう、中空樹脂粒子とARUFON UP―1080を遊星攪拌脱泡機(KURABO株式会社製、「マゼルスターKK-250」)を用いて脱泡攪拌し、評価用混合物を作製する。評価用混合物を容量50mLのピクノメーターに充填し、混合物で満たされたピクノメーターの重量から、空の状態のピクノメーターの重量を差し引くことで充填した評価用混合物の重量を算出する。この値から、以下式を用いて中空樹脂粒子の密度を算出することができる。
Figure JPOXMLDOC01-appb-M000008
≪1-3.中空樹脂粒子の用途≫
 本発明の実施形態による中空樹脂粒子は、代表的には、耐熱性を要求される各種用途に採用し得る。このような用途としては、例えば、塗料組成物、化粧料、紙被覆組成物、断熱性組成物、光拡散性組成物、光拡散フィルム、半導体部材(例えば、半導体パッケージや半導体モジュール)の用途が挙げられる。
<半導体部材用樹脂組成物>
 本発明の実施形態による中空樹脂粒子は、優れた耐熱性を発現し得るため、また、低誘電化、低誘電正接化を達成し得るため、半導体部材用樹脂組成物に好適に用い得る。
 本発明の実施形態による半導体部材用樹脂組成物は、本発明の実施形態による中空樹脂粒子を含む。
 半導体部材とは、半導体を構成する部材を意味し、例えば、半導体パッケージや半導体モジュールが挙げられる。本明細書において、半導体部材用樹脂組成物とは、半導体部材に用いる樹脂組成物を意味する。
 半導体パッケージとは、ICチップを必須構成部材として、モールド樹脂、アンダーフィル材、モールドアンダーフィル材、ダイボンド材、半導体パッケージ基板用プリプレグ、半導体パッケージ基板用金属張積層板、及び半導体パッケージ用プリント回路基板のビルドアップ材料から選ばれる少なくとも1種の部材を用いて構成されるものである。
 半導体モジュールとは、半導体パッケージを必須構成部材として、プリント回路基板用プリプレグ、プリント回路基板用金属張積層板、プリント回路基板用ビルドアップ材料、ソルダーレジスト材、カバーレイフィルム、電磁波シールドフィルム、及びプリント回路基板用接着シートから選ばれる少なくとも1種の部材を用いて構成されるものである。
<塗料組成物>
 本発明の実施形態による中空樹脂粒子は、それを含む塗膜に優れた外観を付与し得るため、塗料組成物に好適に用い得る。
 本発明の実施形態による塗料組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による塗料組成物は、好ましくは、バインダー樹脂およびUV硬化性樹脂から選ばれる少なくとも1種を含む。バインダー樹脂は、1種のみであってもよいし、2種以上であってもよい。UV硬化性樹脂は、1種のみであってもよいし、2種以上であってもよい。
 バインダー樹脂としては、本発明の効果を損なわない範囲で、任意の適切なバインダー樹脂を採用し得る。このようなバインダー樹脂としては、例えば、有機溶剤または水に可溶な樹脂、水中に分散できるエマルション型の水性樹脂が挙げられる。バインダー樹脂としては、具体的には、例えば、アクリル樹脂、アルキド樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩素化ポリオレフィン樹脂、アモルファスポリオレフィン樹脂が挙げられる。
 UV硬化性樹脂としては、本発明の効果を損なわない範囲で、任意の適切なUV硬化性樹脂を採用し得る。このようなUV硬化性樹脂としては、例えば、多官能(メタ)アクリレート樹脂、多官能ウレタンアクリレート樹脂が挙げられ、多官能(メタ)アクリレート樹脂が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート樹脂がより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート樹脂としては、具体的には、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4-シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレートが挙げられる。
 本発明の実施形態による塗料組成物が、バインダー樹脂およびUV硬化性樹脂から選ばれる少なくとも1種を含む場合、その含有割合は、目的に応じて、任意の適切な含有割合を採用し得る。代表的には、バインダー樹脂(エマルション型の水性樹脂の場合は固形分換算)およびUV硬化性樹脂から選ばれる少なくとも1種と本発明の実施形態による中空樹脂粒子との合計量に対して、本発明の実施形態による中空樹脂粒子が、好ましくは5重量%~50重量%であり、より好ましくは10重量%~50重量%であり、さらに好ましくは20重量%~40重量%である。
 UV硬化性樹脂が用いられる場合には、好ましくは、光重合開始剤が併用される。光重合開始剤としては、本発明の効果を損なわない範囲で、任意の適切な光重合開始剤を採用し得る。このような光重合開始剤としては、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α-ヒドロキシアルキルフェノン類、α-アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001-139663号公報等に記載)、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α-アシルオキシムエステルが挙げられる。
 本発明の実施形態による塗料組成物は、溶剤を含んでいてもよい。溶剤は、1種のみであってもよいし、2種以上であってもよい。本発明の実施形態による塗料組成物が溶剤を含む場合、その含有割合は、目的に応じて、任意の適切な含有割合を採用し得る。
 溶剤としては、本発明の効果を損なわない範囲で、任意の適切な溶剤を採用し得る。このような溶剤としては、好ましくは、バインダー樹脂またはUV硬化性樹脂を溶解または分散できる溶剤である。このような溶剤としては、油系塗料であれば、例えば、トルエン、キシレン等の炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル、エチレングリコールモノブチルエーテル等のエーテル系溶剤;が挙げられ、水系塗料であれば、例えば、水、アルコール類が挙げられる。
 本発明の実施形態による塗料組成物は、必要に応じて粘度を調整するために、希釈が施されていてもよい。希釈剤としては、目的に応じて、任意の適切な希釈剤を採用し得る。このような希釈剤としては、前述した溶剤が挙げられる。希釈剤は、1種のみであってもよいし、2種以上であってもよい。
 本発明の実施形態による塗料組成物は、必要に応じて、他の成分、例えば、塗面調整剤、流動性調整剤、紫外線吸収剤、光安定剤、硬化触媒、体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料が含まれていてもよい。
 本発明の実施形態による塗料組成物を使用して塗膜を形成する場合、その塗工方法としては、目的に応じて、任意の適切な塗工方法を採用し得る。このような塗工方法としては、例えば、スプレー塗装法、ロール塗装法、ハケ塗り法、コーティングリバースロールコート法、グラビアコート法、ダイコート法、コンマコート法、スプレーコート法が挙げられる。
 本発明の実施形態による塗料組成物を使用して塗膜を形成する場合、その形成方法としては、目的に応じて、任意の適切な形成方法を採用し得る。このような形成方法としては、例えば、基材の任意の塗工面に塗工して塗工膜を作製し、この塗工膜を乾燥させた後、必要に応じて塗工膜を硬化させることによって、塗膜を形成する方法が挙げられる。基材としては、例えば、金属、木材、ガラス、プラスチック(PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、アクリル樹脂、TAC(トリアセチルセルロース)など)が挙げられる。
<断熱性樹脂組成物>
 本発明の実施形態による中空樹脂粒子は、それを含む塗膜に優れた断熱性を付与し得るため、断熱性樹脂組成物に好適に用い得る。本発明の実施形態による中空樹脂粒子を含む塗膜は、紫外光から近赤外光までの波長の範囲において優れた反射率を発現し得る。
 本発明の実施形態による断熱性樹脂組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による断熱性樹脂組成物は、好ましくは、バインダー樹脂およびUV硬化性樹脂から選ばれる少なくとも1種を含む。バインダー樹脂、UV硬化性樹脂については、前述の塗料組成物についての説明を援用し得る。
 本発明の実施形態による断熱性樹脂組成物は、溶剤を含んでいてもよい。溶剤については、前述の塗料組成物についての説明を援用し得る。
 本発明の実施形態による断熱性樹脂組成物は、必要に応じて粘度を調整するために、希釈が施されていてもよい。希釈剤としては、前述の塗料組成物についての説明を援用し得る。
 本発明の実施形態による断熱性樹脂組成物は、必要に応じて、他の成分、例えば、塗面調整剤、流動性調整剤、紫外線吸収剤、光安定剤、硬化触媒、体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料が含まれていてもよい。
 本発明の実施形態による断熱性樹脂組成物を使用して塗膜を形成する場合の塗工方法、形成方法としては、前述の塗料組成物についての説明を援用し得る。
<光拡散性樹脂組成物>
 本発明の実施形態による中空樹脂粒子は、それを含む塗膜に優れた光拡散性を付与し得るため、光拡散性樹脂組成物に好適に用い得る。
 本発明の実施形態による光拡散性樹脂組成物は、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による光拡散性樹脂組成物は、好ましくは、バインダー樹脂およびUV硬化性樹脂から選ばれる少なくとも1種を含む。バインダー樹脂、UV硬化性樹脂については、前述の塗料組成物についての説明を援用し得る。
 本発明の実施形態による光拡散性樹脂組成物は、溶剤を含んでいてもよい。溶剤については、前述の塗料組成物についての説明を援用し得る。
 本発明の実施形態による光拡散性樹脂組成物は、必要に応じて粘度を調整するために、希釈が施されていてもよい。希釈剤としては、前述の塗料組成物についての説明を援用し得る。
 本発明の実施形態による光拡散性樹脂組成物は、必要に応じて、他の成分、例えば、塗面調整剤、流動性調整剤、紫外線吸収剤、光安定剤、硬化触媒、体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料が含まれていてもよい。
 本発明の実施形態による光拡散性樹脂組成物を使用して塗膜を形成する場合の塗工方法、形成方法としては、前述の塗料組成物についての説明を援用し得る。
<光拡散フィルム>
 本発明の実施形態による中空樹脂粒子は、それを含む塗膜を備えるフィルムに優れた光拡散性を付与し得るため、光拡散フィルムにも好適に用い得る。
 本発明の実施形態による光拡散フィルムは、本発明の実施形態による中空樹脂粒子を含む。
 本発明の実施形態による光拡散フィルムは、本発明の実施形態による光拡散性樹脂組成物から形成される光拡散層と基材を含む。なお、光拡散層は、光拡散フィルムの最外層であってもよいし、最外層でなくてもよい。本発明の実施形態による光拡散フィルムは、目的に応じて、任意の適切なその他の層を含んでいてもよい。このようなその他の層としては、例えば、保護層、ハードコート層、平坦化層、高屈折率層、絶縁層、導電性樹脂層、導電性金属微粒子層、導電性金属酸化物微粒子層、プライマー層が挙げられる。
 基材としては、例えば、金属、木材、ガラス、プラスチックフィルム、プラスチックシート、プラスチックレンズ、プラスチックパネル、陰極線管、蛍光表示管、液晶表示板が挙げられる。プラスチックフィルム、プラスチックシート、プラスチックレンズ、プラスチックパネルを構成するプラスチックとしては、例えば、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、アクリル樹脂、TAC(トリアセチルセルロース)が挙げられる。
≪≪2.中空樹脂粒子の製造方法≫≫
 本発明の実施形態による中空樹脂粒子の製造方法は、式(1)により表されるエーテル構造を有する化合物(A)20重量部~100重量部と該化合物(A)と反応するモノマー(B)80重量部~0重量部(化合物(A)とモノマー(B)の合計量を100重量部とする)を、非反応性溶剤の存在下、水系媒体中で反応させる。
Figure JPOXMLDOC01-appb-C000009
 上記製造方法によれば、本発明の実施形態による中空樹脂粒子を簡易に製造し得る。
 化合物(A)とモノマー(B)を、非反応性溶剤の存在下、水系媒体中で反応させることにより、本発明の実施形態による中空樹脂粒子が得られ得る。代表的には、本発明の実施形態による中空樹脂粒子は、化合物(A)とモノマー(B)を懸濁重合反応に供することによって製造し得る。
 懸濁重合は、代表的には、水系媒体を含む水相と、化合物(A)とモノマー(B)と非反応性溶剤を含む油相とを用いた懸濁重合であり、好ましくは、水系媒体を含む水相に化合物(A)とモノマー(B)と非反応性溶剤を含む油相を添加して分散させて加熱して懸濁重合を行う。
 分散は、水相中で油相を液滴状で存在させることができさえすれば、本発明の効果を損なわない範囲で、任意の適切な分散方法を採用し得る。このような分散方法としては、代表的には、ホモミキサーやホモジナイザーを用いた分散方法であり、例えば、ポリトロンホモジナイザー、超音波ホモジナイザーや高圧ホモジナイザーなどが挙げられる。
 重合温度は、懸濁重合に適した温度であれば、本発明の効果を損なわない範囲で、任意の適切な重合温度を採用し得る。このような重合温度としては、好ましくは30℃~80℃である。
 重合時間は、懸濁重合に適した時間であれば、本発明の効果を損なわない範囲で、任意の適切な重合時間を採用し得る。このような重合時間としては、好ましくは1時間~48時間である。
 重合後に好ましく行う後加熱は、完成度の高い中空樹脂粒子を得るために好適な処理である。
 重合後に好ましく行う後加熱の温度は、本発明の効果を損なわない範囲で、任意の適切な温度を採用し得る。このような後加熱の温度としては、好ましくは70℃~120℃である。
 重合後に好ましく行う後加熱の時間は、本発明の効果を損なわない範囲で、任意の適切な時間を採用し得る。このような後加熱の時間としては、好ましくは1時間~24時間である。
 化合物(A)、モノマー(B)としては、≪≪1.中空樹脂粒子≫≫の≪1-1.中空樹脂粒子の構造と特性≫の<ポリマー(P)>の項目における説明をそのまま援用し得る。
 化合物(A)とモノマー(B)の含有割合は、≪≪1.中空樹脂粒子≫≫の≪1-1.中空樹脂粒子の構造と特性≫の<ポリマー(P)>の項目における説明をそのまま援用し得る。
 水系媒体としては、例えば、水、水と低級アルコール(メタノール、エタノール等)との混合媒体などが挙げられる。
 水系媒体の使用量は、本発明の効果を損なわない範囲で、任意の適切な量を採用し得る。このような水系媒体の使用量は、代表的には、水相に油相を加えて懸濁させて行う懸濁重合反応において該反応が適切に進行する量であり、化合物(A)とモノマー(B)と非反応性溶剤の合計量100重量部に対して、好ましくは100重量部~5000重量部であり、より好ましくは150重量部~2000重量部である。
 非反応性溶剤は、式(1)により表されるエーテル構造を有する化合物(A)と化合物(A)と反応するモノマー(B)とのいずれとも化学的な反応を起こさない溶剤であり、好ましくは、有機溶剤である。非反応性溶剤は、代表的には、粒子に空域を与える中空化剤として作用する。非反応性溶剤としては、例えば、ヘプタン、ヘキサン、シクロヘキサン、酢酸メチル、酢酸エチル、メチルエチルケトン、クロロホルム、四塩化炭素が挙げられる。中空樹脂粒子からの除去が容易である点で、非反応性溶剤の沸点は100℃未満であることが好ましい。
 中空化剤としての非反応性溶剤は、単一溶剤であってもよいし、混合溶剤であってもよい。
 非反応性溶剤の添加量は、化合物(A)とモノマー(B)の合計量100重量部に対して、好ましくは20重量部~250重量部である。
 化合物(A)とモノマー(B)の反応を行う際には、本発明の効果を損なわない範囲で、化合物(A)及びモノマー(B)のいずれにも該当しない任意の適切な添加剤(C)を用いてもよい。添加剤(C)は、1種のみであってもよいし、2種以上であってもよい。ここでいう添加剤には、水系媒体や非反応性溶剤などの溶剤は含まない。
 添加剤(C)の含有割合は、化合物(A)とモノマー(B)の合計量に対して、好ましくは0重量%~~40重量%であり、より好ましくは0重量%~30重量%であり、さらに好ましくは0重量%~20重量%であり、特に好ましくは0重量%~10重量%である。
 添加剤(C)としては、本発明の効果を損なわない範囲で、任意の適切な添加剤を採用し得る。このような添加剤(C)としては、例えば、非架橋性ポリマー、分散安定剤、界面活性剤、重合開始剤が挙げられる。
 非架橋性ポリマーについては、≪≪1.中空樹脂粒子≫≫の≪1-1.中空樹脂粒子の構造と特性≫の<ポリマー(P)>の項目における説明をそのまま援用し得る。
 分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドンなどが挙げられる。また、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物も使用できる。さらに、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩;ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩;炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、コロイダルシリカ等の難水溶性無機化合物;なども使用できる。中空樹脂粒子からの除去が比較的容易であり、中空樹脂粒子の表面に残存しにくいことから、ピロリン酸マグネシウムの使用が好ましい。
 分散安定剤の添加量は、水性媒体100重量部に対して、0.5重量部~10重量部が好ましい。分散安定剤は、1種のみであってもよいし、2種以上であってもよい。
 界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤などが挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸エステル塩、アルキルリン酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩、ジアルキルスルホコハク酸塩、モノアルキルスルホコハク酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等の非反応性のアニオン性界面活性剤、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステルアンモニウム塩、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム等の反応性のアニオン性界面活性剤などが挙げられる。なお、界面活性剤としては塩構造に限定されず、例えば、アルキル硫酸エステルや、アルキルリン酸エステルも使用することができる。具体的には、ラウリル硫酸やラウリルリン酸が挙げられる。
 カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、アルキルトリエチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ジアルキルジエチルアンモニウム塩、N-ポリオキシアルキレン-N,N,N-トリアルキルアンモニウム塩等のカチオン性界面活性剤などが挙げられる。
 両性イオン性界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド、リン酸エステル塩、亜リン酸エステル系界面活性剤などが挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマーなどが挙げられる。
 界面活性剤の添加量は、化合物(A)とモノマー(B)と非反応性溶剤の合計量に対して、0.01重量%~5重量%が好ましい。界面活性剤は、1種のみであってもよいし、2種以上であってもよい。
 なお、界面活性剤の含有割合を大きくすると、図1(c)に示すような、粒子表面の一部において粒子内の中空部分が粒子外にオープンになっている多孔質構造や、図1(d)に示すような、シェル部と該シェル部により囲まれた中空部分が多孔質構造となっている構造を構築しやすくなる。したがって、界面活性剤の含有割合の制御によって、本発明の実施形態による中空樹脂粒子の構造を制御し得る。
 重合開始剤としては、本発明の効果を損なわない範囲で、任意の適切な重合開始剤を採用し得る。このような重合開始剤としては、例えば、過酸化ラウロイル、過酸化ベンゾイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物;2,2'-アゾビスイソブチロニトリル、1,1'-アゾビスシクロヘキサンカルボニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物;などが挙げられる。
 重合開始剤の含有割合は、化合物(A)とモノマー(B)の合計量に対して、0.1重量%~5重量%の範囲が好ましい。重合開始剤は、1種のみであってもよいし、2種以上であってもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「重量%」を意味する。
<体積平均粒子径の測定(実施例1~10、13、比較例1)>
 粒子の体積平均粒子径の測定は、以下のようにしてコールター法により行った。
 粒子の体積平均粒子径は、コールターMultisizer(登録商標)3(ベックマン・コールター株式会社製測定装置)により測定した。測定は、ベックマン・コールター株式会社発行のMultisizer(登録商標)3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施した。なお、測定に用いるアパチャーは、測定する粒子の想定の体積平均粒子径が1μm以上10μm以下の場合は50μmのサイズを有するアパチャーを選択し、測定する粒子の想定の体積平均粒子径が10μmより大きく30μm以下の場合は100μmのサイズを有するアパチャーを選択し、粒子の想定の体積平均粒子径が30μmより大きく90μm以下の場合は280μmのサイズを有するアパチャーを選択し、粒子の想定の体積平均粒子径が90μmより大きく150μm以下の場合は400μmのサイズを有するアパチャーを選択する等、測定する粒子の大きさによって、適宜選択した。測定後の体積平均粒子径が想定の体積平均粒子径と異なった場合は、適正なサイズを有するアパチャーに変更して、再度測定を行った。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定した。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定し、100μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-1600、Gain(ゲイン)は2と設定し、280μm及び400μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-3200、Gain(ゲイン)は1と設定した。
 測定用試料としては、粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用した。測定中は、ビーカー内を気泡が入らない程度に緩く攪拌しておき、粒子を10万個測定した時点で測定を終了した。なお、粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均とした。
<平均粒子径の測定(実施例11、12)>
 動的光散乱法を利用して、中空樹脂粒子または粒子のZ平均粒子径を測定し、測定されたZ平均粒子径を得られた中空樹脂粒子または粒子の平均粒子径とした。
 すなわち、まず、得られたスラリー状の中空樹脂粒子または粒子をイオン交換水で希釈し、0.1重量%に調整した水分散体にレーザー光を照射し、中空樹脂粒子または粒子から散乱される散乱光強度をマイクロ秒単位の時間変化で測定した。そして、検出された中空樹脂粒子または粒子に起因する散乱強度分布を正規分布に当てはめて、平均粒子径を算出するためのキュムラント解析法により中空樹脂粒子または粒子のZ平均粒子径を求めた。
 このZ平均粒子径の測定は、市販の粒子径測定装置で簡便に実施できる。以下の実施例および比較例では、粒子径測定装置(マルバーン社製、「ゼータサイザーナノZS」)を使用してZ平均粒子径を測定した。通常、市販の粒子径測定装置は、データ解析ソフトが搭載されており、データ解析ソフトが測定データを自動的に解析することでZ平均粒子径を算出できるようになっている。
<断面観察>
 乾燥した粒子を光硬化性樹脂D-800(日本電子株式会社製)と混合し、紫外光を照射することで硬化物を得た。その後、硬化物をニッパーで裁断し、断面部分を、カッターを用いて平滑に加工し、日本電子株式会社製、「オートファインコータJFC-1300」スパッタ装置を用いて試料をコーティングした。次いで、試料の断面を株式会社日立ハイテクノロジーズ製、「SU1510」走査電子顕微鏡の二次電子検出器を用いて、撮影した。
<TEM測定:中空樹脂粒子または粒子の中空の有無と形状の観察>
 乾燥粉体としての中空樹脂粒子または粒子に対し、メイワフォーシス株式会社製「オスミウムコータNeoc-Pro」コーティング装置を用いて表面処理(10Pa、5mA、10秒)を行った。次いで、中空樹脂粒子または粒子をTEM(透過型電子顕微鏡、株式会社日立ハイテクノロジーズ製、「H-7600」)にて観察し、中空の有無および中空樹脂粒子または粒子の形状を確認した。この時、加速電圧は80kVとし、倍率は5000倍または1万倍として撮影した。
<窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度の測定>
 5%熱重量減少温度は、エスアイアイ・ナノテクノロジー株式会社製「TG/DTA6200、AST-2」示差熱熱重量同時測定装置を用いて測定した。サンプリング方法及び温度条件に関しては以下のように行った。
 白金製測定容器の底に、すきまのないように試料を10.5±0.5mg充てんして、測定用のサンプルとした。窒素ガス流量230mL/分のもと、アルミナを基準物質として、5%熱重量減少温度を測定した。TG/DTA曲線は、昇温速度10℃/分で30℃から500℃までサンプルを昇温させて得た。この得られた曲線から装置付属の解析ソフトを用いて、5%重量減少時の温度を算出し、5%熱重量減少温度とした。
〔実施例1〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))2.5g、ヘプタン5.0g、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)(商品名「V-65」、富士フィルム和光純薬株式会社製)0.05g、ラウリルリン酸0.004gを混合し、油相を作製した。
 水相としてのピロリン酸マグネシウム2重量%水分散液32gに油相を加え、ポリトロンホモジナイザー「PT10-35」(株式会社セントラル科学貿易製)を用いて懸濁液を作製した。得られた懸濁液を50℃で24時間加熱することで反応を行った。得られたスラリーに塩酸を加え、ピロリン酸マグネシウムを分解させた後、ろ過による脱水で固形分を分離し、水洗を繰り返すことで精製を行った後、60℃で乾燥することで粒子(1)を得た。
 得られた粒子(1)の断面写真図を図2に示す。得られた粒子(1)は、シェルにより囲われた中空が一つの中空領域からなる中空樹脂粒子と、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子との混合物であることが確認できた。
 得られた粒子(1)の平均粒子径は16.3μmであった。
 得られた粒子(1)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は306℃であった。
 配合量などを表1に示す。
〔実施例2〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)を3.0g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))を2.0gとした以外は、実施例1と同様に行い、粒子(2)を得た。
 得られた粒子(2)の断面写真図を図3に示す。得られた粒子(2)は、シェルにより囲われた中空が一つの中空領域からなる中空樹脂粒子であることが確認できた。
 得られた粒子(2)の平均粒子径は15.2μmであった。
 得られた粒子(2)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は320℃であった。
 配合量などを表1に示す。
〔実施例3〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)を3.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))を1.5gとした以外は、実施例1と同様に行い、粒子(3)を得た。
 得られた粒子(3)の断面写真図を図4に示す。得られた粒子(3)は、シェルにより囲われた中空が一つの中空領域からなる中空樹脂粒子であることが確認できた。
 得られた粒子(3)の平均粒子径は13.9μmであった。
 得られた粒子(3)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は309℃であった。
 配合量などを表1に示す。
〔実施例4〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)2.5gを使用した以外は、実施例1と同様に行い、粒子(4)を得た。
 得られた粒子(4)の断面写真図を図5に示す。得られた粒子(4)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(4)の平均粒子径は16.5μmであった。
 得られた粒子(4)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は373℃であった。
 配合量などを表1に示す。
〔実施例5〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)を3.0gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)3.0gを使用した以外は、実施例2と同様に行い、粒子(5)を得た。
 得られた粒子(5)の断面写真図を図6に示す。得られた粒子(5)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(5)の平均粒子径は15.6μmであった。
 得られた粒子(5)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は420℃であった。
 配合量などを表1に示す。
〔実施例6〕
 油相にラウリルリン酸0.004gを添加せず、水相としてのピロリン酸マグネシウム2重量%水分散液32gの代わりに、ポリビニルアルコール(GH-14L)1.5重量%水溶液30gを使用した以外は、実施例1と同様に行い、粒子(6)を得た。
 得られた粒子(6)の断面写真図を図7に示す。得られた粒子(6)は、シェルにより囲われた中空が一つの中空領域からなる中空樹脂粒子と、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子との混合物であることが確認できた。
 得られた粒子(6)の平均粒子径は20.7μmであった。
 得られた粒子(6)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は302℃であった。
 配合量などを表1に示す。
〔実施例7〕
 油相にラウリルリン酸0.004gを添加せず、水相としてのピロリン酸マグネシウム2重量%水分散液32gの代わりに、ポリビニルアルコール(GH-14L)1.5重量%水溶液30gを使用した以外は、実施例2と同様に行い、粒子(7)を得た。
 得られた粒子(7)の断面写真図を図8に示す。得られた粒子(7)は、シェルにより囲われた中空が一つの中空領域からなる中空樹脂粒子であることが確認できた。
 得られた粒子(7)の平均粒子径は18.3μmであった。
 得られた粒子(7)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は315℃であった。
 配合量などを表1に示す。
〔実施例8〕
 油相にラウリルリン酸0.004gを添加せず、水相としてのピロリン酸マグネシウム2重量%水分散液32gの代わりに、ポリビニルアルコール(GH-14L)1.5重量%水溶液30gを使用した以外は、実施例5と同様に行い、粒子(8)を得た。
 得られた粒子(8)の断面写真図を図9に示す。得られた粒子(8)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(8)の平均粒子径は19.4μmであった。
 得られた粒子(8)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は411℃であった。
 配合量などを表1に示す。
〔実施例9〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))2.5g、ヘプタン5.0gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)1.8g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))1.2g、ヘプタン5.0g、トルエン2.0gを使用した以外は、実施例1と同様に行い、粒子(9)を得た。
 得られた粒子(9)の断面写真図を図10に示す。得られた粒子(9)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(9)の平均粒子径は15.1μmであった。
 得られた粒子(9)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は415℃であった。
 配合量などを表1に示す。
〔実施例10〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製)2.5g、ヘプタン5.0gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)4.0g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))1.0g、ヘプタン4.0g、シクロヘキサン1.0gを使用した以外は、実施例1と同様に行い、粒子(10)を得た。
 得られた粒子(10)の断面写真図を図11に示す。得られた粒子(10)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(10)の平均粒子径は13.1μmであった。
 得られた粒子(10)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は428℃であった。
 配合量などを表1に示す。
〔実施例11〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)1.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))1.5g、ヘプタン3.0g、重合開始剤としてのパーロイルL(日油株式会社製)0.09gを混合し、油相を作製した。
 次いで、イオン交換水34gとラピゾールA-80(日油株式会社)0.0128gを混合し、水相を作製した。水相に油相を加え、超音波ホモジナイザー(BRANSON社製、「SONIFIER450」、条件:DutyCycle=50%、OutputControl=5、処理時間3分)を用いて懸濁液を作製した。得られた懸濁液を70℃で4時間加熱することで反応を行った。得られたスラリーを100℃で24時間加熱することで乾燥した粒子(11)を得た。
 得られた粒子(11)のTEM写真図を図12に示す。得られた粒子(11)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(11)の平均粒子径は320nmであった。
 得られた粒子(11)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は315℃であった。
 配合量などを表1に示す。
〔実施例12〕
 式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)1.08g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))0.72g、ヘプタン3.0g、トルエン1.2g、重合開始剤としてのパーロイルL(日油株式会社製)0.03gを混合し、油相を作製した。
 次いで、イオン交換水34gとラピゾールA-80(日油株式会社)0.0085gを混合し、水相を作製した。水相に油相を加え、超音波ホモジナイザー(BRANSON社製、「SONIFIER450」、条件:DutyCycle=50%、OutputControl=5、処理時間3分)を用いて懸濁液を作製した。得られた懸濁液を70℃で4時間加熱することで反応を行った。得られたスラリーを100℃で24時間加熱することで乾燥した粒子(12)を得た。
 得られた粒子(12)のTEM写真図を図13に示す。得られた粒子(12)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(12)の平均粒子径は379nmであった。
 得られた粒子(12)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は399℃であった。
 配合量などを表1に示す。
〔実施例13〕
 ラウリルリン酸0.004gの代わりに、ラウリル硫酸ナトリウム0.15gを水相に添加した以外は実施例5と同様に行い、粒子(13)を得た。
 得られた粒子(13)の断面写真図を図14に示す。得られた粒子(13)は、多孔質構造からなる樹脂粒子であることが確認できた。
 得られた粒子(13)の平均粒子径は5.4μmであった。
 得られた粒子(13)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は415℃であった。
 配合量などを表1に示す。
〔実施例14〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)を2.0g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))を3.0gとした以外は、実施例1と同様に行い、粒子(14)を得た。
 得られた粒子(14)の断面写真図を図15に示す。得られた粒子(14)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(14)の平均粒子径は14.4μmであった。
 得られた粒子(14)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は312℃であった。
 配合量などを表1に示す。
〔実施例15〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))2.5gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)2.0g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))3.0gを使用した以外は、実施例1と同様に行い、粒子(15)を得た。
 得られた粒子(15)の断面写真図を図16に示す。得られた粒子(15)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(15)の平均粒子径は12.7μmであった。
 得られた粒子(15)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は366℃であった。
 配合量などを表1に示す。
〔実施例16〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))2.5gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)1.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))3.5gを使用した以外は、実施例1と同様に行い、粒子(16)を得た。
 得られた粒子(16)の断面写真図を図17に示す。得られた粒子(16)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(16)の平均粒子径は10.9μmであった。
 得られた粒子(16)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は371℃であった。
 配合量などを表1に示す。
〔実施例17〕
 式(1)により表されるエーテル構造を有する化合物としての二官能ポリフェニレンエーテルオリゴマー(商品名「OPE-2St 1200」、三菱瓦斯化学株式会社製)2.5g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))2.5gに代えて、式(1)により表されるエーテル構造を有する化合物としての反応性低分子量ポリフェニレンエーテル(商品名「Noryl(登録商標)SA9000-111樹脂」、SABIC株式会社製)1.0g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社製、81%含有品、19%はエチルビニルベンゼン(EVB))4.0gを使用した以外は、実施例1と同様に行い、粒子(17)を得た。
 得られた粒子(17)の断面写真図を図18に示す。得られた粒子(17)は、シェルにより囲われた中空が多孔質構造からなる中空樹脂粒子であることが確認できた。
 得られた粒子(17)の平均粒子径は11.3μmであった。
 得られた粒子(17)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は382℃であった。
 配合量などを表1に示す。
〔比較例1〕
 メタクリル酸メチル2.5g、エチレングリコールジメタクリレート2.5g、シクロヘキサン5g、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)(商品名「V-65」、富士フィルム和光純薬株式会社製)0.05g、ラウリルリン酸0.004gを混合し、油相を作製した。
 水相としてのピロリン酸マグネシウム2重量%水分散液32gに油相を加え、ポリトロンホモジナイザーPT10-35(株式会社セントラル科学貿易製)を用いて懸濁液を作製した。得られた懸濁液を50℃で24時間加熱することで反応を行った。得られたスラリーに塩酸を加え、ピロリン酸マグネシウムを分解させた後、ろ過による脱水で固形分を分離し、水洗を繰り返すことで精製を行った後、60℃で乾燥することで、乾燥粉体としての粒子(C1)を得た。
 得られた粒子(C1)の断面写真図を図19に示す。得られた粒子(C1)は、シェルにより囲われた中空が一つの中空領域からなる中空樹脂粒子であることが確認できた。
 得られた粒子(C1)の平均粒子径は8.3μmであった。
 得られた粒子(C1)の、窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度は245℃であった。
 配合量などを表1に示す。
Figure JPOXMLDOC01-appb-T000010
<性能評価1:比誘電率・誘電正接評価1>
 各実施例、比較例にて得られた粒子0.4gと超高耐熱ポリイミドワニス(商品名「SPIXAREA HR(登録商標)002」、ソマール株式会社製)10gを、遊星攪拌脱泡機(KURABO株式会社製、「マゼルスターKK-250」)を用いて脱泡攪拌し、評価用混合物を作製した。
 評価用混合物を厚み5mmのガラス板にウエット厚250μmに設定したアプリケーターを用いて塗工した後、120℃にて10分、180℃にて180分、270℃にて60分加熱することで溶剤を除去した後、室温まで冷却することで、各粒子を含むフィルムサンプルを得た。得られたフィルムの比誘電率・誘電正接評価を空洞共振法(測定周波数:5.8GHz)にて実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000011
 表2の結果から、本発明によって提供される中空樹脂粒子は、基材の比誘電率・誘電正接を下げる効果を有することが確認でき、半導体材料の低誘電化、低誘電正接化を図る目的に対して有効であることがわかる。
<性能評価2:比誘電率・誘電正接評価2>
 実施例、比較例にて得られた粒子0.425gと、酢酸エチル12.1gと、溶剤可溶型ポリイミドKPI-MX300F(河村産業株式会社製)1.7gを、遊星撹拌脱泡機(KURABO株式会社製、「マゼルスターKK-250」)を用いて脱泡撹拌し、評価用混合物を作製した。
 評価用混合物を厚み5mmのガラス板にウエット厚250μmに設定したアプリケーターを用いて塗工した後、60℃で30分、90℃にて10分、150℃にて30分、200℃にて30分加熱することで酢酸エチルを除去した後、室温下まで冷却することで、各粒子を含むフィルムサンプルを得た。得られたフィルムの比誘電率・誘電正接評価を空洞共振法(測定周波数:5.8GHz)にて実施した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000012
 表3の結果から、本発明によって提供される中空樹脂粒子は、基材の比誘電率・誘電正接を下げる効果を有することが確認でき、半導体材料の低誘電化、低誘電正接化を図る目的に対して有効であることがわかる。
<性能評価3:水分含有率評価>
 各実施例、比較例にて得られた粒子に対し、下記条件で吸湿処理を実施した。
 各実施例、比較例にて得られた粒子を、温度40±1℃,相対湿度95%の恒温恒湿槽の中に入れて96時間後に取り出し、(温度20±1℃、湿度65±5%)の環境下にて30分冷却した。冷却後、水分含有率を測定した。
 水分含有率は、各実施例、比較例にて得られた粒子0.1gを試料とし、株式会社三菱化学アナリテック製の「CA-200」カールフィッシャー水分測定装置及び「VA-236S」水分気化装置にセットして測定した。測定時の陽極液、陰極液には、それぞれ、三菱ケミカル株式会社製の商品名「アクアミクロン(登録商標)AX」、商品名「アクアミクロン(登録商標)CXU」を使用した。測定(気化)温度は250℃とした。キャリアガスは窒素を用いた。キャリアガスの流量は150mL/minとした。試料の試験回数は3回とした。試料採取場所の空気のみでの水分量を2回測定し、その平均値をブランク値とした。各測定結果からブランク値を減算し、試料重量で除して、試料の水分含有率(重量%)を求めた。試料の水分含有率(重量%)は次式で算出した。
 水分含有率(重量%)=[実測水分量(μg)-ブランク水分量(μg)]÷1000000÷試料重量(g)×100
 最終結果として、3回の測定結果を平均し、試料の水分含有率(重量%)とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000013
 表4の結果から、本発明によって提供される中空樹脂粒子は、従来の中空樹脂粒子と比較して、吸湿処理後の水分含有量が低く、半導体材料の低誘電化、低誘電正接化を図る目的に対しても好適であることがわかる。
<性能評価4:断熱性評価>
 市販の水性塗料(株式会社アサヒペン製、商品名「水性多用途カラークリア」)10gに対し、実施例1で得られた粒子(1)を2.5g加え、遊星撹拌脱泡機(KURABO株式会社製、「マゼルスターKK-250」)を用いて脱泡撹拌し、評価用塗料を作製した。
 評価用塗料を隠蔽率試験紙の黒側にウエット厚250μmに設定したアプリケーターにて塗工した後、室温下で十分に乾燥させ、光反射性評価用サンプル板を得た。光反射性評価用サンプル板の紫外光、可視光、及び近赤外光に対する反射率を以下の点順で評価した。
 反射率の測定装置として紫外可視近赤外分光光度計(株式会社島津製作所製、「Solid Spec3700」)を使用し、光反射性評価用サンプル板における塗工面の紫外光から近赤外光(波長300nm~2500nm)の反射特性を反射率(%)として測定した。なお、測定は60mmΦ積分球を用い、スペクトラロンを標準白板に使用して行った。
 得られた結果を図20に示す。図20に示すように、紫外光から近赤外光のほぼ全ての波長において、40%以上の高い反射率を有することがわかった。
<性能評価5:塗膜外観評価>
 実施例1で得られた粒子(1)2重量部と、市販のアクリル系水性つやあり塗料(株式会社カンぺパピオ製、商品名「スーパーヒット」)20重量部とを、撹拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、塗料組成物を得た。
 得られた塗料組成物を、クリアランス75μmのブレードをセットした塗工装置を用いてABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)板上に塗布した後、乾燥することによって塗膜を得た。
 また、得られた塗料組成物を厚み3mmのアクリル板に吹き付け塗工することにより、厚み50μmの艶消し塗膜を作成した。得られた塗膜は、ブツ(突起)が見られず、良好な艶消し性を有していた。
<性能評価6:光拡散性評価>
 実施例1で得られた粒子(1)7.5重量部、アクリル樹脂(DIC株式会社製、商品名「アクリディックA811」)30重量部、架橋剤(DIC株式会社製、商品名「VM-D」)10重量部、溶剤として酢酸ブチル50重量部を、撹拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、光拡散性樹脂組成物を得た。
 得られた光拡散性樹脂組成物を、クリアランス50μmのブレードをセットした塗工装置を用いて、厚さ125μmのPETフィルム上に塗布した後、70℃で10分乾燥することによって光拡散フィルムを得た。
 得られた光拡散フィルムの全光線透過率及びヘイズを、それぞれJIS K 7361-1:1997及びJIS K 7136:2000に従い、ヘイズメーター(日本電色工業株式会社製、商品名「NDH 2000」)を使用して測定した。ヘイズの値は、光拡散フィルムを透過した光(透過光)の拡散性が高い程、高くなる。
 測定の結果、ヘイズが40.2%、全光線透過率が81.5%であり、得られた光拡散フィルムが光拡散性に優れていることが認められた。
 本発明の実施形態による中空樹脂粒子、本発明の実施形態による製造方法により得られる中空樹脂粒子は、耐熱性の要求される各種用途に利用可能である。本発明の実施形態による中空樹脂粒子、本発明の実施形態による製造方法により得られる中空樹脂粒子は、例えば、半導体部材用樹脂組成物、塗料組成物、断熱性組成物、光拡散性組成物、光拡散フィルムの用途に適用し得る。
 

Claims (17)

  1.  粒子内に中空部分を有する中空樹脂粒子であって、
     式(1)により表されるエーテル構造を有し、
     平均粒子径が0.1μm~100μmである、
     中空樹脂粒子。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記中空部分が1つの中空領域からなる、請求項1に記載の中空樹脂粒子。
  3.  前記中空部分が複数の中空領域からなる、請求項1に記載の中空樹脂粒子。
  4.  前記中空部分が多孔質構造である、請求項1に記載の中空樹脂粒子。
  5.  シェル部と該シェル部により囲われた前記中空部分を有する、請求項4に記載の中空樹脂粒子。
  6.  前記中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の5%熱重量減少温度が300℃以上である、請求項1から5までのいずれかに記載の中空樹脂粒子。
  7.  半導体部材用樹脂組成物に用いる、請求項1から6までのいずれかに記載の中空樹脂粒子。
  8.  塗料組成物に用いる、請求項1から6までのいずれかに記載の中空樹脂粒子。
  9.  断熱性樹脂組成物に用いる、請求項1から6までのいずれかに記載の中空樹脂粒子。
  10.  光拡散性樹脂組成物に用いる、請求項1から6までのいずれかに記載の中空樹脂粒子。
  11.  光拡散フィルムに用いる、請求項1から6までのいずれかに記載の中空樹脂粒子。
  12.  請求項1から6までのいずれかに記載の中空樹脂粒子を含む、半導体部材用樹脂組成物。
  13.  請求項1から6までのいずれかに記載の中空樹脂粒子を含む、塗料組成物。
  14.  請求項1から6までのいずれかに記載の中空樹脂粒子を含む、断熱性樹脂組成物。
  15.  請求項1から6までのいずれかに記載の中空樹脂粒子を含む、光拡散性樹脂組成物。
  16.  請求項1から6までのいずれかに記載の中空樹脂粒子を含む、光拡散フィルム。
  17.  請求項1から11までのいずれかに記載の中空樹脂粒子の製造方法であって、
     式(1)により表されるエーテル構造を有する化合物(A)20重量部~100重量部と該化合物(A)と反応するモノマー(B)80重量部~0重量部(化合物(A)とモノマー(B)の合計量を100重量部とする)を、非反応性溶剤の存在下、水系媒体中で反応させる、
     中空樹脂粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000002
PCT/JP2021/045348 2020-12-17 2021-12-09 中空樹脂粒子、その製造方法、およびその用途 WO2022131128A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022569927A JPWO2022131128A1 (ja) 2020-12-17 2021-12-09
KR1020237019185A KR20230104261A (ko) 2020-12-17 2021-12-09 중공 수지 입자, 그 제조 방법, 및 그 용도
US18/267,299 US20240059847A1 (en) 2020-12-17 2021-12-09 Hollow resin particles, production method therefor, and use thereof
CN202180084267.1A CN116635433A (zh) 2020-12-17 2021-12-09 中空树脂颗粒、其制造方法和其用途
EP21906491.2A EP4265648A1 (en) 2020-12-17 2021-12-09 Hollow resin particles, production method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209336 2020-12-17
JP2020-209336 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022131128A1 true WO2022131128A1 (ja) 2022-06-23

Family

ID=82059154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045348 WO2022131128A1 (ja) 2020-12-17 2021-12-09 中空樹脂粒子、その製造方法、およびその用途

Country Status (7)

Country Link
US (1) US20240059847A1 (ja)
EP (1) EP4265648A1 (ja)
JP (1) JPWO2022131128A1 (ja)
KR (1) KR20230104261A (ja)
CN (1) CN116635433A (ja)
TW (1) TW202231693A (ja)
WO (1) WO2022131128A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465140A (en) * 1987-06-12 1989-03-10 Gen Electric Foamable thermoplastic resin beads
JPH0213273B2 (ja) 1979-05-07 1990-04-03 Tokyo Keiki Kk
JP2001139663A (ja) 1999-11-12 2001-05-22 Daicel Chem Ind Ltd 光学的造形用樹脂組成物、その製造方法及び光学的造形物
JP2002080503A (ja) 2000-09-04 2002-03-19 New Industry Research Organization 中空高分子微粒子及びその製造法
JP2003081738A (ja) 2001-09-05 2003-03-19 Gantsu Kasei Kk 球状多孔性架橋ポリマー粒子含有皮膚化粧料
JP4171489B2 (ja) 2003-01-28 2008-10-22 松下電工株式会社 中空粒子を含有する樹脂組成物、同組成物を含むプリプレグおよび積層板
JP2009120806A (ja) 2007-10-22 2009-06-04 Sekisui Chem Co Ltd 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、香料担持ポリマー粒子、及び、香料担持ポリマー粒子の製造方法
JP4445495B2 (ja) 2006-08-17 2010-04-07 積水化学工業株式会社 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、多孔質セラミックフィルタおよび多孔質セラミックフィルタの製造方法
JP5387796B2 (ja) 2008-05-21 2014-01-15 東レ株式会社 ポリマー微粒子
JP2014111728A (ja) 2012-10-29 2014-06-19 Nippon Shokubai Co Ltd 多孔質樹脂粒子の製造方法
JP2014529672A (ja) * 2011-09-09 2014-11-13 サウディ ベーシック インダストリーズ コーポレイション 水膨張性ポリマービーズ
WO2014203511A1 (ja) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2017160399A (ja) * 2016-03-11 2017-09-14 旭化成株式会社 微少空隙を有するポリフェニレンエーテル紛体と製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513273B1 (ja) 2018-08-31 2019-05-15 三井化学株式会社 樹脂粒子

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213273B2 (ja) 1979-05-07 1990-04-03 Tokyo Keiki Kk
JPS6465140A (en) * 1987-06-12 1989-03-10 Gen Electric Foamable thermoplastic resin beads
JP2001139663A (ja) 1999-11-12 2001-05-22 Daicel Chem Ind Ltd 光学的造形用樹脂組成物、その製造方法及び光学的造形物
JP2002080503A (ja) 2000-09-04 2002-03-19 New Industry Research Organization 中空高分子微粒子及びその製造法
JP2003081738A (ja) 2001-09-05 2003-03-19 Gantsu Kasei Kk 球状多孔性架橋ポリマー粒子含有皮膚化粧料
JP4171489B2 (ja) 2003-01-28 2008-10-22 松下電工株式会社 中空粒子を含有する樹脂組成物、同組成物を含むプリプレグおよび積層板
JP4445495B2 (ja) 2006-08-17 2010-04-07 積水化学工業株式会社 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、多孔質セラミックフィルタおよび多孔質セラミックフィルタの製造方法
JP2009120806A (ja) 2007-10-22 2009-06-04 Sekisui Chem Co Ltd 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、香料担持ポリマー粒子、及び、香料担持ポリマー粒子の製造方法
JP5387796B2 (ja) 2008-05-21 2014-01-15 東レ株式会社 ポリマー微粒子
JP2014529672A (ja) * 2011-09-09 2014-11-13 サウディ ベーシック インダストリーズ コーポレイション 水膨張性ポリマービーズ
JP2014111728A (ja) 2012-10-29 2014-06-19 Nippon Shokubai Co Ltd 多孔質樹脂粒子の製造方法
WO2014203511A1 (ja) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2017160399A (ja) * 2016-03-11 2017-09-14 旭化成株式会社 微少空隙を有するポリフェニレンエーテル紛体と製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OYO BUTURI, DIELECTRIC CONSTANT OF MIXED SYSTEMS, vol. 27, 1958

Also Published As

Publication number Publication date
US20240059847A1 (en) 2024-02-22
JPWO2022131128A1 (ja) 2022-06-23
CN116635433A (zh) 2023-08-22
EP4265648A1 (en) 2023-10-25
KR20230104261A (ko) 2023-07-07
TW202231693A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
KR101159826B1 (ko) 반사 방지 적층체
TWI531585B (zh) 樹脂粒子集合體、其製造方法以及其用途
WO2021085189A1 (ja) 中空樹脂粒子およびその製造方法
KR101655944B1 (ko) 착색 수지 입자, 그 제조 방법 및 그 용도
KR102382184B1 (ko) 중합체 입자 및 그 용도
Dong et al. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings
KR100668921B1 (ko) 실리카 피복 중합체 입자, 이의 제조 방법 및 이의 용도
TW201241469A (en) Low refractive index diffuser element
WO2022131127A1 (ja) 中空樹脂粒子、その製造方法、およびその用途
JPWO2020054816A1 (ja) 中空重合体粒子及びその製造方法
Yoshinaga et al. Colloidal crystallization of monodisperse and polymer-modified colloidal silica in organic solvents
WO2022131128A1 (ja) 中空樹脂粒子、その製造方法、およびその用途
JP5055043B2 (ja) 混合粒子の製造方法ならびに艶消し塗料
JP3827617B2 (ja) 樹脂粒子及びその製造方法
JP2024044239A (ja) 中空樹脂粒子および中空樹脂粒子の製造方法
WO2023157597A1 (ja) 中空樹脂粒子、その製造方法、およびその用途
JP4872739B2 (ja) 積層体の製造方法
JP6511915B2 (ja) 微粒子膜の製造方法
JP2023143819A (ja) 構造発色する微粒子の分散液及び構造体
WO2021131368A1 (ja) フッ化物粒子の分散液、その製造方法及び光学膜
KR20230135525A (ko) 막 형성용의 도포액 및 그 제조 방법 그리고 막 구비 기재의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237019185

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022569927

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084267.1

Country of ref document: CN

Ref document number: 18267299

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906491

Country of ref document: EP

Effective date: 20230717