WO2022111479A1 - 车辆控制方法、装置、介质、设备及车辆 - Google Patents

车辆控制方法、装置、介质、设备及车辆 Download PDF

Info

Publication number
WO2022111479A1
WO2022111479A1 PCT/CN2021/132491 CN2021132491W WO2022111479A1 WO 2022111479 A1 WO2022111479 A1 WO 2022111479A1 CN 2021132491 W CN2021132491 W CN 2021132491W WO 2022111479 A1 WO2022111479 A1 WO 2022111479A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
deceleration
vehicle
duration
historical
Prior art date
Application number
PCT/CN2021/132491
Other languages
English (en)
French (fr)
Inventor
王光平
Original Assignee
北京车和家信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家信息技术有限公司 filed Critical 北京车和家信息技术有限公司
Priority to US18/254,649 priority Critical patent/US20230406310A1/en
Publication of WO2022111479A1 publication Critical patent/WO2022111479A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of vehicle control, and in particular, to a vehicle control method, device, medium, device, and vehicle.
  • the purpose of the present disclosure is to provide a vehicle control method, device, medium, device and vehicle, so as to realize adaptive braking energy recovery and improve the driving experience of the driver.
  • a vehicle control method comprising:
  • the target time period takes the moment when the braking command is received as a time starting point, and the time period corresponding to the target time period is the target coasting time length;
  • the vehicle is brake-controlled according to the target deceleration since reaching the time end of the target period.
  • the method further includes:
  • the state information indicates that the accelerator pedal is in a released state, it is determined that the braking command is received.
  • the braking command carries a target vehicle motion parameter
  • the method also includes:
  • a driving habit model corresponding to the target vehicle motion parameter is determined according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the target driving habit model.
  • the driving habit model corresponding to the preset vehicle motion parameters is obtained in the following manner:
  • a preferred deceleration corresponding to the preset vehicle motion parameter is determined according to the historical deceleration.
  • the determining the preferred taxiing duration corresponding to the preset vehicle motion parameter according to the historical taxiing duration includes any one of the following:
  • the determining of the preferred deceleration corresponding to the preset vehicle motion parameter according to the historical deceleration includes any one of the following:
  • the preferred deceleration is determined according to the historical deceleration with the highest frequency among the historical decelerations.
  • the target vehicle motion parameter includes the speed and/or acceleration of the vehicle
  • the preset vehicle motion parameters include the speed and/or acceleration of the vehicle.
  • the target driving habit model records the user's preferred taxiing duration and preferred deceleration
  • Determining the target taxiing duration and target deceleration corresponding to the user through the target driving habit model includes:
  • the target deceleration is determined according to the user's preferred deceleration recorded in the target driving habit model.
  • the determining the target deceleration according to the user's preferred deceleration recorded by the target driving habit model includes:
  • the traffic information includes a distance between the vehicle and a target object in front of the vehicle, and a relative speed between the vehicle and the target object;
  • a weighted calculation is performed to obtain the target deceleration.
  • the second weight is obtained in the following manner:
  • the weight corresponding to the acquired traffic information is used as the second weight.
  • performing braking control on the vehicle according to the target deceleration includes:
  • the determining of the target braking torque corresponding to the target deceleration includes:
  • the target braking torque is obtained.
  • a vehicle control device comprising:
  • a first determining module configured to determine a target taxiing duration and a target deceleration corresponding to the user through a target driving habit model when a braking command is received;
  • a first control module configured to control the vehicle to coast within a target time period, the target time period takes the moment when the braking command is received as a time starting point, and the time period corresponding to the target time period is the target coasting time length ;
  • the second control module is configured to perform braking control on the vehicle according to the target deceleration since reaching the time end of the target period.
  • the apparatus further comprises:
  • an acquisition module for acquiring the state information of the accelerator pedal of the vehicle
  • the device is configured to determine that the braking command is received if the state information indicates that the accelerator pedal is in a released state.
  • the braking command carries a target vehicle motion parameter
  • the device also includes:
  • the second determining module is configured to, when receiving the braking instruction, determine the driving habit model corresponding to the target vehicle motion parameter according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the driving habit model corresponding to the target vehicle motion parameter.
  • Target driving habits model is configured to, when receiving the braking instruction, determine the driving habit model corresponding to the target vehicle motion parameter according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the driving habit model corresponding to the target vehicle motion parameter.
  • Target driving habits model is configured to, when receiving the braking instruction, determine the driving habit model corresponding to the target vehicle motion parameter according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the driving habit model corresponding to the target vehicle motion parameter.
  • the device is configured to obtain a driving habit model corresponding to preset vehicle motion parameters in the following manner:
  • the acquisition sub-module is used to acquire the historical coasting duration and historical deceleration corresponding to the preset vehicle motion parameters of the user in each historical braking process, where the historical coasting duration is acceleration during the historical braking process the time period from when the pedal is released to when the brake pedal is depressed, the historical deceleration is determined according to the maximum deceleration in the historical braking process;
  • a second determining submodule configured to determine a preferred taxiing duration corresponding to the preset vehicle motion parameter according to the historical taxiing duration
  • a third determination sub-module is configured to determine a preferred deceleration corresponding to the preset vehicle motion parameter according to the historical deceleration.
  • the second determination sub-module is configured to determine the preferred taxiing duration by any one of the following:
  • the third determination sub-module is configured to determine the preferred deceleration by any one of the following:
  • the preferred deceleration is determined according to the historical deceleration with the highest frequency among the historical decelerations.
  • the target vehicle motion parameter includes the speed and/or acceleration of the vehicle
  • the preset vehicle motion parameters include the speed and/or acceleration of the vehicle.
  • the target driving habit model records the user's preferred taxiing duration and preferred deceleration
  • the first determining module includes:
  • a fourth determining submodule configured to determine the target taxiing duration according to the user's preferred taxiing duration recorded by the target driving habit model
  • a fifth determining submodule is configured to determine the target deceleration according to the user's preferred deceleration recorded by the target driving habit model.
  • the fifth determination submodule is used for:
  • the traffic information includes a distance between the vehicle and a target object in front of the vehicle, and a relative speed between the vehicle and the target object;
  • a weighted calculation is performed to obtain the target deceleration.
  • the second weight is obtained in the following manner:
  • the weight corresponding to the acquired traffic information is used as the second weight.
  • the second control module includes:
  • a sixth determination submodule configured to determine a target braking torque corresponding to the target deceleration
  • a control sub-module for performing braking control on the vehicle according to the target braking torque is provided.
  • the sixth determination sub-module is used for:
  • the target braking torque is obtained.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the method described in the first aspect of the present disclosure.
  • an electronic device comprising:
  • a processor for executing the computer program in the memory to implement the steps of the method of the first aspect of the present disclosure.
  • a vehicle for performing the steps of the method of the first aspect of the present disclosure.
  • the target driving habit model is used to determine the target coasting duration and target deceleration corresponding to the user, and within the target period, the vehicle is controlled to coast, and the target period is to receive the braking command
  • the time at is the starting point of time
  • the duration corresponding to the target period is the target coasting duration
  • the vehicle is braked according to the target deceleration.
  • the determined target taxiing duration and target deceleration can be more in line with the user's driving habits.
  • the kinetic energy during the sliding process can be converted into electrical energy for storage, thereby realizing adaptive braking energy recovery, without the need for additional manual control by the user, and improving the user's driving experience.
  • FIG. 1 is a flowchart of a vehicle control method provided according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram of a vehicle control device provided according to an embodiment of the present disclosure
  • Fig. 3 is a block diagram of an electronic device according to an exemplary embodiment.
  • FIG. 1 is a flowchart of a vehicle control method provided according to an embodiment of the present disclosure.
  • the method provided by the present disclosure can be applied to any device capable of controlling a vehicle, for example, a vehicle controller. As shown in Figure 1, the method may include the following steps.
  • step 11 when a braking command is received, the target taxiing duration and target deceleration corresponding to the user are determined through the target driving habit model.
  • step 12 within the target period, the vehicle is controlled to coast.
  • step 13 the braking control of the vehicle is performed according to the target deceleration since reaching the time end of the target period.
  • the target time period takes the moment when the braking command is received as the time starting point, and the time period corresponding to the target time period is the target coasting time length.
  • a brake button may be provided on the vehicle, and when it is detected that the user triggers the brake button, it can be determined that a brake command is received.
  • the method provided by the present disclosure may further include the following steps:
  • the state information indicates that the accelerator pedal is in a released state, it is determined that a braking command is received.
  • the accelerator pedal is in a released state, which can mean that the accelerator pedal is in a fully released state, that is, the accelerator pedal is completely released.
  • the braking command may carry target vehicle motion parameters.
  • the target vehicle motion parameter includes the speed and/or acceleration of the vehicle.
  • the speed of the vehicle may be obtained by a vehicle speed sensor provided in the vehicle.
  • the acceleration of the vehicle can be obtained by an acceleration sensor provided in the vehicle.
  • the acceleration of the vehicle can be obtained by collecting the vehicle speed and using an existing algorithm for obtaining the acceleration from the vehicle speed.
  • step 11 is executed, and the target taxiing duration and target deceleration corresponding to the user are determined through the target driving habit model.
  • the target driving habit model is generated based on the user's driving habit.
  • the target driving habit model can be stored in a preset storage unit of the vehicle, for example, a VCU (Vehicle Control Unit, vehicle controller).
  • VCU Vehicle Control Unit, vehicle controller
  • a variety of alternative driving habit models may be pre-trained and stored, and a current driving habit model (ie, a target habit model) to be used is selected from the multiple models based on the braking command.
  • a current driving habit model ie, a target habit model
  • the method provided by the present disclosure may further include the following steps:
  • the driving habit model corresponding to the target vehicle motion parameter is determined as the target driving habit model.
  • the preset vehicle motion parameters may include the speed and/or acceleration of the vehicle, and the preset vehicle motion parameters may be understood as the preset speed and/or acceleration.
  • each preset vehicle motion parameter corresponds to its own driving habit model. Therefore, based on the actual target vehicle motion parameters of the vehicle, the target can be determined from these existing driving habit models. Model of driving habits.
  • the driving habit model corresponding to the preset vehicle motion parameters can be obtained in the following manner:
  • the preferred deceleration corresponding to the preset vehicle motion parameters is determined according to the historical deceleration.
  • the historical coasting duration is the duration from when the accelerator pedal is released to when the brake pedal is depressed in the historical braking process.
  • the historical deceleration may be determined according to the maximum deceleration in the historical braking process. For example, the product of the maximum deceleration in a historical braking process and a preset coefficient is used as the historical deceleration corresponding to the historical braking process. Wherein, for example, the preset coefficient may be 80%.
  • the user's preferred taxiing duration can be further determined.
  • the preferred taxiing duration is determined according to the historical taxiing duration, which may include any one of the following:
  • the preferred taxiing duration is determined according to the historical taxiing duration with the highest frequency among the historical taxiing durations.
  • a plurality of obtained historical taxiing durations may be averaged first, and the obtained average value may be determined as the preferred taxiing duration.
  • the median of the obtained multiple historical taxiing durations may be obtained, and the obtained median result may be determined as the preferred taxiing duration.
  • the duration value with the highest frequency among the obtained multiple historical gliding durations may be counted, and the duration value may be determined as the preferred gliding duration.
  • the preferred deceleration is determined according to the historical deceleration, which may include any of the following:
  • the preferred deceleration is determined according to the historical deceleration with the highest frequency among the historical decelerations.
  • a plurality of obtained historical decelerations may be averaged first, and the obtained average value may be determined as the preferred deceleration.
  • the median of multiple obtained historical decelerations may be obtained, and the obtained median result may be determined as the preferred deceleration.
  • the deceleration value with the highest frequency among the obtained multiple historical decelerations may be counted, and the deceleration value may be determined as the preferred deceleration.
  • a target driving habit model that conforms to the target vehicle motion parameters can be determined, and further, based on the target driving habit model, it can be used for subsequent data deal with.
  • the target driving habit model records the user's preferred taxiing duration and preferred deceleration, and further, it is easy to obtain the target taxiing duration and target deceleration corresponding to the user.
  • Step 11 may include the following steps:
  • the target deceleration is determined according to the user's preferred deceleration recorded by the target driving habit model.
  • determining the target taxiing duration according to the user's preferred taxiing duration recorded by the target driving habit model may include the following steps:
  • the user's preferred taxiing duration recorded by the target driving habit model is directly used as the target taxiing duration.
  • the target taxiing duration can be quickly determined, and the data processing speed is fast.
  • determining the target taxiing duration according to the user's preferred taxiing duration recorded by the target driving habit model may include the following steps:
  • the user's preferred taxiing duration recorded by the target driving habit model is pre-calculated with the preset value, and the obtained result is used as the target taxiing duration.
  • the preset operation may be multiplication, addition, subtraction, and the like.
  • determining the target deceleration according to the user's preferred deceleration recorded by the target driving habit model may include the following steps:
  • the user's preferred deceleration recorded by the target driving habit model is directly used as the target deceleration.
  • the target taxiing duration can be quickly determined, and the data processing speed is fast.
  • determining the target deceleration according to the user's preferred deceleration recorded by the target driving habit model may include the following steps:
  • a weighted calculation is performed according to the first deceleration, the second deceleration, the first weight corresponding to the first deceleration, and the second weight corresponding to the second deceleration to obtain the target deceleration.
  • the traffic information includes the distance between the vehicle and the target object in front of the vehicle, and the relative speed between the vehicle and the target object.
  • the target object may be, for example, other vehicles, obstacles, traffic lights, and the like.
  • the traffic information may be acquired through one or more of vehicle radar, camera, and V2X (Vehicle to X, Internet of Vehicles).
  • a second deceleration may be determined according to the traffic information, where the second deceleration is a deceleration capable of ensuring safe driving of the vehicle. For example, if the traffic information includes the distance between the vehicle and the vehicle in front and the relative speed between the vehicle and the vehicle in front, the second deceleration should be determined for the purpose of not colliding with the vehicle in front. For another example, if the traffic information includes the distance between the vehicle and the traffic light and the relative speed between the vehicle and the traffic light (that is, the vehicle speed), and the traffic light is a red light, it should be determined that the vehicle can stop the vehicle for the purpose of not running the red light. The deceleration before the stop line, as the second deceleration.
  • a weighted calculation may be performed according to the first deceleration, the second deceleration, the first weight corresponding to the first deceleration, and the second weight corresponding to the second deceleration to obtain target deceleration.
  • the sum of the first weight and the second weight is 1, and the value ranges of both are: greater than or equal to 0, and less than or equal to 1.
  • the first weight and the second weight may be preset fixed values.
  • the second weight can be obtained by:
  • the weight corresponding to the acquired traffic information is used as the second weight.
  • a distance interval between the vehicle and the preceding vehicle may be set, and a weight value corresponding to each distance interval may be set, and further, according to the obtained traffic information, the distance interval to which the distance between the vehicle and the preceding vehicle belongs is determined, Then, the weight value corresponding to this distance interval is obtained as the second weight.
  • the pre-set weight corresponding to the distance between the vehicle and the vehicle in front is less than 50m is 0.8, and the distance between the vehicle and the vehicle in front is between 50m and 100m, the corresponding weight is 0.5, and the distance between the vehicle and the vehicle in front is greater than 100m
  • the corresponding weight is 0.2, and if the obtained traffic information indicates that the distance between the vehicle and the preceding vehicle is 58m, the second weight can be determined to be 0.5.
  • the second weight can be determined to be 0.
  • the target deceleration is obtained through weighted calculation, which can not only ensure safety, but also take into account the driver's driving habits.
  • step 12 within the target period, the vehicle is controlled to coast.
  • the target period takes the moment when the braking command is received as the time starting point, and the duration corresponding to the target period is the target taxiing duration. That is to say, starting from the moment when the braking command is received, the vehicle is controlled to coast until the target coasting duration is reached, which belongs to the coasting stage of the vehicle.
  • step 13 the braking control of the vehicle is performed according to the target deceleration since reaching the time end of the target period.
  • the braking control of the vehicle according to the target deceleration may include the following steps:
  • the braking control of the vehicle is performed.
  • the braking torque corresponding to the target deceleration can be calculated according to the conversion formula between the deceleration and the braking torque.
  • the conversion between deceleration and braking torque belongs to common knowledge in the art, and the specific calculation method is not listed here.
  • determining the target braking torque corresponding to the target deceleration may include the following steps:
  • the target braking torque is obtained.
  • the vehicle dynamics model will calculate the torque result based on information such as target deceleration, slope, vehicle speed, and vehicle mass.
  • the vehicle dynamics model considers vehicle dynamics factors, including tire resistance, air resistance, internal resistance (including mechanical loss, inertial factors, etc.), acceleration resistance, and slope resistance, which are conventional methods in vehicle dynamics, and will not be described here. .
  • the torque result may be directly used as the target braking torque.
  • drivability filtering eg, first-order lag filtering
  • the target driving habit model is used to determine the target coasting duration and target deceleration corresponding to the user, and within the target time period, the vehicle is controlled to coast, and the target time period is used to receive the braking command
  • the time at is the starting point of time
  • the duration corresponding to the target period is the target coasting duration
  • the vehicle is braked according to the target deceleration.
  • the determined target taxiing duration and target deceleration can be more in line with the user's driving habits.
  • the kinetic energy during the sliding process can be converted into electrical energy for storage, thereby realizing adaptive braking energy recovery, without the need for additional manual control by the user, and improving the user's driving experience.
  • FIG. 2 is a block diagram of a vehicle control apparatus provided according to an embodiment of the present disclosure. As shown in Figure 2, the device 20 includes:
  • the first determination module 21 is configured to determine the target taxiing duration and target deceleration corresponding to the user through the target driving habit model when the braking command is received;
  • the first control module 22 is configured to control the vehicle to coast within a target period, the target period takes the moment when the braking command is received as a time starting point, and the duration corresponding to the target period is the target coasting duration;
  • the second control module 23 is configured to perform braking control on the vehicle according to the target deceleration since reaching the time end of the target period.
  • the apparatus 20 further includes:
  • an acquisition module for acquiring the state information of the accelerator pedal of the vehicle
  • the device 20 is configured to determine that the braking command is received if the state information indicates that the accelerator pedal is in a released state.
  • the braking command carries a target vehicle motion parameter
  • the device 20 also includes:
  • the second determining module is configured to, when receiving the braking instruction, determine the driving habit model corresponding to the target vehicle motion parameter according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the driving habit model corresponding to the target vehicle motion parameter.
  • Target driving habits model is configured to, when receiving the braking instruction, determine the driving habit model corresponding to the target vehicle motion parameter according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the driving habit model corresponding to the target vehicle motion parameter.
  • Target driving habits model is configured to, when receiving the braking instruction, determine the driving habit model corresponding to the target vehicle motion parameter according to the respective driving habit models corresponding to various preset vehicle motion parameters, as the driving habit model corresponding to the target vehicle motion parameter.
  • the device 20 is configured to obtain a driving habit model corresponding to preset vehicle motion parameters in the following manner:
  • the acquisition sub-module is used to acquire the historical coasting duration and historical deceleration corresponding to the preset vehicle motion parameters of the user in each historical braking process, where the historical coasting duration is acceleration during the historical braking process the time period from when the pedal is released to when the brake pedal is depressed, the historical deceleration is determined according to the maximum deceleration in the historical braking process;
  • a second determining submodule configured to determine a preferred taxiing duration corresponding to the preset vehicle motion parameter according to the historical taxiing duration
  • a third determination sub-module is configured to determine a preferred deceleration corresponding to the preset vehicle motion parameter according to the historical deceleration.
  • the second determination sub-module is configured to determine the preferred taxiing duration by any one of the following:
  • the third determination sub-module is configured to determine the preferred deceleration by any one of the following:
  • the preferred deceleration is determined according to the historical deceleration with the highest frequency among the historical decelerations.
  • the target vehicle motion parameter includes the speed and/or acceleration of the vehicle
  • the preset vehicle motion parameters include the speed and/or acceleration of the vehicle.
  • the target driving habit model records the user's preferred taxiing duration and preferred deceleration
  • the first determination module 21 includes:
  • a fourth determining submodule configured to determine the target taxiing duration according to the user's preferred taxiing duration recorded by the target driving habit model
  • a fifth determining submodule is configured to determine the target deceleration according to the user's preferred deceleration recorded by the target driving habit model.
  • the fifth determination submodule is used for:
  • the traffic information includes a distance between the vehicle and a target object in front of the vehicle, and a relative speed between the vehicle and the target object;
  • a weighted calculation is performed to obtain the target deceleration.
  • the second weight is obtained in the following manner:
  • the weight corresponding to the acquired traffic information is used as the second weight.
  • the second control module 23 includes:
  • a sixth determination submodule configured to determine a target braking torque corresponding to the target deceleration
  • a control sub-module for performing braking control on the vehicle according to the target braking torque is provided.
  • the sixth determination sub-module is used for:
  • the target braking torque is obtained.
  • the present disclosure also provides a vehicle for executing the vehicle control method provided by any embodiment of the present disclosure.
  • FIG. 3 is a block diagram of an electronic device 700 according to an exemplary embodiment.
  • the electronic device 700 may include: a processor 701 and a memory 702 .
  • the electronic device 700 may also include one or more of a multimedia component 703 , an input/output (I/O) interface 704 , and a communication component 705 .
  • I/O input/output
  • the processor 701 is used to control the overall operation of the electronic device 700 to complete all or part of the steps in the above-mentioned vehicle control method.
  • the memory 702 is used to store various types of data to support operations on the electronic device 700, such data may include, for example, instructions for any application or method operating on the electronic device 700, and application-related data, Such as contact data, messages sent and received, pictures, audio, video, and so on.
  • the memory 702 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, SRAM for short), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 703 may include screen and audio components. Wherein the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 702 or transmitted through communication component 705 .
  • the audio assembly also includes at least one speaker for outputting audio signals.
  • the I/O interface 704 provides an interface between the processor 701 and other interface modules, and the above-mentioned other interface modules may be a keyboard, a mouse, a button, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 705 is used for wired or wireless communication between the electronic device 700 and other devices. Wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them The combination is not limited here. Therefore, the corresponding communication component 705 may include: Wi-Fi module, Bluetooth module, NFC module and so on.
  • the electronic device 700 may be implemented by one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processors (Digital Signal Processor, DSP for short), digital signal processing devices (Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSP digital signal processing devices
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components
  • microcontroller microprocessor or other electronic components
  • a computer-readable storage medium including program instructions, the program instructions implementing the steps of the above-mentioned vehicle control method when executed by a processor.
  • the computer-readable storage medium can be the above-mentioned memory 702 including program instructions, and the above-mentioned program instructions can be executed by the processor 701 of the electronic device 700 to complete the above-mentioned vehicle control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆控制方法包括:在接收到制动指令时,通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度;在目标时段内,控制所述车辆滑行,所述目标时段以接收到所述制动指令的时刻为时间起点,且所述目标时段对应的时长为所述目标滑行时长;自到达所述目标时段的时间终点开始,根据所述目标减速度,对所述车辆进行制动控制。

Description

车辆控制方法、装置、介质、设备及车辆
相关申请的交叉引用
本申请基于申请号为202011349236.8、申请日为2020年11月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及车辆控制领域,具体地,涉及一种车辆控制方法、装置、介质、设备及车辆。
背景技术
车辆滑行工况下,通常通过电机施加一定的制动扭矩,在车辆滑行减速的同时将动能转换为电能储存到能量储存装置中,以实现制动能量回收。目前,施加制动扭矩的大小通常为研发工程师基于经验值设定,滑行过程中的减速趋势是相同的,无法满足不同驾驶员对驾驶感受的不同需求。另外,还存在一种方式,可以由用户自行设置回收强度等级,但是,这种方式需要用户手动设置,不够简便,且在多种强度中进行选择适合自身要求的强度等级,易造成用户的困惑。
发明内容
本公开的目的是提供一种车辆控制方法、装置、介质、设备及车辆,以实现自适应的制动能量回收,且提升驾驶员的驾车体验。
为了实现上述目的,根据本公开的第一方面,提供一种车辆控制方法,所述方法包括:
在接收到制动指令时,通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度;
在目标时段内,控制所述车辆滑行,所述目标时段以接收到所述制动指令的时刻为时间起点,且所述目标时段对应的时长为所述目标滑行时长;
自到达所述目标时段的时间终点开始,根据所述目标减速度,对所述车辆进行制动控制。
在一种实施方式中,所述方法还包括:
获取所述车辆的加速踏板的状态信息;
若所述状态信息表征所述加速踏板处于释放状态,确定接收到所述制动指令。
在一种实施方式中,所述制动指令携带有目标车辆运动参数;
所述方法还包括:
在接收到所述制动指令时,根据多种预设车辆运动参数各自对应的驾驶习惯模型,确定出与所述目标车辆运动参数对应的驾驶习惯模型,作为所述目标驾驶习惯模型。
在一种实施方式中,预设车辆运动参数对应的驾驶习惯模型通过如下方式获得:
获取所述用户在各次历史制动过程中与所述预设车辆运动参数对应的历史滑行时长和历史减速度,所述历史滑行时长为所述历史制动过程中加速踏板被释放到制动踏板被踩下所经过的时长,所述历史减速度根据所述历史制动过程中的最大减速度确定;
根据所述历史滑行时长确定与所述预设车辆运动参数对应的偏好滑行时长;
根据所述历史减速度确定与所述预设车辆运动参数对应的偏好减速度。
在一种实施方式中,所述根据所述历史滑行时长确定与所述预设车辆运动参数对应的偏好滑行时长,包括以下中的任意一者:
根据所述历史滑行时长的平均值,确定所述偏好滑行时长;
根据所述历史滑行时长的中位数,确定所述偏好滑行时长;
根据所述历史滑行时长中出现频率最高的历史滑行时长,确定所述偏好滑行时长;
和/或
所述根据所述历史减速度确定与所述预设车辆运动参数对应的偏好减速度,包括以下中的任意一者:
根据所述历史减速度的平均值,确定所述偏好减速度;
根据所述历史减速度的中位数,确定所述偏好减速度;
根据所述历史减速度中出现频率最高的历史减速度,确定所述偏好减速度。
在一种实施方式中,所述目标车辆运动参数包括所述车辆的速度和/或加速度;
所述预设车辆运动参数包括所述车辆的速度和/或加速度。
在一种实施方式中,所述目标驾驶习惯模型记录有所述用户的偏好滑行时长和偏好减速度;
所述通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度,包括:
根据所述目标驾驶习惯模型记录的所述用户的偏好滑行时长,确定所述目标滑行时长;以及,
根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度。
在一种实施方式中,所述根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度,包括:
将所述目标驾驶习惯模型记录的所述用户的偏好减速度确定为第一减速度;
获取所述车辆周边的交通信息,所述交通信息包括所述车辆与所述车辆前方的目标对象之间的距离、所述车辆与所述目标对象之间的相对速度;
根据所述交通信息,确定能够保证车辆安全的第二减速度;
根据所述第一减速度、所述第二减速度、所述第一减速度对应的第一权重以及所述第二减速度对应的第二权重,进行加权计算,获得所述目标减速度。
在一种实施方式中,所述第二权重通过如下方式获得:
根据获取到的所述交通信息,以及预先设置的交通信息与权重之间的对应关系,将与获取到的所述交通信息对应的权重作为所述第二权重。
在一种实施方式中,所述根据所述目标减速度,对所述车辆进行制动控制,包括:
确定与所述目标减速度对应的目标制动扭矩;
根据所述目标制动扭矩,对所述车辆进行制动控制。
在一种实施方式中,所述确定与所述目标减速度对应的目标制动扭矩,包括:
将所述目标减速度输入至预先训练的车辆动力学模型,得到所述车辆动力学模型输出的扭矩结果;
根据所述扭矩结果,获得所述目标制动扭矩。
根据本公开的第二方面,提供一种车辆控制装置,所述装置包括:
第一确定模块,用于在接收到制动指令时,通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度;
第一控制模块,用于在目标时段内,控制所述车辆滑行,所述目标时段以接收到所述制动指令的时刻为时间起点,且所述目标时段对应的时长为所述目标滑行时长;
第二控制模块,用于自到达所述目标时段的时间终点开始,根据所述目标减速度,对所述车辆进行制动控制。
在一种实施方式中,所述装置还包括:
获取模块,用于获取所述车辆的加速踏板的状态信息;
所述装置用于若所述状态信息表征所述加速踏板处于释放状态,确定接收到所述制动指令。
在一种实施方式中,所述制动指令携带有目标车辆运动参数;
所述装置还包括:
第二确定模块,用于在接收到所述制动指令时,根据多种预设车辆运动参数各自对应的驾驶习惯模型,确定出与所述目标车辆运动参数对应的驾驶习惯模型,作为所述目标驾驶习惯模型。
在一种实施方式中,所述装置用于通过以下方式获得预设车辆运动参数对应的驾驶习惯模型:
获取子模块,用于获取所述用户在各次历史制动过程中与所述预设车辆运动参数对应的历史滑行时长和历史减速度,所述历史滑行时长为所述历史制动过程中加速踏板被释放到制动踏板被踩下所经过的时长,所述历史减速度根据所述历史制动过程中的最大减速度确定;
第二确定子模块,用于根据所述历史滑行时长确定与所述预设车辆运动参数对应偏好滑行时长;
第三确定子模块,用于根据所述历史减速度确定与所述预设车辆运动参数对应偏好减速度。
在一种实施方式中,所述第二确定子模块用于通过以下中的任意一者确定所述偏好滑行时长:
根据所述历史滑行时长的平均值,确定所述偏好滑行时长;
根据所述历史滑行时长的中位数,确定所述偏好滑行时长;
根据所述历史滑行时长中出现频率最高的历史滑行时长,确定所述偏好滑行时长;
和/或
所述第三确定子模块用于通过以下中的任意一者确定所述偏好减速度:
根据所述历史减速度的平均值,确定所述偏好减速度;
根据所述历史减速度的中位数,确定所述偏好减速度;
根据所述历史减速度中出现频率最高的历史减速度,确定所述偏好减速度。
在一种实施方式中,所述目标车辆运动参数包括所述车辆的速度和/或加速度;
所述预设车辆运动参数包括所述车辆的速度和/或加速度。
在一种实施方式中,所述目标驾驶习惯模型记录有所述用户的偏好滑行时长和偏好减速度;
所述第一确定模块包括:
第四确定子模块,用于根据所述目标驾驶习惯模型记录的所述用户的偏好滑行时长,确定所述目标滑行时长;以及,
第五确定子模块,用于根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度。
在一种实施方式中,所述第五确定子模块用于:
将所述目标驾驶习惯模型记录的所述用户的偏好减速度确定为第一减速度;
获取所述车辆周边的交通信息,所述交通信息包括所述车辆与所述车辆前方的目标对象之间的距离、所述车辆与所述目标对象之间的相对速度;
根据所述交通信息,确定能够保证车辆安全的第二减速度;
根据所述第一减速度、所述第二减速度、所述第一减速度对应的第一权重以及所述第二减速度对应的第二权重,进行加权计算,获得所述目标减速度。
在一种实施方式中,所述第二权重通过如下方式获得:
根据获取到的所述交通信息,以及预先设置的交通信息与权重之间的对应关系,将与获取到的所述交通信息对应的权重作为所述第二权重。
在一种实施方式中,所述第二控制模块包括:
第六确定子模块,用于确定与所述目标减速度对应的目标制动扭矩;
控制子模块,用于根据所述目标制动扭矩,对所述车辆进行制动控制。
在一种实施方式中,所述第六确定子模块用于:
将所述目标减速度输入至预先训练的车辆动力学模型,得到所述车辆动力学模型输出的扭矩结果;
根据所述扭矩结果,获得所述目标制动扭矩。
根据本公开的第三方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开第一方面所述方法的步骤。
根据本公开的第四方面,提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现本公开第一方面所述方法的 步骤。
根据本公开的第五方面,提供一种车辆,所述车辆用于执行本公开第一方面所述方法的步骤。
通过上述技术方案,在接收到制动指令时,通过目标驾驶习惯模型,确定对应于用户的目标滑行时长和目标减速度,并在目标时段内,控制车辆滑行,目标时段以接收到制动指令的时刻为时间起点,且目标时段对应的时长为目标滑行时长,以及,自到达目标时段的时间终点开始,根据目标减速度,对车辆进行制动控制。这样,能够根据目标驾驶习惯模型,获得目标滑行时长和目标减速度,并根据目标滑行时长和目标减速度对车辆进行制动控制,其中,由于目标驾驶习惯模型能够反映用户的制动习惯,因此,确定出的目标滑行时长和目标减速度能够更加符合用户的驾驶习惯。并且,在控制过程中,能够将滑行过程中的动能转换为电能进行存储,从而实现自适应的制动能量回收,无需用户额外进行手动控制,提升用户驾车体验。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开的一种实施方式提供的车辆控制方法的流程图;
图2是根据本公开的一种实施方式提供的车辆控制装置的框图;
图3是根据一示例性实施例示出的一种电子设备的框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要说明的是,本公开的实施方式中记载的各个步骤的标号并不用于限定步骤间的执行先后关系,可以按照不同的顺序执行,和/或,并行执行。
图1是根据本公开的一种实施方式提供的车辆控制方法的流程图。本公开提供的方法可以应用于任意具备控制车辆的能力的设备,例如,整车控制器。如图1所示,该方法可以包括以下步骤。
在步骤11中,在接收到制动指令时,通过目标驾驶习惯模型,确定对应于用户的目标滑行时长和目标减速度。
在步骤12中,在目标时段内,控制车辆滑行。
在步骤13中,自到达目标时段的时间终点开始,根据目标减速度,对车辆进行制动控制。
其中,目标时段以接收到制动指令的时刻为时间起点,且目标时段对应的时长为目标滑行时长。
在一种可能的实施方式中,车辆上可以设置有制动按钮,当检测到用户触发该制动按钮,即可确定接收到制动指令。
在另一种可能的实施方式中,本公开提供的方法还可以包括以下步骤:
获取车辆的加速踏板的状态信息;
若状态信息表征加速踏板处于释放状态,确定接收到制动指令。
也就是说,若检测到加速踏板被松开,则可以确定接收到制动指令。在这里,加速踏板处于释放状态,可以表示加速踏板处于完全释放状态,也就是加速踏板被完全松开。
另外,制动指令可以携带有目标车辆运动参数。其中,目标车辆运动参数包括车辆的速度和/或加速度。示例地,车辆的速度可以通过设置于车辆的车速传感器获得。再例如,车辆的加速度可以通过设置于车辆的加速度传感器获得。再例如,车辆的加速度可以通过采集车速并利用已有的通过车速得到加速度的算法获得。
通过上述方式,可以实时地检测是否接收到了制动指令。并在接收到制动指令时,执行步骤11,通过目标驾驶习惯模型,确定对应于用户的目标滑行时长和目标减速度。
其中,目标驾驶习惯模型是基于用户的驾驶习惯生成的。目标驾驶习惯模型可以存储在车辆的预设存储单元,例如,VCU(Vehicle Control Unit,整车控制器)。
在一种可能的实施方式中,可以预先训练好多种备选的驾驶习惯模型并存储,并基于制动指令从多个模型中选取出当前待使用的驾驶习惯模型(即,目标习惯模型)。在这一实施方式中,本公开提供的方法还可以包括以下步骤:
在接收到制动指令时,根据每一种预设车辆运动参数各自对应的驾驶习惯模型,确定出与目标车辆运动参数对应的驾驶习惯模型,作为目标驾驶习惯模型。
也就是说,在本公开提供的方法中,存在多种预设车辆运动参数,其中,预设车辆运动参数可以包括车辆的速度和/或加速度,可以将预设车辆运动参数理解为预设速度和/或加速度。在这些预设车辆运动参数中,每一种预设车辆运动参数都对应有自身的驾驶习惯模型,因此,基于车辆实际的目标车辆运动参数,可以从这些已有的驾驶习惯模型中确定出目标驾驶习惯模型。
在一些实施方式中,预设车辆运动参数对应的驾驶习惯模型可以通过以下方式获得:
获取用户在各次历史制动过程中与预设车辆运动参数对应的历史滑行时长和历史减速度;
根据历史滑行时长确定与预设车辆运动参数对应的偏好滑行时长;
根据历史减速度确定与预设车辆运动参数对应的偏好减速度。
也就是说,基于用户在各次历史制动过程中产生的数据,从其中提取出对应于预设车辆运动参数的数据,用于训练对应于预设车辆运动参数的驾驶习惯模型。每一种预设车辆运动参数的模型训练方式都是一致的。
其中,历史滑行时长为历史制动过程中加速踏板被释放到制动踏板被踩下所经过的时长。历史减速度可以根据历史制动过程中的最大减速度确定,例如,将一次历史制动过程中的最大减速度与预设系数的乘积作为该次历史制动过程所对应的历史减速度。其中,示例地,预 设系数可以为80%。
根据从多次历史制动过程中获取到的多个历史滑行时长,可以进一步确定用户的偏好滑行时长。
在一些实施方式中,根据历史滑行时长确定偏好滑行时长,可以包括以下中的任意一者:
根据历史滑行时长的平均值,确定偏好滑行时长;
根据历史滑行时长的中位数,确定偏好滑行时长;
根据历史滑行时长中出现频率最高的历史滑行时长,确定偏好滑行时长。
例如,可以先对获得的多个历史滑行时长求平均值,并将得到的平均值确定为偏好滑行时长。再例如,可以求取获得的多个历史滑行时长的中位数,并将得到的中位数结果确定为偏好滑行时长。再例如,可以统计获得的多个历史滑行时长中出现频率最高的时长值,并将该时长值确定为偏好滑行时长。
在一些实施方式中,根据历史减速度确定偏好减速度,可以包括以下中的任意一者:
根据历史减速度的平均值,确定偏好减速度;
根据历史减速度的中位数,确定偏好减速度;
根据历史减速度中出现频率最高的历史减速度,确定偏好减速度。
例如,可以先对获得的多个历史减速度求平均值,并将得到的平均值确定为偏好减速度。再例如,可以求取获得的多个历史减速度的中位数,并将得到的中位数结果确定为偏好减速度。再例如,可以统计获得的多个历史减速度中出现频率最高的减速度值,并将该减速度值确定为偏好减速度。
因此,基于已有的多种模型,以及制动指令所携带的目标车辆运动参数,就能够确定出符合目标车辆运动参数的目标驾驶习惯模型,进而,基于目标驾驶习惯模型,用于后续的数据处理。
如上文中对于驾驶习惯模型的描述,可知,目标驾驶习惯模型记录有用户的偏好滑行时长和偏好减速度,进而,容易得到对应于用户的目标滑行时长和目标减速度。
步骤11可以包括以下步骤:
根据目标驾驶习惯模型记录的用户的偏好滑行时长,确定目标滑行时长;以及
根据目标驾驶习惯模型记录的用户的偏好减速度,确定目标减速度。
在一种可能的实施方式中,根据目标驾驶习惯模型记录的用户的偏好滑行时长,确定目标滑行时长,可以包括以下步骤:
将目标驾驶习惯模型记录的用户的偏好滑行时长直接作为目标滑行时长。
这样,能够快速确定目标滑行时长,数据处理速度快。
在另一种可能的实施方式中,根据目标驾驶习惯模型记录的用户的偏好滑行时长,确定目标滑行时长,可以包括以下步骤:
将目标驾驶习惯模型记录的用户的偏好滑行时长与预设数值进行预设运算,并将获得的结果作为目标滑行时长。
其中,在一些实施方式中,预设运算可以为相乘、相加、相减等。
在一种可能的实施方式中,根据目标驾驶习惯模型记录的用户的偏好减速度,确定目标减速度,可以包括以下步骤:
将目标驾驶习惯模型记录的用户的偏好减速度直接作为目标减速度。
这样,能够快速确定目标滑行时长,数据处理速度快。
在另一种可能的实施方式中,根据目标驾驶习惯模型记录的用户的偏好减速度,确定目标减速度,可以包括以下步骤:
将目标驾驶习惯模型记录的用户的偏好减速度确定为第一减速度;
获取车辆周边的交通信息;
根据交通信息,确定能够保证车辆安全的第二减速度;
根据第一减速度、第二减速度、第一减速度对应的第一权重以及第二减速度对应的第二权重,进行加权计算,获得目标减速度。
其中,交通信息包括车辆与车辆前方的目标对象之间的距离、车辆与目标对象之间的相对速度。目标对象可以例如为其他车辆、障碍物、交通信号灯等。示例地,交通信息可以通过车载雷达、摄像头、V2X(Vehicle to X,车联网)中的一者或几者获取到。
在获取到交通信息后,可以根据交通信息,确定第二减速度,该第二减速度是能够保证车辆安全行驶的减速度。例如,若交通信息包括本车与前车的距离和本车与前车的相对速度,则应以本车不与前车相撞为目的确定第二减速度。再例如,若交通信息包括本车与交通信号灯的距离和本车与交通信号灯的相对速度(即车速),且交通信号灯为红灯,则应以本车不闯红灯为目的,确定能够使车辆停在停止线之前的减速度,作为第二减速度。
在确定第一减速度和第二减速度后,可以根据第一减速度、第二减速度、第一减速度对应的第一权重以及第二减速度对应的第二权重,进行加权计算,获得目标减速度。
其中,第一权重和第二权重之和为1,以及,二者的取值范围均为:大于或等于0,并且,小于或等于1。
在一些实施方式中,第一权重和第二权重可以是预先设置的固定数值。
在一些实施方式中,第二权重可以通过如下方式获得:
根据获取到的交通信息,以及预先设置的交通信息与权重之间的对应关系,将与获取到的交通信息对应的权重作为第二权重。
在一些实施方式中,可以设置本车与前车的距离区间,并设置每一距离区间对应的权重值,进而,根据获取到的交通信息,确定本车与前车的距离所属的距离区间,进而得到这一距离区间对应的权重值,作为第二权重。
例如,若预先设置本车与前车的距离小于50m对应的权重为0.8,且本车与前车的距离处于50m与100m之间对应的权重为0.5,且本车与前车的距离大于100m对应的权重为0.2,则若获取到的交通信息指示本车与前车的距离为58m,则可确定第二权重为0.5。再例如,若预先设置本车的车速低于20km/h对应于权重0,则若本车车速低于20km/h,即可确定第二权重为0。
采用上述方式,结合目标驾驶习惯模型和实际的交通情况,通过加权计算得到目标减速 度,既能保证安全性,又能兼顾驾驶员的驾驶习惯。
在步骤12中,在目标时段内,控制车辆滑行。
目标时段以接收到制动指令的时刻为时间起点,且目标时段对应的时长为目标滑行时长。也就是说,自接收到制动指令的时刻开始,控制车辆滑行,直至达到目标滑行时长,这属于车辆的滑行阶段。
在步骤13中,自到达目标时段的时间终点开始,根据目标减速度,对车辆进行制动控制。
在一种可能的实施方式中,根据目标减速度,对车辆进行制动控制,可以包括以下步骤:
确定与目标减速度对应的目标制动扭矩;
根据目标制动扭矩,对车辆进行制动控制。
在一些实施方式中,在确定目标减速度后,根据减速度与制动扭矩之间的转换公式,可以计算出与目标减速度对应的制动扭矩。其中,减速度与制动扭矩之间的转换属于本领域的公知常识,具体计算方式此处不列出。
在一些实施方式中,确定与目标减速度对应的目标制动扭矩,可以包括以下步骤:
将目标减速度输入至预先训练的车辆动力学模型,得到车辆动力学模型输出的扭矩结果;
根据扭矩结果,获得目标制动扭矩。
将目标减速度输入至车辆动力学模型,车辆动力学模型将基于目标减速度、坡度、车速、整车质量等信息计算得到扭矩结果。其中,车辆动力学模型考虑车辆动力学因素,包括轮胎阻力、空气阻力、内部阻力(包括机械损失、惯性因素等)、加速阻力、坡度阻力,属于车辆动力学中的常规方法,此处不赘述。
在一些实施方式中,在获得扭矩结果后,可以直接将扭矩结果作为目标制动扭矩。在一些实施方式中,在获得扭矩结果后,可以对扭矩结果进行驾驶性滤波(例如,一阶滞后滤波)处理,以得到目标制动扭矩。
通过上述技术方案,在接收到制动指令时,通过目标驾驶习惯模型,确定对应于用户的目标滑行时长和目标减速度,并在目标时段内,控制车辆滑行,目标时段以接收到制动指令的时刻为时间起点,且目标时段对应的时长为目标滑行时长,以及,自到达目标时段的时间终点开始,根据目标减速度,对车辆进行制动控制。这样,能够根据目标驾驶习惯模型,获得目标滑行时长和目标减速度,并根据目标滑行时长和目标减速度对车辆进行制动控制,其中,由于目标驾驶习惯模型能够反映用户的制动习惯,因此,确定出的目标滑行时长和目标减速度能够更加符合用户的驾驶习惯。并且,在控制过程中,能够将滑行过程中的动能转换为电能进行存储,从而实现自适应的制动能量回收,无需用户额外进行手动控制,提升用户驾车体验。
图2是根据本公开的一种实施方式提供的车辆控制装置的框图。如图2所示,所述装置20包括:
第一确定模块21,用于在接收到制动指令时,通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度;
第一控制模块22,用于在目标时段内,控制所述车辆滑行,所述目标时段以接收到所述制动指令的时刻为时间起点,且所述目标时段对应的时长为所述目标滑行时长;
第二控制模块23,用于自到达所述目标时段的时间终点开始,根据所述目标减速度,对所述车辆进行制动控制。
在一种实施方式中,所述装置20还包括:
获取模块,用于获取所述车辆的加速踏板的状态信息;
所述装置20用于若所述状态信息表征所述加速踏板处于释放状态,确定接收到所述制动指令。
在一种实施方式中,所述制动指令携带有目标车辆运动参数;
所述装置20还包括:
第二确定模块,用于在接收到所述制动指令时,根据多种预设车辆运动参数各自对应的驾驶习惯模型,确定出与所述目标车辆运动参数对应的驾驶习惯模型,作为所述目标驾驶习惯模型。
在一种实施方式中,所述装置20用于通过以下方式获得预设车辆运动参数对应的驾驶习惯模型:
获取子模块,用于获取所述用户在各次历史制动过程中与所述预设车辆运动参数对应的历史滑行时长和历史减速度,所述历史滑行时长为所述历史制动过程中加速踏板被释放到制动踏板被踩下所经过的时长,所述历史减速度根据所述历史制动过程中的最大减速度确定;
第二确定子模块,用于根据所述历史滑行时长确定与所述预设车辆运动参数对应偏好滑行时长;
第三确定子模块,用于根据所述历史减速度确定与所述预设车辆运动参数对应偏好减速度。
在一种实施方式中,所述第二确定子模块用于通过以下中的任意一者确定所述偏好滑行时长:
根据所述历史滑行时长的平均值,确定所述偏好滑行时长;
根据所述历史滑行时长的中位数,确定所述偏好滑行时长;
根据所述历史滑行时长中出现频率最高的历史滑行时长,确定所述偏好滑行时长;
和/或
所述第三确定子模块用于通过以下中的任意一者确定所述偏好减速度:
根据所述历史减速度的平均值,确定所述偏好减速度;
根据所述历史减速度的中位数,确定所述偏好减速度;
根据所述历史减速度中出现频率最高的历史减速度,确定所述偏好减速度。
在一种实施方式中,所述目标车辆运动参数包括所述车辆的速度和/或加速度;
所述预设车辆运动参数包括所述车辆的速度和/或加速度。
在一种实施方式中,所述目标驾驶习惯模型记录有所述用户的偏好滑行时长和偏好减速度;
所述第一确定模块21包括:
第四确定子模块,用于根据所述目标驾驶习惯模型记录的所述用户的偏好滑行时长,确定所述目标滑行时长;以及,
第五确定子模块,用于根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度。
在一种实施方式中,所述第五确定子模块用于:
将所述目标驾驶习惯模型记录的所述用户的偏好减速度确定为第一减速度;
获取所述车辆周边的交通信息,所述交通信息包括所述车辆与所述车辆前方的目标对象之间的距离、所述车辆与所述目标对象之间的相对速度;
根据所述交通信息,确定能够保证车辆安全的第二减速度;
根据所述第一减速度、所述第二减速度、所述第一减速度对应的第一权重以及所述第二减速度对应的第二权重,进行加权计算,获得所述目标减速度。
在一种实施方式中,所述第二权重通过如下方式获得:
根据获取到的所述交通信息,以及预先设置的交通信息与权重之间的对应关系,将与获取到的所述交通信息对应的权重作为所述第二权重。
在一种实施方式中,所述第二控制模块23包括:
第六确定子模块,用于确定与所述目标减速度对应的目标制动扭矩;
控制子模块,用于根据所述目标制动扭矩,对所述车辆进行制动控制。
在一种实施方式中,所述第六确定子模块用于:
将所述目标减速度输入至预先训练的车辆动力学模型,得到所述车辆动力学模型输出的扭矩结果;
根据所述扭矩结果,获得所述目标制动扭矩。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种车辆,所述车辆用于执行本公开任意实施例所提供的车辆控制方法。
图3是根据一示例性实施例示出的一种电子设备700的框图。如图3所示,该电子设备700可以包括:处理器701,存储器702。该电子设备700还可以包括多媒体组件703,输入/输出(I/O)接口704,以及通信组件705中的一者或多者。
其中,处理器701用于控制该电子设备700的整体操作,以完成上述的车辆控制方法中的全部或部分步骤。存储器702用于存储各种类型的数据以支持在该电子设备700的操作,这些数据例如可以包括用于在该电子设备700上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器702可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器 (Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件703可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器702或通过通信组件705发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口704为处理器701和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件705用于该电子设备700与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件705可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的车辆控制方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的车辆控制方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器702,上述程序指令可由电子设备700的处理器701执行以完成上述的车辆控制方法。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (19)

  1. 一种车辆控制方法,包括:
    在接收到制动指令时,通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度;
    在目标时段内,控制所述车辆滑行,所述目标时段以接收到所述制动指令的时刻为时间起点,且所述目标时段对应的时长为所述目标滑行时长;
    自到达所述目标时段的时间终点开始,根据所述目标减速度,对所述车辆进行制动控制。
  2. 根据权利要求1所述的方法,还包括:
    获取所述车辆的加速踏板的状态信息;
    若所述状态信息表征所述加速踏板处于释放状态,确定接收到所述制动指令。
  3. 根据权利要求1所述的方法,其中所述制动指令携带有目标车辆运动参数;
    所述方法还包括:
    在接收到所述制动指令时,根据多种预设车辆运动参数各自对应的驾驶习惯模型,确定出与所述目标车辆运动参数对应的驾驶习惯模型,作为所述目标驾驶习惯模型。
  4. 根据权利要求3所述的方法,其中预设车辆运动参数对应的驾驶习惯模型通过如下方式获得:
    获取所述用户在各次历史制动过程中与所述预设车辆运动参数对应的历史滑行时长和历史减速度,所述历史滑行时长为所述历史制动过程中加速踏板被释放到制动踏板被踩下所经过的时长,所述历史减速度根据所述历史制动过程中的最大减速度确定;
    根据所述历史滑行时长确定与所述预设车辆运动参数对应的偏好滑行时长;
    根据所述历史减速度确定与所述预设车辆运动参数对应的偏好减速度。
  5. 根据权利要求4所述的方法,其中所述根据所述历史滑行时长确定与所述预设车辆运动参数对应的偏好滑行时长,包括以下中的任意一者:
    根据所述历史滑行时长的平均值,确定所述偏好滑行时长;
    根据所述历史滑行时长的中位数,确定所述偏好滑行时长;
    根据所述历史滑行时长中出现频率最高的历史滑行时长,确定所述偏好滑行时长;
    和/或
    所述根据所述历史减速度确定与所述预设车辆运动参数对应的偏好减速度,包括以下中的任意一者:
    根据所述历史减速度的平均值,确定所述偏好减速度;
    根据所述历史减速度的中位数,确定所述偏好减速度;
    根据所述历史减速度中出现频率最高的历史减速度,确定所述偏好减速度。
  6. 根据权利要求5所述的方法,其中
    所述目标车辆运动参数包括所述车辆的速度和/或加速度;
    所述预设车辆运动参数包括所述车辆的速度和/或加速度。
  7. 根据权利要求1所述的方法,其中所述目标驾驶习惯模型记录有所述用户的偏好滑行时长和偏好减速度;
    所述通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度,包括:
    根据所述目标驾驶习惯模型记录的所述用户的偏好滑行时长,确定所述目标滑行时长;以及,
    根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度。
  8. 根据权利要求7所述的方法,其中所述根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度,包括:
    将所述目标驾驶习惯模型记录的所述用户的偏好减速度确定为第一减速度;
    获取所述车辆周边的交通信息,所述交通信息包括所述车辆与所述车辆前方的目标对象之间的距离、所述车辆与所述目标对象之间的相对速度;
    根据所述交通信息,确定能够保证车辆安全的第二减速度;
    根据所述第一减速度、所述第二减速度、所述第一减速度对应的第一权重以及所述第二减速度对应的第二权重,进行加权计算,获得所述目标减速度。
  9. 根据权利要求8所述的方法,其中所述第二权重通过如下方式获得:
    根据获取到的所述交通信息,以及预先设置的交通信息与权重之间的对应关系,将与获取到的所述交通信息对应的权重作为所述第二权重。
  10. 根据权利要求1所述的方法,其中所述根据所述目标减速度,对所述车辆进行制动控制,包括:
    确定与所述目标减速度对应的目标制动扭矩;
    根据所述目标制动扭矩,对所述车辆进行制动控制。
  11. 根据权利要求10所述的方法,其中所述确定与所述目标减速度对应的目标制动扭矩,包括:
    将所述目标减速度输入至预先训练的车辆动力学模型,得到所述车辆动力学模型输出的扭矩结果;
    根据所述扭矩结果,获得所述目标制动扭矩。
  12. 一种车辆控制装置,包括:
    第一确定模块,用于在接收到制动指令时,通过目标驾驶习惯模型,确定对应于所述用户的目标滑行时长和目标减速度;
    第一控制模块,用于在目标时段内,控制所述车辆滑行,所述目标时段以接收到所述制动指令的时刻为时间起点,且所述目标时段对应的时长为所述目标滑行时长;
    第二控制模块,用于自到达所述目标时段的时间终点开始,根据所述目标减速度,对所述车辆进行制动控制。
  13. 根据权利要求12所述的装置,其中所述制动指令携带有目标车辆运动参数;
    所述装置还包括:
    第二确定模块,用于在接收到所述制动指令时,根据多种预设车辆运动参数各自对应的驾驶习惯模型,确定出与所述目标车辆运动参数对应的驾驶习惯模型,作为所述目标驾驶习惯模型。
  14. 根据权力要求12所述的装置,其中所述目标驾驶习惯模型记录有所述用户的偏好滑行时长和偏好减速度;
    所述第一确定模块包括:
    第四确定子模块,用于根据所述目标驾驶习惯模型记录的所述用户的偏好滑行时长,确定所述目标滑行时长;以及,
    第五确定子模块,用于根据所述目标驾驶习惯模型记录的所述用户的偏好减速度,确定所述目标减速度。
  15. 根据权利要求14所述的装置,其中所述第五确定子模块用于:
    将所述目标驾驶习惯模型记录的所述用户的偏好减速度确定为第一减速度;
    获取所述车辆周边的交通信息,所述交通信息包括所述车辆与所述车辆前方的目标对象之间的距离、所述车辆与所述目标对象之间的相对速度;
    根据所述交通信息,确定能够保证车辆安全的第二减速度;
    根据所述第一减速度、所述第二减速度、所述第一减速度对应的第一权重以及所述第二减速度对应的第二权重,进行加权计算,获得所述目标减速度。
  16. 根据权利要求12所述的装置,其中所述第二控制模块包括:
    第六确定子模块,用于确定与所述目标减速度对应的目标制动扭矩;
    控制子模块,用于根据所述目标制动扭矩,对所述车辆进行制动控制。
  17. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1-11中任一项所述方法的步骤。
  18. 一种电子设备,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-11中任一项所述方法的步骤。
  19. 一种车辆,其中所述车辆用于执行权利要求1-11中任一项所述的方法。
PCT/CN2021/132491 2020-11-26 2021-11-23 车辆控制方法、装置、介质、设备及车辆 WO2022111479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/254,649 US20230406310A1 (en) 2020-11-26 2021-11-23 Control method and device for vehicle, storage medium, electronic device and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011349236.8 2020-11-26
CN202011349236.8A CN112373475B (zh) 2020-11-26 2020-11-26 车辆控制方法、装置、介质、设备及车辆

Publications (1)

Publication Number Publication Date
WO2022111479A1 true WO2022111479A1 (zh) 2022-06-02

Family

ID=74588582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132491 WO2022111479A1 (zh) 2020-11-26 2021-11-23 车辆控制方法、装置、介质、设备及车辆

Country Status (3)

Country Link
US (1) US20230406310A1 (zh)
CN (1) CN112373475B (zh)
WO (1) WO2022111479A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373475B (zh) * 2020-11-26 2023-01-31 北京车和家信息技术有限公司 车辆控制方法、装置、介质、设备及车辆
CN113085571A (zh) * 2021-04-16 2021-07-09 恒大恒驰新能源汽车研究院(上海)有限公司 滑行能量回收方法、装置、汽车和存储介质
CN113635887B (zh) * 2021-10-12 2022-02-08 比亚迪股份有限公司 车辆控制方法、装置和车辆
CN114043956B (zh) * 2021-11-15 2022-09-06 东风柳州汽车有限公司 气囊分级点爆控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096107A (ja) * 2004-09-28 2006-04-13 Toyota Motor Corp 車両の減速制御装置
CN108909459A (zh) * 2018-07-27 2018-11-30 爱驰汽车有限公司 电动汽车的能量回收方法、系统以及电动汽车
CN109803866A (zh) * 2016-09-21 2019-05-24 世倍特集团有限责任公司 在后端中的减速阶段的最佳开始的确定
CN110936822A (zh) * 2018-09-21 2020-03-31 宝沃汽车(中国)有限公司 滑行能量回馈的控制方法、控制系统及车辆
CN111547035A (zh) * 2020-04-17 2020-08-18 中国第一汽车股份有限公司 车辆减速控制方法、装置、存储介质及车辆
CN112373475A (zh) * 2020-11-26 2021-02-19 北京车和家信息技术有限公司 车辆控制方法、装置、介质、设备及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104691545B (zh) * 2013-12-04 2017-10-24 财团法人车辆研究测试中心 适应性车辆防碰撞方法
US9254824B2 (en) * 2013-12-30 2016-02-09 Automotive Research & Testing Center Adaptive anti-collision method for vehicle
KR101628495B1 (ko) * 2014-10-13 2016-06-08 현대자동차주식회사 친환경자동차의 타행 주행 유도 장치와 방법
DE102016007631A1 (de) * 2016-06-23 2017-12-28 Wabco Gmbh Verfahren zum Durchführen einer Notbremsung in einem Fahrzeug sowie Notbremssystem zur Durchführung des Verfahrens
KR102368603B1 (ko) * 2017-06-30 2022-03-02 현대자동차주식회사 차량 및 그를 위한 정보 제공 방법
CN109801511B (zh) * 2017-11-16 2021-01-05 华为技术有限公司 一种碰撞预警方法及装置
CN109435700B (zh) * 2018-10-31 2021-06-29 重庆工商大学 电动汽车能量回馈控制方法
CN110481331A (zh) * 2019-09-19 2019-11-22 江西精骏电控技术有限公司 一种电动汽车滑行能量回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096107A (ja) * 2004-09-28 2006-04-13 Toyota Motor Corp 車両の減速制御装置
CN109803866A (zh) * 2016-09-21 2019-05-24 世倍特集团有限责任公司 在后端中的减速阶段的最佳开始的确定
CN108909459A (zh) * 2018-07-27 2018-11-30 爱驰汽车有限公司 电动汽车的能量回收方法、系统以及电动汽车
CN110936822A (zh) * 2018-09-21 2020-03-31 宝沃汽车(中国)有限公司 滑行能量回馈的控制方法、控制系统及车辆
CN111547035A (zh) * 2020-04-17 2020-08-18 中国第一汽车股份有限公司 车辆减速控制方法、装置、存储介质及车辆
CN112373475A (zh) * 2020-11-26 2021-02-19 北京车和家信息技术有限公司 车辆控制方法、装置、介质、设备及车辆

Also Published As

Publication number Publication date
CN112373475B (zh) 2023-01-31
US20230406310A1 (en) 2023-12-21
CN112373475A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2022111479A1 (zh) 车辆控制方法、装置、介质、设备及车辆
CN110559656B (zh) 一种游戏场景下的车载空调控制方法和装置
CN112339576B (zh) 一种车辆扭矩控制方法、装置、车辆及存储介质
CN109591811B (zh) 车辆制动方法、装置及存储介质
US9499141B1 (en) Sensor-triggering of friction and regenerative braking
CN105857308A (zh) 一种车辆控制方法、装置和车辆控制设备
CN112805199A (zh) 自动驾驶系统的自学习方法、装置、设备及存储介质
CN110090443A (zh) 虚拟对象控制方法和装置、存储介质及电子装置
CN114091223A (zh) 一种仿真交通流的构建方法及仿真设备
CN114801761A (zh) 一种车辆的滑行控制方法、装置、车辆及存储介质
CN109050346A (zh) 车辆换挡方法、装置及车辆
JP7191973B2 (ja) ガレージモード制御ユニット、制御システム及び制御方法
CN115431995B (zh) 基于不同级别辅助驾驶的设备控制方法及装置
JP2016159708A (ja) 車両の制御装置及び車両の制御方法
WO2022048643A1 (zh) 车辆控制方法和装置、介质、设备、程序
CN108248391A (zh) 一种开关量制动踏板的制动控制方法、系统及车辆
CN114265354B (zh) 一种车辆控制方法和装置
CN114506351B (zh) 列车停车安全防护控制方法、装置、电子设备及存储介质
CN116198513A (zh) 一种误踩加速踏板识别方法、装置及车辆
CN113968141A (zh) 电动汽车的回馈制动控制方法、装置、设备及存储介质
CN111169440A (zh) 一种制动方法及装置、存储介质
JP2017078375A (ja) 電子制御装置
CN112109554A (zh) 控制再生制动的方法、装置、存储介质和车辆
CN117183766B (zh) 车辆控制方法、系统、整车控制器、车辆和存储介质
CN111114520A (zh) 一种加速踏板扭矩识别方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21896980

Country of ref document: EP

Kind code of ref document: A1