WO2022126825A1 - 一种二甲基苄醇氢解催化剂及其制备方法 - Google Patents

一种二甲基苄醇氢解催化剂及其制备方法 Download PDF

Info

Publication number
WO2022126825A1
WO2022126825A1 PCT/CN2021/073011 CN2021073011W WO2022126825A1 WO 2022126825 A1 WO2022126825 A1 WO 2022126825A1 CN 2021073011 W CN2021073011 W CN 2021073011W WO 2022126825 A1 WO2022126825 A1 WO 2022126825A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
drying
compound
temperature
nitrate
Prior art date
Application number
PCT/CN2021/073011
Other languages
English (en)
French (fr)
Inventor
李作金
杨栋琳
王雷雷
詹吉山
沙宇
于海波
孙康
黎源
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Publication of WO2022126825A1 publication Critical patent/WO2022126825A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the application relates to a dimethylbenzyl alcohol hydrogenolysis catalyst and a preparation method thereof, belonging to the technical field of catalysis.
  • Industrial production of propylene oxide (PO) mainly includes chlorohydrin method, direct oxidation of hydrogen peroxide and co-oxidation method (Halcon method).
  • Chlorohydrin method is currently the main route for domestic production of PO, and this process has serious problems such as equipment corrosion and environmental pollution. Due to the high cost of raw materials, the direct oxidation route of hydrogen peroxide is economically affected.
  • Co-oxidation method also known as co-production method or indirect oxidation method, is to generate propylene oxide through the reaction of organic peroxide and propylene, and by-product organic alcohol.
  • the traditional isobutane co-oxidation method and ethylbenzene co-oxidation method avoid the serious environmental pollution caused by the chlorohydrin method with high investment and long process flow, a large amount of by-products are co-produced in the PO production process, and the production cost of PO is greatly affected. Product price fluctuations have a greater impact.
  • the cumene co-oxidation method includes three core reactions of cumene peroxidation, propylene epoxidation and dimethylbenzyl alcohol hydrogenolysis and related separation processes, using cumene hydrogen peroxide as the oxygen source , the co-produced dimethyl benzyl alcohol generates cumene through hydrogenolysis, the cumene is returned to the peroxide unit to react to obtain cumene hydrogen peroxide, and the cumene is recycled.
  • the cumene co-oxidation method has the advantages of very high conversion rate and selectivity, short process route, less equipment investment, no co-products and more stable economic benefits.
  • Dimethylbenzyl alcohol hydrogenolysis reaction is one of the core reactions of PO-CHP process.
  • the performance of the dimethylbenzyl alcohol hydrogenolysis catalyst has a significant effect on the economics of the process.
  • Dimethylbenzyl alcohol hydrogenolysis catalysts mainly include platinum palladium precious metal catalysts, nickel-based catalysts and copper-based catalysts, etc., which have been reported in many patents.
  • US patent US3337646 proposes a method for the production of cumene by gas-phase hydrogenolysis of ⁇ , ⁇ -dimethylbenzyl alcohol, using Ni-Cr-Al 2 O 3 catalyst, the catalyst contains Cr, and the process of catalyst preparation, use and recovery There are serious environmental pollution problems.
  • Patent CN1308273C discloses a method for preparing cumene by catalytic hydrogenolysis of ⁇ , ⁇ -dimethylbenzyl alcohol. This patent adopts 2wt% Pd-C catalyst, and the cost of the catalyst is relatively high, and halogenated aromatic hydrocarbons, sodium formate, Substances such as formic acid and indole increase the difficulty and cost of separation.
  • Patent CN104230640A discloses a method for preparing cumene by hydrogenolysis of ⁇ , ⁇ -dimethylbenzyl alcohol. This patent adopts Mg/Ca/Ba modified Pd-Ni/SiO 2 catalyst, and the hydrogenolysis reaction generates cumene
  • the selectivity of the catalyst is generally less than 98.5%, the catalyst cost is high and the selectivity is low.
  • Patent CN104874406 discloses a Pt-supported hydrogenolysis catalyst, which uses phenolic resin-based activated carbon as a carrier.
  • the catalyst preparation process is complex, and the scale-up preparation is difficult. After running for 300 hours, the catalyst selectivity drops significantly and the catalyst stability is poor.
  • Patent CN110075857A discloses a dimethylbenzyl alcohol hydrogenolysis catalyst and its preparation method.
  • the main component of the catalyst is Cu-Zn-Si-Mg/Ca/Ba-Bi-Pb, and a special molding method is adopted, and the catalyst is resistant to liquid.
  • the performance of the catalyst is excellent, but the reaction temperature of the catalyst is still as high as 200 °C, which is easy to cause the sintering of the active component Cu, which is unfavorable for the stability of the catalyst.
  • Patent US6646139B2 discloses the process of ⁇ , ⁇ -dimethylbenzyl alcohol catalytic hydrogenolysis to prepare cumene, this patent adopts Cu-Cr catalyst, the conversion rate of ⁇ , ⁇ -dimethylbenzyl alcohol reaches 100%, isopropyl Benzene selectivity exceeds 97.5%. Due to the presence of Cr components in Cu-Cr catalysts, there are serious environmental pollution problems in the process of catalyst preparation, use and recovery.
  • Patent CN1257138C proposes a method for reducing Cu catalyst with a mixture of H 2 and CO.
  • the catalyst used is still a Cu-Cr catalyst, and the catalyst stability index is not disclosed in this patent.
  • Patent CN101992098 discloses a Cu-Zn-Al catalyst for the hydrogenolysis of dimethylbenzyl alcohol to produce cumene, the space velocity used in the patent is 1.5h -1 , the space velocity is relatively low, and the patent does not disclose the use of the catalyst. state and catalyst strength.
  • the catalyst prepared by the prior art has the problems of high catalyst cost, low activity, poor selectivity/poor high temperature stability/poor liquid resistance and serious environmental pollution when used in the catalytic hydrogenolysis of dimethylbenzyl alcohol to prepare cumene. . Therefore, it is of great significance to develop hydrogenolysis catalysts with excellent hydrogenolysis reaction performance, good liquid resistance and low cost.
  • One of the purposes of the present application is to provide a catalyst for the production of cumene by hydrogenolysis of dimethylbenzyl alcohol, which has low cost, excellent activity, selectivity and stability, and good liquid resistance.
  • a dimethylbenzyl alcohol hydrogenolysis catalyst the total weight of the catalyst is 100wt% (except SAPO-11 molecular sieve, other are calculated as inorganic oxides, excluding organic impurities), the dimethylbenzyl alcohol hydrogenolysis catalyst It includes the following components:
  • SiO 2 10-40wt% preferably 15-35wt%, such as 15%, 25%, 30%, 35%;
  • PdO 0.01-0.5wt%, preferably 0.05-0.3wt%, such as 0.01%, 0.05%, 0.1%, 0.3%;
  • PtO 2 0.01-0.5wt%, preferably 0.05-0.3wt%, such as 0.01%, 0.05%, 0.1%, 0.3%;
  • WO 3 0.05-2.0wt%, preferably 0.5-2wt%, such as 0.1%, 0.5%, 1.0%, 1.5%;
  • the molar ratio of Pt, Pd and W in the catalyst is 1:0.25-4:1-20.
  • Pt, Pd and Cu are the active components of the catalyst; the purpose of adding W as an auxiliary agent is: W can inhibit the excessive hydrogenation of Pt and Pd, and effectively improve the reaction selectivity, but when the addition amount is large, it will Affect the catalyst activity; the catalyst prepared when Pt, Pd and W are used at the same time and the three are in a certain molar ratio has the best performance.
  • the acidity of SAPO-11 molecular sieve is relatively mild, which can effectively balance the hydrogenation capacity and acidity of the catalyst, and avoid the formation of heavy components by the dehydration and polymerization of dimethylbenzyl alcohol due to the strong acidity of the catalyst.
  • the present application also provides a method for preparing the dimethylbenzyl alcohol hydrogenolysis catalyst, comprising the following steps, in proportion:
  • the water-soluble macromolecular organic matter described in step a) is one or more of maltose and/or sucrose, and the amount of water-soluble macromolecular organic matter is Cu/Mn/Mg oxide and SAPO-11 molecular sieve mass 0.5-5.0wt% of the sum; in the mixed solution of the water-soluble macromolecular organic matter and SAPO-11 molecular sieve, the mass fraction of the sum of the water-soluble macromolecular organic matter and SAPO-11 is 5.0-15.0wt%, and the water solubility is high. If the concentration of molecular organic matter is too low, it will not play a role in pore formation, and if the concentration is too high, it will be unfavorable for mass transfer in the precipitation reaction.
  • the concentration of metal ions in the mixed solution I prepared in step (a) is 1.0-2.0 mol/L.
  • each compound is a soluble salt of the corresponding metal.
  • the Cu-containing compound is selected from one or more of copper nitrate, copper chloride and copper acetate, preferably copper nitrate;
  • the Mn-containing compound is manganese nitrate;
  • the Mg-containing compound is magnesium nitrate, magnesium chloride and one or more of magnesium acetate, preferably magnesium nitrate.
  • step (a) the method of dripping the solution I and the solution II into the water-soluble organic polymer aqueous solution is preferably cocurrent dripping.
  • the alkaline precipitant is selected from sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium carbonate, potassium bicarbonate, potassium hydroxide, ammonium carbonate, ammonium bicarbonate, urea and One or more of ammonia water, preferably sodium carbonate.
  • concentration of the alkaline precipitant solution is 10-20 wt%.
  • Alkaline precipitants are generally used in excess (usually 105-115% of the theoretically required amount for complete precipitation of metal particles) to completely precipitate metal particles. The pH value of the system is determined.
  • the precipitation reaction temperature in step (a) is 50-90°C, preferably 60-80°C; the pH value of the precipitation reaction process is controlled to be 6.0-8.0, preferably 6.0-7.0; the precipitation reaction time is 0.5-4h, preferably 1.0-3h.
  • the aging temperature is 60-90°C, preferably 75-85°C; the aging time is 2-24h, preferably 3-6h.
  • the specific reaction to form the precipitate and the precipitate aging process are well known in the art.
  • step (b) deionized water is used for washing.
  • the drying temperature in step (b) is 100-120°C (eg 105°C, 110°C), the drying time is 4-12h (eg 5h, 8h, 10h); the calcination temperature is 250-350°C (eg 250°C, 280°C, 320°C), the calcination time is 2-8h (eg 3h, 5h, 7h).
  • the processes of filtration, washing, drying and calcination described in this step are all catalyst treatment processes well known in the art.
  • the binder described in step (c) is ammonia-type silica sol
  • the content of SiO 2 in the ammonia-type silica sol is 20-40wt%, such as 25wt%, 30wt%, 35wt%
  • the particle size of ammonia-type silica sol It is 20-40nm, such as 25nm, 30nm, 35nm
  • the pH value of ammonia-type silica sol is 8.0-10.0.
  • the forming aid described in step (c) is saffron powder.
  • the dosage of the forming aid is 2-5 wt % of the mass of the composite compound powder.
  • the process conditions for extrusion molding in step (c) include: fully kneading various materials used for molding, and using F-26 twin-screw extruder to perform extrusion molding at room temperature; extrusion pressure 100-200N (for example, 120N, 150N, 180N), screw speed 10-50r/min (for example, 20r/min, 30r/min, 40r/min).
  • step (c) the drying temperature for drying after extrusion molding is 100-120°C (eg 105°C, 110°C), the drying time is 4-12h (eg 5h, 8h, 10h); the calcination temperature is 400-850°C °C (eg 450°C, 550°C, 650°C), and the calcination time is 2-8h (eg 3h, 5h, 7h).
  • the calcination temperature of step (c) is significantly higher than the calcination temperature of step (b), so that the undecomposed part during the calcination of step (b) can be fully decomposed during the calcination of step (c), and the catalyst pores can be made more smooth and developed.
  • the drying and calcining processes in this step are catalyst treatment processes well known in the art.
  • the composite compound molded product obtained in step (c) is a clover-shaped product, preferably, the molded product has a diameter of 1.5-3 mm and a length of 2.0-8.0 mm.
  • the Pt-containing compound described in step (d) is one or more of platinum nitrate, tetraammine platinum nitrate and platinum chloride; the Pd-containing compound is palladium nitrate, dichlorotetraammine palladium or palladium chloride One or more of ; the W-containing compound is ammonium metatungstate.
  • the impregnation method of step (d) can adopt equal volume impregnation or excess impregnation, both of which are catalyst loading methods well known in the art.
  • the drying temperature in step (d) is 100-120°C, and the drying time is 4-12h; the calcination temperature is 400-600°C, and the calcination time is 2-8h.
  • the content of organic impurities does not exceed 1.0wt%.
  • the content of the components can be ignored in the calculation.
  • the dimethylbenzyl alcohol hydrogenolysis catalyst prepared in the present application can be applied to the reaction of preparing cumene by hydrogenolysis of dimethylbenzyl alcohol, and the specific process can refer to CN104230642B.
  • the dimethylbenzyl alcohol hydrogenolysis catalyst prepared by the present application has the characteristics of high low-temperature activity of noble metal catalyst and excellent reaction selectivity of Cu-based catalyst, low catalyst preparation cost, high dispersion of active components, and smooth catalyst pores.
  • the hydrogenolysis of methyl benzyl alcohol to prepare cumene not only has excellent activity and selectivity, but also has good liquid resistance, high thermal stability and mechanical stability. Above 99.0%.
  • Dimethylbenzyl alcohol was purchased from Tixiai Chemical Industry Development Co., Ltd.
  • SAPO-11 molecular sieve purchased from Zhuoyue Environmental New Materials (Shanghai) Co., Ltd.
  • composition analysis of dimethylbenzyl alcohol hydrogenolysis catalyst was analyzed by X-ray fluorescence spectrometer (XRF);
  • Conversion rate of dimethylbenzyl alcohol (1-moles of dimethylbenzyl alcohol remaining in the reaction solution/moles of dimethylbenzyl alcohol contained in the raw material)*100%;
  • Cumene selectivity moles of generated cumene/moles of converted dimethylbenzyl alcohol*100%
  • the number of moles of dimethyl benzyl alcohol contained in the raw material, the number of moles of cumene generated and the number of moles of dimethyl benzyl alcohol remaining in the reaction solution were calculated after analysis by Agilent 7820A gas chromatograph, and the test conditions included : Use DB-5 chromatographic column, FID detector, vaporization chamber temperature is 260°C, detector temperature is 260°C, carrier gas is high-purity N 2 , and its flow rate is 30ml/min.
  • the composition of catalyst A (in terms of inorganic oxide) is: copper oxide 40.0wt%, manganese oxide 15.0wt%, silica 22.2wt%, magnesium oxide 2.0wt%, SAPO-11 Molecular sieve 20.06wt%, platinum oxide 0.08wt%, palladium oxide 0.06wt%, tungsten oxide 0.6wt%.
  • Catalyst reduction The clover-type catalyst A was loaded into the fixed bed hydrogenation reactor, and the catalyst loading amount was 100 ml. The catalyst was reduced under a mixture of nitrogen and hydrogen before use. During the reduction process, the volume space velocity of the mixed gas was maintained at 300h -1 . First, the temperature of the reactor was raised to 160°C for 2h to remove the physical water adsorbed by the catalyst. The mixture of hydrogen and nitrogen with a fraction of 5v% H2 was pre-reduced for 1 h, and then the proportion of hydrogen in the mixture of hydrogen and nitrogen was gradually increased to 10v%, 20v%, 50v%, 100%, and the hot spot temperature of the catalyst bed was controlled in this process. Do not exceed 220 °C, and finally heat up to 220 °C and reduce under pure hydrogen atmosphere for 3h.
  • the raw material is a cumene solution of 25wt% dimethylbenzyl alcohol, and the reaction is carried out under the conditions of a pressure of 2.0 MPa, a temperature of 150° C., a H 2 /alcohol molar ratio of 8:1, and a liquid hourly space velocity of 3 h -1 .
  • the results of the hydrogenolysis reaction are shown in Table 1.
  • the composition of catalyst B (in terms of inorganic oxide) is: copper oxide 42.05wt%, manganese oxide 10.0wt%, silica 24.0wt%, magnesium oxide 8.0wt%, SAPO-11 Molecular sieve 15.0wt%, platinum oxide 0.05wt%, palladium oxide 0.10wt%, tungsten oxide 0.8wt%.
  • the composition of catalyst C (in terms of inorganic oxide) is: copper oxide 35.0wt%, manganese oxide 14.0wt%, silica 26wt%, magnesium oxide 4.0wt%, SAPO-11 molecular sieve 19.84wt%, platinum oxide 0.10wt%, palladium oxide 0.06wt%, tungsten oxide 1.0wt%.
  • the composition of catalyst D (in terms of inorganic oxide) is: copper oxide 35.3wt%, manganese oxide 10.0wt%, silica 22wt%, magnesium oxide 6.0wt%, SAPO-11 molecular sieve 25.0wt%, platinum oxide 0.15wt%, palladium oxide 0.05wt%, tungsten oxide 1.5wt%.
  • the dripping time is 40min
  • the control precipitation process temperature is 70 °C
  • the precipitation process pH value is 7.0 (wherein, according to the pH value of the precipitation process, the consumption of the sodium carbonate aqueous solution is controlled to be 105% of the theoretically required amount to make the metal particles completely precipitate. ), and then aged at 80°C for 12h.
  • the composition of catalyst E (in terms of inorganic oxide) is: copper oxide 40.0wt%, manganese oxide 12.0wt%, silica 24.0wt%, magnesium oxide 4.0wt%, SAPO-11 Molecular sieve 17.99wt%, platinum oxide 0.06wt%, palladium oxide 0.15wt%, tungsten oxide 1.8wt%.
  • the composition of catalyst F (in terms of oxides) is: copper oxide 32.0wt%, manganese oxide 16.0wt%, silica 26.0wt%, magnesium oxide 6.0wt%, SAPO-11 molecular sieve 18.72wt%, platinum oxide 0.2wt%, palladium oxide 0.08wt%, tungsten oxide 1.0wt%.
  • the steps of preparing the clover-type dimethylbenzyl alcohol hydrogenolysis catalyst are the same as those in Example 1, except that magnesium nitrate was not added when preparing the mixed solution I, and the catalyst G was prepared.
  • the steps of preparing the clover-type dimethylbenzyl alcohol hydrogenolysis catalyst are the same as those in Example 2, except that manganese nitrate was not added during the preparation of mixed solution I, and the rest were the same as in Example 2, and catalyst H was prepared.
  • the steps of preparing the clover-type dimethylbenzyl alcohol hydrogenolysis catalyst are the same as those in Example 4, except that no maltose is added in the reactor and the calcination temperature of the filter cake in step 3 is 500° C. to prepare catalyst J.
  • the steps of preparing the clover-type dimethylbenzyl alcohol hydrogenolysis catalyst are the same as those in Example 5, except that the catalyst K is prepared without supporting Pt and Pd.
  • catalyst B >99.9 99.4 catalyst C >99.9 99.6 catalyst D >99.9 99.5 catalyst E >99.9 99.3 catalyst F >99.9 99.6 catalyst G >99.9 97.5 catalyst H 96.2 99.4 Catalyst I >99.9 96.6 catalyst J 98.5 98.7 catalyst K 78.5 99.4
  • the catalysts A to F have good activity and selectivity, while the catalysts of Comparative Examples 1 to 5 have either low activity or poor selectivity.
  • the above results show that the dimethylbenzyl alcohol hydrogenolysis catalyst prepared in the present application has the characteristics of high low-temperature activity of noble metal catalysts and excellent reaction selectivity of Cu-based catalysts, low catalyst preparation cost, high dispersion of active components, and smooth catalyst pores.
  • the hydrogenolysis of dimethylbenzyl alcohol to prepare cumene it not only has excellent activity and selectivity, but also has good liquid resistance, high thermal stability and mechanical stability.
  • Example 1 The comparison between Example 1 and Comparative Example 1 shows that the addition of Mg can effectively improve the selectivity of the hydrogenolysis reaction.
  • Example 2 shows that the addition of Mn can effectively improve the hydrogenolysis reaction activity of the catalyst.
  • the manganese nitrate solution was not added when the mixed metal salt solution was prepared in Comparative Example 2, the catalyst activity was significantly affected.
  • Example 3 Through the comparison of Example 3 and Comparative Example 3, it is shown that W as an auxiliary agent can effectively improve the reaction selectivity, while the catalyst still maintains a high activity.
  • the catalyst did not contain W, and the catalyst activity was high, but the hydrogenolysis reaction selectivity was poor.
  • Example 4 shows that the shaped catalyst prepared by adding maltose to the reactor and calcining the filter cake at low temperature (250°C) has good mass transfer performance, high activity and selectivity. Comparative Example 4 When the catalyst was prepared without adding maltose and the filter cake roasting temperature was high (500°C), the activity and selectivity of the prepared hydrogenolysis catalyst were low.
  • Example 5 shows that the catalyst has higher activity after introducing Pt and Pd.
  • the catalyst prepared in Comparative Example 5 does not contain Pt and Pd, and the hydrogenolysis catalyst prepared has lower activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种二甲基苄醇氢解催化剂及其制备方法,催化剂包括:CuO 30-70wt%,MnO 2 5-30wt%,MgO 0.5-15wt%,SAPO-11分子筛10-50wt%,SiO 2 10-40wt%,PdO 0.01-0.5wt%,PtO 2 0.01-0.5%,WO 3 0.05-2.0wt%。该催化剂用于二甲基苄醇氢解制备异丙苯时不仅具有优异的活性和选择性,而且成本低、抗液性能好、机械稳定性高。

Description

一种二甲基苄醇氢解催化剂及其制备方法 技术领域
本申请涉及一种二甲基苄醇氢解催化剂及其制备方法,属于催化技术领域。
背景技术
工业上环氧丙烷(PO)生产方法主要有氯醇法、过氧化氢直接氧化法以及共氧化法(Halcon法)。氯醇法是目前国内生产PO的主要路线,该工艺存在严重的设备腐蚀和环境污染等问题。过氧化氢直接氧化路线由于原料成本高,经济性受到影响。
共氧化法又称联产法或间接氧化法,是通过有机过氧化物和丙烯反应生成环氧丙烷,副产有机醇。传统的异丁烷共氧化法和乙苯共氧化法,虽避免了投资高且流程长的氯醇法对环境的严重污染,但PO生产过程中联产大量副产物,PO的生产成本受联产物价格波动影响较大。
异丙苯共氧化法(PO-CHP工艺)包括异丙苯过氧化、丙烯环氧化与二甲基苄醇氢解三个核心反应及相关分离工序,以过氧化氢异丙苯为氧源,联产的二甲基苯甲醇通过氢解生成异丙苯,异丙苯返回过氧化单元反应得到过氧化氢异丙苯,异丙苯实现循环利用。与其它工艺比,异丙苯共氧化法具有转化率和选择性非常高、工艺路线短、设备投资少、无联产物和经济效益更稳定等优点。
二甲基苄醇氢解反应是PO-CHP工艺的核心反应之一。二甲基苄醇氢解催化剂的性能对该过程经济性有显著影响。二甲基苄醇氢解催化剂主要有铂钯贵金属催化剂、镍系催化剂和铜系催化剂等,在许多专利中都有报道。
美国专利US3337646提出了一种α,α-二甲基苄醇气相氢解制异丙苯的方法,采用Ni-Cr-Al 2O 3催化剂,该催化剂含Cr,催化剂制备、使用及回收处理过程中均存在严重的环境污染问题。
专利CN1308273C公开了一种催化氢解α,α-二甲基苯甲醇制备异丙苯的方法,该专利采用2wt%Pd-C催化剂,催化剂成本较高且反应时需引入卤代芳烃、甲酸钠、甲酸及吲哚等物质,增加了分离难度与成本。
专利CN104230640A公开了一种α,α-二甲基苄醇氢解制备异丙苯的方法,该专利采用Mg/Ca/Ba改性的Pd-Ni/SiO 2催化剂,氢解反应生成异丙苯的选择性普遍<98.5%,催化剂成本高且选择性偏低。
专利CN104874406公开了一种载Pt氢解催化剂,以酚醛树脂基活性炭为载体,催化剂制备工艺复杂,放大制备难度大,运行300h后催化剂选择性出现明显下降,催化剂稳定性差。
专利CN110075857A公开了一种二甲基苄醇氢解催化剂及其制备方法,该催化剂主要组分为Cu-Zn-Si-Mg/Ca/Ba-Bi-Pb,采用特殊的成型方法,催化剂抗液性能优异,但该催化剂反应温度仍高达200℃,容易造成活性组分Cu烧结,对催化剂稳定性不利。
专利US6646139B2披露了α,α-二甲基苄醇催化氢解制备异丙苯的工艺过程,该专利采用Cu-Cr催化剂,α,α-二甲基苄醇的转化率达到100%,异丙苯选择性超过97.5%。Cu-Cr催化剂中因存在Cr组分,在催化剂制备、使用及回收过程均存在严重的环境污染问题。
专利CN1257138C提出了用H 2与CO混合气还原Cu催化剂的方法,所用催化剂仍然是Cu-Cr催化剂,该专利中未披露催化剂稳定性指标。
专利CN101992098公开了一种二甲基苄醇氢解制异丙苯的Cu-Zn-Al催化剂,该专利采用的空速为1.5h -1,空速较低且该专利未公开催化剂使用后的状态及催化剂强度。
贵金属催化剂和镍系催化剂用于二甲基苄醇氢解反应时存在催化剂成本 高、易造成芳环饱和、异丙苯选择性较差等缺点;常规铜系催化剂存在活性低、选择性差、易烧结且催化剂抗液性能较差等缺点。
目前,以现有技术制备的催化剂,用于二甲基苄醇催化氢解制备异丙苯时存在催化剂成本高、活性低、选择性差/高温稳定性差/抗液性能差、环境污染严重的问题。因此开发氢解反应性能优异、抗液性能好且成本低的氢解催化剂意义重大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的之一在于提供一种二甲基苄醇氢解制异丙苯的催化剂,该催化剂成本较低,并且具有优异的活性、选择性和稳定性,抗液性能良好。
为实现上述目的,本申请采用如下技术方案:
一种二甲基苄醇氢解催化剂,以催化剂的总重量为100wt%计(除SAPO-11分子筛外,其它以无机氧化物计,不计有机物杂质),所述二甲基苄醇氢解催化剂包括如下各组分:
CuO 30-70wt%,优选45-60wt%,如40%、50%、60%、65%;
MnO 2 5-30wt%,优选8-20wt%,如10%、15%、20%、25%;
MgO 0.5-15wt%,优选1-10wt%,如2%、4%、6%、10%;
SAPO-11分子筛10-50wt%,优选15-40wt%,如15%、25%、35%、45%;
SiO 2 10-40wt%,优选15-35wt%,如15%、25%、30%、35%;
PdO 0.01-0.5wt%,优选0.05-0.3wt%,如0.01%、0.05%、0.1%、0.3%;
PtO 2 0.01-0.5wt%,优选0.05-0.3wt%,如0.01%、0.05%、0.1%、0.3%;
WO 3 0.05-2.0wt%,优选0.5-2wt%,如0.1%、0.5%、1.0%、1.5%;
作为优选方案,催化剂中Pt、Pd及W的摩尔比为1:0.25~4:1~20。
所述催化剂中,Pt、Pd和Cu是催化剂的活性组分;W作为助剂加入其中的目的在于:W可抑制Pt、Pd过度加氢,有效改善反应选择性,但添加量较大时会影响催化剂活性;同时使用Pt、Pd和W且三者按一定摩尔比时制备的催化剂具有最优的性能。SAPO-11分子筛酸性较为温和,可有效平衡催化剂加氢能力和酸性,避免了催化剂酸性强易造成二甲基苄醇脱水聚合生成重组分。
本申请还提供所述二甲基苄醇氢解催化剂的制备方法,包括以下步骤,按照比例:
(a)将含Cu化合物、含Mn化合物和含Mg化合物的混合溶液Ⅰ与碱性沉淀剂溶液Ⅱ滴入水溶性高分子有机物和SAPO-11分子筛的混合液中进行沉淀反应并升温老化,得到老化后的浆液;
(b)将老化后的浆液进行过滤、洗涤、干燥及焙烧得到复合化合物粉体;
(c)向复合化合物粉体中加入粘结剂及成型助剂等充分混合并挤出成型、干燥、焙烧即得复合化合物成型物;
(d)将上述成型物在含Pt化合物、含Pd化合物和含W化合物的水溶液中浸渍,并经干燥、焙烧即得催化剂。
本申请方法中,步骤a)所述的水溶性高分子有机物为麦芽糖和/或蔗糖的一种或多种,水溶性高分子有机物的用量为Cu/Mn/Mg氧化物和SAPO-11分子筛质量之和的0.5-5.0wt%;所述水溶性高分子有机物和SAPO-11分子筛的混合液中,水溶性高分子有机物和SAPO-11之和的质量分数为5.0-15.0wt%,水溶性高分子有机物浓度太低起不到造孔作用,浓度太高对沉淀反应传质不利。
优选地,步骤(a)配制的混合溶液Ⅰ中金属离子浓度为1.0-2.0mol/L。
本领域技术人员理解,在本申请所述的混合溶液Ⅰ中,各化合物均为相应 金属的可溶性盐。例如,所述含Cu化合物选自硝酸铜、氯化铜和乙酸铜中的一种或多种,优选采用硝酸铜;所述含Mn化合物为硝酸锰;所述含Mg化合物为硝酸镁、氯化镁和乙酸镁中的一种或多种,优选采用硝酸镁。
本申请方法中,步骤(a)中,溶液Ⅰ和溶液Ⅱ滴入水溶性有机高分子水溶液的方式优选并流滴入。
本申请方法中,步骤(a)中,所述碱性沉淀剂选自碳酸钠、碳酸氢钠、氢氧化钠、碳酸钾、碳酸氢钾、氢氧化钾、碳酸铵、碳酸氢铵、尿素和氨水中的一种或多种,优选采用碳酸钠。优选地,碱性沉淀剂溶液的浓度是10-20wt%。碱性沉淀剂一般过量使用(通常为使金属粒子完全沉淀理论所需量的105-115%),以使金属粒子沉淀完全,其用量可以由本领域技术人员根据碱性沉淀剂种类及沉淀过程反应体系的pH值等确定。
本申请方法中,步骤(a)的沉淀反应温度为50-90℃,优选60-80℃;控制沉淀反应过程pH值为6.0-8.0,优选6.0-7.0;沉淀反应时间为0.5-4h,优选1.0-3h。老化温度为60-90℃,优选75-85℃;老化时间为2-24h,优选3-6h。具体的反应形成沉淀的过程以及沉淀老化过程为本领域熟知。
本申请的方法中,步骤(b)中,洗涤用的是去离子水。
本申请的方法中,步骤(b)所述干燥温度为100-120℃(例如105℃、110℃),干燥时间为4-12h(例如5h、8h、10h);焙烧温度为250-350℃(例如250℃、280℃、320℃),焙烧时间为2-8h(例如3h、5h、7h)。该步骤中所述过滤、洗涤、干燥和焙烧的过程均为本领域所熟知的催化剂处理过程。
本申请中,步骤(c)所述的粘结剂为氨型硅溶胶,氨型硅溶胶中SiO 2含量为20-40wt%,例如25wt%、30wt%、35wt%;氨型硅溶胶粒径为20-40nm,例如25nm、30nm、35nm;氨型硅溶胶pH值为8.0-10.0。
步骤(c)所述的成型助剂为田菁粉。优选地,成型助剂的用量为复合化合物粉体质量的2-5wt%。
本申请的方法中,步骤(c)所述挤出成型的工艺条件包括:将成型所用各种物料充分混捏,采用F-26双螺杆挤条机在室温操作下进行挤出成型;挤出压力100-200N(例如,120N、150N、180N),螺杆转速10-50r/min(例如,20r/min、30r/min、40r/min)。
步骤(c)中,挤出成型后进行干燥的干燥温度为100-120℃(例如105℃、110℃),干燥时间为4-12h(例如5h、8h、10h);焙烧温度为400-850℃(例如450℃、550℃、650℃),焙烧时间为2-8h(例如3h、5h、7h)。步骤(c)的焙烧温度明显高于步骤(b)的焙烧温度,可使步骤(b)焙烧时未分解的部分在步骤(c)焙烧时充分分解,可使催化剂孔道更为通畅、发达。该步骤中所述干燥和焙烧的过程均为本领域所熟知的催化剂处理过程。
本申请中,步骤(c)得到的复合化合物成型物为三叶草型,优选地,成型物直径为1.5-3mm,长度为2.0-8.0mm。
本申请中,步骤(d)所述含Pt化合物为硝酸铂、四氨合硝酸铂和氯化铂中的一种或多种;含Pd化合物为硝酸钯、二氯四氨钯或氯化钯中的一种或多种;含W化合物为偏钨酸铵。步骤(d)所述浸渍方法可采用等体积浸渍或过量浸渍,均为本领域所熟知的催化剂负载方法。
本申请中,步骤(d)所述的干燥温度为100-120℃,干燥时间为4-12h;焙烧温度为400-600℃,焙烧时间为2-8h。
本申请所制得的二甲基苄醇氢解催化剂中,含有的有机物杂质(例如未完全燃烧或分解的成型助剂田菁粉等,可能含有微量炭)含量不超过1.0wt%,在各组分的含量计算中可以忽略不计。
本申请所制得的二甲基苄醇氢解催化剂可应用于二甲基苄醇氢解制备异丙苯的反应,具体过程可参照CN104230642B。
本申请的有益效果在于:
本申请制备得到的二甲基苄醇氢解催化剂兼具贵金属催化剂低温活性高及Cu系催化剂反应选择性优异的特点,催化剂制备成本低、活性组分分散度高、催化剂孔道通畅,用于二甲基苄醇氢解制备异丙苯时不仅具有优异的活性和选择性,而且抗液性能好、热稳定性及机械稳定性高,反应温度150℃时转化率可以达到99.5%以上,选择性99.0%以上。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为了能够详细地理解本申请的技术特征和内容,下面将更详细地描述本申请的优选实施方式。虽然实施例中描述了本申请的优选实施方式,然而应该理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。
<原料来源>
硅溶胶,购自山东百特新材料有限公司;
异丙苯,购自上海阿拉丁生化科技股份有限公司;
二甲基苄醇,购自梯希爱化成工业发展有限公司。
SAPO-11分子筛,购自卓悦环保新材料(上海)有限公司
<测试方法>
1、二甲基苄醇氢解催化剂的组成分析,采用X射线荧光光谱仪(XRF)分析;
2、二甲基苄醇转化率=(1-反应液中残留的二甲基苄醇的摩尔数/原料中含有的二甲基苄醇的摩尔数)*100%;
异丙苯选择性=生成的异丙苯的摩尔数/已转化的二甲基苄醇的摩尔数*100%;
其中,原料中含有的二甲基苄醇的摩尔数、生成的异丙苯的摩尔数以及反应液中残留的二甲基苄醇的摩尔数采用安捷伦7820A气相色谱仪分析后计算,测试条件包括:采用DB-5色谱柱、FID检测器,汽化室温度为260℃,检测器温度为260℃,载气为高纯N 2、其流速为30ml/min。
实施例1
(1)反应釜内加入500g水、1.85g麦芽糖和40.12g SAPO-11分子筛并搅拌均匀。
(2)将243.0g硝酸铜(Cu(NO 3) 2·3H 2O,242)、123.5g 50wt%硝酸锰溶液(Mn(NO 3) 2,179)和25.4g硝酸镁(Mg(NO 3) 2·6H 2O,256)溶于966.7g水中配制混合盐溶液,配制浓度为15wt%的碳酸钠水溶液,将上述两种溶液分别加热至65℃然后并流滴加至前述反应釜中,滴加时间为60min,控制沉淀过程温度65℃,沉淀过程pH值为7.0(其中,根据沉淀过程的pH值控制碳酸钠水溶液的用量为使金属粒子完全沉淀理论所需量的105%),之后在75℃老化12h。
(3)将老化后的浆液进行过滤、洗涤得到滤饼,将滤饼于110℃干燥12h后于250℃焙烧4h得到复合化合物粉体。
(4)向上述粉体中加入148g氨型硅溶胶(硅溶胶中SiO 2含量为30wt%、SiO 2的粒径为30nm、pH值为9.0)、6g田菁粉及适量水进行充分混捏并挤条成型,110℃干燥6h后于500℃焙烧4h即得外切圆直径为1.5mm、长度2.0-5.0mm的三叶草型成型物。
(5)采用等体积浸渍法负载Pt、Pd和W,首先测定了成型物的吸水率为 0.36g H2O/g 催化剂,取上述99.26g成型物,将0.14g四氨合硝酸铂、0.13g二氯四氨钯(Pd(NH 3) 4Cl 2·H 2O,263)及0.64g偏钨酸铵溶于30g水中并加水稀释至35.7ml配成浸渍液,然后将上述成型物加入浸渍液中并使成型物充分吸收浸渍液,之后于110℃干燥4h,500℃焙烧5h即得催化剂A。
通过X射线荧光光谱仪(XRF)分析,催化剂A(以无机氧化物计)组成为:氧化铜40.0wt%,氧化锰15.0wt%,二氧化硅22.2wt%,氧化镁2.0wt%,SAPO-11分子筛20.06wt%,氧化铂0.08wt%,氧化钯0.06wt%,氧化钨0.6wt%。
催化剂还原:将三叶草型催化剂A装于固定床加氢反应器中,催化剂装填量100ml。催化剂使用前在氮气和氢气混合气下进行还原,还原过程中保持混合气体体积空速300h -1,首先将反应器温度升至160℃恒温2h脱除催化剂吸附的物理水,然后通入含体积分数5v%H 2的氢气和氮气的混合气进行预还原1h,之后逐步提高氢气和氮气混合气中氢气的比例至10v%、20v%、50v%、100%,控制该过程催化剂床层热点温度不超过220℃,最后升温至220℃在纯氢气氛下还原3h。
催化剂性能评价:
原料为25wt%二甲基苄醇的异丙苯溶液,在压力2.0MPa、温度150℃、H 2/醇摩尔比8:1、液时空速3h -1的条件下进行反应。氢解反应结果见表1。
实施例2
(1)反应釜内加入500g水、3.00g蔗糖和30.0g SAPO-11分子筛并搅拌均匀。
(2)将255.4g硝酸铜(Cu(NO 3) 2·3H 2O,242)、82.3g 50wt%硝酸锰溶液(Mn(NO 3) 2,179)和101.8g硝酸镁(Mg(NO 3) 2·6H 2O,256)溶于1122.9g水中配制混合盐溶液,配制浓度为15wt%的碳酸钠水溶液,将上述两种溶液分别加热 至70℃然后并流滴加至前述反应釜中,滴加时间为60min,控制沉淀过程温度70℃,沉淀过程pH值为7.0(其中,根据沉淀过程的pH值控制碳酸钠水溶液的用量为使金属粒子完全沉淀理论所需量的105%),之后在75℃老化12h。
(3)将老化后的浆液进行过滤、洗涤得到滤饼,将滤饼于110℃干燥12h后于250℃焙烧4h得到复合化合物粉体。
(4)向上述粉体中加入120.0g氨型硅溶胶(硅溶胶中SiO 2含量为40wt%、SiO 2的粒径为30nm、pH值为9.0)、4.5g田菁粉及适量水进行充分混捏并挤条成型,110℃干燥6h后于500℃焙烧4h即得外切圆直径为1.5mm、长度2.0-5.0mm的三叶草型成型物。
(5)采用等体积浸渍法负载Pt、Pd和W,首先测定了成型物的吸水率为0.34g H2O/g 催化剂,取上述99.05g成型物,将0.09g四氨合硝酸铂、0.22g二氯四氨钯及0.86g偏钨酸铵溶于30g水中并加水稀释至33.7ml配成浸渍液,然后将成型物加入浸渍液中并使成型物充分吸收浸渍液,之后于110℃干燥4h,500℃焙烧5h即得催化剂B。
通过X射线荧光光谱仪(XRF)分析,催化剂B(以无机氧化物计)组成为:氧化铜42.05wt%,氧化锰10.0wt%,二氧化硅24.0wt%,氧化镁8.0wt%,SAPO-11分子筛15.0wt%,氧化铂0.05wt%,氧化钯0.10wt%,氧化钨0.8wt%。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
实施例3
(1)反应釜内加入500g水、5.83g蔗糖和39.68g SAPO-11分子筛并搅拌均匀。
(2)将212.6g硝酸铜(Cu(NO 3) 2·3H 2O,242)、115.3g 50wt%硝酸锰溶液(Mn(NO 3) 2,179)和50.9g硝酸镁(Mg(NO 3) 2·6H 2O,256)溶于933.7g水中配制 混合盐溶液,配制浓度为15wt%的碳酸钠水溶液,将上述两种溶液分别加热至70℃然后并流滴加至前述反应釜中,滴加时间为40min,控制沉淀过程温度70℃,沉淀过程pH值为7.0(其中,根据沉淀过程的pH值控制碳酸钠水溶液的用量为使金属粒子完全沉淀理论所需量的105%),之后在80℃老化12h。
(3)将老化后的浆液进行过滤、洗涤得到滤饼,将滤饼于110℃干燥12h后于250℃焙烧4h得到复合化合物粉体。
(4)向上述粉体中加入173.3g氨型硅溶胶(硅溶胶中SiO 2含量为30wt%、SiO 2的粒径为30nm、pH值为9.0)、4.5g田菁粉及适量水进行充分混捏并挤条成型,110℃干燥6h后于500℃焙烧4h即得外切圆直径为1.5mm、长度2.0-5.0mm的三叶草型成型物。
(5)采用等体积浸渍法负载Pt、Pd和W,首先测定了成型物的吸水率为0.36g H2O/g 催化剂,取上述98.84g成型物,将0.17g四氨合硝酸铂、0.13g二氯四氨钯及1.07g偏钨酸铵溶于30g水中并加水稀释至35.6ml配成浸渍液,然后将成型物加入浸渍液中并使成型物充分吸收浸渍液,之后于110℃干燥4h,500℃焙烧5h即得催化剂C。
通过X射线荧光光谱仪(XRF)分析,催化剂C(以无机氧化物计)组成为:氧化铜35.0wt%,氧化锰14.0wt%,二氧化硅26wt%,氧化镁4.0wt%,SAPO-11分子筛19.84wt%,氧化铂0.10wt%,氧化钯0.06wt%,氧化钨1.0wt%。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
实施例4
(1)反应釜内加入500g水、4.58g麦芽糖和50.0g SAPO-11分子筛并搅拌均匀。
(2)将214.4g硝酸铜(Cu(NO 3) 2·3H 2O,242)、82.3g 50wt%硝酸锰溶液 (Mn(NO 3) 2,179)和76.3g硝酸镁(Mg(NO 3) 2·6H 2O,256)溶于943.6g水中配制混合盐溶液,配制浓度为15wt%的碳酸钠水溶液,将上述两种溶液分别加热至70℃然后并流滴加至前述反应釜中,滴加时间为40min,控制沉淀过程温度70℃,沉淀过程pH值为7.0(其中,根据沉淀过程的pH值控制碳酸钠水溶液的用量为使金属粒子完全沉淀理论所需量的105%),之后在75℃老化12h。
(3)将老化后的浆液进行过滤、洗涤得到滤饼,将滤饼于110℃干燥12h后于250℃焙烧4h得到复合化合物粉体。
(4)向上述粉体中加入146.7g氨型硅溶胶(硅溶胶中SiO 2含量为30wt%、SiO 2的粒径为30nm、pH值为9.0)、4.5g田菁粉及适量水进行充分混捏并挤条成型,110℃干燥6h后于500℃焙烧4h即得外切圆直径为1.5mm、长度2.0-5.0mm的三叶草型成型物。
(5)采用等体积浸渍法负载Pt、Pd和W,首先测定了成型物的吸水率为0.38g H2O/g 催化剂,取上述98.3g成型物,将0.26g四氨合硝酸铂、0.11g二氯四氨钯及1.60g偏钨酸铵溶于30g水中并加水稀释至37.4ml配成浸渍液,然后将成型物加入浸渍液中并使成型物充分吸收浸渍液,之后于110℃干燥4h,500℃焙烧5h即得催化剂D。
通过X射线荧光光谱仪(XRF)分析,催化剂D(以无机氧化物计)组成为:氧化铜35.3wt%,氧化锰10.0wt%,二氧化硅22wt%,氧化镁6.0wt%,SAPO-11分子筛25.0wt%,氧化铂0.15wt%,氧化钯0.05wt%,氧化钨1.5wt%。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
实施例5
(1)反应釜内加入500g水、3.70g蔗糖和35.98g SAPO-11分子筛并搅拌均匀。
(2)将243.0g硝酸铜(Cu(NO 3) 2·3H 2O,242)、98.8g 50wt%硝酸锰溶液(Mn(NO 3) 2,179)和50.9g硝酸镁(Mg(NO 3) 2·6H 2O,256),375)溶于986.8g水中配制混合盐溶液,配制浓度为15wt%的碳酸钠水溶液,将上述两种溶液分别加热至70℃然后并流滴加至前述反应釜中,滴加时间为40min,控制沉淀过程温度70℃,沉淀过程pH值为7.0(其中,根据沉淀过程的pH值控制碳酸钠水溶液的用量为使金属粒子完全沉淀理论所需量的105%),之后在80℃老化12h。
(3)将老化后的浆液进行过滤、洗涤得到滤饼,将滤饼于110℃干燥6h后于300℃焙烧4h得到复合化合物粉体。
(4)向上述粉体中加入160.0g氨型硅溶胶(硅溶胶中SiO 2含量为30wt%、SiO 2的粒径为30nm、pH值为9.0)、4.5g田菁粉及适量水进行充分混捏并挤条成型,110℃干燥10h后于600℃焙烧4h即得外切圆直径为1.5mm、长度2.0-5.0mm的三叶草型成型物。
(5)采用等体积浸渍法负载Pt、Pd和W,首先测定了成型物的吸水率为0.36g H2O/g 催化剂,取上述97.99g成型物,将0.10g四氨合硝酸铂、0.32g二氯四氨钯及1.92g偏钨酸铵溶于30g水中并加水稀释至35.3ml配成浸渍液,然后将成型物加入浸渍液中并使成型物充分吸收浸渍液,之后于110℃干燥4h,500℃焙烧5h即得催化剂E。
通过X射线荧光光谱仪(XRF)分析,催化剂E(以无机氧化物计)组成为:氧化铜40.0wt%,氧化锰12.0wt%,二氧化硅24.0wt%,氧化镁4.0wt%,SAPO-11分子筛17.99wt%,氧化铂0.06wt%,氧化钯0.15wt%,氧化钨1.8wt%。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
实施例6
(1)反应釜内加入500g水、6.54g麦芽糖和37.44g SAPO-11分子筛并搅 拌均匀。
(2)将194.4g硝酸铜(Cu(NO 3) 2·3H 2O,242)、131.7g 50wt%硝酸锰溶液(Mn(NO 3) 2,179)和76.3g硝酸镁(Mg(NO 3) 2·6H 2O,256)溶于980.3g水中配制混合盐溶液,配制浓度为15wt%的碳酸钠水溶液,将上述两种溶液分别加热至65℃然后并流滴加至前述反应釜中,滴加时间为40min,控制沉淀过程温度65℃,沉淀过程pH值为7.0(其中,根据沉淀过程的pH值控制碳酸钠水溶液的用量为使金属粒子完全沉淀理论所需量的105%),之后在75℃老化12h。
(3)将老化后的浆液进行过滤、洗涤得到滤饼,将滤饼于110℃干燥12h后于250℃焙烧4h得到复合化合物粉体。
(4)向上述粉体中加入173.3g氨型硅溶胶(硅溶胶中SiO 2含量为30wt%、SiO 2的粒径为30nm、pH值为9.0)、4.5g田菁粉及适量水进行充分混捏并挤条成型,110℃干燥6h后于550℃焙烧6h即得外切圆直径为1.5mm、长度2.0-5.0mm的三叶草型成型物。
(5)采用等体积浸渍法负载Pt、Pd和W,首先测定了成型物的吸水率为0.36g H2O/g 催化剂,取上述98.72g成型物,将0.34g四氨合硝酸铂、0.17g二氯四氨钯及1.07g偏钨酸铵溶于30g水中并加水稀释至35.5ml配成浸渍液,然后将成型物加入浸渍液中并使成型物充分吸收浸渍液,之后于110℃干燥4h,500℃焙烧5h即得催化剂F。
通过X射线荧光光谱仪(XRF)分析,催化剂F(以氧化物计)组成为:氧化铜32.0wt%,氧化锰16.0wt%,二氧化硅26.0wt%,氧化镁6.0wt%,SAPO-11分子筛18.72wt%,氧化铂0.2wt%,氧化钯0.08wt%,氧化钨1.0wt%。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
对比例1
制备三叶草型二甲基苄醇氢解催化剂的步骤同实施例1,不同之处在于,配制混合溶液Ⅰ时未加入硝酸镁,制备得到催化剂G。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
对比例2
制备三叶草型二甲基苄醇氢解催化剂的步骤同实施例2,不同之处在于,配制混合溶液Ⅰ时未加入硝酸锰,其余同实施例2,制备得到催化剂H。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
对比例3
制备三叶草型二甲基苄醇氢解催化剂的步骤同实施例3,不同之处在于,只负载了Pt、Pd,未负载W,制备得到催化剂I。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
对比例4
制备三叶草型二甲基苄醇氢解催化剂的步骤同实施例4,不同之处在于,反应釜内未加入麦芽糖且步骤3中滤饼焙烧温度为500℃,制备得到催化剂J。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
对比例5
制备三叶草型二甲基苄醇氢解催化剂的步骤同实施例5,不同之处在于,未负载Pt和Pd,制备得到催化剂K。
对催化剂的还原和氢解反应的进行,其工艺条件和操作过程参照实施例1。
表1催化剂评价结果
  二甲基苄醇转化率% 异丙苯选择性%
催化剂A >99.9 99.5
催化剂B >99.9 99.4
催化剂C >99.9 99.6
催化剂D >99.9 99.5
催化剂E >99.9 99.3
催化剂F >99.9 99.6
催化剂G >99.9 97.5
催化剂H 96.2 99.4
催化剂I >99.9 96.6
催化剂J 98.5 98.7
催化剂K 78.5 99.4
由表1可知,催化剂A至催化剂F具有良好的活性和选择性,而对比例1至对比例5所述催化剂或者活性低或者选择性差。上述结果说明本申请制备得到的二甲基苄醇氢解催化剂兼具贵金属催化剂低温活性高及Cu系催化剂反应选择性优异的特点,催化剂制备成本低、活性组分分散度高、催化剂孔道通畅,用于二甲基苄醇氢解制备异丙苯时不仅具有优异的活性和选择性,而且抗液性能好、热稳定性及机械稳定性高。
通过实施例1和对比例1的比较,说明Mg的加入可有效提高氢解反应选择性。
通过实施例2和对比例2的比较,说明Mn的加入可有效提高催化剂氢解反应活性。对比例2配制混合金属盐溶液时未加入硝酸锰溶液时,催化剂活性受到显著影响。
通过实施例3和对比例3的比较,说明W作为助剂能够有效提高反应选择性,同时催化剂依然保持很高的活性。而对比例2中催化剂不含W,催化剂活性较高,但氢解反应选择性较差。
通过实施例4和对比例4的比较,说明反应釜中加入麦芽糖且滤饼低温(250℃)焙烧制备的成型催化剂传质性能好,活性和选择性高。对比例4制备催化剂时未加入麦芽糖且滤饼焙烧温度高(500℃),制备的氢解催化剂活性和选择性偏低。
通过实施例5和对比例5的比较,说明催化剂上引入Pt和Pd后活性较高,对比例5制备的催化剂不含Pt、Pd,制备的氢解催化剂活性较低。

Claims (11)

  1. 一种二甲基苄醇氢解催化剂,其中,以催化剂的总重量为100wt%计,所述二甲基苄醇氢解催化剂包括如下各组分:
    Figure PCTCN2021073011-appb-100001
  2. 根据权利要求1所述的催化剂,其中,CuO为45-60wt%;
    优选地,MnO 2为8-20wt%;
    优选地,MgO为1-10wt%;
    优选地,SAPO-11分子筛为15-40wt%;
    优选地,SiO 2为15-35wt%;
    优选地,PdO为0.05-0.3wt%;
    优选地,PtO 2为0.05-0.3wt%;
    优选地,WO 3为0.5-2wt%。
  3. 根据权利要求1或2所述的催化剂,其中Pt、Pd及W的摩尔比为1:0.25~4:1~20。
  4. 一种制备权利要求1-3任一项所述催化剂的方法,其包括以下步骤,按照比例:
    (a)将含Cu化合物、含Mn化合物和含Mg化合物的混合溶液Ⅰ与碱性 沉淀剂溶液Ⅱ加入水溶性高分子有机物和SAPO-11分子筛的混合液中进行沉淀反应并升温老化,得到老化后的浆液;
    (b)将老化后的浆液进行过滤、洗涤、干燥及焙烧得到复合化合物粉体;
    (c)向复合化合物粉体中加入粘结剂及成型助剂,充分混合并挤出成型、干燥、焙烧即得复合化合物成型物;
    (d)将前述成型物在含Pt化合物、含Pd化合物和含W化合物的水溶液中浸渍,经干燥、焙烧即得催化剂。
  5. 根据权利要求4所述的方法,其中,步骤(a)所述的水溶性高分子有机物为麦芽糖和/或蔗糖,水溶性高分子有机物的用量为Cu/Mn/Mg氧化物和SAPO-11分子筛质量之和的0.5-5.0wt%。
  6. 根据权利要求4或5所述的方法,其中,步骤(a)所述的含铜化合物选自硝酸铜、氯化铜和乙酸铜中的一种或多种;和/或:
    所述含锰化合物为硝酸锰;和/或:
    所述含镁化合物选自硝酸镁、氯化镁和乙酸镁中的一种或多种;和/或:
    所述碱性沉淀剂为碳酸钠、碳酸氢钠、氢氧化钠、碳酸钾、碳酸氢钾、氢氧化钾、碳酸铵、碳酸氢铵、尿素和氨水中的一种或多种。
  7. 根据权利要求4-6任一项所述的方法,其中,步骤(a)所述的沉淀反应的温度为50-90℃,沉淀过程pH值为6.0-8.0,沉淀反应时间为0.5-4h;和/或:所述老化温度为60-90℃,老化时间为2-24h。
  8. 根据权利要求4-7任一项所述的方法,其中,步骤(b)所述的干燥温度为100-120℃,干燥时间为4-12h;焙烧温度为250-350℃,焙烧时间为2-8h。
  9. 根据权利要求4-8任一项所述的方法,其中,步骤(c)所述的粘结剂为氨型硅溶胶,氨型硅溶胶中SiO 2含量为20-40wt%,氨型硅溶胶粒径为 20-40nm,氨型硅溶胶pH值为8.0-10.0;和/或:步骤(c)所述干燥温度为100-120℃,干燥时间为4-12h;焙烧温度为400-850℃,焙烧时间为2-8h。
  10. 根据权利要求4-9任一项所述的方法,其中,步骤(d)所述含Pt化合物为硝酸铂、四氨合硝酸铂或氯化铂中的一种或多种;含Pd化合物为硝酸钯、二氯四氨钯或氯化钯中的一种或多种;含钨化合物为偏钨酸铵。
  11. 根据权利要求4-10任一项所述的方法,其特征在于,步骤(d)所述的干燥温度为100-120℃,干燥时间为4-12h;焙烧温度为400-600℃,焙烧时间为2-8h。
PCT/CN2021/073011 2020-12-16 2021-01-21 一种二甲基苄醇氢解催化剂及其制备方法 WO2022126825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011485031.2 2020-12-16
CN202011485031.2A CN112517059B (zh) 2020-12-16 2020-12-16 一种二甲基苄醇氢解催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022126825A1 true WO2022126825A1 (zh) 2022-06-23

Family

ID=75000573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073011 WO2022126825A1 (zh) 2020-12-16 2021-01-21 一种二甲基苄醇氢解催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN112517059B (zh)
WO (1) WO2022126825A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602536B (zh) * 2020-12-03 2023-07-11 万华化学集团股份有限公司 一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法
CN114192162B (zh) * 2021-12-13 2023-06-16 万华化学集团股份有限公司 一种二甲基苄醇氢解催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155245A (ja) * 2007-12-26 2009-07-16 Sumitomo Chemical Co Ltd クメンの製造方法
CN101733093A (zh) * 2008-11-21 2010-06-16 中国石油化工股份有限公司 α,α-二甲基苄醇催化氢解制异丙苯的催化剂
CN102463121A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 高稳定性Cu基催化剂及其制备方法
CN104230640A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 α,α-二甲基苄醇氢解制备异丙苯的方法
CN110075857A (zh) * 2019-05-09 2019-08-02 万华化学集团股份有限公司 一种二甲基苄醇氢解催化剂及其制备方法
CN110813319A (zh) * 2019-12-03 2020-02-21 红宝丽集团股份有限公司 一种氢解用催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155245A (ja) * 2007-12-26 2009-07-16 Sumitomo Chemical Co Ltd クメンの製造方法
CN101733093A (zh) * 2008-11-21 2010-06-16 中国石油化工股份有限公司 α,α-二甲基苄醇催化氢解制异丙苯的催化剂
CN102463121A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 高稳定性Cu基催化剂及其制备方法
CN104230640A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 α,α-二甲基苄醇氢解制备异丙苯的方法
CN110075857A (zh) * 2019-05-09 2019-08-02 万华化学集团股份有限公司 一种二甲基苄醇氢解催化剂及其制备方法
CN110813319A (zh) * 2019-12-03 2020-02-21 红宝丽集团股份有限公司 一种氢解用催化剂及其制备方法

Also Published As

Publication number Publication date
CN112517059B (zh) 2022-03-11
CN112517059A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN110075857B (zh) 一种二甲基苄醇氢解催化剂及其制备方法
US20020025907A1 (en) Catalyst for selective hydrogenation, process for preparation of the same, its use in selective hydrogenation and method of regeneration thereof
WO2022126825A1 (zh) 一种二甲基苄醇氢解催化剂及其制备方法
CN109529870B (zh) 一种苯乙酮加氢催化剂及其制备方法
CN104148086B (zh) 制备乙醇的催化剂及方法
WO2012040977A1 (zh) 一种二氧化碳催化加氢制甲醇的催化剂及制备方法
CN112536064B (zh) 一种失活丙烷脱氢催化剂的再生方法
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN111715238B (zh) 一种加氢催化剂及其制备方法和应用
CN112374968B (zh) 一种负载型催化剂在萘的衍生物选择性加氢反应中的应用
CN112010802B (zh) 3-甲基吡啶的连续制备方法
CN112237916B (zh) 一种高活性甲醇合成催化剂的制备方法
JP4177252B2 (ja) 無水マレイン酸の水素化によるテトラヒドロフランの選択的製法
CN113058638A (zh) 一种用于合成2,5-二甲基吡嗪的催化剂及其制备方法和应用
AU2018447034B2 (en) Ultra high selective hydrogenation catalyst and preparation thereof
WO2023134779A1 (zh) 加氢催化剂及其制备方法和制备异己二醇和甲基异丁基甲醇的方法
CN114192162A (zh) 一种二甲基苄醇氢解催化剂及其制备方法与应用
CN112570040B (zh) 一种异丙苯催化剂的活化方法及得到的异丙苯催化剂与其应用
CN108503518A (zh) 一种复合海泡石基催化剂的制备及其应用
CN112387272A (zh) 一种钛-锰-铈共氧化物催化材料及其制备方法和在合成甲基丙烯腈中的应用
CN113070069A (zh) 一种环己醇脱氢制环己酮的催化剂及其制备方法和应用
CN114073990A (zh) 一种无需焙烧的铜基加氢催化剂制备方法
WO2023108336A1 (zh) 一种二甲基苄醇氢解催化剂及其制备方法与应用
CN111036222B (zh) 一种α,α-二甲基苄醇氢解制异丙苯的催化剂及其制备方法和应用
CN113019444B (zh) 羰基化-除水双功能催化剂前驱体及其制备方法、羰基化-除水双功能催化剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904772

Country of ref document: EP

Kind code of ref document: A1