WO2022107315A1 - 半導体光電極および半導体光電極の製造方法 - Google Patents

半導体光電極および半導体光電極の製造方法 Download PDF

Info

Publication number
WO2022107315A1
WO2022107315A1 PCT/JP2020/043403 JP2020043403W WO2022107315A1 WO 2022107315 A1 WO2022107315 A1 WO 2022107315A1 JP 2020043403 W JP2020043403 W JP 2020043403W WO 2022107315 A1 WO2022107315 A1 WO 2022107315A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor
semiconductor thin
substrate
semiconductor optical
Prior art date
Application number
PCT/JP2020/043403
Other languages
English (en)
French (fr)
Inventor
裕也 渦巻
武志 小松
晃洋 鴻野
紗弓 里
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/250,274 priority Critical patent/US20230392269A1/en
Priority to JP2022563527A priority patent/JP7485991B2/ja
Priority to PCT/JP2020/043403 priority patent/WO2022107315A1/ja
Publication of WO2022107315A1 publication Critical patent/WO2022107315A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma

Definitions

  • the water decomposition reaction using a photocatalyst consists of a water oxidation reaction and a proton reduction reaction.
  • n-type photocatalyst material When the n-type photocatalyst material is irradiated with light, electrons and holes are generated and separated in the photocatalyst. Holes move to the surface of the photocatalytic material and contribute to the reduction reaction of protons. On the other hand, electrons move to the reduction electrode and contribute to the reduction reaction of protons. Ideally, such a redox reaction proceeds and a water splitting reaction occurs.
  • the conventional water decomposition device has an oxidation tank and a reduction tank connected via a proton exchange membrane, and puts an aqueous solution and an oxidation electrode in the oxidation tank, and puts an aqueous solution and a reduction electrode in the reduction tank.
  • the protons generated in the oxidation tank diffuse into the reduction tank via the proton exchange membrane.
  • the oxide electrode and the reduction electrode are electrically connected by a conducting wire, and electrons move from the oxide electrode to the reduction electrode.
  • a water decomposition reaction is caused by irradiating the light source with light having a wavelength that can be absorbed by the material constituting the oxide electrode.
  • a gallium nitride thin film grown on a sapphire substrate is used as an oxidation electrode
  • oxygen is generated on the surface of the gallium nitride when the gallium nitride thin film is irradiated with light in an aqueous solution.
  • the amount of oxygen produced depends on the amount of holes generated and separated in the semiconductor, as described in the above-mentioned oxidation reaction formula. Therefore, efficiency improvement can be expected by increasing the light irradiation area (reaction field) of the semiconductor.
  • the process of oxygen generation is mainly (1) adsorption of water to the reaction field, (2) divergence of 0-H bond, (3) bond of adsorbed oxygen, and (4) oxygen from the reaction field. It consists of withdrawal.
  • NiO is formed as a catalyst material on the surface of the semiconductor in order to promote the oxygen generation reaction, but most of the catalyst materials do not contribute much to the promotion of the step (4), and the oxygen finally generated is released from the surface.
  • the reaction field is covered without leaving, which hinders the improvement of efficiency by catalyst formation.
  • the present invention has been made in view of the above, and an object of the present invention is to improve the light energy conversion efficiency of a semiconductor photoelectrode that causes a redox reaction by light irradiation.
  • the semiconductor optical electrode according to one aspect of the present invention is a semiconductor optical electrode that exerts a catalytic function by light irradiation to cause an oxidation-reduction reaction, and is arranged on a conductive or insulating substrate and the surface of the substrate. It has a semiconductor thin film having a concavo-convex structure, a catalyst layer arranged along the concavo-convex structure of the semiconductor thin film, and a protective layer arranged so as to cover the back surface of the substrate and the side surfaces of the substrate and the semiconductor thin film.
  • the method for manufacturing a semiconductor optical electrode according to one aspect of the present invention is a method for manufacturing a semiconductor optical electrode that exerts a catalytic function by light irradiation to cause an oxidation-reduction reaction, and is a semiconductor on the surface of a conductive or insulating substrate.
  • the light energy conversion efficiency of a semiconductor photoelectrode that causes a redox reaction by light irradiation can be improved.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the semiconductor optical electrode of the present embodiment.
  • the semiconductor optical electrode 1 exerts a catalytic function by irradiating with light in an aqueous solution to cause a redox reaction.
  • the semiconductor optical electrode 1 shown in the figure is a semiconductor thin film 12 or a semiconductor thin film 12 arranged on the surface of an insulating or conductive substrate 11 or the substrate 11 and having an uneven structure on the opposite surface of the substrate 11. It includes a catalyst layer 13 arranged along the uneven structure, and a protective layer 14 formed so as to cover the back surface of the substrate 11 and the side surfaces of the substrate 11 and the semiconductor thin film 12.
  • an insulating or conductive substrate such as a sapphire substrate, a GaN substrate, a glass substrate, or a Si substrate can be used.
  • the semiconductor thin film 12 has a photocatalytic function of causing a reaction of a target substance by irradiation with light.
  • the semiconductor thin film 12 is, for example, a metal oxide such as gallium nitride (GaN), titanium oxide (TIO 2 ), tungsten oxide (WO 3 ), gallium oxide (Ga 2 O 3 ), or tantalum nitride (Ta 3 N 5 ).
  • a metal oxide such as gallium nitride (GaN), titanium oxide (TIO 2 ), tungsten oxide (WO 3 ), gallium oxide (Ga 2 O 3 ), or tantalum nitride (Ta 3 N 5 ).
  • Compound semiconductors such as cadmium sulfide (CdS) can be used.
  • the semiconductor thin film 12 has an uneven structure on the surface (the surface opposite to the substrate 11).
  • the uneven structure is, for example, a grid pattern or a striped pattern.
  • the width and depth of the recesses may be such that the effect of removing air bubbles from the generated gas can be obtained.
  • the width of the recess is preferably 20 ⁇ m or less, and the depth is preferably 1 ⁇ m or less. If the depth is larger than 1 ⁇ m, the gas is trapped and the gas release effect is impaired.
  • the catalyst layer 13 uses a material having a co-catalyst function with respect to the semiconductor thin film 12.
  • a material having a co-catalyst function with respect to the semiconductor thin film 12.
  • the catalyst layer 13 for example, one or more metals among Ni, Co, Cu, W, Ta, Pd, Ru, Fe, Zn, and Nb, or an oxide made of a metal can be used.
  • the film thickness of the catalyst layer 13 is preferably 1 nm to 10 nm, particularly preferably 1 nm to 3 nm, which can sufficiently transmit light.
  • the catalyst layer 13 may cover the entire surface exposed portion of the semiconductor thin film 12, or may cover only a part of the surface exposed portion.
  • the protective layer 14 is for preventing deterioration due to contact between the substrate 11 and the aqueous solution of the semiconductor thin film 12.
  • an insulating material such as an epoxy resin that does not react with the aqueous solution, the substrate 11, and the semiconductor thin film 12 is used.
  • step S12 the surface of the semiconductor thin film 12 is unevenly processed by etching.
  • Surface treatment methods include etching, cutting, and pressing.
  • the semiconductor thin film 12 is thin and easily cracked. Further, since the light absorption characteristic affects the quality of the crystallinity of the layer, etching processing, which is a high-precision, non-contact processing, is preferable.
  • the catalyst layer 13 is formed on the uneven surface of the semiconductor thin film 12.
  • the catalyst layer 13 is formed to have a constant thickness along the uneven structure of the semiconductor thin film 12.
  • the catalyst layer 13 may be formed so as to cover the entire surface of the semiconductor thin film 12, the catalyst layer 13 may be formed so as to cover only a part of the surface of the semiconductor thin film 12, only the concave portion or the convex portion.
  • the catalyst layer 13 may be formed only on the catalyst layer 13.
  • step S14 the sample in which the semiconductor thin film 12 and the catalyst layer 13 are formed on the substrate 11 is heat-treated.
  • the heat treatment may be carried out on a hot plate or may be heat-treated in an electric furnace.
  • step S15 the protective layer 14 is formed so as to cover the surface of the semiconductor thin film 12 excluding the uneven surface, that is, the back surface and the side surface of the substrate 11, and the side surface of the semiconductor thin film 12.
  • Example of semiconductor optical electrode The semiconductor optical electrodes of Examples 1-4 in which the material of the substrate and the size of the uneven structure were changed were prepared, and the redox reaction test described later was carried out. Hereinafter, the semiconductor optical electrode of Example 1-4 will be described.
  • Example 1 The semiconductor optical electrode of Example 1 is a semiconductor thin film that has been subjected to uneven processing so that the surface area of the semiconductor optical electrode is about 1.5 times the sample area. A sapphire substrate was used.
  • an n-GaN semiconductor thin film is epitaxially grown on a sapphire substrate by an organic metal vapor phase growth method (MOCVD) to form a light absorption layer (a layer that absorbs light and generates electrons and holes).
  • MOCVD organic metal vapor phase growth method
  • a semiconductor thin film was formed. Ammonia gas and trimethylgallium were used as growth raw materials. Hydrogen was used as the carrier gas sent into the growth furnace.
  • the film thickness of the n-GaN semiconductor thin film was set to 2 ⁇ m, which is sufficient to absorb light.
  • the carrier density was 3 ⁇ 10 18 cm -3 .
  • step S12 a resist was applied on the surface of the n-GaN semiconductor thin film, and as shown in the cross-sectional view of FIG. 3, the surface of the n-GaN semiconductor thin film was processed by dry etching to 500 nm.
  • the uneven pattern was striped, the pattern size was 1 ⁇ m, and the pattern pitch was 2 ⁇ m.
  • the resist was removed to form an uneven pattern on the surface of the n-GaN semiconductor thin film.
  • SEM observing the cross section of the sample by SEM, it was confirmed that the dimensions of the uneven structure were formed as intended, and it was calculated from each dimension that the surface area was increased by about 1.5 times as compared with that before processing.
  • the sample area is 1 cm 2 and the surface area is 1.5 cm 2 .
  • step S15 an epoxy resin was used to form a protective layer so as to cover the back surface of the sapphire substrate (the surface on which the n-GaN semiconductor thin film was not formed) and the side surfaces of the sapphire substrate and the n-GaN semiconductor thin film.
  • step S12 were performed in the same manner as in Example 1.
  • Example 3 The semiconductor optical electrode of Example 3 is a semiconductor thin film that has been subjected to uneven processing so that the surface area of the semiconductor optical electrode is about twice the sample area.
  • Example 3 is different from Example 1 in that in step S12, the pattern size is 0.5 ⁇ m, the pattern pitch is 1 ⁇ m, and the surface of the n-GaN semiconductor thin film is processed by 500 nm by dry etching. In other respects, it is the same as in Example 1.
  • Example 4 The semiconductor optical electrode of Example 4 is a semiconductor thin film that has been subjected to uneven processing so that the surface area of the semiconductor optical electrode is about 2.5 times the sample area.
  • FIG. 4 is a cross-sectional view of the semiconductor optical electrode 5 of Comparative Example 1-5.
  • the semiconductor optical electrode 5 shown in the figure is an insulating or conductive substrate 51, a semiconductor thin film 52 having a flat surface arranged on the surface of the substrate 51, a catalyst layer 53 arranged on the surface of the semiconductor thin film 52, and a catalyst layer 53.
  • a protective layer 54 formed so as to cover the back surface of the substrate 51 and the side surfaces of the substrate 51 and the semiconductor thin film 52 is provided.
  • the semiconductor optical electrode 5 of FIG. 4 differs from the semiconductor optical electrode 1 of FIG. 1 in that the surface of the semiconductor thin film 52 does not have an uneven structure and the surface is flat.
  • Example 1 for comparison is different from Example 1 in that a semiconductor optical electrode is manufactured without carrying out the step S12. In other respects, it is the same as in Example 1.
  • the cross section of the sample was observed by SEM / TEM, and it was confirmed that the semiconductor thin film and the catalyst layer had a flat structure.
  • Example 2 for comparison is different from Example 2 in that a semiconductor optical electrode is manufactured without carrying out the step S12. In other respects, it is the same as in Example 2.
  • the surface of the semiconductor optical electrode is flat without making the semiconductor thin film uneven. Both the sample area and the surface area are 1.5 cm 2 .
  • the surface area was the same as in Example 1. A sapphire substrate was used.
  • Example 4 for comparison is different from Example 3 in that a semiconductor optical electrode is manufactured without carrying out the step S12. In other respects, it is the same as in Example 3.
  • the apparatus of FIG. 5 includes an oxidation tank 110 and a reduction tank 120.
  • the aqueous solution 111 is placed in the oxide tank 110, and the semiconductor light electrode 1 of Example 1-4 or the semiconductor light electrode 5 of Comparative Example 1-5 is placed in the aqueous solution 111 as an oxidation electrode.
  • the aqueous solution 121 is placed in the reduction tank 120, and the reduction electrode 122 is placed in the aqueous solution 121.
  • a 1 mol / l sodium hydroxide aqueous solution was used as the aqueous solution 111 of the oxide tank 110.
  • a potassium hydroxide aqueous solution or hydrochloric acid may be used as the aqueous solution 111.
  • an alkaline aqueous solution is preferable.
  • a 0.5 mol / l potassium hydrogen carbonate aqueous solution was used as the aqueous solution 121 of the reduction tank 120.
  • a sodium hydrogen carbonate aqueous solution a potassium chloride aqueous solution, or a sodium chloride aqueous solution may be used.
  • the reduction electrode 122 may be a metal or a metal compound.
  • the reducing electrode 122 for example, nickel, iron, gold, silver, copper, indium, or titanium may be used.
  • the oxidation tank 110 and the reduction tank 120 are connected via a proton film 130.
  • the protons generated in the oxidation tank 110 diffuse into the reduction tank 120 via the proton membrane 130.
  • Nafion (registered trademark) was used for the proton membrane 130.
  • Nafion is a perfluorocarbon material composed of a hydrophobic Teflon skeleton consisting of carbon-fluorine and a perfluoro side chain having a sulfonic acid group.
  • the oxide electrode 112 and the reduction electrode 122 are electrically connected by a lead wire 132, and electrons move from the oxide electrode 112 to the reduction electrode 122.
  • the light source 140 As the light source 140 , a 300 W high-pressure xenon lamp (illuminance 5 mW / cm 2 ) was used.
  • the light source 140 may irradiate light having a wavelength that can be absorbed by the material constituting the semiconductor optical electrode installed as the oxidation electrode. For example, in an oxide electrode made of gallium nitride, the wavelength that can be absorbed is 365 nm or less.
  • a light source such as a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-solar light source, or sunlight may be used, or a combination of these light sources may be used.
  • the light source 140 was fixed so as to face the surface on which NiO of the semiconductor optical electrode to be tested was formed, and the semiconductor optical electrode was uniformly irradiated with light.
  • the gas in each reaction tank was collected and the reaction product was analyzed by gas chromatograph. As a result, it was confirmed that oxygen was generated in the oxidation tank 110 and hydrogen was generated in the reduction tank 120.
  • the metal of the reducing electrode to, for example, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru, or changing the atmosphere in the cell, carbon by the reduction reaction of carbon dioxide can be obtained. It is also possible to produce compounds and produce ammonia by the reduction reaction of nitrogen.
  • Table 1 shows the amount of oxygen / hydrogen gas produced with respect to the light irradiation time in Examples 1-4 and Comparative Example 1-5. The amount of each gas produced is standardized by the surface area of the semiconductor optical electrode.
  • Example 1-4 Comparative Example 1-5 produced oxygen and hydrogen during light irradiation.
  • Example 1 Comparing Example 1 and Comparative Example 3 having the same surface area, Example 1 having a concavo-convex structure on the surface produced a larger amount of gas than Example 3 having a flat surface. Comparing Example 3 with Comparative Example 4 and Example 4 with Comparative Example 5, the amount of gas produced was larger in Examples 3 and 4 having an uneven structure. It is considered that the promotion of gas separation due to the uneven structure of the surface of the semiconductor optical electrode affected the amount of gas produced. The release of the generated gas depends on the surface tension of the surface of the semiconductor photoelectrode. As shown in FIGS. 6A and 6B, by providing an uneven structure on the surface rather than having a flat surface, the surface tension can be reduced and the release of the generated gas is promoted.
  • the semiconductor optical electrode 1 of the present embodiment is composed of a conductive or insulating substrate 11, a semiconductor thin film 12 arranged on the surface of the substrate 11 and having a concavo-convex structure on the surface, and a semiconductor thin film 12. It has a catalyst layer 13 arranged along the uneven structure of the surface, and a protective layer 14 arranged so as to cover the back surface of the substrate 11 and the side surfaces of the substrate 11 and the semiconductor thin film 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)
  • Led Devices (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

半導体光電極1は、導電性または絶縁性の基板11と、基板11の表面上に配置され、表面に凹凸構造を備える半導体薄膜12と、半導体薄膜12の表面の凹凸構造に沿って配置された触媒層13と、基板11の裏面および基板11と半導体薄膜12の側面を覆うように配置された保護層14を有する。

Description

半導体光電極および半導体光電極の製造方法
 本発明は、半導体光電極および半導体光電極の製造方法に関する。
 光触媒を用いた水の分解反応は、水の酸化反応とプロトンの還元反応からなる。
 酸化反応:2H2O+4h+→O2+4H+
 還元反応:4H++4e-→2H2
 n型の光触媒材料に光を照射した場合、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、プロトンの還元反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。
 従来の水の分解装置は、プロトン交換膜を介して繋がっている酸化槽と還元槽を有し、酸化槽に水溶液と酸化電極を入れ、還元槽に水溶液と還元電極を入れる。酸化槽で生成したプロトンがプロトン交換膜を介して還元槽へ拡散する。酸化電極と還元電極とは導線で電気的に接続されており、酸化電極から還元電極へ電子が移動する。光源から酸化電極を構成する材料が吸収可能な波長の光を照射して水分解反応を生じさせる。
S. Yotsuhashi, et al., "CO2 Conversion with Light and Water by GaN Photoelectrode", Japanese Journal of Applied Physics 51 (2012) 02BP07
 酸化電極として、例えば、サファイア基板上に成長した窒化ガリウム薄膜を用いた場合、水溶液中で窒化ガリウム薄膜に光を照射すると、窒化ガリウム表面では酸素が生成される。酸素の生成量は、前述の酸化反応式に記載のとおり、半導体中で生成・分離する正孔の量に依存する。そのため、半導体の光照射面積(反応場)を増大することで効率向上が期待できる。
 また、酸素が生成する過程は、主に、(1)反応場への水の吸着、(2)0-H結合の乖離、(3)吸着酸素の結合、(4)反応場からの酸素の離脱からなる。反応効率の促進には(1)から(4)の各工程の反応速度を向上する必要がある。酸素生成反応を促進するために、半導体表面上に触媒材料として例えばNiOを形成するが、触媒材料の多くは(4)の工程の促進への寄与は少なく、最終的に生成した酸素が表面から離脱せずに反応場を覆ってしまい、触媒形成による効率向上を阻害してしまうという問題があった。
 本発明は、上記に鑑みてなされたものであり、光照射により酸化還元反応を生じる半導体光電極の光エネルギー変換効率を向上することを目的とする。
 本発明の一態様の半導体光電極は、光照射により触媒機能を発揮して酸化還元反応を生じる半導体光電極であって、導電性または絶縁性の基板と、前記基板の表面上に配置され、凹凸構造を備える半導体薄膜と、前記半導体薄膜の凹凸構造に沿って配置された触媒層と、前記基板の裏面および前記基板と前記半導体薄膜の側面を覆うように配置された保護層を有する。
 本発明の一態様の半導体光電極の製造方法は、光照射により触媒機能を発揮して酸化還元反応を生じる半導体光電極の製造方法であって、導電性または絶縁性の基板の表面上に半導体薄膜を形成する工程と、エッチング加工により前記半導体薄膜の表面に凹凸構造を形成する工程と、前記半導体薄膜の表面の凹凸構造に沿って触媒層を形成する工程と、前記半導体薄膜と前記触媒層を熱処理する工程と、前記基板の裏面および前記基板と前記半導体薄膜の側面を覆うように保護層を形成する工程を有する。
 本発明によれば、光照射により酸化還元反応を生じる半導体光電極の光エネルギー変換効率を向上できる。
図1は、本実施形態の半導体光電極の構成の一例を示す断面図である。 図2は、本実施形態の半導体光電極の製造方法の一例を示すフローチャートである。 図3は、半導体薄膜の表面形状の一例を示す断面図である。 図4は、比較対象例の半導体光電極の構成の一例を示す断面図である。 図5は、酸化還元反応試験を行う装置の一例を示す図である。 図6Aは、平坦面でガスが発生する様子を示す図である。 図6Bは、凹凸面でガスが発生して離脱する様子を示す図である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下で説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。
 [半導体光電極の構成]
 図1は、本実施形態の半導体光電極の構成の一例を示す断面図である。半導体光電極1は、水溶液中にて、光照射することにより触媒機能を発揮して酸化還元反応を生じる。同図に示す半導体光電極1は、絶縁性または導電性の基板11、基板11の表面上に配置され、基板11の反対側の面に凹凸構造が設けられた半導体薄膜12、半導体薄膜12の凹凸構造に沿って配置された触媒層13、および基板11の裏面並びに基板11と半導体薄膜12の側面を覆うように形成された保護層14を備える。
 基板11は、例えば、サファイア基板、GaN基板、ガラス基板、Si基板などの絶縁性または導電性の基板を用いることができる。
 半導体薄膜12は、光照射により対象とする物質の反応を起こさせる光触媒機能を有する。半導体薄膜12は、例えば、窒化ガリウム(GaN)、酸化チタン(TiO)、酸化タングステン(WO)、酸化ガリウム(Ga)等の金属酸化物、もしくは窒化タンタル(Ta)、硫化カドミウム(CdS)等の化合物半導体を用いることができる。
 半導体薄膜12は、表面(基板11と反対側の面)に凹凸構造を備える。凹凸構造は、例えば、格子状または縞状である。凹部の幅および深さが生成ガスの気泡の離脱効果を得られるものであればよい。例えば、生成ガスの典型的な気泡サイズを鑑みると、凹部の幅は20μm以下とすることが好ましく、深さは1μm以下とすることが好ましい。深さが1μmより大きい場合、ガスがトラップされてガスの離脱効果が損なわれる。
 触媒層13は、半導体薄膜12に対して助触媒機能を有する材料を用いる。触媒層13は、例えば、Ni、Co、Cu、W、Ta、Pd、Ru、Fe、Zn、Nbのうち1種類以上の金属あるいは金属からなる酸化物を用いることができる。触媒層13の膜厚は、1nmから10nm、特に、光を十分に透過できる1nmから3nmが望ましい。触媒層13は、半導体薄膜12の表面露出部を全て被覆してもよいし、一部のみを被覆してもよい。触媒層13が半導体薄膜12の一部のみを被覆する場合、例えば、触媒層13は凹凸構造の凹部のみまたは凸部のみを被覆したり、半導体薄膜12の表面の一部の凹凸構造のみを被覆したりしてもよい。
 保護層14は、基板11と半導体薄膜12の水溶液との接触による劣化を防ぐためのものである。保護層14には、例えばエポキシ樹脂など、水溶液、基板11、および半導体薄膜12と反応しない絶縁材料を用いる。
 [半導体光電極の製造方法]
 図2を参照し、半導体光電極の製造方法について説明する。
 ステップS11にて、基板11上に半導体薄膜12を成長させる。
 ステップS12にて、エッチングにより半導体薄膜12の表面を凹凸加工する。表面加工の手法には、エッチング加工、切削加工、およびプレス加工等がある。半導体薄膜12は薄く割れやすい。また、光の吸収特性は層の結晶性の良し悪しに影響することから、高精度・非接触加工であるエッチング加工が好ましい。
 ステップS13にて、半導体薄膜12の凹凸面に触媒層13を形成する。触媒層13は、半導体薄膜12の凹凸構造に沿って一定の厚さで形成される。半導体薄膜12の表面全体を覆うように触媒層13を形成してもよいし、半導体薄膜12の表面の一部のみを覆うように触媒層13を形成してもよいし、凹部のみまたは凸部のみに触媒層13を形成してもよい。
 ステップS14にて、基板11上に半導体薄膜12と触媒層13を形成した試料を熱処理する。熱処理は、ホットプレート上で実施してもよいし、電気炉中で熱処理してもよい。
 ステップS15にて、半導体薄膜12の凹凸面を除く面、つまり基板11の裏面と側面および半導体薄膜12の側面を覆うように保護層14を形成する。
 [半導体光電極の実施例]
 基板の材料および凹凸構造のサイズを変えた実施例1-4の半導体光電極を作製し、後述の酸化還元反応試験を行った。以下、実施例1-4の半導体光電極について説明する。
 <実施例1>
 実施例1の半導体光電極は、半導体光電極の表面積が試料面積の約1.5倍となるように半導体薄膜を凹凸加工したものである。サファイア基板を用いた。
 ステップS11にて、サファイア基板上に、n-GaN半導体薄膜を有機金属気相成長法(MOCVD)によりエピタキシャル成長させて、光吸収層(光を吸収し、電子と正孔を生成する層)としての半導体薄膜を形成した。成長原料には、アンモニアガス、トリメチルガリウムを用いた。成長炉内に送るキャリアガスには水素を用いた。n-GaN半導体薄膜の膜厚は光を吸収するに十分足る2μmとした。キャリア密度は3×1018cm-3であった。
 ステップS12にて、n-GaN半導体薄膜の表面上にレジストを塗布し、図3の断面図に示すように、ドライエッチングにてn-GaN半導体薄膜の表面を500nm加工した。凹凸パターンは縞状であり、パターン寸法は1μm、パターンピッチは2μmとした。その後、レジストを除去し、n-GaN半導体薄膜の表面上に凹凸パターンを形成した。試料断面をSEM観察して凹凸構造の寸法が狙い通り形成されていることを確認し、各寸法から表面積が加工前に比べて約1.5倍に増加していることを算出した。なお、試料面積は1cm2であり、表面積は1.5cm2である。
 ステップS13にて、n-GaN半導体薄膜表面の凹凸構造に沿って、膜厚約1nmのNiを真空蒸着した。
 ステップS14にて、この試料を空気中において、摂氏300度で1時間熱処理して、NiOを形成した。試料断面をTEM観察するとNiOの膜厚が2nmであった。
 ステップS15にて、エポキシ樹脂を用いて、サファイア基板の裏面(n-GaN半導体薄膜を形成していない面)およびサファイア基板とn-GaN半導体薄膜の側面を覆うように保護層を形成した。
 以上の工程により、実施例1の半導体光電極を得た。
 <実施例2>
 実施例2の半導体光電極は、半導体光電極の表面積が試料面積の約1.5倍となるように半導体薄膜を凹凸加工したものである。実施例1とはn-GaN基板を用いた点で異なる。
 実施例2では、ステップS11にて、n-GaN基板上に、n-GaN半導体薄膜をMOCVDによりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウムを用いた。成長炉内に送るキャリアガスには水素を用いた。n-GaN半導体薄膜の膜厚は光を吸収するに十分足る2μmとした。キャリア密度は3×1018cm-3であった。
 ステップS12以降の工程は実施例1と同様に行った。
 <実施例3>
 実施例3の半導体光電極は、半導体光電極の表面積が試料面積の約2倍となるように半導体薄膜を凹凸加工したものである。
 実施例3では、ステップS12において、パターン寸法を0.5μm、パターンピッチを1μmとして、ドライエッチングにてn-GaN半導体薄膜の表面を500nm加工した点で実施例1と異なる。その他の点においては実施例1と同様である。
 実施例3では、表面積が加工前に比べて約2倍に増加した。試料面積は1cm2であり、表面積は2cm2である。
 <実施例4>
 実施例4の半導体光電極は、半導体光電極の表面積が試料面積の約2.5倍となるように半導体薄膜を凹凸加工したものである。
 実施例4では、ステップS12において、パターン寸法を0.3μm、パターンピッチを0.6μmとして、ドライエッチングにてn-GaN半導体薄膜の表面を500nm加工した点で実施例1と異なる。その他の点においては実施例1と同様である。
 実施例4では、表面積が加工前に比べて約2.5倍に増加した。試料面積は1cm2であり、表面積は2.5cm2である。
 続いて、比較対象例1-5について説明する。比較対象例1-5は半導体光電極の表面は凹凸構造ではなく平坦である。図4は、比較対象例1-5の半導体光電極5の断面図である。同図に示す半導体光電極5は、絶縁性または導電性の基板51、基板51の表面上に配置され、表面が平坦な半導体薄膜52、半導体薄膜52の表面に配置された触媒層53、および基板51の裏面並びに基板51と半導体薄膜52の側面を覆うように形成された保護層54を備える。図4の半導体光電極5は、図1の半導体光電極1とは、半導体薄膜52の表面に凹凸構造を設けず、表面が平坦である点で相違する。
 <比較対象例1>
 比較対象例1の半導体光電極は、半導体薄膜を凹凸加工せずに、半導体光電極の表面が平坦である。試料面積と表面積はいずれも1cm2である。サファイア基板を用いた。
 比較対象例1では、ステップS12の工程を実施せずに、半導体光電極を作製した点で実施例1と異なる。その他の点においては実施例1と同様である。試料断面をSEM・TEM観察し、半導体薄膜および触媒層が平坦な構造となっていることを確認した。
 <比較対象例2>
 比較対象例2の半導体光電極は、半導体薄膜を凹凸加工せずに、半導体光電極の表面が平坦である。試料面積と表面積はいずれも1cm2である。n-GaN基板を用いた。
 比較対象例2では、ステップS12の工程を実施せずに、半導体光電極を作製した点で実施例2と異なる。その他の点においては実施例2と同様である。
 <比較対象例3>
 比較対象例3の半導体光電極は、半導体薄膜を凹凸加工せずに、半導体光電極の表面が平坦である。試料面積と表面積はいずれも1.5cm2である。表面積を実施例1と同じにした。サファイア基板を用いた。
 比較対象例3では、ステップS12の工程を実施せずに、半導体光電極を作製した点で実施例1と異なる。その他の点においては実施例1と同様である。
 <比較対象例4>
 比較対象例4の半導体光電極は、半導体薄膜を凹凸加工せずに、半導体光電極の表面が平坦である。試料面積と表面積はいずれも2cm2である。表面積を実施例3と同じにした。サファイア基板を用いた。
 比較対象例4では、ステップS12の工程を実施せずに、半導体光電極を作製した点で実施例3と異なる。その他の点においては実施例3と同様である。
 <比較対象例5>
 比較対象例5の半導体光電極は、半導体薄膜を凹凸加工せずに、半導体光電極の表面が平坦である。試料面積と表面積はいずれも2.5cm2である。表面積を実施例4と同じにした。サファイア基板を用いた。
 比較対象例5では、ステップS12の工程を実施せずに、半導体光電極を作製した点で実施例4と異なる。その他の点においては実施例4と同様である。
 [酸化還元反応試験]
 実施例1-4と比較対象例1-5について図5の装置を用いて酸化還元反応試験を行った。
 図5の装置は、酸化槽110と還元槽120を備える。酸化槽110には、水溶液111が入れられ、酸化電極として実施例1-4の半導体光電極1または比較対象例1-5の半導体光電極5が水溶液111中に入れられる。還元槽120には、水溶液121が入れられ、還元電極122が水溶液121中に入れられる。
 酸化槽110の水溶液111には、1mol/lの水酸化ナトリウム水溶液を用いた。水溶液111として、水酸化カリウム水溶液または塩酸を用いてもよい。酸化電極112が窒化ガリウムで構成される場合、アルカリ性水溶液が好ましい。
 還元槽120の水溶液121には、0.5mol/lの炭酸水素カリウム水溶液を用いた。水溶液121として、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、または塩化ナトリウム水溶液を用いてもよい。
 還元電極122には白金(ニラコ製)を用いた。還元電極122は金属または金属化合物であればよい。還元電極122として、例えば、ニッケル、鉄、金、銀、銅、インジウム、またはチタンを用いてもよい。
 酸化槽110と還元槽120はプロトン膜130を介して繋がっている。酸化槽110で生成したプロトンはプロトン膜130を介して還元槽120へ拡散する。プロトン膜130には、ナフィオン(登録商標)を用いた。ナフィオンは、炭素-フッ素からなる疎水性テフロン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である。
 酸化電極112と還元電極122は導線132で電気的に接続されており、酸化電極112から還元電極122へ電子が移動する。
 光源140として、300Wの高圧キセノンランプ(照度5mW/cm2)を用いた。光源140は、酸化電極として設置する半導体光電極を構成する材料が吸収可能な波長の光を照射できればよい。例えば、窒化ガリウムで構成される酸化電極では、吸収可能な波長は365nm以下の波長である。光源140としては、キセノンランプ、水銀ランプ、ハロゲンランプ、疑似太陽光源、または太陽光などの光源を用いてもよいし、これらの光源を組み合わせてもよい。
 酸化還元反応試験では、実施例1-4の半導体光電極および比較対象例1-5の半導体光電極のそれぞれについて、n-GaN半導体薄膜をけがき、表面の一部に導線を接続し、インジウムを用いてはんだ付けし、インジウム表面が露出しないようにエポキシ樹脂で被覆した。
 酸化還元反応試験では、各反応槽において窒素ガスを10ml/minで流し、サンプルの光照射面積を1cm2(実施例1の場合、表面積は1.5cm2)とし、撹拌子とスターラーを用いて250rpmの回転速度で各反応槽の底の中心位置で水溶液111,121を攪拌した。
 反応槽内が窒素ガスに十分に置換された後、光源140を試験対象の半導体光電極のNiOが形成されている面を向くように固定し、半導体光電極に均一に光を照射した。
 光照射10時間後に、各反応槽内のガスを採取し、ガスクロマトグラフにて反応生成物を分析した。その結果、酸化槽110では酸素が、還元槽120では水素が生成していることを確認した。なお、還元電極の金属を例えば、Ni,Fe,Au,Pt,Ag,Cu,In,Ti,Co,Ruに変えたり、セル内の雰囲気を変えたりすることで、二酸化炭素の還元反応による炭素化合物の生成、窒素の還元反応によるアンモニアの生成も可能である。
 [試験結果]
 実施例1-4および比較対象例1-5における、光照射時間に対する酸素・水素ガスの生成量を表1に示す。各ガスの生成量は、半導体光電極の表面積で規格化して示した。
Figure JPOXMLDOC01-appb-T000001
 実施例1-4および比較対象例1-5のいずれも光照射時に酸素と水素を生成していることがわかった。
 実施例1は比較対象例1に比べてガスの生成量が多かった。同様に、実施例2も比較対象例2に比べてガスの生成量が多かった。半導体光電極の表面を凹凸構造にしたことで反応場増大および生成ガスの脱離が促進されたためと考える。
 表面積の異なる実施例1,3,4を比較すると、表面積が大きいほどガスの生成量が増加することがわかった。比較対象例3,4,5も、表面積が大きいほどガスの生成量が増加していた。半導体光電極の表面積が増えたことによる反応場増大がガスの生成量に影響したと考えられる。
 表面積が同じ実施例1と比較対象例3を比較すると、表面に凹凸構造を備える実施例1は表面が平坦な比較対象例3に比べてガスの生成量が多かった。実施例3と比較対象例4、実施例4と比較対象例5を比べても、凹凸構造を備える実施例3,4のほうがガスの生成量が多かった。半導体光電極の表面を凹凸構造にしたことによるガスの離脱促進がガスの生成量に影響したと考えられる。生成ガスの離脱は半導体光電極の表面の表面張力に依存する。図6Aおよび図6Bに示すように、表面が平坦であるよりも、表面に凹凸構造を備えることで、表面張力を低減でき、生成ガスの離脱が促進される。
 以上説明したように、本実施形態の半導体光電極1は、導電性または絶縁性の基板11と、基板11の表面上に配置され、表面に凹凸構造を備える半導体薄膜12と、半導体薄膜12の表面の凹凸構造に沿って配置された触媒層13と、基板11の裏面および基板11と半導体薄膜12の側面を覆うように配置された保護層14を有する。半導体光電極1の表面を凹凸にすることで、反応場を増大するとともに、生成ガスの離脱が促進されるので、酸化還元反応によるガスの生成量の増大つまり光エネルギー変換効率の向上を図ることができる。
 1…半導体光電極
 11…基板
 12…半導体薄膜
 13…触媒層
 14…保護層

Claims (5)

  1.  光照射により触媒機能を発揮して酸化還元反応を生じる半導体光電極であって、
     導電性または絶縁性の基板と、
     前記基板の表面上に配置され、凹凸構造を備える半導体薄膜と、
     前記半導体薄膜の凹凸構造に沿って配置された触媒層と、
     前記基板の裏面および前記基板と前記半導体薄膜の側面を覆うように配置された保護層を有する
     半導体光電極。
  2.  請求項1に記載の半導体光電極であって、
     前記触媒層は前記半導体薄膜の表面の全体を覆って配置された
     半導体光電極。
  3.  請求項1に記載の半導体光電極であって、
     前記触媒層は前記半導体薄膜の表面の一部を覆って配置された
     半導体光電極。
  4.  請求項1ないし3のいずれかに記載の半導体光電極であって、
     前記半導体薄膜はn型半導体である
     半導体光電極。
  5.  光照射により触媒機能を発揮して酸化還元反応を生じる半導体光電極の製造方法であって、
     導電性または絶縁性の基板の表面上に半導体薄膜を形成する工程と、
     エッチング加工により前記半導体薄膜の表面に凹凸構造を形成する工程と、
     前記半導体薄膜の表面の凹凸構造に沿って触媒層を形成する工程と、
     前記半導体薄膜と前記触媒層を熱処理する工程と、
     前記基板の裏面および前記基板と前記半導体薄膜の側面を覆うように保護層を形成する工程を有する
     半導体光電極の製造方法。
PCT/JP2020/043403 2020-11-20 2020-11-20 半導体光電極および半導体光電極の製造方法 WO2022107315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/250,274 US20230392269A1 (en) 2020-11-20 2020-11-20 Semiconductor Photoelectrode and Method for Manufacturing Same
JP2022563527A JP7485991B2 (ja) 2020-11-20 2020-11-20 半導体光電極および半導体光電極の製造方法
PCT/JP2020/043403 WO2022107315A1 (ja) 2020-11-20 2020-11-20 半導体光電極および半導体光電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/043403 WO2022107315A1 (ja) 2020-11-20 2020-11-20 半導体光電極および半導体光電極の製造方法

Publications (1)

Publication Number Publication Date
WO2022107315A1 true WO2022107315A1 (ja) 2022-05-27

Family

ID=81708658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043403 WO2022107315A1 (ja) 2020-11-20 2020-11-20 半導体光電極および半導体光電極の製造方法

Country Status (3)

Country Link
US (1) US20230392269A1 (ja)
JP (1) JP7485991B2 (ja)
WO (1) WO2022107315A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114063A1 (ja) * 2015-01-13 2016-07-21 富士フイルム株式会社 水素発生電極
JP2017101289A (ja) * 2015-12-02 2017-06-08 日本電信電話株式会社 半導体光電極
WO2017164191A1 (ja) * 2016-03-22 2017-09-28 イムラ・ジャパン株式会社 光電極、水分解用光電気化学システム及び光電極の製造方法
JP2018111857A (ja) * 2017-01-11 2018-07-19 小出 典克 バブル発生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322157B2 (ja) 2015-05-22 2018-05-09 日本電信電話株式会社 半導体光触媒膜および酸化還元反応装置
JP6715172B2 (ja) 2016-12-05 2020-07-01 日本電信電話株式会社 半導体光電極の製造方法
JP6718805B2 (ja) 2016-12-07 2020-07-08 日本電信電話株式会社 半導体光電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114063A1 (ja) * 2015-01-13 2016-07-21 富士フイルム株式会社 水素発生電極
JP2017101289A (ja) * 2015-12-02 2017-06-08 日本電信電話株式会社 半導体光電極
WO2017164191A1 (ja) * 2016-03-22 2017-09-28 イムラ・ジャパン株式会社 光電極、水分解用光電気化学システム及び光電極の製造方法
JP2018111857A (ja) * 2017-01-11 2018-07-19 小出 典克 バブル発生装置

Also Published As

Publication number Publication date
US20230392269A1 (en) 2023-12-07
JPWO2022107315A1 (ja) 2022-05-27
JP7485991B2 (ja) 2024-05-17

Similar Documents

Publication Publication Date Title
Jang et al. Metal‐Free Artificial Photosynthesis of Carbon Monoxide Using N‐Doped ZnTe Nanorod Photocathode Decorated with N‐Doped Carbon Electrocatalyst Layer
JP5641489B2 (ja) アルコールを生成する方法
WO2020116151A1 (ja) 窒化物半導体光電極の製造方法
JP2017101289A (ja) 半導体光電極
WO2020116153A1 (ja) 半導体光電極
JP6715172B2 (ja) 半導体光電極の製造方法
JP2018204044A (ja) 半導体電極とその製造方法
JP2017210666A (ja) 二酸化炭素の還元方法、及び二酸化炭素の還元装置
WO2022107315A1 (ja) 半導体光電極および半導体光電極の製造方法
JP2018090862A (ja) 半導体光電極
JP6497590B2 (ja) 水の分解方法、水分解装置および酸素生成用のアノード電極
WO2022123644A1 (ja) 半導体光電極および半導体光電極の製造方法
JP6898566B2 (ja) 半導体光電極
WO2021234804A1 (ja) 半導体光電極
WO2019230343A1 (ja) 半導体光電極
WO2023089655A1 (ja) 半導体光電極
JP6470190B2 (ja) 半導体光触媒
WO2023089654A1 (ja) 半導体光電極の製造方法
WO2023089656A1 (ja) 半導体光電極の製造方法
WO2024116358A1 (ja) 半導体光電極
JP7343810B2 (ja) 窒化物半導体光電極の製造方法
JP7553836B2 (ja) 窒化物半導体光触媒薄膜
WO2021245923A1 (ja) 半導体デバイス
WO2022254617A1 (ja) 酸化還元反応装置
JP2016098419A (ja) 水素の生成方法、水素生成装置および水素生成用のアノード電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563527

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962477

Country of ref document: EP

Kind code of ref document: A1