WO2022048643A1 - 车辆控制方法和装置、介质、设备、程序 - Google Patents

车辆控制方法和装置、介质、设备、程序 Download PDF

Info

Publication number
WO2022048643A1
WO2022048643A1 PCT/CN2021/116477 CN2021116477W WO2022048643A1 WO 2022048643 A1 WO2022048643 A1 WO 2022048643A1 CN 2021116477 W CN2021116477 W CN 2021116477W WO 2022048643 A1 WO2022048643 A1 WO 2022048643A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
vehicle
target deceleration
target
historical
Prior art date
Application number
PCT/CN2021/116477
Other languages
English (en)
French (fr)
Inventor
吴迪
杨雪静
张峻
刘寒
韩松
王增利
单红艳
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21863705.6A priority Critical patent/EP4201729A4/en
Priority to JP2023514744A priority patent/JP2023541820A/ja
Priority to US18/024,116 priority patent/US20230264574A1/en
Priority to KR1020237007933A priority patent/KR20230044532A/ko
Publication of WO2022048643A1 publication Critical patent/WO2022048643A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of vehicle automatic control, and in particular, to a vehicle control method and device, medium, device, and program.
  • the vehicle can be equipped with an energy recovery function, which can effectively improve the energy utilization rate during the deceleration process, and convert the kinetic energy during the deceleration process when the driver releases the accelerator pedal.
  • an energy recovery function which can effectively improve the energy utilization rate during the deceleration process, and convert the kinetic energy during the deceleration process when the driver releases the accelerator pedal.
  • the coasting energy recovery is set to three-level recovery intensity, and it is manually adjustable. Depending on the recovery intensity, the deceleration of the entire vehicle during the energy recovery process is also different.
  • the cloud platform For the purpose of improving safety monitoring and user experience, more and more vehicles have added the function of Internet of Vehicles, which is connected to the cloud platform and mobile client through the Internet of Vehicles module placed in the car. Users can interact with the vehicle through the mobile APP, such as viewing vehicle information and remotely controlling the vehicle.
  • the cloud platform can also analyze the vehicle status online through the data uploaded by the vehicle, and give early warning when the vehicle fails.
  • the purpose of the present disclosure is to provide a vehicle control method, device, medium, device, and program that can automatically adapt to real-time road conditions to recover braking energy.
  • the present disclosure provides a vehicle control method, which is applied to a vehicle, and the method includes:
  • the vehicle travels in a section, obtain a target deceleration, wherein, for each vehicle in the plurality of vehicles, the target deceleration is driven by each vehicle in the section and triggers braking energy recovery Multiple historical deceleration determinations at time;
  • the control is to perform braking energy recovery according to the target deceleration.
  • get the target deceleration including:
  • the server Receiving the target deceleration sent by the server, wherein, for each vehicle in the plurality of vehicles, the server separately obtains a plurality of times when each vehicle travels in the road section and brake energy recovery is triggered. historical deceleration, and determining the target deceleration according to the plurality of historical decelerations.
  • get the target deceleration including:
  • the target deceleration is determined based on the plurality of historical decelerations.
  • the target deceleration is determined according to the plurality of historical decelerations, including:
  • weighted summation is performed on the multiple historical decelerations to obtain the first deceleration of each vehicle;
  • the target deceleration is determined based on the first deceleration of each vehicle.
  • determining the target deceleration according to the first deceleration of each vehicle includes:
  • the first deceleration of each vehicle is weighted and summed to obtain the target deceleration.
  • determining the target deceleration according to the first deceleration of each vehicle includes:
  • the second deceleration is determined as the target deceleration, wherein the maximum deceleration is greater than the minimum deceleration .
  • the present disclosure also provides a vehicle control method, which is applied to a server, and the method includes:
  • determining the target deceleration according to the multiple historical decelerations includes:
  • weighted summation is performed on the multiple historical decelerations to obtain the first deceleration of each vehicle;
  • the target deceleration is determined based on the first deceleration of each vehicle.
  • determining the target deceleration according to the first deceleration of each vehicle includes:
  • the first deceleration of each vehicle is weighted and summed to obtain the target deceleration.
  • determining the target deceleration according to the first deceleration of each vehicle includes:
  • the second deceleration is determined as the target deceleration, wherein the maximum deceleration is greater than the minimum deceleration .
  • the present disclosure also provides a vehicle control device applied to a vehicle, the device comprising:
  • a first obtaining module configured to obtain a target deceleration if the vehicle is traveling in a road section, wherein, for each vehicle in the plurality of vehicles, the target deceleration is determined by the speed of each vehicle in the road section Multiple historical deceleration determinations when driving and braking energy recovery is triggered;
  • the control module is configured to control the braking energy recovery according to the target deceleration if the own vehicle triggers braking energy recovery when the braking command is received.
  • the present disclosure also provides a vehicle control device applied to a server, the device comprising:
  • the second acquisition module is used for, for each vehicle in the plurality of vehicles, to acquire a plurality of historical decelerations when each vehicle travels in a section and triggers braking energy recovery;
  • a determining module configured to determine a target deceleration according to the multiple historical decelerations
  • the sending module is configured to send the target deceleration to the vehicle driving in the road section, so that when the vehicle receiving the target deceleration triggers the braking energy recovery in the case of receiving the braking command, the control is performed according to the The target deceleration is for braking energy recovery.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the above method provided by the present disclosure.
  • the present disclosure also provides an electronic device, comprising:
  • a processor configured to execute the computer program in the memory, to implement the steps of the above method provided by the present disclosure.
  • the present disclosure also provides a computer program comprising computer-readable codes, which, when executed on a computing and processing device, cause the computing and processing device to execute the above-mentioned vehicle control method provided by the present disclosure.
  • the historical deceleration of multiple vehicles driving in a road section and triggering the braking energy recovery determines the target deceleration, and controls the vehicle to perform braking energy recovery according to the target deceleration when driving on the road section.
  • the braking recovery intensity suitable for the road section where the vehicle is located can be applied, and the braking recovery can be performed more economically, thereby reducing the number of times of stepping on the brake pedal and improving the driving experience.
  • FIG. 1 is a schematic diagram of a curve of three-level recovery intensity in a braking energy recovery strategy in the prior art
  • FIG. 2 is a schematic scenario diagram of a vehicle control method provided by an exemplary embodiment
  • FIG. 3 is a flowchart of a vehicle control method applied to a vehicle provided by an exemplary embodiment
  • FIG. 4 is a schematic diagram of a curve of maximum and minimum recovery strengths in a braking energy recovery strategy provided by an exemplary embodiment
  • FIG. 5 is a flowchart of a vehicle control method applied to a server provided by an exemplary embodiment
  • FIG. 6 is a block diagram of a vehicle control device applied to a vehicle provided by an exemplary embodiment
  • FIG. 7 is a block diagram of a vehicle control device applied to a server provided by an exemplary embodiment
  • FIG. 8 is a block diagram of an electronic device according to an exemplary embodiment
  • FIG. 9 is a block diagram of an electronic device according to an exemplary embodiment.
  • FIG. 1 is a schematic diagram of a curve of three-stage recovery intensity in a braking energy recovery strategy in the prior art.
  • the braking energy recovery function has three levels of recovery strength, which are determined from strong to weak by curves A, B, and C respectively. When one level is selected, its fixed recovery deceleration curve is used. To control the deceleration of the vehicle, it cannot be combined with the surrounding road conditions, and the degree of intelligence is not high.
  • the electric braking can only generate a deceleration of 0.9m/s 2 , at this time it is necessary to The customer needs to step on the brake pedal to supplement the insufficient deceleration.
  • Such a strategy affects the economy of the vehicle and the comfort of the customer.
  • the inventor thought that when the vehicle travels to a road section, the historical deceleration of the vehicle based on a certain road section can be associated, and the data processing can be performed online based on the Internet of Vehicles module and the cloud platform, and the energy recovery intensity of taxiing can be calculated.
  • the adaptive adjustment of (deceleration) breaks the original manual three-level adjustment of fixed energy recovery intensity, which can reduce the frequency of use of the brake pedal when the driver needs to decelerate (release the accelerator pedal).
  • FIG. 2 is a schematic diagram of a scenario of a vehicle control method provided by an exemplary embodiment.
  • communication between the vehicle 10 and the server 20 may be performed through a wireless network.
  • Communication between the server 20 and a plurality of vehicles can be performed through a wireless network.
  • the server 20 may be an Internet of Vehicles server, and the vehicle 10 may communicate with the server 20 through an in-vehicle T-box installed therein.
  • server 20 may include the following five modules:
  • the vehicles communicate with each other in the form of CAN messages.
  • the data uploaded by the vehicle to the server needs to be converted into a form that can be calculated. This process is data analysis.
  • the vehicle When the vehicle is in the wake-up state, it will continue to upload data to the server.
  • actions that are not intended for driving such as opening and closing the car door and checking the vehicle condition remotely will also wake up the vehicle. Therefore, the vehicle will upload a lot of invalid data, so the data needs to be checked. Clean, remove invalid data, keep valid data.
  • the sorted data is stored in the database in a unified manner, and the database is arranged based on time and place, so that the data operation module can call the data in each time and place.
  • the operation result of the data operation module is converted into a CAN message and sent to the vehicle end.
  • the vehicle networking module (T-box) in the vehicle is set in the vehicle and is connected to the server through a network connection protocol.
  • the car networking module mainly includes the following two functions:
  • Data routing As an intermediate link between the in-vehicle ECU and the server information exchange, it performs the conversion between in-vehicle communication and remote communication protocols.
  • a storage module is added to the Internet of Vehicles module. When it is unable to communicate with the server, the vehicle operation data is stored first, and the whole is packaged and uploaded after reconnection.
  • FIG. 3 is a flowchart of a vehicle control method applied to a vehicle provided by an exemplary embodiment. As shown in Figure 3, the method may include the following steps:
  • Step S301 if the vehicle is driving in a section, obtain a target deceleration, wherein, for each vehicle in the plurality of vehicles, the target deceleration is determined by the time when each vehicle is driving in the section and the braking energy recovery is triggered. A historical deceleration is determined.
  • Step S302 if the vehicle triggers the braking energy recovery when the braking command is received, control the braking energy recovery according to the target deceleration.
  • the server may communicate with multiple vehicles to obtain the deceleration sent by the multiple vehicles, where the deceleration is the deceleration when the vehicle travels in a segment and brake energy recovery is triggered.
  • the server may associate and store the deceleration with the road section where the vehicle is located as a historical deceleration corresponding to the road section and the vehicle.
  • Multiple vehicles can be vehicles that this vehicle has previously driven in this road section. Multiple vehicles may or may not include the own vehicle.
  • the braking command refers to a command triggered by the driver of the vehicle. For example, if the driver of the vehicle depresses the brake pedal, the vehicle receives the braking command.
  • the historical deceleration of multiple vehicles driving in a road section and triggering the braking energy recovery determines the target deceleration, and controls the vehicle to perform braking energy recovery according to the target deceleration when driving on the road section.
  • the braking recovery intensity suitable for the road section where the vehicle is located can be applied, and the braking recovery can be performed more economically, thereby reducing the number of times of pressing the brake pedal and improving the driving experience.
  • obtaining the target deceleration in step S301 may include:
  • Receive the target deceleration sent by the server wherein, for each vehicle in the multiple vehicles, the server obtains multiple historical decelerations when each vehicle is driving in the road section and triggers the braking energy recovery, and calculates the deceleration according to the multiple historical decelerations. Velocity determines the target deceleration.
  • the server may determine the target deceleration according to multiple historical decelerations, and then send the determined target deceleration to the vehicle. In this way, the vehicle does not need to receive a large amount of historical deceleration data. The amount of data communicated is less.
  • obtaining the target deceleration in step S301 may include:
  • the server may send the historical deceleration of multiple vehicles running in the road section and the braking energy recovery is triggered to the vehicle, and the vehicle determines the target deceleration according to the historical deceleration. In this way, the server does not need to calculate the target deceleration, and the amount of data processing is less.
  • the above-mentioned determination of the target deceleration according to a plurality of historical decelerations may include: for each vehicle, weighted summation of a plurality of historical decelerations is performed to obtain the first deceleration of each vehicle; The first deceleration of each vehicle determines the target deceleration.
  • the deceleration of the vehicle can be calculated by (V 2 -V 1 )/t.
  • V 2 and V 1 are the final speed and initial speed of vehicle deceleration, respectively, and t is the duration of vehicle deceleration.
  • the vehicle can send the real-time vehicle speed to the server, and the server can calculate the deceleration of the vehicle, or the vehicle can directly send the calculated deceleration to the server.
  • the first deceleration of each vehicle can be calculated according to the following formula:
  • a 1 M 1 ⁇ a 11 +M 2 ⁇ a 12 +...+M n ⁇ a 1n
  • a 2 M 1 ⁇ a 21 +M 2 ⁇ a 22 +...+M n ⁇ a 2n
  • a 3 M 1 ⁇ a 31 +M 2 ⁇ a 32 +...+M n ⁇ a 3n
  • a S M 1 ⁇ a S1 +M 2 ⁇ a S2 +...+M n ⁇ a Sn
  • a i is the first deceleration of the ith vehicle
  • S represents the number of vehicles
  • a i1 , a i2 , ..., a in represent n historical decelerations of the ith vehicle
  • M 1 , M 2 , ..., Mn represent the weights of n historical decelerations of the i-th vehicle.
  • the weighted summation when weighted summation is performed on a plurality of historical decelerations, the closer the time when a historical deceleration occurs to the current time, the greater the weight. That is, if the occurrence time of the historical deceleration represented by a i1 , a i2 , ..., a in is from near to far from the current time, the relationship between the respective weights can be: M 1 >M 2 >... >M n . Since the historical deceleration that is closer in time has a greater reference value to the current, the weight set in this way can be closer to the actual situation of the current road section, so that the target deceleration is more accurate.
  • the first deceleration of each vehicle represents the deceleration situation of each vehicle when the braking energy is recovered in the road section. Considering the first deceleration of each vehicle in the road section, the overall situation of the deceleration of most vehicles on the road section during braking energy recovery can be determined more accurately and comprehensively.
  • the above-mentioned determination of the target deceleration according to multiple historical decelerations may include: weighting and summing the first decelerations of each vehicle to obtain the target deceleration.
  • the target deceleration can be calculated according to the following formula:
  • a is the target deceleration
  • a i is the first deceleration of the i-th vehicle
  • K 1 , K 2 , ..., K S represent the weights of the first deceleration of the first vehicle to the S-th vehicle, respectively .
  • the target deceleration is obtained by weighted summation of multiple first decelerations of multiple vehicles, so that the determined target deceleration of the vehicle is better suited to the braking recovery strength of the road section where the vehicle is located.
  • the weighted summation of the first deceleration of each vehicle when carried out, the closer the time when a vehicle travels in the road section to the current time, the greater the weight of the first deceleration of the vehicle. That is, if the time when the vehicle corresponding to the first deceleration represented by a 1 , a 2 , ..., a S travels in the road section is from the current time to the nearest, the relationship between the respective weights can be: K 1 >K 2 >... >K S . Since the historical deceleration that is closer in time has a greater reference value to the current, the weight set in this way can be closer to the actual situation of the current road section, so that the target deceleration is more accurate.
  • a reasonable range may also be set for the final applied target deceleration.
  • the above-mentioned determination of the target deceleration according to multiple historical decelerations may include:
  • the first deceleration of each vehicle is weighted and summed to obtain the second deceleration
  • the maximum deceleration is determined as the target deceleration; if the second deceleration is less than or equal to the predetermined minimum deceleration, the minimum deceleration is determined as the target deceleration; If the second deceleration is greater than the minimum deceleration and smaller than the maximum deceleration, the second deceleration is determined as the target deceleration, wherein the maximum deceleration is greater than the minimum deceleration.
  • FIG. 4 is a schematic diagram of a curve of maximum and minimum recovery strengths in a braking energy recovery strategy provided by an exemplary embodiment.
  • the deceleration corresponding to the curve Dmax is greater than the deceleration corresponding to the curve A
  • the deceleration corresponding to the curve Dmin is smaller than the deceleration corresponding to the curve C.
  • the deceleration corresponding to the curve Dmax may be the above-mentioned maximum deceleration
  • the deceleration corresponding to the curve Dmin may be the above-mentioned minimum deceleration.
  • the above-mentioned maximum deceleration and minimum deceleration can be obtained and stored in advance based on experiments or experience.
  • the target deceleration is limited within a certain range to avoid the situation that the determined target deceleration is unreasonable due to the deviation of the historical data.
  • FIG. 5 is a flowchart of a vehicle control method applied to a server provided by an exemplary embodiment. As shown in Figure 5, the method includes the following steps:
  • Step S501 for each vehicle in the plurality of vehicles, obtain a plurality of historical decelerations when each vehicle travels in a road section and triggers braking energy recovery;
  • Step S502 determining a target deceleration according to a plurality of historical decelerations
  • step S503 the target deceleration is sent to the vehicle driving in the road section, so that when the vehicle receiving the target deceleration triggers the braking energy recovery in the case of receiving the braking command, the braking energy recovery is controlled according to the target deceleration. .
  • the method applied to the server corresponds to the embodiment in which the target deceleration is determined by the server in the method applied to the vehicle in FIG. 3 .
  • the historical deceleration of multiple vehicles driving in a road section and triggering the braking energy recovery determines the target deceleration, and controls the vehicle to perform braking energy recovery according to the target deceleration when driving on the road section.
  • the braking recovery intensity suitable for the road section where the vehicle is located can be applied, and the braking recovery can be performed more economically, thereby reducing the number of times of stepping on the brake pedal and improving the driving experience.
  • determining the target deceleration according to a plurality of historical decelerations may include:
  • the weighted summation of multiple historical decelerations is performed to obtain the first deceleration of each vehicle; the target deceleration is determined according to the first deceleration of each vehicle.
  • determining the target deceleration according to the first deceleration of each vehicle includes: weighted summation of the first deceleration of each vehicle to obtain the target deceleration.
  • determining the target deceleration according to the first deceleration of each vehicle includes:
  • the first deceleration of each vehicle is weighted and summed to obtain the second deceleration
  • the second deceleration is determined as the target deceleration, wherein the maximum deceleration is greater than the minimum deceleration.
  • FIG. 6 is a block diagram of a vehicle control device applied to a vehicle provided by an exemplary embodiment.
  • the vehicle control device 600 may include a first acquisition module 601 and a control module 602 .
  • the first obtaining module 601 is used to obtain the target deceleration if the vehicle is driving in a section, wherein, for each vehicle in the plurality of vehicles, the target deceleration is driven by each vehicle in the section and the braking energy is triggered. Multiple historical deceleration determinations while recycling.
  • the control module 602 is configured to control the braking energy recovery according to the target deceleration if the own vehicle triggers the braking energy recovery when the braking command is received.
  • the first obtaining module 601 includes a first receiving sub-module.
  • the first receiving sub-module receives the target deceleration sent by the server, wherein, for each vehicle in the plurality of vehicles, the server obtains a plurality of historical decelerations when each vehicle travels in the road section and triggers the braking energy recovery, and The target deceleration is determined based on a plurality of historical decelerations.
  • the first obtaining module 601 includes a second receiving sub-module and a first determining sub-module.
  • the second receiving sub-module is configured to, for each vehicle in the plurality of vehicles, receive a plurality of historical decelerations sent by the server when each vehicle travels in a road section and triggers braking energy recovery.
  • the first determination submodule is used for determining the target deceleration according to a plurality of historical decelerations.
  • the first determination submodule may include a second determination submodule and a third determination submodule.
  • the second determination sub-module is used for weighted summation of multiple historical decelerations for each vehicle to obtain the first deceleration of each vehicle;
  • the third determination submodule is used for determining the target deceleration according to the first deceleration of each vehicle.
  • the third determination submodule may include a fourth determination submodule.
  • the fourth determination sub-module is used for weighted summation of the first deceleration of each vehicle to obtain the target deceleration.
  • the third determination submodule may include a fifth determination submodule, a sixth determination submodule, a seventh determination submodule, and an eighth determination submodule.
  • the fifth determination sub-module is used for weighted summation of the first deceleration of each vehicle to obtain the second deceleration;
  • the sixth determination sub-module is configured to determine the maximum deceleration as the target deceleration if the second deceleration is greater than or equal to the predetermined maximum deceleration;
  • the seventh determination sub-module is configured to determine the minimum deceleration as the target deceleration if the second deceleration is less than or equal to the predetermined minimum deceleration;
  • the eighth determination submodule is configured to determine the second deceleration as the target deceleration if the second deceleration is greater than the minimum deceleration and smaller than the maximum deceleration, wherein the maximum deceleration is greater than the minimum deceleration.
  • FIG. 7 is a block diagram of a vehicle control apparatus applied to a server provided by an exemplary embodiment.
  • the vehicle control apparatus 700 may include a second acquiring module 701 , a determining module 702 and a transmitting module 703 .
  • the second obtaining module 701 is configured to obtain, for each vehicle in the plurality of vehicles, a plurality of historical decelerations when each vehicle travels in a section and triggers the recovery of braking energy.
  • the determining module 702 is configured to determine a target deceleration according to a plurality of historical decelerations.
  • the sending module 703 is used to send the target deceleration to the vehicle driving in the road section, so that the vehicle that receives the target deceleration triggers braking energy recovery in the case of receiving the braking command, and controls the braking according to the target deceleration Energy recovery.
  • the determination module 702 includes a ninth determination sub-module and a tenth determination sub-module.
  • the ninth determination sub-module is configured to perform weighted summation of multiple historical decelerations for each vehicle to obtain the first deceleration of each vehicle.
  • the tenth determination submodule is used for determining the target deceleration according to the first deceleration of each vehicle.
  • the tenth determination sub-module may include an eleventh determination sub-module.
  • the eleventh determination sub-module is configured to perform weighted summation of the first deceleration of each vehicle to obtain the target deceleration.
  • the tenth determination submodule may include a twelfth determination submodule, a thirteenth determination submodule, a fourteenth determination submodule, and a fifteenth determination submodule.
  • the twelfth determination sub-module is configured to perform weighted summation of the first deceleration of each vehicle to obtain the second deceleration.
  • the thirteenth determination sub-module is configured to determine the maximum deceleration as the target deceleration if the second deceleration is greater than or equal to the predetermined maximum deceleration.
  • the fourteenth determination sub-module is configured to determine the minimum deceleration as the target deceleration if the second deceleration is less than or equal to the predetermined minimum deceleration.
  • the fifteenth determination submodule is configured to determine the second deceleration as the target deceleration if the second deceleration is greater than the minimum deceleration and smaller than the maximum deceleration, wherein the maximum deceleration is greater than the minimum deceleration.
  • the historical deceleration of multiple vehicles driving in a road section and triggering the braking energy recovery determines the target deceleration, and controls the vehicle to perform braking energy recovery according to the target deceleration when driving on the road section.
  • the braking recovery intensity suitable for the road section where the vehicle is located can be applied, and the braking recovery can be performed more economically, thereby reducing the number of times of stepping on the brake pedal and improving the driving experience.
  • the present disclosure also provides an electronic device including a memory and a processor.
  • a computer program is stored on the memory.
  • the processor is configured to execute the computer program in the memory to implement the steps of the above method provided by the present disclosure.
  • FIG. 8 is a block diagram of an electronic device 800 according to an exemplary embodiment.
  • the electronic device 800 may include: a processor 801 and a memory 802.
  • the electronic device 800 may also include one or more of a multimedia component 803 , an input/output (I/O) interface 804 , and a communication component 805 .
  • I/O input/output
  • the processor 801 is used to control the overall operation of the electronic device 800 to complete all or part of the steps in the above-mentioned vehicle control method.
  • the memory 802 is used to store various types of data to support operations on the electronic device 800, such data may include, for example, instructions for any application or method operating on the electronic device 800, and application-related data, Such as contact data, messages sent and received, pictures, audio, video, and so on.
  • the memory 802 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (Static Random Access Memory, SRAM for short), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 803 may include screen and audio components. Wherein the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 802 or transmitted through communication component 805 .
  • the audio assembly also includes at least one speaker for outputting audio signals.
  • the I/O interface 804 provides an interface between the processor 801 and other interface modules, and the above-mentioned other interface modules may be a keyboard, a mouse, a button, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 805 is used for wired or wireless communication between the electronic device 800 and other devices.
  • Wireless communication such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them
  • the corresponding communication component 805 may include: Wi-Fi module, Bluetooth module, NFC module and so on.
  • the electronic device 800 may be implemented by one or more Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (Digital) Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components
  • microcontroller microprocessor or other electronic components
  • a computer-readable storage medium including program instructions, the program instructions implementing the steps of the above-mentioned vehicle control method when executed by a processor.
  • the computer-readable storage medium can be the above-mentioned memory 802 including program instructions, and the above-mentioned program instructions can be executed by the processor 801 of the electronic device 800 to implement the above-mentioned vehicle control method.
  • the present disclosure also proposes a computer program comprising computer readable code which, when executed on a computing processing device, causes the computing processing device to execute the aforementioned vehicle control method.
  • FIG. 9 is a block diagram of an electronic device 900 according to an exemplary embodiment.
  • the electronic device 900 may be provided as a server.
  • an electronic device 900 includes a processor 922 , which may be one or more in number, and a memory 932 for storing a computer program executable by the processor 922 .
  • the computer program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processor 922 may be configured to execute the computer program to perform the vehicle control method described above.
  • the electronic device 900 may also include a power supply assembly 926, which may be configured to perform power management of the electronic device 900, and a communication component 950, which may be configured to enable communication of the electronic device 900, eg, wired or wireless communication. Additionally, the electronic device 900 may also include an input/output (I/O) interface 958 . Electronic device 900 may operate based on an operating system stored in memory 932, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , and the like.
  • a computer-readable storage medium including program instructions, the program instructions implementing the steps of the above-mentioned vehicle control method when executed by a processor.
  • the computer-readable storage medium can be the above-mentioned memory 932 including program instructions, and the above-mentioned program instructions can be executed by the processor 922 of the electronic device 900 to implement the above-mentioned vehicle control method.
  • a computer program product comprising a computer program executable by a programmable apparatus, the computer program having, when executed by the programmable apparatus, for performing the above The code section of the vehicle control method.
  • the present disclosure also provides a vehicle, including a braking energy recovery system and a controller for performing the steps of the above method provided by the present disclosure.
  • the present disclosure also provides a server, including a controller for executing the steps of the above method provided by the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆控制方法和装置、介质、设备。应用于车辆(10)的控制方法包括:若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆(10)中的每台车辆(10),目标减速度由每台车辆(10)在路段中行驶且触发制动能量回收时的多个历史减速度确定;若本车在接收到制动指令的情况下触发制动能量回收,则控制按照目标减速度进行制动能量回收。

Description

车辆控制方法和装置、介质、设备、程序
相关申请的交叉引用
本公开要求在2020年09月03日提交中国专利局、申请号为202010917831.0、名称为“车辆控制方法和装置、介质、设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆自动控制领域,具体地,涉及一种车辆控制方法和装置、介质、设备、程序。
背景技术
为了增加电动车辆或混合动力车辆的续航里程,可以给车辆配置能量回收功能,在减速过程中有效地提高能量利用率,将驾驶员松开加速踏板减速过程中的动能转化为电能储存并用于驱动。通常滑行能量回收设置三级回收强度,且手动可调。回收强度不同,在能量回收过程中的整车的减速度也不同。
出于提高安全监控以及用户体验的目的,越来越多的车辆增加了车联网功能,通过车内放置的车联网模块与云平台以及手机客户端连接。用户可以通过手机APP与车辆进行交互,比如查看车辆信息以及远程控制车辆等。云平台也可以通过车辆上传的数据在线分析车辆状态,车辆出现故障时及时预警等。
发明内容
本公开的目的是提供一种能够自动适应实时的路况需求来进行制动能量回收的车辆控制方法和装置、介质、设备、程序。
为了实现上述目的,本公开提供一种车辆控制方法,应用于车辆,所述方法包括:
若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆中的每台车辆,所述目标减速度由所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度确定;
若所述本车在接收到制动指令的情况下触发制动能量回收,则控制按照所述目标减 速度进行制动能量回收。
可选地,获取目标减速度,包括:
接收服务器发送的所述目标减速度,其中,针对所述多台车辆中的每台车辆,所述服务器分别获取所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度,并根据所述多个历史减速度确定所述目标减速度。
可选地,获取目标减速度,包括:
针对所述多台车辆中的每台车辆,接收服务器发送的所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度;
根据所述多个历史减速度确定目标减速度。
根据所述多个历史减速度确定目标减速度,包括:
针对所述每台车辆,将所述多个历史减速度进行加权求和,得到所述每台车辆的第一减速度;
根据所述每台车辆的第一减速度确定所述目标减速度。
可选地,根据所述每台车辆的第一减速度确定所述目标减速度,包括:
将所述每台车辆的第一减速度进行加权求和,得到所述目标减速度。
可选地,根据所述每台车辆的第一减速度确定所述目标减速度,包括:
将所述每台车辆的第一减速度进行加权求和,得到第二减速度;
若所述第二减速度大于或等于预定的最大减速度,则将所述最大减速度确定为所述目标减速度;
若所述第二减速度小于或等于预定的最小减速度,则将所述最小减速度确定为所述目标减速度;
若所述第二减速度大于所述最小减速度且小于所述最大减速度,则将所述第二减速度确定为所述目标减速度,其中,所述最大减速度大于所述最小减速度。
可选地,在对所述多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大;在将所述每台车辆的第一减速度进行加权求和时,一车辆在路段中行驶的时间与当前时间越近,该车辆的第一减速度权重越大。
本公开还提供一种车辆控制方法,应用于服务器,所述方法包括:
针对多台车辆中的每台车辆,获取所述每台车辆在一路段中行驶且触发制动能量回收时的多个历史减速度;
根据所述多个历史减速度确定目标减速度;
将所述目标减速度发送至所述路段中行驶的车辆,以使接收到所述目标减速度的车辆在接收到制动指令的情况下触发制动能量回收时,控制按照所述目标减速度进行制动能量回收。
可选地,根据所述多个历史减速度确定目标减速度,包括:
针对所述每台车辆,将所述多个历史减速度进行加权求和,得到所述每台车辆的第一减速度;
根据所述每台车辆的第一减速度确定所述目标减速度。
可选地,根据所述每台车辆的第一减速度确定所述目标减速度,包括:
将所述每台车辆的第一减速度进行加权求和,得到所述目标减速度。
可选地,根据所述每台车辆的第一减速度确定所述目标减速度,包括:
将所述每台车辆的第一减速度进行加权求和,得到第二减速度;
若所述第二减速度大于或等于预定的最大减速度,则将所述最大减速度确定为所述目标减速度;
若所述第二减速度小于或等于预定的最小减速度,则将所述最小减速度确定为所述目标减速度;
若所述第二减速度大于所述最小减速度且小于所述最大减速度,则将所述第二减速度确定为所述目标减速度,其中,所述最大减速度大于所述最小减速度。
可选地,在对所述多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大;在将所述每台车辆的第一减速度进行加权求和时,一车辆在路段中行驶的时间与当前时间越近,该车辆的第一减速度权重越大。
本公开还提供一种车辆控制装置,应用于车辆,所述装置包括:
第一获取模块,用于若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆中的每台车辆,所述目标减速度由所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度确定;
控制模块,用于若所述本车在接收到制动指令的情况下触发制动能量回收,则控制按照所述目标减速度进行制动能量回收。
本公开还提供一种车辆控制装置,应用于服务器,所述装置包括:
第二获取模块,用于针对多台车辆中的每台车辆,获取所述每台车辆在一路段中行 驶且触发制动能量回收时的多个历史减速度;
确定模块,用于根据所述多个历史减速度确定目标减速度;
发送模块,用于将所述目标减速度发送至所述路段中行驶的车辆,以使接收到所述目标减速度的车辆在接收到制动指令的情况下触发制动能量回收时,控制按照所述目标减速度进行制动能量回收。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开提供的上述方法的步骤。
本公开还提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现本公开提供的上述方法的步骤。
本公开还提供了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开提供的上述车辆控制方法。
通过上述技术方案,多台车辆在一路段中行驶且触发制动能量回收时的历史减速度确定目标减速度,控制本车在该路段行驶时按照该目标减速度进行制动能量回收。这样,能够应用适合于本车所在路段的制动回收强度,较经济地进行制动回收,从而减少了制动踏板的踩踏次数,提升了驾驶体验。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是现有技术中的制动能量回收策略中三级回收强度的曲线示意图;
图2是一示例性实施例提供的车辆控制方法的情景示意图;
图3是一示例性实施例提供的应用于车辆的车辆控制方法的流程图;
图4是一示例性实施例提供的制动能量回收策略中最大和最小回收强度的曲线示意图;
图5是一示例性实施例提供的应用于服务器的车辆控制方法的流程图;
图6是一示例性实施例提供的应用于车辆的车辆控制装置的框图;
图7是一示例性实施例提供的应用于服务器的车辆控制装置的框图;
图8是一示例性实施例示出的一种电子设备的框图;
图9是一示例性实施例示出的一种电子设备的框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
图1是现有技术中的制动能量回收策略中三级回收强度的曲线示意图。如图1所示,制动能量回收功能下具有三级回收强度,由强到弱分别由曲线A、B、C确定,当选定其中的一级时,则以其固定的回收减速度曲线去控制车辆减速,无法和周围的路况结合联系在一起,智能化程度不高。
例如:当用户此时有1.2m/s 2的减速度需求时,但是整车当前所处B级回收强度等级,那么电制动只能产生0.9m/s 2的减速度,此时就得需要客户去踩制动踏板来补充不足的减速度了,这样的策略影响了整车的经济型及客户的舒适性。发明人想到,当本车行驶到一路段时,可以把整车基于某一路段行驶的历史车辆的历史减速度关联起来,可以基于车联网模块与云平台在线进行数据处理,进行滑行能量回收强度(减速度)的自适应调节,打破原有的能量回收强度固定的手动三级调节,可实现在驾驶员有减速需求(松开加速踏板)时减少制动踏板的使用频次。
图2是一示例性实施例提供的车辆控制方法的情景示意图。如图2所示,车辆10和服务器20之间可以通过无线网络进行通信。服务器20和多台车辆之间都可以通过无线网络进行通信。服务器20可以是车联网服务器,车辆10可以通过其中安装的车载T-box与服务器20进行通信。
例如,服务器20可以包括以下五个模块:
1)数据解析模块
车辆各控制器之间以CAN报文的形式进行通信,车辆上传至服务器的数据需要转化为可以进行运算的形式,此过程为数据解析。
2)数据清洗模块
车辆在唤醒状态下会持续向服务器上传数据,在平常用车时,比如开关车门、远程查询车况等非驾驶目的的动作也会唤醒车辆,所以车辆会上传许多无效的数据,因此需 要对数据进行清洗,去掉无效数据,保留有效数据。
3)数据库
将整理好的数据统一存储至数据库,数据库中以时间、地点为排列依据,以供数据运算模块调用各时间各地点段内的数据。
4)数据运算模块
用于通过预定算法,确定出此路况最经济最安全的能量回收强度(减速度)。
5)数据转换模块
与数据解析模块功能相反,将数据运算模块的运算结果转换为CAN报文的形式发送至车端。
车辆中的车联网模块(T-box)设置在车内,通过网络连接协议与服务器连接。车联网模块主要包含以下两个功能:
数据路由:作为车内ECU与服务器信息交流的中间环节,进行车内通信与远程通信协议之间的转换。
数据存储:车联网模块中加入存储模块,在无法与服务器通信的时候先存储车辆运行数据,待重新连接后整体打包上传。
图3是一示例性实施例提供的应用于车辆的车辆控制方法的流程图。如图3所示,该方法可以包括以下步骤:
步骤S301,若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆中的每台车辆,目标减速度由每台车辆在路段中行驶且触发制动能量回收时的多个历史减速度确定。
步骤S302,若本车在接收到制动指令的情况下触发制动能量回收,则控制按照目标减速度进行制动能量回收。
服务器可以与多台车辆通信,以获取多台车辆发送的减速度,该减速度为该车辆在一路段中行驶且触发制动能量回收时的减速度。服务器可以将该减速度与车辆所在路段相关联并存储,作为与该路段和该车辆相对应的历史减速度。
多台车辆可以为本车之前已经在该路段中行驶过的车辆。多台车辆可以包括本车,也可以不包括本车。
制动指令是指本车驾驶员触发的指令,例如,若本车驾驶员踩下制动踏板,则本车接收到制动指令。
通过上述技术方案,多台车辆在一路段中行驶且触发制动能量回收时的历史减速度确定目标减速度,控制本车在该路段行驶时按照该目标减速度进行制动能量回收。这样,能够应用适合于本车所在路段的制动回收强度,较经济地进行制动回收,从而减少了制动踏板的踩踏次数,提升了驾驶体验。
在一实施例中,步骤S301中的获取目标减速度可以包括:
接收服务器发送的目标减速度,其中,针对多台车辆中的每台车辆,服务器分别获取每台车辆在路段中行驶且触发制动能量回收时的多个历史减速度,并根据多个历史减速度确定目标减速度。
该实施例中,服务器可以根据多个历史减速度确定目标减速度后,将所确定的目标减速度发送给本车,这样,本车不需要接收历史减速度的大量数据,车辆与服务器之间通信的数据量较少。
在又一实施例中,步骤S301中的获取目标减速度可以包括:
针对多台车辆中的每台车辆,接收服务器发送的每台车辆在路段中行驶且触发制动能量回收时的多个历史减速度;根据多个历史减速度确定目标减速度。
该实施例中,服务器可以将多台车辆在路段中行驶且触发制动能量回收时的历史减速度发送给本车,由本车根据历史减速度确定目标减速度。这样,服务器不需要计算目标减速度,数据处理量较少。
在又一实施例中,上述的根据多个历史减速度确定目标减速度,可以包括:针对每台车辆,将多个历史减速度进行加权求和,得到每台车辆的第一减速度;根据每台车辆的第一减速度确定目标减速度。
其中,车辆的减速度可以通过(V 2-V 1)/t来计算得到。V 2、V 1分别为车辆减速的末速度和初始速度,t为车辆减速的时长。
车辆可以将实时的车速发送给服务器,由服务器来计算车辆的减速度,或者,车辆可以将计算好的减速度直接发送给服务器。
可以根据以下公式计算各个车辆的第一减速度:
a 1=M 1×a 11+M 2×a 12+……+M n×a 1n
a 2=M 1×a 21+M 2×a 22+……+M n×a 2n
a 3=M 1×a 31+M 2×a 32+……+M n×a 3n
……
a S=M 1×a S1+M 2×a S2+……+M n×a Sn
M 1+M 2+……+M n=1
其中,a i为第i台车辆的第一减速度,S表示车辆的台数,a i1、a i2、……、a in表示第i台车辆的n个历史减速度。M 1、M 2、……、M n表示第i台车辆的n个历史减速度的权重。
另外,在对多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大。即若a i1、a i2、……、a in表示的历史减速度发生的时间距离当前时间由近到远,则其各个权重的大小关系可以为:M 1>M 2>……>M n。由于时间越近的历史减速度对当前的参考价值越大,因此,这样设置权重能够更加接近于当前路段的实际情况,使得目标减速度更准确。
各个车辆的第一减速度代表了各个车辆在该路段制动能量回收时的减速度的情况。考虑该路段中各个车辆的第一减速度,能够较准确、全面地确定出该路段上大部分车辆在制动能量回收时减速度的总体情况。
在又一实施例中,上述的根据多个历史减速度确定目标减速度,可以包括:将每台车辆的第一减速度进行加权求和,得到目标减速度。
具体地,可以根据以下公式计算目标减速度:
a=K 1×a 1+K 2×a 2+……+K S×a SK 1+K 2+……+K S=1
其中,a为目标减速度,a i为第i台车辆的第一减速度,K 1、K 2、……、K S分别表示第1台车辆到第S台车辆的第一减速度的权重。
该实施例中,目标减速度由多台车辆的多个第一减速度进行加权求和得到,使得所确定的本车的目标减速度较好地适合于本车所在路段的制动回收强度。
另外,在将每台车辆的第一减速度进行加权求和时,一车辆在路段中行驶的时间与当前时间越近,该车辆的第一减速度权重越大。即若a 1、a 2、……、a S表示的第一减速度所对应的车辆在路段中行驶的时间为与当前时间由近到远,则其各个权重的大小关系可以为:K 1>K 2>……>K S。由于时间越近的历史减速度对当前的参考价值越大,因此, 这样设置权重能够更加接近于当前路段的实际情况,使得目标减速度更准确。
在又一实施例中,还可以给最终所应用的目标减速度设定一个合理的范围。在该实施例中,上述的根据多个历史减速度确定目标减速度,可以包括:
将每台车辆的第一减速度进行加权求和,得到第二减速度;
若第二减速度大于或等于预定的最大减速度,则将最大减速度确定为目标减速度;若第二减速度小于或等于预定的最小减速度,则将最小减速度确定为目标减速度;若第二减速度大于最小减速度且小于最大减速度,则将第二减速度确定为目标减速度,其中,最大减速度大于最小减速度。
也就是,在计算目标减速度时,需要考虑自适应回收强度下的减速度调节范围,并控制减速过程中的减速度值在其范围内。图4是一示例性实施例提供的制动能量回收策略中最大和最小回收强度的曲线示意图。如图4所示,当车速固定时,曲线Dmax对应的减速度大于曲线A对应的减速度,曲线Dmin对应的减速度小于曲线C对应的减速度。曲线Dmax对应的减速度可以为上述的最大减速度,曲线Dmin对应的减速度可以为上述的最小减速度。
上述的最大减速度和最小减速度可以根据试验或经验预先得出并存储。在该实施例中,将目标减速度限定在一定的范围内,避免因历史数据的偏差导致所确定的目标减速度不合理的情况发生。
本公开还提供一种应用于服务器的车辆控制方法,图5是一示例性实施例提供的应用于服务器的车辆控制方法的流程图。如图5所示,方法包括以下步骤:
步骤S501,针对多台车辆中的每台车辆,获取每台车辆在一路段中行驶且触发制动能量回收时的多个历史减速度;
步骤S502,根据多个历史减速度确定目标减速度;
步骤S503,将目标减速度发送至路段中行驶的车辆,以使接收到目标减速度的车辆在接收到制动指令的情况下触发制动能量回收时,控制按照目标减速度进行制动能量回收。
该应用于服务器的方法与图3的应用于车辆的方法中,由服务器确定目标减速度的实施例相对应。
通过上述技术方案,多台车辆在一路段中行驶且触发制动能量回收时的历史减速度确定目标减速度,控制本车在该路段行驶时按照该目标减速度进行制动能量回收。这样, 能够应用适合于本车所在路段的制动回收强度,较经济地进行制动回收,从而减少了制动踏板的踩踏次数,提升了驾驶体验。
在一实施例中,根据多个历史减速度确定目标减速度,可以包括:
针对每台车辆,将多个历史减速度进行加权求和,得到每台车辆的第一减速度;根据每台车辆的第一减速度确定目标减速度。
在又一实施例中,根据每台车辆的第一减速度确定目标减速度,包括:将每台车辆的第一减速度进行加权求和,得到目标减速度。
在又一实施例中,根据每台车辆的第一减速度确定目标减速度,包括:
将每台车辆的第一减速度进行加权求和,得到第二减速度;
若第二减速度大于或等于预定的最大减速度,则将最大减速度确定为目标减速度;
若第二减速度小于或等于预定的最小减速度,则将最小减速度确定为目标减速度;
若第二减速度大于最小减速度且小于最大减速度,则将第二减速度确定为目标减速度,其中,最大减速度大于最小减速度。
在又一实施例中,在对多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大。
关于上述应用于服务器的实施例中的方法,其中各个步骤执行操作的具体方式已经在有关应用于车辆的方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种应用于车辆的车辆控制装置。图6是一示例性实施例提供的应用于车辆的车辆控制装置的框图。如图6所示,车辆控制装置600可以包括第一获取模块601和控制模块602。
第一获取模块601用于若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆中的每台车辆,目标减速度由每台车辆在路段中行驶且触发制动能量回收时的多个历史减速度确定。
控制模块602用于若本车在接收到制动指令的情况下触发制动能量回收,则控制按照目标减速度进行制动能量回收。
可选地,第一获取模块601包括第一接收子模块。
第一接收子模块接收服务器发送的目标减速度,其中,针对多台车辆中的每台车辆,服务器分别获取每台车辆在路段中行驶且触发制动能量回收时的多个历史减速度,并根据多个历史减速度确定目标减速度。
可选地,第一获取模块601包括第二接收子模块和第一确定子模块。
第二接收子模块用于针对多台车辆中的每台车辆,接收服务器发送的每台车辆在路段中行驶且触发制动能量回收时的多个历史减速度。
第一确定子模块用于根据多个历史减速度确定目标减速度。
可选地,第一确定子模块可以包括第二确定子模块和第三确定子模块。
第二确定子模块用于针对每台车辆,将多个历史减速度进行加权求和,得到每台车辆的第一减速度;
第三确定子模块用于根据每台车辆的第一减速度确定目标减速度。
可选地,第三确定子模块可以包括第四确定子模块。
第四确定子模块用于将每台车辆的第一减速度进行加权求和,得到目标减速度。
可选地,第三确定子模块可以包括第五确定子模块、第六确定子模块、第七确定子模块、第八确定子模块。
第五确定子模块用于将每台车辆的第一减速度进行加权求和,得到第二减速度;
第六确定子模块用于若第二减速度大于或等于预定的最大减速度,则将最大减速度确定为目标减速度;
第七确定子模块用于若第二减速度小于或等于预定的最小减速度,则将最小减速度确定为目标减速度;
第八确定子模块用于若第二减速度大于最小减速度且小于最大减速度,则将第二减速度确定为目标减速度,其中,最大减速度大于最小减速度。
可选地,在对多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大;在将每台车辆的第一减速度进行加权求和时,一车辆在路段中行驶的时间与当前时间越近,该车辆的第一减速度权重越大。
本公开还提供一种应用于服务器的车辆控制装置。图7是一示例性实施例提供的应用于服务器的车辆控制装置的框图。如图7所示,车辆控制装置700可以包括第二获取模块701、确定模块702和发送模块703。
第二获取模块701用于针对多台车辆中的每台车辆,获取每台车辆在一路段中行驶且触发制动能量回收时的多个历史减速度。
确定模块702用于根据多个历史减速度确定目标减速度。
发送模块703用于将目标减速度发送至路段中行驶的车辆,以使接收到目标减速度 的车辆在接收到制动指令的情况下触发制动能量回收时,控制按照目标减速度进行制动能量回收。
可选地,确定模块702包括第九确定子模块和第十确定子模块。
第九确定子模块用于针对每台车辆,将多个历史减速度进行加权求和,得到每台车辆的第一减速度。
第十确定子模块用于根据每台车辆的第一减速度确定目标减速度。
可选地,第十确定子模块可以包括第十一确定子模块。
第十一确定子模块用于将每台车辆的第一减速度进行加权求和,得到目标减速度。
可选地,第十确定子模块可以包括第十二确定子模块、第十三确定子模块、第十四确定子模块和第十五确定子模块。
第十二确定子模块用于将每台车辆的第一减速度进行加权求和,得到第二减速度。
第十三确定子模块用于若第二减速度大于或等于预定的最大减速度,则将最大减速度确定为目标减速度。
第十四确定子模块用于若第二减速度小于或等于预定的最小减速度,则将最小减速度确定为目标减速度。
第十五确定子模块用于若第二减速度大于最小减速度且小于最大减速度,则将第二减速度确定为目标减速度,其中,最大减速度大于最小减速度。
可选地,在对多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大。
上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
通过上述技术方案,多台车辆在一路段中行驶且触发制动能量回收时的历史减速度确定目标减速度,控制本车在该路段行驶时按照该目标减速度进行制动能量回收。这样,能够应用适合于本车所在路段的制动回收强度,较经济地进行制动回收,从而减少了制动踏板的踩踏次数,提升了驾驶体验。
本公开还提供一种电子设备,包括存储器和处理器。
存储器上存储有计算机程序。处理器用于执行存储器中的计算机程序,以实现本公开提供的上述方法的步骤。
图8是根据一示例性实施例示出的一种电子设备800的框图。如图8所示,该电子 设备800可以包括:处理器801,存储器802。该电子设备800还可以包括多媒体组件803,输入/输出(I/O)接口804,以及通信组件805中的一者或多者。
其中,处理器801用于控制该电子设备800的整体操作,以完成上述的车辆控制方法中的全部或部分步骤。存储器802用于存储各种类型的数据以支持在该电子设备800的操作,这些数据例如可以包括用于在该电子设备800上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器802可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件803可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器802或通过通信组件805发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口804为处理器801和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件805用于该电子设备800与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件805可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的车辆控制方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的车辆控制方法的步骤。例如,该计算机可读存储介质 可以为上述包括程序指令的存储器802,上述程序指令可由电子设备800的处理器801执行以完成上述的车辆控制方法。
本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的车辆控制方法。
图9是一示例性实施例示出的一种电子设备900的框图。例如,电子设备900可以被提供为一服务器。参照图9,电子设备900包括处理器922,其数量可以为一个或多个,以及存储器932,用于存储可由处理器922执行的计算机程序。存储器932中存储的计算机程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理器922可以被配置为执行该计算机程序,以执行上述的车辆控制方法。
另外,电子设备900还可以包括电源组件926和通信组件950,该电源组件926可以被配置为执行电子设备900的电源管理,该通信组件950可以被配置为实现电子设备900的通信,例如,有线或无线通信。此外,该电子设备900还可以包括输入/输出(I/O)接口958。电子设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM等等。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的车辆控制方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器932,上述程序指令可由电子设备900的处理器922执行以完成上述的车辆控制方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的车辆控制方法的代码部分。
本公开还提供一种车辆,包括制动能量回收系统和控制器,所述控制器用于执行本公开提供的上述方法的步骤。
本公开还提供一种服务器,包括控制器,所述控制器用于执行本公开提供的上述方法的步骤。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾 的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (16)

  1. 一种车辆控制方法,其特征在于,应用于车辆,所述方法包括:
    若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆中的每台车辆,所述目标减速度由所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度确定;
    若所述本车在接收到制动指令的情况下触发制动能量回收,则控制按照所述目标减速度进行制动能量回收。
  2. 根据权利要求1所述的方法,其特征在于,所述获取目标减速度,包括:
    接收服务器发送的所述目标减速度,其中,针对所述多台车辆中的每台车辆,所述服务器分别获取所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度,并根据所述多个历史减速度确定所述目标减速度。
  3. 根据权利要求1所述的方法,其特征在于,所述获取目标减速度,包括:
    针对所述多台车辆中的每台车辆,接收服务器发送的所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度;
    根据所述多个历史减速度确定目标减速度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述多个历史减速度确定目标减速度,包括:
    针对所述每台车辆,将所述多个历史减速度进行加权求和,得到所述每台车辆的第一减速度;
    根据所述每台车辆的第一减速度确定所述目标减速度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述每台车辆的第一减速度确定所述目标减速度,包括:
    将所述每台车辆的第一减速度进行加权求和,得到所述目标减速度。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述每台车辆的第一减速 度确定所述目标减速度,包括:
    将所述每台车辆的第一减速度进行加权求和,得到第二减速度;
    若所述第二减速度大于或等于预定的最大减速度,则将所述最大减速度确定为所述目标减速度;
    若所述第二减速度小于或等于预定的最小减速度,则将所述最小减速度确定为所述目标减速度;
    若所述第二减速度大于所述最小减速度且小于所述最大减速度,则将所述第二减速度确定为所述目标减速度,其中,所述最大减速度大于所述最小减速度。
  7. 根据权利要求5或6所述的方法,其特征在于,在对所述多个历史减速度进行加权求和时,一历史减速度发生的时间与当前时间越近,权重越大;在将所述每台车辆的第一减速度进行加权求和时,一车辆在路段中行驶的时间与当前时间越近,该车辆的第一减速度权重越大。
  8. 一种车辆控制方法,其特征在于,应用于服务器,所述方法包括:
    针对多台车辆中的每台车辆,获取所述每台车辆在一路段中行驶且触发制动能量回收时的多个历史减速度;
    根据所述多个历史减速度确定目标减速度;
    将所述目标减速度发送至所述路段中行驶的车辆,以使接收到所述目标减速度的车辆在接收到制动指令的情况下触发制动能量回收时,控制按照所述目标减速度进行制动能量回收。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述多个历史减速度确定目标减速度,包括:
    针对所述每台车辆,将所述多个历史减速度进行加权求和,得到所述每台车辆的第一减速度;
    根据所述每台车辆的第一减速度确定所述目标减速度。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述每台车辆的第一减速度确定所述目标减速度,包括:
    将所述每台车辆的第一减速度进行加权求和,得到所述目标减速度。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述每台车辆的第一减速度确定所述目标减速度,包括:
    将所述每台车辆的第一减速度进行加权求和,得到第二减速度;
    若所述第二减速度大于或等于预定的最大减速度,则将所述最大减速度确定为所述目标减速度;
    若所述第二减速度小于或等于预定的最小减速度,则将所述最小减速度确定为所述目标减速度;
    若所述第二减速度大于所述最小减速度且小于所述最大减速度,则将所述第二减速度确定为所述目标减速度,其中,所述最大减速度大于所述最小减速度。
  12. 一种车辆控制装置,其特征在于,应用于车辆,所述装置包括:
    第一获取模块,用于若本车在一路段中行驶,则获取目标减速度,其中,针对多台车辆中的每台车辆,所述目标减速度由所述每台车辆在所述路段中行驶且触发制动能量回收时的多个历史减速度确定;
    控制模块,用于若所述本车在接收到制动指令的情况下触发制动能量回收,则控制按照所述目标减速度进行制动能量回收。
  13. 一种车辆控制装置,其特征在于,应用于服务器,所述装置包括:
    第二获取模块,用于针对多台车辆中的每台车辆,获取所述每台车辆在一路段中行驶且触发制动能量回收时的多个历史减速度;
    确定模块,用于根据所述多个历史减速度确定目标减速度;
    发送模块,用于将所述目标减速度发送至所述路段中行驶的车辆,以使接收到所述目标减速度的车辆在接收到制动指令的情况下触发制动能量回收时,控制按照所述目标减速度进行制动能量回收。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-7中任一项所述方法的步骤,或该程序被处理器执行时实现权利要求8-11中任一项所述方法的步骤。
  15. 一种电子设备,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-7中任一项所述方法的步骤、或实现权利要求8-11中任一项所述方法的步骤。
  16. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-7中任一项所述的方法,或执行根据权利要求8-11中任一项所述的方法。
PCT/CN2021/116477 2020-09-03 2021-09-03 车辆控制方法和装置、介质、设备、程序 WO2022048643A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21863705.6A EP4201729A4 (en) 2020-09-03 2021-09-03 VEHICLE CONTROL METHOD AND APPARATUS, MEDIUM, APPARATUS AND PROGRAM
JP2023514744A JP2023541820A (ja) 2020-09-03 2021-09-03 車両制御方法及び装置、媒体、設備、プログラム
US18/024,116 US20230264574A1 (en) 2020-09-03 2021-09-03 Method and apparatus for vehicle control, storage medium, electronic device, and computer program
KR1020237007933A KR20230044532A (ko) 2020-09-03 2021-09-03 차량 제어 방법 및 장치, 미디어, 설비, 프로그램

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010917831.0A CN114132181A (zh) 2020-09-03 2020-09-03 车辆控制方法和装置、介质、设备
CN202010917831.0 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022048643A1 true WO2022048643A1 (zh) 2022-03-10

Family

ID=80438581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116477 WO2022048643A1 (zh) 2020-09-03 2021-09-03 车辆控制方法和装置、介质、设备、程序

Country Status (6)

Country Link
US (1) US20230264574A1 (zh)
EP (1) EP4201729A4 (zh)
JP (1) JP2023541820A (zh)
KR (1) KR20230044532A (zh)
CN (1) CN114132181A (zh)
WO (1) WO2022048643A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115416632B (zh) * 2022-09-15 2024-01-30 交控科技股份有限公司 停车控制方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114481A1 (de) * 2011-09-23 2013-03-28 Magna Powertrain Ag & Co. Kg Verfahren zur Steuerung eines Bremssystems eines Kraftfahrzeugs
CN108058615A (zh) * 2016-11-09 2018-05-22 华为技术有限公司 车辆制动能量的回收方法和装置
CN108437849A (zh) * 2017-01-30 2018-08-24 福特全球技术公司 再生制动系统和方法
CN108909459A (zh) * 2018-07-27 2018-11-30 爱驰汽车有限公司 电动汽车的能量回收方法、系统以及电动汽车
CN108928238A (zh) * 2017-05-26 2018-12-04 华为技术有限公司 一种制动能量回收方法及电动汽车
CN109572439A (zh) * 2018-12-24 2019-04-05 广州小鹏汽车科技有限公司 一种制动能量回收方法、装置及汽车
CN110588656A (zh) * 2019-09-30 2019-12-20 的卢技术有限公司 一种基于道路及路况信息的自适应动能回收方法及系统
CN111547035A (zh) * 2020-04-17 2020-08-18 中国第一汽车股份有限公司 车辆减速控制方法、装置、存储介质及车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007010415D1 (de) * 2007-02-14 2010-12-23 Hitachi Ltd Verfahren und Vorrichtung zum Schätzen der Reisezeit einer Reiseroute
DE102014207194A1 (de) * 2014-04-15 2015-10-15 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe, mit einem Auslassventil mit einer Ventilkugel und einem Ventilkörper
CN104691341B (zh) * 2015-01-12 2016-09-21 阳光电源股份有限公司 一种电动汽车滑行时能量回收的方法、设备及电动汽车
CN109471783B (zh) * 2017-09-08 2022-07-05 北京京东尚科信息技术有限公司 预测任务运行参数的方法和装置
CN109795506B (zh) * 2019-02-26 2021-04-02 百度在线网络技术(北京)有限公司 一种驾驶控制方法、装置及车辆
CN111231962B (zh) * 2020-03-03 2021-10-12 北京百度网讯科技有限公司 一种无人车车辆控制方法、装置、设备、车辆及介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114481A1 (de) * 2011-09-23 2013-03-28 Magna Powertrain Ag & Co. Kg Verfahren zur Steuerung eines Bremssystems eines Kraftfahrzeugs
CN108058615A (zh) * 2016-11-09 2018-05-22 华为技术有限公司 车辆制动能量的回收方法和装置
CN108437849A (zh) * 2017-01-30 2018-08-24 福特全球技术公司 再生制动系统和方法
CN108928238A (zh) * 2017-05-26 2018-12-04 华为技术有限公司 一种制动能量回收方法及电动汽车
CN108909459A (zh) * 2018-07-27 2018-11-30 爱驰汽车有限公司 电动汽车的能量回收方法、系统以及电动汽车
CN109572439A (zh) * 2018-12-24 2019-04-05 广州小鹏汽车科技有限公司 一种制动能量回收方法、装置及汽车
CN110588656A (zh) * 2019-09-30 2019-12-20 的卢技术有限公司 一种基于道路及路况信息的自适应动能回收方法及系统
CN111547035A (zh) * 2020-04-17 2020-08-18 中国第一汽车股份有限公司 车辆减速控制方法、装置、存储介质及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4201729A4 *

Also Published As

Publication number Publication date
EP4201729A4 (en) 2024-02-28
JP2023541820A (ja) 2023-10-04
CN114132181A (zh) 2022-03-04
EP4201729A1 (en) 2023-06-28
US20230264574A1 (en) 2023-08-24
KR20230044532A (ko) 2023-04-04

Similar Documents

Publication Publication Date Title
JP6760331B2 (ja) 車両制御装置
CN107415704B (zh) 复合制动方法、装置和自适应巡航控制器
JP2016132368A (ja) 車両データのリモート収集システム
US20230406310A1 (en) Control method and device for vehicle, storage medium, electronic device and vehicle
US10206015B2 (en) System and method for vehicle data communication
CN111703418B (zh) 一种基于车车通信的多车分布式协同避撞方法及装置
KR102261290B1 (ko) 친환경 자동차의 회생제동 제어 서버와 이를 이용한 제어 방법
WO2022048643A1 (zh) 车辆控制方法和装置、介质、设备、程序
WO2019148683A1 (zh) 一种车辆共享方法及服务器
CN106564402A (zh) 基于移动终端远程控制车辆的方法和系统及电动汽车
KR20210106377A (ko) 원격 조작 주행 세션을 호출하기 위한 방법, 방법의 단계들을 수행하기 위한 장치, 차량 및 컴퓨터 프로그램
CN114787010A (zh) 驾驶安全性系统
WO2020037500A1 (zh) 智能驾驶方法、装置及存储介质
CN114475630B (zh) 控车协同决策方法、装置、车辆及计算机可读存储介质
WO2023207596A1 (zh) 一种信息传输方法、装置、车辆及车联网设备
EP3783860B1 (en) Development system and method for vehicle-specific third-party application
CN110815227A (zh) 一种机器人控制电梯的方法及装置
CN110264726A (zh) 交通控制方法和交通控制系统
CN114510011A (zh) 用于调用遥控操作式驾驶会话的方法、计算机程序和设备
CN114740814A (zh) 基于云控系统的整车控制方法、云控系统及电气架构
CN110816435A (zh) 一种远程控制车辆的方法及装置
CN115499380B (zh) 车载以太网的tsn混合调度方法、设备及存储介质
US20240010248A1 (en) Vehicle parking control method and apparatus
WO2023130849A1 (zh) 网联式自动驾驶方法、电子设备、服务器、存储介质及程序产品
CN109063364A (zh) 基于c/s架构的城市车辆行驶仿真系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514744

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007933

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021863705

Country of ref document: EP

Effective date: 20230324

NENP Non-entry into the national phase

Ref country code: DE