WO2022092176A1 - ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、二酸化炭素の製造方法、炭酸ジエステルの製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法 - Google Patents

ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、二酸化炭素の製造方法、炭酸ジエステルの製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法 Download PDF

Info

Publication number
WO2022092176A1
WO2022092176A1 PCT/JP2021/039740 JP2021039740W WO2022092176A1 WO 2022092176 A1 WO2022092176 A1 WO 2022092176A1 JP 2021039740 W JP2021039740 W JP 2021039740W WO 2022092176 A1 WO2022092176 A1 WO 2022092176A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
producing
polycarbonate resin
epoxy resin
mass
Prior art date
Application number
PCT/JP2021/039740
Other languages
English (en)
French (fr)
Inventor
馨 内山
誠 中村
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202180074063.XA priority Critical patent/CN116368098A/zh
Priority to JP2022559214A priority patent/JPWO2022092176A1/ja
Priority to KR1020237011405A priority patent/KR20230096984A/ko
Priority to EP21886293.6A priority patent/EP4238954A4/en
Publication of WO2022092176A1 publication Critical patent/WO2022092176A1/ja
Priority to US18/140,739 priority patent/US20230322653A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/685Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • C07C37/0555Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group being esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/02Preparation of esters of carbonic or haloformic acids from phosgene or haloformates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/28Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic compounds containing nitrogen, sulfur or phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing bisphenol. More specifically, the present invention relates to a method for producing bisphenol using decomposition of a polycarbonate resin. Further, the present invention relates to a method for producing a recycled polycarbonate resin using bisphenol obtained by the method for producing bisphenol. The present invention also relates to a method for producing carbon dioxide and a method for producing a carbonic acid diester using the decomposition of a polycarbonate resin. The present invention also relates to a method for producing an epoxy resin and a method for producing a cured epoxy resin.
  • Plastic is easy, durable, and inexpensive, so it is mass-produced not only in Japan but all over the world. Many of the plastics are used as "disposable” and are not properly treated and some are released into the environment. Specifically, plastic waste flows from rivers to the sea and deteriorates due to waves and ultraviolet rays in the process to become 5 mm or less. Such small plastic debris is called microplastic. Animals and fish accidentally swallow this microplastic. In this way, plastic waste has a tremendous impact on the ecosystem, and in recent years, it has been regarded as a marine plastic problem all over the world. Polycarbonate resin used in a wide range of fields is no exception because of its transparency, mechanical properties, flame retardancy, dimensional stability, and electrical characteristics.
  • polycarbonate resin As one of the recycling methods of the polycarbonate resin, there is chemical recycling in which the polycarbonate resin is chemically decomposed and returned to bisphenol for reuse, and hydrolysis is known as one of the decomposition methods of the polycarbonate resin.
  • hydrolysis a method is known in which a polycarbonate resin and an alkaline aqueous solution are placed in a pressure-resistant container and hydrolyzed under high temperature and high pressure (Patent Document 1). Further, there is also known a method of dissolving a polycarbonate resin in a chlorinated hydrocarbon solvent, adding an alkali metal hydroxide as a basic catalyst, and hydrolyzing the polycarbonate resin (Patent Document 2).
  • Phenolesis is also known as another decomposition method for polycarbonate resin.
  • a method of decomposing a polycarbonate resin by phenolisis to produce diphenyl carbonate and bisphenol A is also known (Patent Documents 3 and 4).
  • Chemical recycling of polycarbonate resin is important as one of the solutions to the marine plastic problem.
  • Water is used for hydrolysis of the polycarbonate resin, but when the hydrolysis is 100 ° C. (boiling point of water at normal pressure) or higher, the vapor pressure of water causes a high pressure condition.
  • the polycarbonate resin is decomposed at 180 to 185 ° C., but since water is used, high pressure conditions are met, and it is necessary to use a pressure resistant container.
  • a chlorinated hydrocarbon solvent is used as the solvent in order to dissolve the polycarbonate resin.
  • the polycarbonate resin is hydrolyzed at 40 ° C., but methylene chloride is used as a solvent.
  • Chlorinated hydrocarbon solvents such as methylene chloride are flame-retardant compounds because they are chemically stable. Therefore, there is a problem that dioxins are generated if the waste is not properly disposed of at a high temperature.
  • the polycarbonate resin is depolymerized using phenol, but since the boiling point of the phenol is high, it is possible to carry out the phenolysis temperature at 100 ° C. or higher.
  • a polycarbonate resin is phenolisys at 160 ° C. using an amine as a catalyst to obtain diphenyl carbonate and bisphenol A.
  • diphenyl carbonate which is a raw material for a polycarbonate resin
  • diphenyl carbonate is produced by carbonyl chloride and phenol in the presence of an alkaline catalyst such as pyridine, neutralized with an alkaline aqueous solution, and then obtained by distillation (Patent Document 5).
  • the neutralized wastewater discharged at the time of neutralization is treated with activated sludge after being treated in the wastewater treatment step, but there is a problem that the load on the activated sludge is large due to the discharge of a large amount of neutralized wastewater. rice field.
  • carbonyl chloride which is a raw material for diphenyl carbonate, is synthesized by reacting chlorine with carbon monoxide.
  • the unliquefied gas that could not be liquefied at the time of liquefaction was detoxified with a sodium hydroxide aqueous solution (caustic soda aqueous solution), and after the carbonyl chloride (phosgene) contained in the unliquefied gas was completely decomposed. , Is discharged into the atmosphere as waste gas. Since it is necessary to completely decompose carbonyl chloride for safety, a large amount of an aqueous solution having a high concentration of sodium hydroxide is used in the detoxification treatment of the unliquefied gas. There is a problem that a large amount of sodium hydroxide aqueous solution having a high concentration is discarded as sodium hydroxide wastewater.
  • the present invention has been made in view of such circumstances, and is a bisphenol that produces bisphenol by using a chemical recycling method that is mild, has a small environmental load, and can efficiently decompose a polycarbonate resin.
  • the purpose is to provide a manufacturing method.
  • Another object of the present invention is to provide a method for producing carbon dioxide using the method for producing bisphenol, and a method for producing carbonic acid diester using the obtained carbon dioxide.
  • Another object of the present invention is to provide a method for producing an epoxy resin and a method for producing a cured epoxy resin using the obtained epoxy resin.
  • the present inventors have found a decomposition method for decomposing a polycarbonate resin in the presence of aromatic monoalcohols such as phenol and cresol, water, and a catalyst. .. Further, they have found a method for producing bisphenol and carbon dioxide by using the method for decomposing the polycarbonate resin. Furthermore, they have found a production method for producing a useful substance such as a recycled polycarbonate resin using the obtained bisphenol or carbon dioxide.
  • the present invention relates to the following invention.
  • a method for producing bisphenol which decomposes a polycarbonate resin in the presence of aromatic monoalcohol, water and a catalyst.
  • the catalyst is selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkylamines, nitrogen-containing heterocyclic compounds and acids.
  • the method for producing a bisphenol according to ⁇ 2>, wherein the alkylamine is represented by the following formula (I).
  • RA represents an alkyl group having 1 to 3 carbon atoms
  • RB to RC each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • ⁇ 7> The above-mentioned ⁇ 1>, wherein the catalyst contains a nitrogen-containing heterocyclic compound and decomposes the polycarbonate resin in the coexistence of an alkali metal chloride in addition to the aromatic monoalcohol, the water and the catalyst.
  • the method for producing bisphenol described in 1. ⁇ 8> The method for producing a bisphenol according to ⁇ 2> or ⁇ 7>, wherein the nitrogen-containing heterocyclic compound is pyridines.
  • ⁇ 9> The method for producing bisphenol according to ⁇ 7>, wherein the alkali metal chloride is sodium chloride.
  • ⁇ 10> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 9>, wherein the reaction temperature for decomposing the polycarbonate resin is 110 ° C. or lower.
  • ⁇ 11> The bisphenol according to any one of ⁇ 1> to ⁇ 10>, which decomposes the polycarbonate resin in a slurry-like reaction solution containing the polycarbonate resin, the aromatic monoalcohol, water and the catalyst.
  • ⁇ 12> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 11>, wherein the mass ratio of the water to the aromatic monoalcohol is 0.001 or more and 10 or less.
  • ⁇ 15> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 14>, wherein the aromatic monoalcohol is selected from the group consisting of phenol, cresol and xylenol.
  • the aromatic monoalcohol is selected from the group consisting of phenol, cresol and xylenol.
  • ⁇ 16> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 15>, wherein the bisphenol is 2,2-bis (4-hydroxyphenyl) propane.
  • the polycarbonate is obtained from the neutralized waste water removed in the step (b1) when the diaryl carbonate is produced by the method having the following steps (a1), step (b1), step (b2) and step (b3).
  • the method for producing bisphenol according to ⁇ 1> or ⁇ 7> which is used for decomposing a resin.
  • Step (a1) A step of reacting carbonyl chloride and an aromatic monoalkali in the presence of a nitrogen-containing heterocyclic compound to obtain a reaction solution containing diaryl carbonate.
  • Step (b1) Obtained in step (a1). After neutralizing the reaction solution containing diaryl carbonate with an aqueous alkali metal hydroxide solution and separating it into an oil phase containing an aromatic diaryl and an aqueous phase containing a nitrogen-containing heterocyclic compound and an alkali metal chloride.
  • Step (b2) Step of washing the oil phase obtained in step (b1) with water
  • Step ⁇ 18> The method according to ⁇ 17>, wherein the alkali metal chloride in the step (b1) is sodium chloride, and the alkali metal hydroxide aqueous solution in the step (b1) is a sodium hydroxide aqueous solution.
  • Method for producing bisphenol ⁇ 19> In the production of diaryl carbonate having the following steps (a1), step (c1), step (c2) and step (c3) and recovery of hydrogen chloride produced as a by-product, the hydrochloric acid waste water removed in the step (c3) is removed.
  • Step (a1) A reaction solution containing diaryl carbonate is obtained by reacting carbonyl chloride with aromatic monoalcohol in the presence of a nitrogen-containing heterocyclic compound.
  • Step (c1) By-produced in step (a1). Step of supplying hydrogen chloride to the absorption tower and absorbing it with water or dilute hydrochloric acid to obtain concentrated hydrochloric acid
  • Step (c2) Distill the concentrated hydrochloric acid in the diffusion tower, recover the hydrogen chloride gas from the top of the tower, and collect hydrochloric acid from the bottom of the tower.
  • Step (c3) A step of removing a part of the hydrochloric acid recovered from the bottom of the tower as hydrochloric acid waste water to the outside of the system and circulating the remaining hydrochloric acid to the absorption tower of the step (c1).
  • the sodium hydroxide waste water removed in the step (d4) is used for the decomposition of the polycarbonate resin, according to ⁇ 1> or ⁇ 14. > The method for producing bisphenol.
  • Step (d1) Step of obtaining carbonyl chloride gas from chlorine and carbon monoxide
  • Step (d2) Step of cooling the carbonyl chloride gas obtained in step (d1) to obtain liquefied carbonyl chloride
  • Step (d3) Circulation
  • the step (d4) Step of removing a part of the aqueous sodium oxide solution as waste water of sodium hydroxide ⁇ 21> Regeneration using a bisphenol raw material containing bisphenol obtained by the method for producing bisphenol according to any one of ⁇ 1> to ⁇ 20>.
  • ⁇ 22> A method for producing carbon dioxide, which recovers carbon dioxide produced by the method for producing bisphenol according to any one of ⁇ 1> to ⁇ 20>.
  • ⁇ 23> A method for producing a carbonic acid diester, which comprises producing a carbonic acid diester using the carbon dioxide obtained by the method for producing carbon dioxide according to ⁇ 22>.
  • the method for producing a carbonic acid diester according to ⁇ 23> which comprises a step of reacting carbon dioxide containing carbon dioxide with an aliphatic monoalcohol.
  • Carbon monoxide is obtained from the carbon dioxide containing carbon dioxide and coke, the obtained carbon monoxide is reacted with chlorine to obtain carbonyl chloride, and the obtained carbonyl chloride is reacted with aromatic monoalcohol.
  • a method for producing a regenerated polycarbonate resin which comprises producing a regenerated polycarbonate resin using a carbonic acid diester raw material containing a carbonic acid diester obtained by the method for producing a carbonic acid diester according to any one of ⁇ 23> to ⁇ 25>. .. ⁇ 27>
  • a method for producing an epoxy resin which comprises producing an epoxy resin using the bisphenol obtained by the method for producing bisphenol according to any one of ⁇ 1> to ⁇ 20>.
  • An epoxy resin cured product obtained by curing an epoxy resin composition containing an epoxy resin and a curing agent obtained by the method for producing an epoxy resin according to ⁇ 27> or ⁇ 28> to obtain an epoxy resin cured product. Manufacturing method.
  • a method for producing bisphenol is provided by using a chemical recycling method capable of efficiently decomposing a polycarbonate resin under mild and environmentally friendly conditions. Further, according to the method for producing bisphenol of the present invention, the operation at the time of recovery and purification of bisphenol becomes easy.
  • a method for producing carbon dioxide using the method for producing bisphenol and a method for producing carbonic acid diester using the obtained carbon dioxide are provided.
  • a method for producing an epoxy resin and a method for producing a cured epoxy resin using the obtained epoxy resin are provided.
  • the present invention relates to a method for producing bisphenol (hereinafter, may be referred to as "method for producing bisphenol of the present invention"), which decomposes a polycarbonate resin in the presence of aromatic monoalcohol, water and a catalyst. be.
  • the method for producing bisphenol of the present invention utilizes a chemical recycling method for decomposing a polycarbonate resin in the presence of aromatic monoalcohol, water and a catalyst.
  • aromatic monoalcohol and water in combination in the presence of a catalyst, the present inventors have combined the polycarbonate resin with bisphenol even under mild conditions such as the boiling point of water (normal pressure, about 100 ° C.). It has been found that it can be decomposed into carbon dioxide and / or into bisphenol salts and carbonic acid metal salts.
  • the reaction rate of the decomposition reaction of the polycarbonate resin is high by using the aromatic monoalcohol and water in combination. It turned out to occur in. It was also found that the metal salts of carbon dioxide and carbonic acid produced by the decomposition of the polycarbonate resin can be easily removed from the system, and the recovery and purification of bisphenol can be easily performed.
  • the present invention is based on these findings.
  • R 1 to R 4 examples include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group and the like independently of each other.
  • substituents of R 1 to R 4 include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group and the like independently of each other.
  • R 5 and R 6 examples include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group and the like independently of each other.
  • substituents of R 5 and R 6 include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group and the like independently of each other.
  • hydrogen atom methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, i-pentyl group, n-hexyl group.
  • R 5 and R 6 may be bonded or crosslinked with each other between the two groups.
  • Dodecylidene, fluoreniliden, xanthonilidene, thioxanthonilidene and the like can be mentioned.
  • a polycarbonate resin in which R 1 to R 4 of the above general formula (1) are hydrogen atoms and R 5 and R 6 are methyl groups (hereinafter, "bisphenol A type polycarbonate resin” may be described. ) Is preferably used as a raw material.
  • n is not particularly limited, but is, for example, 2 to 1,000.
  • the polycarbonate resin not only the polycarbonate resin alone but also a composition containing a resin other than the polycarbonate resin such as a copolymer or a polymer alloy may be used.
  • the composition containing a resin other than the polycarbonate resin include polycarbonate / polyester copolymer, polycarbonate / polyester alloy, polycarbonate / polyallylate copolymer, polycarbonate / polyallylate alloy and the like.
  • a composition containing a resin other than the polycarbonate resin is used, a composition containing the polycarbonate resin as the main component (the composition contains 50% by mass or more of the polycarbonate resin) is suitable.
  • polycarbonate resin may be used by mixing two or more different polycarbonate resins.
  • polycarbonate resin alone may be simply referred to as polycarbonate.
  • the polycarbonate resin is preferably a polycarbonate resin contained in waste plastic.
  • the polycarbonate resin contained in the waste plastic can be decomposed to produce bisphenol or a salt thereof.
  • Polycarbonate resin is used after being molded into various molded products such as optical members such as headlamps and optical recording media such as optical discs.
  • the waste plastic containing the polycarbonate resin scraps, defective products, used molded products, etc. used for molding the polycarbonate resin can be used for these molded products.
  • the waste plastic may be appropriately washed, crushed, crushed or the like before use.
  • the aromatic monoalcohol is a compound in which one hydroxyl group is bonded to a carbon atom forming an aromatic ring, and any one selected from the group consisting of phenol, cresol and xylenol is preferable.
  • the cresol include orthocresol, metacresol, paracresol, and an isomer mixture containing one or more of these.
  • xylenol examples include 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,5-xylenol, 3,4-xylenol, and isomers containing one or more of these. Examples include mixtures. 2,5-Xylenol is preferred because it is industrially inexpensive to obtain.
  • the mass ratio of aromatic monoalcohol to polycarbonate resin is small, the amount of solid (polycarbonate resin) to the liquid increases and the slurry concentration increases, resulting in poor mixing. There is a tendency. Therefore, the mass ratio is preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.05 or more. Further, if the mass ratio is large, the production efficiency of bisphenol and carbon dioxide tends to deteriorate. Therefore, the mass ratio is preferably 100 or less, more preferably 70 or less, still more preferably 50 or less.
  • the mass ratio of water to the polycarbonate resin is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 1.0 or more. Further, when the mass ratio is large, the production efficiency of bisphenol and carbon dioxide tends to decrease. Therefore, the mass ratio is preferably 100 or less, more preferably 70 or less, still more preferably 50 or less.
  • the mass ratio of water to aromatic monoalcohol is preferably 0.001 or more, more preferably 0.05 or more.
  • the mass ratio is preferably 20 or less, more preferably 15 or less.
  • the mass ratio may be 10 or less, 5 or less, 1 or less, 0.5 or less, 0.2 or less, and the like. If the mass ratio of water to the aromatic monoalcohol is small, the decomposition rate decreases and the decomposition time becomes long, and if the mass ratio is large, the volume of the reaction solution increases, resulting in inefficiency.
  • the catalyst may be any as long as it can promote the decomposition of the polycarbonate resin, and a base or an acid can be used as the catalyst.
  • a base one or more selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkylamines, and nitrogen-containing heterocyclic compounds is preferable. Among them, any one selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkylamines, nitrogen-containing heterocyclic compounds and acids is preferable.
  • the alkali metal hydroxide is a salt of an alkali metal ion (M + ) and a hydroxide ion (OH ⁇ ), and is a compound represented by MOH (M represents an alkali metal atom).
  • M represents an alkali metal atom
  • sodium hydroxide or potassium hydroxide is preferable.
  • the mass ratio of the alkali metal hydroxide to the polycarbonate resin is small, the decomposition rate becomes slow, the decomposition time becomes long, and the efficiency tends to deteriorate. .. Therefore, the mass ratio is preferably 0.01 or more, more preferably 0.1 or more, and further preferably 0.5 or more. Further, when the mass ratio is large, the amount of acid required for neutralization after decomposition increases, and the production efficiency of bisphenol and carbon dioxide tends to decrease. Therefore, the mass ratio is preferably 50 or less, more preferably 30 or less, still more preferably 10 or less. Further, the mass ratio may be 8 or less, 5 or less, 3 or less, or the like.
  • the alkali metal carbonate is a salt of an alkali metal ion (M + ) and a carbonate ion (CO 3 2- ), and is a compound represented by M 2 CO 3 (M represents an alkali metal atom).
  • M represents an alkali metal atom.
  • sodium carbonate or potassium carbonate is preferable.
  • the mass ratio of alkali metal carbonate to polycarbonate resin is small, the decomposition rate becomes slow, the decomposition time becomes long, and the efficiency tends to deteriorate. Therefore, the mass ratio is preferably 0.01 or more, more preferably 0.1 or more, and further preferably 0.5 or more. Further, when the mass ratio is large, the amount of acid required for neutralization after decomposition increases, and the production efficiency of bisphenol and carbon dioxide tends to decrease. Therefore, the mass ratio is preferably 50 or less, more preferably 30 or less, still more preferably 10 or less. Further, the mass ratio may be 5 or less, 1 or less, 0.5 or less, or the like.
  • Alkylamines are compounds in which at least one hydrogen atom of ammonia is substituted with an alkyl group.
  • alkylamines monoalkylamines, which are primary amines, react with the carbonate-bonded portion of the polycarbonate resin to form isocyanates, and are more preferably dialkylamines, which are secondary amines, and trialkyls, which are tertiary amines. It is an amine.
  • the dialkylamine which is a secondary amine, reacts with the carbonate-bonded portion of the polycarbonate resin to form tetraalkylurea, and is therefore more preferably a trialkylamine, which is a tertiary amine.
  • the alkylamine preferably has a boiling point of 200 ° C. or lower, and more preferably 160 ° C. or lower. Such a boiling point can be removed by reducing pressure and / or heating together with an aromatic monoalcohol such as phenol. If the boiling point is too low, the alkylamine may volatilize during the decomposition reaction and the decomposition rate may decrease. Therefore, the boiling point of the alkylamine is preferably 10 ° C. or higher, more preferably 30 ° C. or higher.
  • the alkylamine is preferably the alkylamine represented by the general formula (I).
  • RA represents an alkyl group having 1 to 3 carbon atoms
  • RB to RC each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • RA is preferably a methyl group, an ethyl group, an n - propyl group, or an isopropyl group
  • RB to RC each independently have a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. preferable.
  • alkylamine represented by the general formula (I) examples include methylamine, ethylamine, propylamine, dimethylamine, diethylamine, trimethylamine, diethylamine and the like.
  • the mass ratio of alkylamine to the polycarbonate resin is small, the decomposition rate decreases, so that the decomposition time becomes long and the efficiency tends to deteriorate. Therefore, the mass ratio is preferably 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more. Further, when the mass ratio is large, the excess alkylamine inhibits the reaction of producing carbon dioxide, so the mass ratio is preferably 50 or less, more preferably 20 or less, still more preferably 10 or less. Further, the mass ratio may be 5 or less, 1 or less, 0.5 or less, or the like.
  • a nitrogen-containing heterocyclic compound is a compound containing at least one nitrogen atom as an atom forming a heterocycle, and even if it is a monocyclic compound, it is polycondensed with another aromatic heterocycle or an aromatic carbocycle. It may be a ring compound. Further, a hetero atom other than nitrogen (sulfur atom, oxygen atom, or second nitrogen atom) may be contained in the ring.
  • nitrogen-containing heterocyclic compound examples include 6-membered ring compounds such as pyridines, pyrazines and pyrimidines, 5-membered ring compounds such as imidazoles, and polycyclic compounds such as quinolines, isoquinolins and acridins. ..
  • pyridines are preferable as the nitrogen-containing heterocyclic compound.
  • Pyridines are substituted or unsubstituted pyridines.
  • substituent that can be substituted with the hydrogen atom of pyridine include an alkyl group, an alkoxy group, and a hydroxy group. It is preferably one or more selected from the group consisting of unsubstituted pyridine (C 5 H 5 N), methyl pyridine, methoxy pyridine and hydroxy pyridine, and more preferably unsubstituted pyridine.
  • the mass ratio of the nitrogen-containing heterocyclic compound to the polycarbonate resin is small, the decomposition rate decreases, so that the decomposition time becomes long and the efficiency deteriorates. There is a tendency. Therefore, the mass ratio is preferably 0.0001 or more, more preferably 0.0005 or more, still more preferably 0.001 or more. Further, when the mass ratio is large, the excess nitrogen-containing heterocyclic compound inhibits the reaction for producing carbon dioxide, so the mass ratio is preferably 100 or less, more preferably 50 or less, still more preferably 10 or less. Is.
  • the acid examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as carboxylic acid and sulfonic acid.
  • the acid is preferably any one selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid and sulfonic acid.
  • the sulfonic acid are an alkyl sulfonic acid such as methane sulfonic acid and an aromatic sulfonic acid such as toluene sulfonic acid.
  • the mass ratio of acid to the polycarbonate resin is small, the decomposition rate decreases, so the decomposition time tends to be long and the efficiency tends to deteriorate. Therefore, the mass ratio is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more. Further, when the mass ratio is large, the amount of base required for neutralization tends to increase. Therefore, the mass ratio is preferably 20 or less, more preferably 10 or less, still more preferably 5 or less.
  • the prepared reaction solution may be a slurry-like reaction solution (a reaction solution in which the polycarbonate resin is dispersed in the solution).
  • the slurry concentration in the reaction solution is preferably 0.01 or more, more preferably 0.05 or more.
  • slurry concentration concentration of solid content
  • 0.3 or less is more preferable. If the slurry concentration (concentration of solid content) is too low, the decomposition efficiency is lowered, and if the slurry concentration is too high, mixing failure is likely to occur.
  • the liquid component in the prepared reaction liquid is mainly composed of aromatic monoalcohol and water, and the total mass of aromatic monoalcohol and water with respect to the mass of all liquid components is 0.8 or more or 0. 9 or more, 0.95 or more, and so on.
  • the reaction solution is preferably prepared at 10 ° C. or higher, more preferably at 20 ° C. or higher.
  • the reaction solution is preferably prepared at 40 ° C. or lower, more preferably 35 ° C. or lower. If the temperature at the time of preparing the reaction solution is too low, it is easy to solidify depending on the type of aromatic monoalcohol, and it may be easy to cause poor mixing or it may be difficult to mix uniformly. Further, if the temperature at the time of preparing the reaction solution is too high, it is easy to volatilize depending on the type of catalyst, it may be difficult to prepare the reaction solution to a predetermined concentration, or the decomposition reaction may run out of control.
  • the mixing order of the polycarbonate resin, the aromatic monoalcohol, water and the catalyst is not particularly limited.
  • the polycarbonate resin may be sequentially supplied with the aromatic monoalcohol, water and the catalyst, or the aromatic monoalcohol may be supplied with polycarbonate.
  • the resin, water and the catalyst may be supplied in sequence.
  • the polycarbonate resin is preferably supplied after the aromatic monoalcohol and / or water for more uniform mixing.
  • the decomposition reaction of the polycarbonate resin is carried out in the presence of aromatic monoalcohol, water and a catalyst, but components other than aromatic monoalcohol, water and the catalyst coexist as long as the object of the present invention is not impaired. It is also possible to decompose the polycarbonate resin in the state of being allowed to decompose. Also in this case, it is preferable to disperse the polycarbonate resin in a uniform solvent containing aromatic monoalcohol, water, a catalyst and other components to carry out the decomposition reaction. Examples of the components that can coexist include alkali metal chlorides, bromophenols, carbon tetrachloride, and the like.
  • the alkali metal chloride is a salt of an alkali metal ion (M + ) and a chloride ion (Cl ⁇ ), and is a compound represented by MCl (M represents an alkali metal atom). Specific examples thereof include sodium chloride and potassium chloride, and sodium chloride is preferable.
  • the amount of alkali metal chloride is not particularly limited, but if it is too large, it may precipitate and scale. Therefore, the mass ratio of alkali metal chloride to water (mass of alkali metal chloride / mass of water) is preferably 0.2 or less, more preferably 0.1 or less.
  • the mass ratio of the alkali metal chloride to water is preferably 0.00001 or more, more preferably 0.0001 or more.
  • Bromophenols are compounds in which one hydroxy group is bonded to carbon forming an aromatic ring and one or two bromine atoms are bonded. Further, the bromophenols may have a substituent other than the hydroxy group and the bromine atom. Preferred are monobromophenol and / or dibromophenol.
  • the amount of bromophenols is not particularly limited, but if it is too large, bromophenols may precipitate. Therefore, the mass ratio of bromophenols to water (mass of bromophenols / mass of water) is preferably 0.001 or less, more preferably 0.0001 or less. If the amount is too small, the effect of improving the efficiency of the decomposition reaction of the polycarbonate resin is weakened, so that the mass ratio of the bromophenols to water is preferably 0.0000001 or more, more preferably 0.000001 or more.
  • the amount of carbon tetrachloride is not particularly limited, but if it is too large, there is a problem that the reaction solution separates from oil and water and the polycarbonate resin cannot be efficiently decomposed. Therefore, the mass ratio of carbon tetrachloride to water (mass of carbon tetrachloride / mass of carbon tetrachloride / The mass of water) is preferably 0.0005 or less, more preferably 0.0001 or less. If the amount is too small, the effect of improving the efficiency of the decomposition reaction of the polycarbonate resin is weakened, so that the mass ratio of carbon tetrachloride to water is preferably 0.0000001 or more, more preferably 0.000001 or more.
  • the polycarbonate resin when the catalyst contains a nitrogen-containing heterocyclic compound, the polycarbonate resin is decomposed in the presence of an alkali metal chloride (preferably sodium chloride) in addition to the aromatic monoalcohol, water and the catalyst. be able to. It is considered that the polycarbonate resin can be decomposed more efficiently by the alkali metal chloride acting as a co-catalyst.
  • an alkali metal chloride preferably sodium chloride
  • the polycarbonate resin can be decomposed in the presence of bromophenols in addition to aromatic monoalcohol, water and the catalyst. It is considered that the polycarbonate resin can be decomposed more efficiently by the bromophenols acting as co-catalysts.
  • the polycarbonate resin can be decomposed in the presence of sodium chloride and / or carbon tetrachloride in addition to aromatic monoalcohol, water and the catalyst. It is considered that the coexistence of sodium chloride and carbon tetrachloride can decompose the polycarbonate resin more efficiently.
  • Wastewater discharged during the production of diaryl carbonate can also be used to prepare the reaction solution.
  • decomposition of polycarbonate resin in the coexistence of aromatic monoalcohol, water, nitrogen-containing heterocyclic compound, and alkali metal chloride and coexistence of aromatic monoalcohol, water, hydrochloric acid, and bromophenols.
  • waste water discharged from a manufacturing plant or the like is used for the decomposition of the polycarbonate resin and the decomposition of the polycarbonate resin in the coexistence of aromatic monoalcohol, water, sodium hydroxide, sodium chloride, and carbon tetrachloride. Therefore, the reaction solution can be easily prepared and the environmental load can be reduced.
  • Decomposition reaction The presence of aromatic monoalcohol, water and catalysts cleaves the carbonate-bonded moieties of the polycarbonate resin, producing bisphenols and carbon dioxide, or bisphenol salts and metal carbonates.
  • Polycarbonate by controlling the concentration of the polycarbonate resin, the temperature at the time of preparing the reaction solution, etc. so that the decomposition reaction does not proceed during the preparation of the reaction solution (during the mixing of the polycarbonate resin, aromatic monoalcohol, water and catalyst).
  • the step of preparing the reaction solution containing the resin, aromatic monoalcohol, water and the catalyst and the step of decomposing the polycarbonate resin in the reaction solution may be clearly separated, but the step of preparing the reaction solution and the step of decomposing the reaction solution may be clearly separated.
  • the decomposition reaction of the polycarbonate resin proceeds, and a part of the polycarbonate resin may be decomposed.
  • the decomposition reaction can proceed more efficiently.
  • the decomposition reaction may be carried out under normal pressure or under pressure, but it is preferable to carry out the decomposition reaction under normal pressure because the reaction proceeds sufficiently even under normal pressure.
  • reaction temperature From the preparation of the reaction solution to the termination of the decomposition reaction, the temperature may be the same as the temperature at the time of preparation of the reaction solution, but after the reaction solution is prepared (after mixing the polycarbonate resin, aromatic monoalcohol, water and catalyst). It is preferable to raise the temperature to a predetermined reaction temperature. If the temperature at the time of preparing the reaction solution is too high, the decomposition reaction may run out of control. It is preferable to raise the temperature of the reaction solution after preparation because the decomposition reaction can proceed stably.
  • the reaction temperature is appropriately selected according to the type of aromatic monoalcohol, the reaction time, etc., but if the reaction temperature is high, the water in the reaction solution evaporates and hydrolysis stops. Further, when the temperature is low, the aromatic monoalcohol solidifies, the solvolysis becomes difficult to proceed, and the reaction rate of hydrolysis decreases, so that the time required for decomposition becomes long. From these facts, the reaction temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 75 ° C. or higher, and 80 ° C. or higher in that order. Further, it is preferably 110 ° C. or lower, more preferably 100 ° C. or lower, still more preferably 95 ° C. or lower.
  • the decomposition of the polycarbonate resin is preferably carried out at a reaction temperature of 40 to 110 ° C. and under normal pressure, more preferably at a reaction temperature of 50 to 100 ° C. and under normal pressure, and at a reaction temperature of 60 to 95 ° C. and under normal pressure. Is even more preferable.
  • the reaction temperature is neutralized or distilled to stop the decomposition reaction from the time when the mixing of the polycarbonate resin, aromatic monoalcohol, water and the catalyst is completed. It is the average temperature up to the point when the last operation is started.
  • the reaction temperature is the average temperature from the time when the predetermined temperature is reached to the time when the neutralization or distillation operation for stopping the decomposition reaction is started. Is.
  • reaction time The reaction time is appropriately selected according to the slurry concentration, reaction temperature, etc., but if it is long, the produced bisphenol tends to be decomposed, so that it is preferably within 30 hours, more preferably within 25 hours. More preferably, it is within 20 hours. Further, when the reaction time is short, the decomposition reaction may not proceed sufficiently, so that it is preferably 0.1 hours or more, more preferably 0.5 hours or more, still more preferably 1 hour or more.
  • the reaction time is the time from the time when the mixing of the polycarbonate resin, the aromatic monoalcohol, water and the catalyst is completed to the time when the operation of neutralization or distillation for stopping the decomposition reaction is started. The end point of the reaction time may be determined by tracking the decomposition reaction by liquid chromatography or the like.
  • the method for stopping the decomposition reaction of the polycarbonate resin is appropriately selected depending on the type of catalyst used.
  • an alkali metal hydroxide, an alkali metal carbonate or an acid is used as the catalyst, the decomposition reaction can be stopped by neutralization or the like.
  • an alkylamine or a nitrogen-containing heterocyclic compound is used as the catalyst, the decomposition reaction can be stopped by distilling off or neutralizing the alkylamine or the nitrogen-containing heterocyclic compound.
  • an ammonium salt or the like is generated, and it is also necessary to remove the ammonium salt. Therefore, the alkylamine or the nitrogen-containing heterocyclic compound is removed. Is preferably a method of distilling off.
  • the obtained bisphenol can be recovered and purified by a conventional method. For example, it can be recovered and purified by a simple means such as crystallization or column chromatography. Specifically, after the decomposition reaction of the polycarbonate resin, the catalyst and solvent are removed and the organic solvent is mixed, the obtained organic phase is washed with water or saline solution, and if necessary, ammonium chloride water or the like is used. Neutralize and wash. Then, the washed organic phase is cooled and crystallized.
  • organic solvent examples include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene and mesitylen, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, undecane and dodecane, methanol, ethanol and n-.
  • aromatic hydrocarbons such as toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene and mesitylen
  • aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, undecane and dodecane
  • methanol ethanol and n-.
  • the produced carbon dioxide may be recovered and purified.
  • Purification of carbon dioxide can be carried out by a conventional method. For example, a physical absorption method, a chemical absorption method, a cold separation method, a membrane separation method, a pressure swing adsorption method, or the like can be applied, and can be appropriately selected according to the impurities of carbon dioxide generated during neutralization.
  • bisphenol production methods (A) to (C) for producing bisphenol A from a polycarbonate resin containing a structural unit derived from 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) will be taken as an example.
  • the method for producing bisphenol of the present invention will be described more specifically.
  • the method for producing bisphenol (A) includes a step (A1) of decomposing the polycarbonate resin in a reaction solution containing a polycarbonate resin containing a structural unit derived from bisphenol A, phenol, water and an alkali metal hydroxide, and a step (A1). After A1), the reaction solution is neutralized to obtain an organic phase in which bisphenol A is dissolved (A2), and the organic phase obtained in step (A2) is depressurized and / or heated, and then bisphenol A is crystallization. Has a step (A3) of recovering.
  • the method for producing bisphenol (A) is an example of the method for producing bisphenol of the present invention when phenol is used as an aromatic monoalcohol and an alkali metal hydroxide is used as a catalyst.
  • the main decomposition reaction is carried out according to the reaction formula (2) shown below, and the main decomposition products obtained in the step (A1) are an alkali metal salt and an alkali metal carbonate of bisphenol.
  • n of the following reaction formula (2) is 2 to 1000.
  • the reaction solution after the step (A1) is neutralized and the bisphenol A is dissolved.
  • the step (A2) for obtaining the obtained organic phase is performed.
  • Neutralization is performed by mixing an acid with the reaction solution. Examples of the acid used include hydrochloric acid, sulfuric acid, phosphoric acid and the like. Neutralization by mixing acids may allow the pH of the reaction to be less than or greater than 7, but when the pH is less than 7, the quality of the isolated bisphenol A. May decrease.
  • the acids it is preferable to mix the acids so that the end point is where the pH of the reaction solution is higher than 7 (for example, pH 7.5 or higher or pH 8.0 or higher).
  • the pH of the reaction solution is higher than 7 (for example, pH 7.5 or higher or pH 8.0 or higher).
  • the acid is mixed so as to have a pH of 10 or less, and the pH is preferably 9.5 or less.
  • the organic phase in which the generated bisphenol A is dissolved and the alkali metal hydroxide and the like (alkali metal hydroxide and for neutralization). Since the oil and water can be separated from the aqueous phase in which the acid added to the above and the salt generated by neutralization) are dissolved, the alkali metal hydroxide and the like can be removed by removing the aqueous phase.
  • an organic solvent such as an aromatic hydrocarbon may be mixed before or after mixing the acid.
  • An organic phase phase of phenol and an organic solvent in which bisphenol A is dissolved is obtained by mixing an acid and an organic solvent with the reaction solution, neutralizing the reaction solution, separating the reaction solution into oil and water, and removing the aqueous phase. By mixing the organic solvent, it becomes easier to separate oil and water, so that it becomes easier to remove the aqueous phase in which the alkali metal hydroxide or the like is dissolved.
  • the organic phase obtained in the step (A2) is depressurized and / or heated, and then bisphenol A is recovered by crystallization.
  • bisphenol A When bisphenol A is present at the time of crystallization, it forms a co-crystal with phenol and precipitates. Therefore, in order to obtain bisphenol A, the phenol is removed before crystallization in the step (A3).
  • the organic phase obtained in the step (A2) is depressurized and / or heated to distill off liquid components such as phenol.
  • an organic solvent such as an aromatic hydrocarbon is added to prepare a crystallization solution in which bisphenol A is dissolved, and then this is cooled to precipitate bisphenol A.
  • the precipitated bisphenol A is recovered by solid-liquid separation.
  • an alkali metal carbonate when used as a catalyst, it can be carried out by the same method as the method for producing bisphenol (A).
  • the method for producing bisphenol (B) includes a step (B1) of decomposing the polycarbonate resin in a reaction solution containing a polycarbonate resin containing a structural unit derived from bisphenol A, phenol, water and an alkylamine, and a step (B1) after the step (B1). It has a step (B2) of recovering bisphenol A by crystallization after reducing the pressure and / or heating the reaction solution of.
  • the method for producing bisphenol (B) is an example of the method for producing bisphenol of the present invention when phenol is used as the aromatic monoalcohol and alkylamine is used as the catalyst.
  • the main decomposition reaction is carried out according to the reaction formula (3) shown below, and the main decomposition products obtained in the step (B1) are bisphenol and carbon dioxide.
  • n of the following reaction formula (3) is 2 to 1000.
  • the reaction solution after the step (B1) is depressurized and / or heated, and then the step (B2) of recovering the bisphenol A by crystallization is performed.
  • the reaction solution after the step (B1) is depressurized and / or heated to distill off liquid components such as alkylamines and phenols.
  • an organic solvent such as an aromatic hydrocarbon is added to prepare a crystallization solution in which bisphenol A is dissolved, and then this is cooled to precipitate bisphenol A.
  • the precipitated bisphenol A is recovered by solid-liquid separation.
  • the alkylamine when used as a catalyst, the alkylamine may be removed by a method of supplying an acid to neutralize it.
  • a method of supplying an acid to neutralize it As in the step (A2) of the method (A) for producing bisphenol, an acid is mixed with the reaction solution after the decomposition reaction to neutralize it, and then oil-water separation is performed to remove the aqueous phase to obtain bisphenol A. Obtain a dissolved organic phase.
  • the obtained organic phase is depressurized and / or heated, and bisphenol A can be recovered by crystallization.
  • examples of the method for removing the alkylamine from the decomposition reaction solution of the polycarbonate resin include a method of distilling off and a method of supplying an acid to neutralize.
  • a method of supplying an acid to neutralize it an ammonium salt is generated and it is necessary to remove the ammonium salt, so that it is preferable to distill off the ammonium salt.
  • an alkylamine as a catalyst, the alkylamine can be removed together with phenol by reduced pressure and / or heating, and neutralization is not essential, so that purification can be simplified.
  • a nitrogen-containing heterocyclic compound when used as the catalyst, it can be carried out by the same method as the method for producing bisphenol (A) and the method for producing bisphenol (B).
  • the method for producing bisphenol (C) includes a step (C1) of decomposing the polycarbonate resin in a reaction solution containing a polycarbonate resin containing a structural unit derived from bisphenol A, phenol, water and an acid, and a step (C1) after the step (C1).
  • the method for producing bisphenol (C) is an example of the method for producing bisphenol of the present invention when phenol is used as an aromatic monoalcohol and an acid is used as a catalyst.
  • the main decomposition reaction is carried out according to the reaction formula (4) shown below, and the main decomposition products obtained in the step (C1) are bisphenol and carbon dioxide.
  • n of the following reaction formula (4) is synonymous with the general formula (1).
  • n of the following reaction formula (4) is 2 to 1000.
  • the reaction solution is neutralized to obtain an organic phase in which bisphenol A is dissolved (C2).
  • Neutralization is performed by mixing a base with the reaction solution.
  • the base used include sodium carbonate, sodium hydroxide and the like.
  • the neutralization is preferably performed so that the end point is where the pH of the reaction solution is higher than 7.
  • step (C2) the mixed solution of the reaction solution and the base or the mixed solution of the reaction solution and the base and the organic solvent is separated into oil and water to form an aqueous phase, as in the step (A2) of the method for producing bisphenol (A). By removing it, an organic phase in which bisphenol A is dissolved is obtained.
  • the bisphenol A is recovered from the organic phase in which the bisphenol A obtained in the step (C2) is dissolved. Similar to the step (A3) of the method (A) for producing bisphenol, the organic phase obtained in the step (C2) can be recovered by crystallization after depressurizing and / or heating.
  • the methods (A) to (C) for producing bisphenol are examples in which phenol is used as the aromatic monoalcohol, but when aromatic monoalcohol other than phenol such as cresol and xylenol is used as the aromatic monoalcohol. Since bisphenol A does not form a co-crystal, it is not essential to remove the aromatic monoalcohol by reducing the pressure and / or heating in the step (A3), the step (B2), and the step (C3). In this case, the bisphenol A can be recovered by cooling the organic phase obtained in the step (A2) or the step (C2) or the reaction solution after the step (B1) to precipitate the bisphenol A. Purification of bisphenol A can be simplified by using cresol or xylenol.
  • bisphenol A may be recovered as a co-crystal of bisphenol A and phenol.
  • the organic phase obtained in the step (A2) or the step (C2) and the reaction solution after the step (B1) are cooled to precipitate a co-crystal of bisphenol A and phenol. to recover.
  • the polycarbonate resin used in the method for producing bisphenol of the present invention is not limited to the polycarbonate resin containing a structural unit derived from bisphenol A.
  • the method for producing bisphenol of the present invention using a polycarbonate resin containing a structural unit derived from bisphenol other than bisphenol A can also be appropriately carried out in the same manner as in the above-mentioned methods for producing bisphenol (A) to (C).
  • diaryl carbonate is produced by a method having the following steps (a1), step (b1), step (b2) and step (b3), and the step (b1) is a neutralization treatment.
  • Step (a1) A step of reacting carbonyl chloride and an aromatic monoalcohol in the presence of a nitrogen-containing heterocyclic compound to obtain a reaction solution containing diaryl carbonate.
  • Step (b1) Obtained in step (a1). After neutralizing the reaction solution containing diaryl carbonate with an aqueous alkali metal hydroxide solution and separating the oil phase into an oil phase containing aromatic diaryl and an aqueous phase containing a nitrogen-containing heterocyclic compound and an alkali metal chloride.
  • Step (b2) Step of washing the oil phase obtained in step (b1) with water
  • the neutralized wastewater (aqueous phase) removed in this step (b1) can be used for the decomposition of the polycarbonate resin. Since the aromatic monoalcohol is contained not only in the oil phase but also in the aqueous phase, the neutralized waste water discharged in the step (b1) includes the aromatic monoalcohol, the nitrogen-containing heterocyclic compound, and the alkali metal chloride. Water containing (neutralizing salt). Therefore, by mixing the polycarbonate resin and the neutralized waste water discharged in the step (b1), a reaction solution containing the polycarbonate resin, aromatic monoalcohol, water, nitrogen-containing heterocyclic compound and alkali metal chloride can be obtained. Easy to prepare.
  • the aromatic monoalcohol is the same as the aromatic monoalcohol used for decomposing the polycarbonate resin. It is preferable that the aromatic monoalcohol used for decomposing the polycarbonate resin and the aromatic monoalcohol in step (a1) are the same. Further, in the step (a1), the nitrogen-containing heterocyclic compound is the same as the nitrogen-containing heterocyclic compound that can be used for decomposing the polycarbonate resin, and pyridines are preferable.
  • the alkali metal hydroxide aqueous solution used in the step (b1) is a solution in which the alkali metal hydroxide is dissolved in water.
  • the alkali metal hydroxide is the same as the alkali metal hydroxide that can be used for decomposing the polycarbonate resin.
  • the step (b1) neutralizes the reaction solution containing diaryl carbonate obtained in step (a1) with an aqueous sodium hydroxide solution, and contains an oil phase containing aromatic diaryl, a nitrogen-containing heterocyclic compound and sodium chloride.
  • aqueous phase it is preferable to perform a step of separating the aqueous phase from the aqueous phase and then removing the aqueous phase as neutralized waste water, and the reaction solution containing the diallyl carbonate obtained in the step (a1) is neutralized with an aqueous sodium hydroxide solution. It is more preferable to perform a step of separating the oil phase into an oil phase containing an aromatic diaryl and an aqueous phase containing pyridines and sodium chloride, and then removing the aqueous phase as neutralized waste water.
  • hydrochloric acid waste water discharged when recovering hydrogen chloride produced as a by-product in producing diaryl carbonate from carbonyl chloride and aromatic monoalcohol can be used for decomposition of the polycarbonate resin.
  • hydrochloric acid wastewater discharged from a hydrogen chloride recovery facility installed in a diaryl carbonate production plant can be used.
  • the production of diaryl carbonate and the recovery of hydrogen chloride produced as a by-product have the following steps (a1), step (c1), step (c2) and step (c3).
  • Step (a1) A reaction solution containing diaryl carbonate is obtained by reacting carbonyl chloride with aromatic monoalcohol in the presence of a nitrogen-containing heterocyclic compound.
  • Step (c1) By-produced in step (a1). Step of supplying hydrogen chloride to the absorption tower and absorbing it with water or dilute hydrochloric acid to obtain concentrated hydrochloric acid
  • Step (c2) Distill the concentrated hydrochloric acid in the diffusion tower, recover the hydrogen chloride gas from the top of the tower, and collect hydrochloric acid from the bottom of the tower.
  • the hydrochloric acid wastewater removed in this step (c3) can be used for decomposing the polycarbonate resin.
  • the hydrochloric acid waste water discharged in the step (c3) contains bromophenols produced by a side reaction between Cl-Br contained in a small amount of carbonyl chloride used as a raw material in the step (a1) and an aromatic monoalcohol. Therefore, by mixing the polycarbonate resin, the aromatic monoalcohol, and the hydrochloric acid waste water discharged in the step (c3), a reaction solution containing the polycarbonate resin, the aromatic monoalcohol, water, hydrochloric acid, and bromophenols can be obtained. Easy to prepare.
  • the sodium hydroxide wastewater discharged by the detoxification treatment of the unliquefied gas generated during the production of carbonyl chloride which is a raw material of diaryl carbonate
  • sodium hydroxide wastewater discharged from an unliquefied gas abatement tower (neutralization facility) provided in a carbonyl chloride production plant can be used.
  • the production of carbonyl chloride and the treatment of unliquefied gas include the following steps (d1), step (d2), step (d3) and step (d4).
  • Step (d1) Step of obtaining carbonyl chloride gas from chlorine and carbon monoxide
  • Step (d2) Step of cooling the carbonyl chloride gas obtained in step (d1) to obtain liquefied carbonyl chloride
  • Step (d3) Circulation Step (d4): A step of bringing the aqueous sodium hydroxide solution into contact with the unliquefied gas that was not liquefied in the above (d2) to decompose carbonyl chloride in the unliquefied gas, and then discharging the carbonyl chloride.
  • Step (d4) The circulating water. Step to remove a part of sodium oxide aqueous solution as sodium hydroxide waste water
  • the sodium hydroxide wastewater removed in this step (d4) can be used for decomposing the polycarbonate resin.
  • the sodium hydroxide wastewater discharged in the step (d3) contains sodium chloride produced by neutralization and carbon tetrachloride as a by-product. Therefore, by mixing the polycarbonate resin, the aromatic monoalcohol, and the sodium hydroxide waste water discharged in the step (d4), the polycarbonate resin, the aromatic monoalcohol, water, sodium hydroxide, sodium chloride, and quaternary are mixed. A reaction solution containing carbon chloride can be easily prepared.
  • FIG. 1 is a flow chart for explaining an example of a method for producing bisphenol using neutralized wastewater discharged from a diphenyl carbonate production plant.
  • the reaction solution (L10) containing diphenyl carbonate is sent from the DPC reactor 10 to the dehydrochlorination column 11 for dehydrochlorination treatment.
  • the hydrogen chloride gas (G12) generated in the dechlorided hydrogen column 11 is sent to the activated carbon column (not shown) in the same manner as the hydrogen chloride gas (G10) produced as a by-product in the DPC reactor 10.
  • the reaction solution (L11) after the dehydrochlorination treatment is sent to the mixing tank 12 and then to the neutralization tank 13.
  • hydrochloric acid that could not be completely removed by the dehydrochlorination column 11 is neutralized with an aqueous sodium hydroxide solution (L12), and then oil-water separation is performed.
  • the aqueous phase (L14) is discharged as neutralized wastewater, and the obtained oil phase (L13) is sent to the washing tank 14 (step (b1)).
  • the neutralized wastewater (aqueous phase (L14)) contains water, phenol, pyridine, and sodium chloride.
  • a water washing treatment with water (L15) is performed (step (b2)).
  • the oil phase (L13) and water (L15) sent to the water washing tank 14 are mixed and the water phase (L17) is removed to obtain an oil phase (L16).
  • the water-washed oil phase (L16) is sequentially sent to the distillation column 15 and the distillation column 16, where distillation is performed, and the purified diphenyl carbonate (G13) is recovered from the top of the distillation column 16 (step (step (step). b3)).
  • the aqueous phase (L14, neutralized wastewater) discharged from the neutralization tank 13 is sent to the decomposition tank 100 and mixed with the bisphenol A type polycarbonate resin (PC) to decompose the polycarbonate resin.
  • the reaction solution prepared in the decomposition tank 100 may contain at least a part of an aqueous phase (L14, neutralized wastewater). Therefore, in addition to the aqueous phase (L14, neutralized wastewater), water ( H2O ) or phenol (PL) that is not neutralized wastewater (L14) may be separately supplied to the decomposition tank 100 to decompose the polycarbonate resin. can. Further, a base may be separately supplied as a catalyst.
  • the ratio of water and phenol and the amount of catalyst can be adjusted as appropriate.
  • pyridine used as a catalyst in the production of diphenyl carbonate is preferable.
  • the solution (L100) containing bisphenol A after PC decomposition is sent to a facility for performing the next step such as distillation of a catalyst and neutralization, and bisphenol A is recovered (not shown).
  • FIG. 2 is a flow chart for explaining an example of a method for producing bisphenol using hydrochloric acid wastewater discharged from the recovery plant 2 of hydrogen chloride produced as a by-product during the production of diphenyl carbonate.
  • the hydrogen chloride gas (G10, G12) produced as a by-product in the DPC reactor 10 is sent to the activated carbon tower 20 to adsorb and remove organic impurities such as phenol.
  • the hydrogen chloride gas (G20) treated with activated carbon is sent to the absorption tower 21.
  • the hydrogen chloride gas (G20) is absorbed by water (L20) or dilute hydrochloric acid (L21, an unsaturated aqueous solution of hydrogen chloride) supplied to the absorption tower 21, discharged as concentrated hydrochloric acid (L23), and stored in the tank 22. (Step (c1)).
  • dilute hydrochloric acid (L24) is discharged from the bottom of the dissipating tower 23 and stored in the tank 24 (step (c2)).
  • a certain amount of dilute hydrochloric acid (L24) is discharged from the tank 24 as hydrochloric acid wastewater (L25) in order to prevent the concentration of impurities, and the remaining dilute hydrochloric acid (L26) is returned to the absorption tower 21.
  • Hydrochloric acid wastewater (L25) contains water, hydrogen chloride and bromophenols (monobromophenol and / or dibromophenol).
  • the hydrochloric acid wastewater (L25) discharged from the tank 24 is sent to the decomposition tank 102 and mixed with the bisphenol A type polycarbonate resin (PC) and phenol (PL) to decompose the polycarbonate resin.
  • the reaction solution prepared in the decomposition tank 102 may contain at least a part of hydrochloric acid wastewater (L25). Therefore, in addition to the hydrochloric acid wastewater (L25), water (H 2 O) other than the hydrochloric acid wastewater (L25) can be separately supplied to the decomposition tank 102 to decompose the polycarbonate resin. Further, an acid may be separately supplied as a catalyst. Hydrochloric acid is preferable as the acid additionally supplied at this time.
  • the amount of catalyst can be adjusted as appropriate.
  • the solution (L102) containing bisphenol A after PC decomposition is sent to a facility for performing the next step such as distillation and neutralization of the catalyst, and bisphenol A is recovered (not shown).
  • FIG. 3 is a flow chart for explaining an example of a method for producing bisphenol using sodium hydroxide wastewater discharged from an abatement tower 34 provided in a carbonyl chloride production plant 3.
  • the unliquefied gas (G31) that was not liquefied by the condenser 31 is supplied to the abatement tower 34 in which the sodium hydroxide aqueous solution (L31) circulates, and the unliquefied gas (G31) and the sodium hydroxide aqueous solution (L31) are supplied. After decomposing carbonyl chloride in the unliquefied gas (G31), it is discharged into the atmosphere as waste gas (G32) (step (d3)). Further, in the abatement tower 34, in order to prevent the concentration of impurities and the like, a part of the circulating sodium hydroxide (L31) is discharged as sodium hydroxide wastewater (L32) (step (d4)).
  • the sodium hydroxide wastewater (L32) contains water, sodium hydroxide, sodium chloride and carbon tetrachloride.
  • the sodium hydroxide waste water (L32) discharged from the abatement tower 34 is sent to the decomposition tank 103 and mixed with bisphenol A type polycarbonate resin (PC) and phenol (PL) to decompose the polycarbonate resin. ..
  • the reaction solution prepared in the decomposition tank 103 may contain at least a part of sodium hydroxide wastewater (L32). Therefore, in addition to the sodium hydroxide wastewater (L32), water ( H2O ) that is not the sodium hydroxide wastewater (L32) can be separately supplied to the decomposition tank 103 to decompose the polycarbonate resin. Further, a base may be separately supplied as a catalyst.
  • the bisphenol obtained by the method for producing bisphenol of the present invention (hereinafter, may be referred to as "recycled bisphenol”) is various such as an optical material, a recording material, an insulating material, a transparent material, an electronic material, an adhesive material, and a heat-resistant material.
  • Various thermoplastic resins such as polyether resin, polyester resin, polyarylate resin, polycarbonate resin, polyurethane resin, acrylic resin, epoxy resin, unsaturated polyester resin, phenol resin, polybenzoxazine resin, cyanate, which are used in the above applications. It can be used as a constituent component of various thermosetting resins such as resins, a curing agent, an additive, or a precursor thereof. It is also useful as an additive such as a color developer such as a heat-sensitive recording material, a fading inhibitor, a bactericidal agent, and an antibacterial and antifungal agent.
  • thermoplastic resin or a thermosetting resin because it can impart good mechanical properties
  • color developer it is also preferable to use it as a color developer, and it is more preferable to use it in combination with a leuco dye and a color change temperature adjusting agent.
  • the present invention relates to a method for producing carbon dioxide (hereinafter, may be referred to as "method for producing carbon dioxide of the present invention") for recovering carbon dioxide produced by the method for producing bisphenol of the present invention. ..
  • method for producing carbon dioxide of the present invention carbon dioxide can be efficiently decomposed to obtain carbon dioxide under mild and environmentally friendly conditions.
  • carbon dioxide is generated by the decomposition reaction and / or the neutralization after the decomposition reaction of the polycarbonate resin.
  • This carbon dioxide can be recovered and used as a raw material for carbonic acid diesters such as dimethyl carbonate and diphenyl carbonate, a raw material for alkylene carbonate such as ethylene carbonate, and a raw material for carbon monoxide.
  • the method for producing carbon dioxide of the present invention is a step of decomposing the polycarbonate resin in the presence of aromatic monoalcohol, water and a base (catalyst). And, it is possible to have a step of recovering carbon dioxide generated by the decomposition of the polycarbonate resin.
  • the catalyst used for the decomposition of the polycarbonate resin is a base
  • carbon dioxide is also generated during neutralization after the decomposition reaction. Therefore, in the method for producing carbon dioxide of the present invention, the polycarbonate resin is used as an aromatic monoalcohol.
  • the method for producing carbon dioxide of the present invention comprises a step of decomposing the polycarbonate resin in the presence of aromatic monoalcohol, water and an acid (catalyst), and the polycarbonate resin. It is possible to have a step of recovering the carbon dioxide produced by the decomposition of.
  • carbon dioxide can be recovered by a conventional method, and can be appropriately selected according to other impurities.
  • a physical absorption method, a chemical absorption method, a cold separation method, a membrane separation method, a pressure swing adsorption method, or the like can be applied.
  • the present invention is a method for producing a carbonic acid diester (hereinafter, referred to as a method for producing a carbonic acid diester), which comprises producing a carbonic acid diester using carbon dioxide obtained by the method for producing carbon dioxide of the present invention (hereinafter, may be referred to as “regenerated carbon dioxide”). , "Method for producing carbon dioxide diester of the present invention”).
  • the method for producing a carbonic acid diester of the present invention a known method for producing a carbonic acid diester using carbon dioxide as a raw material can be used. Further, it suffices as long as it uses recycled carbon dioxide as at least a part of carbon dioxide as a raw material, and the content of recycled carbon dioxide in carbon dioxide is not particularly limited.
  • the content of regenerated carbon dioxide in carbon dioxide is preferably 0.1% by volume or more, more preferably 0.5% by volume or more.
  • dialkyl carbonate such as dimethyl carbonate and diaryl carbonate such as diphenyl carbonate
  • the carbonic acid diester obtained by the method for producing a carbonic acid diester of the present invention can be used as a raw material for a polycarbonate resin, an electrolytic solution, or the like.
  • the method for producing a dialkyl carbonate according to the following (M1) the method for producing a diaryl carbonate according to the following (M2) or (M3), or the like can be used.
  • M1 Method of reacting carbon dioxide with aliphatic monoalcohol to obtain dialkyl carbonate
  • M2 Reacting carbon dioxide with aliphatic monoalcohol to obtain dialkylcarbonate, obtained dialkyl carbonate and aromatic monoalcohol
  • Method for obtaining diaryl carbonate by reacting with (M3) Carbon monoxide is obtained from carbon dioxide and coke, and the obtained carbon monoxide is reacted with chlorine to obtain carbonyl chloride, and the obtained carbonyl chloride and aroma are obtained.
  • Examples of the aliphatic monoalcohol include alcohols having 1 to 10 carbon atoms. Alcohols having 1 to 6 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, pentanol and hexanol are preferable, and methanol or butanol is more preferable.
  • aromatic monoalcohol the same aromatic monoalcohol used in the method for producing bisphenol of the present invention can be used, and phenol is preferable.
  • each reaction may be carried out in the presence of a known catalyst.
  • Carbon dioxide may be reacted with an aliphatic monoalcohol in the presence of a catalyst, and examples of the catalyst include known catalysts such as cerium oxide.
  • the catalyst used for the reaction between the dialkyl carbonate and the aromatic monoalcohol for example, an organic titanium catalyst such as tetraphenoxytitanium can be used.
  • the method for producing carbonic acid diester of the present invention reacts carbon dioxide containing carbon dioxide obtained by the method for producing carbon dioxide of the present invention with an aliphatic monoalcohol. It is preferable to use a method having a step of causing the carbon dioxide to grow.
  • the method for producing a recycled polycarbonate resin of the present invention is a bisphenol raw material containing bisphenol (regenerated bisphenol) obtained by the method for producing bisphenol of the present invention, and / or a carbonic acid diester obtained by the method for producing a carbonic acid diester of the present invention.
  • This is a method for producing a regenerated polycarbonate resin using a carbonic acid diester raw material containing (hereinafter, may be referred to as "regenerated carbonic acid diester").
  • a method for producing a regenerated polycarbonate resin using a bisphenol raw material containing regenerated bisphenol is referred to as a "first method for producing a regenerated polycarbonate resin”
  • a regenerated polycarbonate resin is produced using a carbon dioxide diester raw material containing a regenerated carbon dioxide diester.
  • the method will be described as "a second method for producing a recycled polycarbonate resin”.
  • the "first method for producing a recycled polycarbonate resin” and the "second method for producing a recycled polycarbonate resin” are collectively described as "the method for producing a recycled polycarbonate resin of the present invention”.
  • the first method for producing a recycled polycarbonate resin is a method for producing a recycled polycarbonate resin, which comprises producing a recycled polycarbonate resin using a bisphenol raw material containing bisphenol (regenerated bisphenol) obtained by the method for producing bisphenol of the present invention. ..
  • the first method for producing a recycled polycarbonate resin is to utilize a chemical recycling method for producing a polycarbonate resin using recycled bisphenol obtained by decomposing a polycarbonate resin contained in waste plastic or the like into bisphenol as a monomer as a raw material.
  • the regenerated polycarbonate resin produced by the first method for producing a regenerated polycarbonate resin a known method for producing a polycarbonate resin using bisphenol as a raw material can be used.
  • a known method for producing a polycarbonate resin using bisphenol as a raw material can be used.
  • it can be obtained by polymerizing a bisphenol raw material containing regenerated bisphenol (bisphenol obtained by decomposing a polycarbonate resin by the method for producing bisphenol of the present invention) and a carbonic acid diester raw material.
  • the polymerization can be carried out by appropriately selecting a known method.
  • a recycled polycarbonate resin can be produced by a method in which a bisphenol raw material containing recycled bisphenol and a carbonic acid diester raw material such as diphenyl carbonate are subjected to an ester exchange reaction in the presence of an alkali metal compound and / or an alkaline earth metal compound. can.
  • the regenerated bisphenol may be used as a whole of the bisphenol raw material, or may be mixed with a general bisphenol that is not a regenerated bisphenol and used as a part of the bisphenol raw material.
  • the amount of regenerated bisphenol with respect to the bisphenol raw material is not particularly limited, and is 0.1% by mass or more, 1% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more. , 70% by mass or more, 80% by mass or more, 90% by mass or more, and the like.
  • the larger the proportion of regenerated bisphenol the more environmentally friendly it is. Therefore, from the viewpoint of consideration for the environment, it is preferable that the amount of regenerated bisphenol with respect to the bisphenol raw material is large.
  • the carbonic acid diester raw material may contain a regenerated carbonic acid diester, or may use only a general carbonic acid diester and may not contain a regenerated carbonic acid diester.
  • the transesterification reaction can be carried out by appropriately selecting a known method, and an example of a method using diphenyl carbonate as a raw material for carbonic acid diester will be described below.
  • the amount of diphenyl carbonate used for the bisphenol raw material is preferably large in that the produced recycled polycarbonate resin has few terminal hydroxyl groups and is excellent in thermal stability of the polymer, and the transesterification reaction rate is fast, which is desired. It is preferable that the amount is small in that it is easy to produce a recycled polycarbonate resin having a molecular weight.
  • the amount of diphenyl carbonate used per 1 mol of the bisphenol raw material is usually 1.001 mol or more, preferably 1.002 mol or more, and usually 1.3 mol or less, preferably 1.2 mol. It is as follows.
  • bisphenol raw materials and diphenyl carbonate can be supplied as solids, but it is preferable to melt one or both of them and supply them in a liquid state.
  • transesterification catalyst When producing a recycled polycarbonate resin by transesterification reaction between diphenyl carbonate and bisphenol raw material, a transesterification catalyst is usually used.
  • the transesterification catalyst it is preferable to use an alkali metal compound and / or an alkaline earth metal compound. These may be used alone or in combination of two or more in any combination and ratio. Practically, it is desirable to use an alkali metal compound.
  • the amount of catalyst used for the bisphenol raw material or 1 mol of diphenyl carbonate is usually 0.05 ⁇ mol or more, preferably 0.08 ⁇ mol or more, and more preferably 0.10 ⁇ mol or more. Further, it is usually 100 ⁇ mol or less, preferably 50 ⁇ mol or less, and more preferably 20 ⁇ mol or less.
  • the amount of the catalyst used is within the above range, it is easy to obtain the polymerization activity required for producing the regenerated polycarbonate resin having a desired molecular weight, the polymer hue is excellent, and excessive polymer branching does not proceed. , It is easy to obtain a polycarbonate resin having excellent fluidity during molding.
  • it is preferable that both of the above raw materials are continuously supplied to the raw material mixing tank, and the obtained mixture and the transesterification catalyst are continuously supplied to the polymerization tank.
  • both raw materials supplied to the raw material mixing tank are usually stirred uniformly and then supplied to the polymerization tank to which the catalyst is added to produce a polymer.
  • the second method for producing a regenerated polycarbonate resin is a method for producing a regenerated polycarbonate resin, which comprises producing a regenerated polycarbonate resin using a carbonic acid diester raw material containing a carbonic acid diester (regenerated carbonic acid diester) obtained by the method for producing a carbonic acid diester of the present invention. It is a manufacturing method.
  • a known method for polymerizing a polycarbonate resin can be appropriately selected except that a carbonic acid diester raw material containing a regenerated carbonic acid diester is used.
  • a regenerated polycarbonate resin can be produced by reacting a bisphenol raw material with a carbonic acid diester raw material containing a regenerated carbonic acid diester. Except for using the carbonic acid diester raw material containing the regenerated carbonic acid diester, the ratio of the bisphenol raw material to the carbonic acid diester raw material, the catalyst used, and the like are the same as those described in the first method for producing a regenerated polycarbonate resin.
  • the regenerated carbonic acid diester may be used as the whole carbonic acid diester raw material, or may be mixed with a general carbonic acid diester that is not a regenerated carbonic acid diester and used as a part of the carbonic acid diester raw material.
  • the amount of the regenerated carbon dioxide diester with respect to the carbon dioxide diester raw material is not particularly limited, and is 0.1% by mass or more, 1% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass. % Or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, and the like. From the viewpoint of consideration for the environment, it is preferable that the amount of regenerated carbonic acid diester relative to the carbonic acid diester raw material is large.
  • the carbonic acid diester raw material in the second method for producing a recycled polycarbonate resin is preferably a diaryl carbonate raw material containing diaryl carbonate obtained by the method for producing a carbonic acid diester of the present invention, and is obtained by the method for producing a carbonic acid diester of the present invention. It is more preferable that it is a diphenyl carbonate raw material containing the obtained diphenyl carbonate.
  • the bisphenol raw material may contain regenerated bisphenol, or may use only general bisphenol and may not contain regenerated bisphenol.
  • the regenerated polycarbonate resin obtained by the method for producing a regenerated polycarbonate resin of the present invention may be used as it is, or may be used as a regenerated polycarbonate resin composition containing an unused polycarbonate resin and the regenerated polycarbonate resin.
  • the regenerated polycarbonate resin composition can be obtained by appropriately selecting a known kneading method or the like and mixing the unused polycarbonate resin and the regenerated polycarbonate resin.
  • the recycled polycarbonate resin composition containing the unused polycarbonate resin and the recycled polycarbonate resin is prepared, the amount of the recycled polycarbonate resin is not particularly limited, but the larger the proportion of the recycled polycarbonate resin, the more environmentally friendly it is.
  • the amount of the regenerated polycarbonate resin with respect to the regenerated polycarbonate resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, 80% by mass or more, and 90% by mass or more. ..
  • the obtained recycled polycarbonate resin or composition can be molded into various molded products such as an optical member and an optical recording medium in the same manner as an unused polycarbonate resin.
  • the present invention relates to a method for producing an epoxy resin, which is produced by using the bisphenol obtained by the method for producing bisphenol of the present invention. Further, the obtained epoxy resin may be further reacted with a polyvalent hydroxy compound raw material to produce an epoxy resin.
  • the method for producing an epoxy resin of the present invention is a method for producing an epoxy resin by using an epoxy resin produced by using regenerated bisphenol and / or regenerated bisphenol as at least a part of a raw material.
  • the method for producing the epoxy resin of the present invention is not particularly limited except that the recycled bisphenol (bisphenol obtained by the method for producing the bisphenol of the present invention) and / or the epoxy resin produced by using the regenerated bisphenol is used as a raw material.
  • a known method for producing an epoxy resin can be used.
  • the regenerated bisphenol can be used as at least a part of a raw material for a multivalent hydroxy compound when produced by using a one-step method, an oxidation method, or a two-step method, as described later.
  • the obtained epoxy resin can also be used as at least a part of the epoxy resin raw material in the production using the two-step method.
  • epoxy resin raw material means an epoxy resin used as a raw material for an epoxy resin (hereinafter, may be referred to as "recycled epoxy resin") obtained by the method for producing an epoxy resin of the present invention.
  • “Polyvalent hydroxy compound” is a general term for a phenol compound having a divalent value or higher and an alcohol compound having a divalent value or higher, and the “polyvalent hydroxy compound raw material” means a polyvalent hydroxy compound used as a raw material for a recycled epoxy resin. do.
  • the method for producing an epoxy resin by the one-step method is a method for obtaining an epoxy resin by reacting with epihalohydrin using regenerated bisphenol (bisphenol obtained by the method for producing bisphenol of the present invention).
  • the method for producing an epoxy resin by an oxidation method is a method in which regenerated bisphenol is allylated with allyl halide (allyl chloride, allyl bromide, etc.) and then subjected to an oxidation reaction to obtain an epoxy resin.
  • the method for producing an epoxy resin by the two-step method is a method of reacting an epoxy resin raw material with a polyvalent hydroxy compound raw material, and an epoxy resin produced by using regenerated bisphenol and / or regenerated bisphenol is used as the raw material.
  • the method for producing the epoxy resin by the one-step method is not particularly limited as long as it is a known production method, but will be described in detail below.
  • a polyvalent hydroxy compound other than the regenerated bisphenol (hereinafter, may be referred to as “another polyvalent hydroxy compound”) may be used in combination with the regenerated bisphenol. That is, the method for producing an epoxy resin by the one-step method is a method for obtaining an epoxy resin by reacting a polyvalent hydroxy compound raw material with epihalohydrin, and a method in which at least a part of the polyvalent hydroxy compound raw material is regenerated bisphenol. Can be done.
  • the content of regenerated bisphenol in the raw material of the multivalent hydroxy compound is not particularly limited, but 1 to 100% by mass is preferable, and 10 to 100% by mass is more preferable because a high content of regenerated bisphenol is environmentally friendly.
  • other polyvalent hydroxy compounds is a general term for divalent or higher phenol compounds and divalent or higher alcohol compounds excluding regenerated bisphenol.
  • the "multivalent hydroxy compound raw material” is a total polyvalent hydroxy compound in which regenerated bisphenol and other polyvalent hydroxy compounds used as needed are combined.
  • polyvalent hydroxy compounds include bisphenol A, tetramethylbisphenol A, bisphenol F, tetramethylbisphenol F, bisphenol S, bisphenol C, bisphenol AD, bisphenol AF, hydroquinone, resorcin, methylresorcin, biphenol, tetramethylbiphenol, Dihydroxynaphthalene, dihydroxydiphenyl ether, thiodiphenols, phenol novolac resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, terpenphenol resin, dicyclopentadienephenol resin, bisphenol A novolak resin, naphthol novolak resin, Multivalent phenols obtained by condensation reactions of various polyvalent phenols such as brominated bisphenol A and brominated phenol novolak resin, and various aldehydes such as benzaldehyde, hydroxybenzaldehyde, crotonaldehyde,
  • phenolic resins such as resins, polyhydric phenolic resins obtained by the condensation reaction of xylene resin and phenols, co-condensation resins of heavy oils or pitches with phenols and formaldehyde, ethylene glycol, birds Chains of methylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,6-hexanediol, etc.
  • Examples thereof include cyclic aliphatic diols such as bisphenol diols, cyclohexanediols and cyclodecanediols, and polyalkylene ether glycols such as polyethylene ether glycols, polyoxytrimethylene ether glycols and polypropylene ether glycols.
  • cyclic aliphatic diols such as bisphenol diols, cyclohexanediols and cyclodecanediols
  • polyalkylene ether glycols such as polyethylene ether glycols, polyoxytrimethylene ether glycols and polypropylene ether glycols.
  • the polyvalent hydroxy compound raw material is dissolved in epihalohydrin to make a uniform solution.
  • epichlorohydrin epichlorohydrin or epibromohydrin is usually used, but in the present invention, epichlorohydrin is preferable.
  • the amount of epihalohydrin used is usually 1.0 to 14.0 equivalents, particularly 2.0 to 10.0 equivalents, per 1 equivalent of the hydroxyl group of the polyvalent hydroxy compound raw material (total polyvalent hydroxy compound). Is preferable.
  • the amount of epihalohydrin is not less than the above lower limit, it is easy to control the high molecular weight reaction, and the obtained epoxy resin can have an appropriate epoxy equivalent, which is preferable.
  • the amount of epihalohydrin is not more than the above upper limit, the production efficiency tends to be improved, which is preferable.
  • an amount of alkali metal hydroxide usually corresponding to 0.1 to 3.0 equivalents, preferably 0.8 to 2.0 equivalents per hydroxyl group of the polyvalent hydroxy compound raw material was added. Add in solid or aqueous solution and react.
  • the amount of the alkali metal hydroxide added is at least the above lower limit, it is preferable because the unreacted hydroxyl group and the generated epoxy resin do not easily react with each other and the molecular weight increase reaction can be easily controlled. Further, when the amount of the alkali metal hydroxide added is not more than the above upper limit, impurities are less likely to be generated due to side reactions, which is preferable.
  • the alkali metal hydroxide used here usually includes sodium hydroxide or potassium hydroxide.
  • This reaction can be carried out under normal pressure or reduced pressure, and the reaction temperature is preferably 20 to 200 ° C, more preferably 40 to 150 ° C.
  • the reaction temperature is at least the above lower limit, it is preferable because the reaction can be easily proceeded and the reaction can be easily controlled. Further, when the reaction temperature is not more than the above upper limit, side reactions are less likely to proceed, and it is particularly preferable because the amount of polymer can be easily reduced.
  • the reaction solution is azeotropically heated while maintaining a predetermined temperature, the volatilized vapor is cooled, the condensed solution obtained is separated into oil / water, and the oil content excluding water is reacted. It is performed while dehydrating by the method of returning to the system.
  • the alkali metal hydroxide is added intermittently or continuously in small amounts over 0.1 to 24 hours, more preferably 0.5 to 10 hours in order to suppress a rapid reaction.
  • the addition time of the alkali metal hydroxide is not less than the above lower limit, it is possible to prevent the reaction from progressing rapidly, and it is preferable because the reaction temperature can be easily controlled.
  • the addition time is not more than the above upper limit, the amount of the polymer can be easily reduced, which is preferable.
  • the insoluble by-product salt can be removed by filtration or removed by washing with water, and then the unreacted epihalohydrin can be removed by heating and / or distilling under reduced pressure.
  • quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide, benzyldimethylamine, tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol, and 2-ethyl.
  • Catalysts such as imidazoles such as -4-methylimidazole and 2-phenylimidazole, phosphonium salts such as ethyltriphenylphosphonium iodide, and phosphines such as triphenylphosphine may be used.
  • alcohols such as ethanol and isopropanol
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • ethers such as dioxane and ethylene glycol dimethyl ether
  • glycol ethers such as methoxypropanol, dimethyl sulfoxide and dimethylformamide.
  • You may use an inert organic solvent such as an aprotonic polar solvent such as.
  • An organic solvent for dissolving the epoxy resin may be used for the reaction with the alkali.
  • the organic solvent used for the reaction is not particularly limited, but it is preferable to use a ketone-based organic solvent from the viewpoints of production efficiency, handleability, workability and the like. Further, from the viewpoint of further reducing the amount of hydrolyzable chlorine, an aprotic polar solvent may be used.
  • ketone-based organic solvent examples include ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Methyl isobutyl ketone is particularly preferable because of its effect and ease of post-treatment. One of these may be used alone, or two or more thereof may be mixed and used.
  • aprotonic polar solvent examples include dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, sulfolane, dimethylformamide, dimethylacetamide, hexamethylphosphoramide and the like. One of these may be used alone, or two or more thereof may be mixed and used. Among these aprotic polar solvents, dimethyl sulfoxide is preferable because it is easily available and has excellent effects.
  • the amount of the above solvent used is such that the concentration of the epoxy resin in the liquid to be treated with alkali is usually 1 to 95% by mass, preferably 5 to 80% by mass.
  • alkali a solid or solution of alkali metal hydroxide can be used.
  • the alkali metal hydroxide include potassium hydroxide, sodium hydroxide and the like, and sodium hydroxide is preferable.
  • the alkali metal hydroxide one dissolved in an organic solvent or water may be used.
  • the alkali metal hydroxide is used as a solution dissolved in an aqueous solvent or an organic solvent.
  • the amount of the alkali metal hydroxide used is preferably 0.01 to 20.0 parts by mass or less with respect to 100 parts by mass of the epoxy resin in terms of the solid content of the alkali metal hydroxide. More preferably, it is 0.10 to 10.0 parts by mass.
  • the amount of the alkali metal hydroxide used is not less than the above lower limit, the effect of reducing the total chlorine content is low, and when it is more than the above upper limit, a large amount of polymer is produced and the yield is lowered.
  • the reaction temperature is preferably 20 to 200 ° C., more preferably 40 to 150 ° C., and the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 10 hours.
  • excess alkali metal hydroxides and by-products can be removed by a method such as washing with water, and the organic solvent can be further removed by heating and / or distillation under reduced pressure and / or steam distillation.
  • the method for producing the epoxy resin by the oxidation method is not particularly limited as long as it is a known production method. It can be carried out according to the method described.
  • the regenerated bisphenol may be produced in combination with a multivalent hydroxy compound other than the regenerated bisphenol. That is, the method for producing an epoxy resin by an oxidation method is a method in which an epoxy resin is obtained by subjecting a polyvalent hydroxy compound raw material to allylation using allyl halide and then undergoing an oxidation reaction to obtain an epoxy resin, and at least one of the polyvalent hydroxy compound raw materials.
  • the part can be a method of being regenerated bisphenol.
  • the "multivalent hydroxy compound raw material” is a total polyvalent hydroxy compound obtained by combining regenerated bisphenol and other polyvalent hydroxy compounds used as needed, and other polyvalent hydroxy compounds.
  • the valent hydroxy compound include those similar to the one-step method.
  • the content of the regenerated bisphenol in the raw material of the polyvalent hydroxy compound is not particularly limited, but 1 to 100% by mass is preferable, and 10 to 100% by mass is more preferable because a high content of the regenerated bisphenol is environmentally friendly.
  • the method for producing the epoxy resin by the two-step method is not particularly limited as long as it is a known production method, but will be described in detail below.
  • the method for producing an epoxy resin by a two-step method includes a step of reacting an epoxy resin raw material with a polyvalent hydroxy compound raw material, and at least a part of the epoxy resin raw material is an epoxy resin produced using recycled bisphenol. Yes, and / or, the method may be such that at least a portion of the polyvalent hydroxy compound raw material is regenerated bisphenol.
  • the method for producing the epoxy resin by the two-step method is one of the following methods (i) to (iii).
  • the epoxy resin raw material is an epoxy resin other than the epoxy resin produced by using recycled bisphenol.
  • the raw material for the multivalent hydroxy compound is a total polyvalent hydroxy compound in which regenerated bisphenol and other polyvalent hydroxy compounds used as needed are combined.
  • the epoxy resin raw material is a total epoxy resin in which an epoxy resin manufactured by using recycled bisphenol and another epoxy resin used as needed are combined.
  • the raw material for the multivalent hydroxy compound is a total polyvalent hydroxy compound in which regenerated bisphenol and other polyvalent hydroxy compounds used as needed are combined.
  • the epoxy resin raw material is a total epoxy resin in which an epoxy resin manufactured using recycled bisphenol and other epoxy resins used as needed are combined.
  • the raw material for the multivalent hydroxy compound is a polyvalent hydroxy compound other than the regenerated bisphenol.
  • the epoxy resin produced by using the regenerated bisphenol used in the method (ii) and the method (iii) can be obtained by a method for producing an epoxy resin by a one-step method or a method for producing an epoxy resin by an oxidation method. Further, the epoxy resin obtained by the method (i) may be used.
  • the epoxy resin other than the epoxy resin produced by using the regenerated bisphenol is the same as the other epoxy resins described later in the method for producing the cured epoxy resin, and the other polyvalent hydroxy compounds are described in the one-step method. The same is true.
  • the content of the regenerated bisphenol in the multivalent hydroxy compound containing the regenerated bisphenol is not particularly limited, but since the high content of the regenerated bisphenol is environmentally friendly, 1 to 100% by mass is used. It is preferable, 10 to 100% by mass is more preferable. Further, in the method (ii) and the method (ii), the content of the epoxy resin produced by using the regenerated bisphenol in the epoxy resin raw material containing the epoxy resin produced by using the regenerated bisphenol is not particularly limited, but the regenerated bisphenol. When the content of the epoxy resin produced using the above is high, it is environmentally friendly, so 1 to 100% by mass is preferable, and 10 to 100% by mass is more preferable.
  • a catalyst may be used in the reaction by the two-step method, and the catalyst may be any compound having a catalytic ability to promote the reaction between the epoxy group and the phenolic hydroxyl group or the alcoholic hydroxyl group. But it may be.
  • alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazoles and the like can be mentioned. Of these, the quaternary ammonium salt is preferable.
  • only one type of catalyst may be used, or two or more types may be used in combination. The amount of the catalyst used is usually 0.001 to 10% by mass with respect to the epoxy resin raw material.
  • a solvent may be used, and the solvent may be any one that dissolves the epoxy resin raw material. Examples thereof include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents and the like.
  • the solvent may be used alone or in combination of two or more.
  • the resin concentration in the solvent is preferably 10 to 95% by mass. More preferably, it is 20 to 80% by mass.
  • an additional solvent can be added to continue the reaction. After completion of the reaction, the solvent can be removed or further added, if necessary.
  • the reaction temperature is preferably 20 to 250 ° C, more preferably 50 to 200 ° C. If the reaction temperature is equal to or higher than the above upper limit, the produced epoxy resin may deteriorate. If it is below the above lower limit, the reaction may not proceed sufficiently.
  • the reaction time is usually 0.1 to 24 hours, preferably 0.5 to 12 hours.
  • the present invention relates to a method for producing a cured epoxy resin, which comprises curing an epoxy resin composition containing an epoxy resin and a curing agent obtained by the method for producing an epoxy resin of the present invention to obtain a cured epoxy resin.
  • a composition containing the epoxy resin and the curing agent is mixed with the epoxy resin obtained by the above-mentioned method for producing the epoxy resin of the present invention (hereinafter, "epoxy"). After obtaining "resin composition”), the epoxy resin composition is cured to obtain an epoxy resin cured product.
  • the epoxy resin composition may include, if necessary, an epoxy resin other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention (hereinafter, may be simply referred to as "another epoxy resin").
  • an epoxy resin other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention hereinafter, may be simply referred to as "another epoxy resin”
  • a curing agent, a curing accelerator, an inorganic filler, a coupling agent and the like can be appropriately blended.
  • the content of the recycled epoxy resin in the epoxy resin composition is not particularly limited. Since a high content of the recycled epoxy resin is environmentally friendly, the recycled epoxy resin is preferably 40 parts by mass or more, more preferably 60 parts by mass or more, based on 100 parts by mass of the total epoxy resin component in the recycled epoxy resin composition. .. When another epoxy resin is contained, the amount of the recycled epoxy resin may be 40 to 99 parts by mass, 60 to 99 parts by mass, or the like with respect to 100 parts by mass of the total epoxy resin component in the epoxy resin composition.
  • the "total epoxy resin component" corresponds to the amount of all the epoxy resins contained in the epoxy resin composition, and is the total of the recycled epoxy resin and other epoxy resins used as needed.
  • the curing agent refers to a substance that contributes to the cross-linking reaction and / or the chain length extension reaction between the epoxy groups of the epoxy resin.
  • a curing accelerator if it is a substance that contributes to the cross-linking reaction and / or the chain length extension reaction between the epoxy groups of the epoxy resin, it should be regarded as a curing agent.
  • the content of the curing agent is preferably 0.1 to 1000 parts by mass with respect to 100 parts by mass of the total epoxy resin component. Further, it is more preferably 500 parts by mass or less.
  • epoxy resin curing agents there are no particular restrictions on the curing agent, and all commonly known epoxy resin curing agents can be used.
  • amine-based curing agents such as phenol-based curing agents, aliphatic amines, polyether amines, alicyclic amines, and aromatic amines, acid anhydride-based curing agents, amide-based curing agents, tertiary amines, imidazoles, etc.
  • One type of curing agent may be used alone, or two or more types may be used in combination. When two or more kinds of curing agents are used in combination, they may be mixed in advance to prepare a mixed curing agent before use, or the epoxy resin or other epoxy resin obtained by the method for producing an epoxy resin of the present invention may be used. When mixing each component, each component of the curing agent may be added separately and mixed at the same time.
  • phenolic curing agent examples include regenerated bisphenol, bisphenol A, tetramethylbisphenol A, bisphenol F, tetramethylbisphenol F, bisphenol C, bisphenol S, bisphenol AD, bisphenol AF, hydroquinone, resorcin, methylresolsin, biphenol, Tetramethylbiphenol, dihydroxynaphthalene, dihydroxydiphenyl ether, thiodiphenols, phenol novolac resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, terpenephenol resin, dicyclopentadienephenol resin, bisphenol A novolak resin, Various polyvalent phenols such as trisphenol methane type resin, naphthol novolak resin, brominated bisphenol A, brominated phenol novolak resin, various phenols and various aldehydes such as benzaldeh
  • phenolic curing agents may be used alone or in combination of two or more in any combination and blending ratio.
  • the blending amount of the phenolic curing agent is preferably 0.1 to 1000 parts by mass, and more preferably 500 parts by mass or less with respect to 100 parts by mass of the total epoxy resin component in the epoxy resin composition.
  • amine-based curing agent examples include aliphatic amines, polyether amines, alicyclic amines, aromatic amines and the like.
  • aliphatic amines examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, and bis ( Examples thereof include hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, and tetra (hydroxyethyl) ethylenediamine.
  • polyether amines examples include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, and polyoxypropylene triamines.
  • alicyclic amines examples include isophorone diamine, metasendiamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, and 3,9-bis (3-amino).
  • examples thereof include propyl) -2,4,8,10-tetraoxaspiro (5,5) undecane and norbornene diamine.
  • aromatic amines examples include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisol, 2,4.
  • the amine-based curing agents mentioned above may be used alone or in combination of two or more in any combination and blending ratio.
  • the above amine-based curing agent may be used so that the equivalent ratio of the functional groups in the curing agent to the epoxy groups in all the epoxy resin components contained in the epoxy resin composition is in the range of 0.1 to 2.0. preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
  • tertiary amine examples include 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and the like. ..
  • the tertiary amines mentioned above may be used alone or in combination of two or more in any combination and blending ratio.
  • the above tertiary amine may be used so that the equivalent ratio of the functional group in the curing agent to the epoxy group in the total epoxy resin component contained in the epoxy resin composition is in the range of 0.1 to 2.0. preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
  • acid anhydride-based curing agent examples include acid anhydrides and modified products of acid anhydrides.
  • acid anhydride examples include phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, dodecenyl succinic acid anhydride, polyadipic acid anhydride, polyazeline acid anhydride, and polysevacinic acid.
  • Anhydride Poly (ethyl octadecane diic acid) anhydrate, Poly (phenylhexadecane diic acid) anhydrate, Tetrahydrophthalic acid anhydride, Methyltetrahydrophthalic acid anhydride, Methylhexahydrophthalic acid anhydride, Hexahydrophthalic acid anhydride , Methylhymic Acid Anhydride, Trialkyltetrahydrophthalic Anhydrous, Methylcyclohexene Dicarboxylic Acid Anhydride, Methylcyclohexene Tetracarboxylic Acid Anhydride, Ethylene Glycolbistrimeritate Dianhydride, Hetic Acid Anhydride, Nasic Acid Anhydride, Methylnadic acid anhydride, 5- (2,5-dioxotetrahydro-3-franyl) -3-methyl-3-cyclohexane-1,2-dicarboxylic acid anhydride, 3,
  • modified acid anhydride examples include those obtained by modifying the above-mentioned acid anhydride with glycol.
  • glycols that can be used for modification include alkylene glycols such as ethylene glycol, propylene glycol and neopentyl glycol, and polyether glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol. Can be mentioned.
  • copolymerized polyether glycols of two or more of these glycols and / or polyether glycols can also be used.
  • the acid anhydride-based curing agent mentioned above may be used alone or in combination of two or more in any combination and blending amount.
  • the equivalent ratio of the functional groups in the curing agent to the epoxy groups in all the epoxy resin components in the epoxy resin composition is in the range of 0.1 to 2.0. Is preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
  • amide-based curing agent examples include dicyandiamide and its derivatives, polyamide resins and the like.
  • the amide-based curing agent may be used alone or in combination of two or more in any combination and ratio.
  • imidazoles examples include 2-phenylimidazole, 2-ethyl-4 (5) -methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino- 6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s -Triazine, 2,4-diamino-6- [2'-methylimidazole, 2-e
  • imidazoles Since imidazoles have catalytic ability, they can be generally classified as a curing accelerator, but in the present invention, they are classified as a curing agent.
  • the above-mentioned imidazoles may be used alone or in combination of two or more in any combination and ratio.
  • imidazoles When imidazoles are used, it is preferable to use imidazoles in an amount of 0.1 to 20% by mass based on the total of all epoxy resin components and imidazoles in the epoxy resin composition.
  • other curing agents can be used in addition to the curing agent.
  • the other curing agents that can be used in the epoxy resin composition are not particularly limited, and all generally known curing agents for epoxy resins can be used. These other curing agents may be used alone or in combination of two or more.
  • the epoxy resin composition can contain an epoxy resin other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention. By including other epoxy resins, various physical properties can be improved.
  • the other epoxy resins that can be used in the epoxy resin composition correspond to all epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention.
  • Specific examples include bisphenol A type epoxy resin, bisphenol C type epoxy resin, trisphenol methane type epoxy resin, anthracene type epoxy resin, phenol-modified xylene resin type epoxy resin, bisphenol cyclododecyl type epoxy resin, and bisphenol diisopropyridene resorcin type.
  • Epoxy resin bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol AF type epoxy resin, hydroquinone type epoxy resin, methylhydroquinone type epoxy resin, dibutylhydroquinone type epoxy resin, resorcin type epoxy resin, methylresolsin type epoxy resin, biphenol Type epoxy resin, tetramethylbiphenol type epoxy resin, tetramethylbisphenol F type epoxy resin, dihydroxydiphenyl ether type epoxy resin, epoxy resin derived from thiodiphenols, dihydroxynaphthalene type epoxy resin, dihydroxyanthracene type epoxy resin, dihydroxydihydro Anthracene type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin derived from dihydroxystilbens, phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type Epoxy resin, naphthol aralkyl type epoxy
  • epoxy resins examples thereof include epoxy resins, epoxy resins derived from aminophenols, epoxy resins derived from xylenediamine, epoxy resins derived from methylhexahydrophthalic acid, and epoxy resins derived from dimer acid. These may be used alone or in combination of two or more in any combination and blending ratio.
  • the content thereof is preferably 1 to 60 parts by mass, more preferably 40 parts by mass with respect to 100 parts by mass of the total epoxy resin component in the composition. It is less than a part.
  • the epoxy resin composition preferably contains a curing accelerator.
  • a curing accelerator By including the curing accelerator, it is possible to shorten the curing time and lower the curing temperature, and it is possible to easily obtain a desired cured product.
  • the curing accelerator is not particularly limited, and specific examples thereof include organic phosphines, phosphorus compounds such as phosphonium salts, tetraphenylboron salts, organic acid dihydrazides, and boron halide amine complexes.
  • Examples of phosphorus compounds that can be used as a curing accelerator include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphin, tris (alkoxyphenyl) phosphin, tris (alkyl alkoxyphenyl) phosphin, and tris (tris (alkyl-alkoxyphenyl) phosphine.
  • Dialkylphenyl) phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkyl Organic phosphines such as aryl phosphine and alkyldiaryl phosphine or complexes of these organic phosphines and organic borons, these organic phosphines and maleic anhydride, 1,4-benzoquinone, 2,5-turquinone, 1,4-naphthoquinone , 2,3-Didimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3
  • organic phosphines and phosphonium salts are preferable, and organic phosphines are most preferable. Further, as the curing accelerator, only one of the above-mentioned ones may be used, or two or more of them may be mixed and used in any combination and ratio.
  • the curing accelerator is preferably used in the range of 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total epoxy resin component in the epoxy resin composition.
  • the content of the curing accelerator is not less than the above lower limit value, a good curing promoting effect can be obtained, while when it is not more than the above upper limit value, desired cured physical properties can be easily obtained, which is preferable.
  • An inorganic filler can be added to the epoxy resin composition.
  • the inorganic filler include fused silica, crystalline silica, glass powder, alumina, calcium carbonate, calcium sulfate, talc, boron titrated and the like. These may be used alone or in combination of two or more in any combination and blending ratio.
  • the blending amount of the inorganic filler is preferably 10 to 95% by mass based on the entire epoxy resin composition.
  • a mold release agent can be added to the epoxy resin composition.
  • the mold release agent for example, natural wax such as carnauba wax, synthetic wax such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and their metal salts, and hydrocarbon-based mold release agents such as paraffin should be used. Can be done. These may be used alone or in combination of two or more in any combination and blending ratio.
  • the amount of the release agent to be blended is preferably 0.001 to 10.0 parts by mass with respect to 100 parts by mass of the total epoxy resin component in the epoxy resin composition.
  • the blending amount of the release agent is within the above range, it is preferable because good releasability can be exhibited while maintaining the curing characteristics.
  • a coupling agent can be added to the epoxy resin composition.
  • the coupling agent is preferably used in combination with the inorganic filler, and by blending the coupling agent, the adhesiveness between the epoxy resin as a matrix and the inorganic filler can be improved.
  • the coupling agent include a silane coupling agent and a titanate coupling agent.
  • silane coupling agent examples include epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -.
  • Aminopropyltriethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxy Aminosilane such as silane, mercaptosilane such as 3-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, vinyltricrolsilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacry Examples thereof include vinyl silanes such as loxypropyltrimethoxysilane, and epoxy-based, amino-based, and vinyl-based polymer-type silanes.
  • titanate coupling agent examples include isopropyltriisostearoyl titanate, isopropyltri (N-aminoethyl / aminoethyl) titanate, diisopropylbis (dioctylphosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, and tetraoctylbis (dioctylphosphate).
  • Ditridecylphosphite) titanate tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, etc. Be done.
  • the blending amount thereof is preferably 0.001 to 10.0 parts by mass with respect to 100 parts by mass of the total epoxy resin component.
  • the blending amount of the coupling agent is equal to or higher than the above lower limit value, the effect of improving the adhesion between the epoxy resin as a matrix and the inorganic filler due to the blending of the coupling agent tends to be improved, while the coupling tends to be improved.
  • the blending amount of the agent is not more than the above upper limit value, the coupling agent is less likely to bleed out from the obtained cured product, which is preferable.
  • epoxy resin composition components other than those described above can be blended.
  • other compounding components include flame retardants, plasticizers, reactive diluents, pigments and the like, which can be appropriately compounded as needed. However, it does not prevent the addition of ingredients other than those listed above.
  • the flame retardant examples include halogen-based flame retardants such as brominated epoxy resin and brominated phenol resin, antimony compounds such as antimon trioxide, phosphorus-based flame retardants such as red phosphorus, phosphoric acid esters and phosphins, and melamine derivatives.
  • halogen-based flame retardants such as brominated epoxy resin and brominated phenol resin
  • antimony compounds such as antimon trioxide
  • phosphorus-based flame retardants such as red phosphorus, phosphoric acid esters and phosphins
  • melamine derivatives examples include nitrogen-based flame retardants and inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.
  • a cured epoxy resin can be obtained by curing the epoxy resin composition.
  • the curing method is not particularly limited, but usually, a cured product can be obtained by a thermosetting reaction by heating. At the time of the thermosetting reaction, it is preferable to appropriately select the curing temperature depending on the type of the curing agent used. For example, when a phenolic curing agent is used, the curing temperature is usually 80 to 250 ° C. It is also possible to lower the curing temperature by adding a curing accelerator to these curing agents.
  • the reaction time is preferably 0.01 to 20 hours. When the reaction time is at least the above lower limit value, the curing reaction tends to proceed sufficiently, which is preferable. On the other hand, when the reaction time is not more than the above upper limit value, deterioration due to heating and energy loss during heating are easily reduced, which is preferable.
  • the epoxy resin cured product obtained by curing the epoxy resin composition has a low coefficient of linear expansion, and a cured product having excellent heat-resistant cracking properties can be obtained. Therefore, the cured epoxy resin can be effectively used in any application as long as these physical characteristics are required.
  • paint fields such as electrodeposition paints for automobiles, heavy-duty anticorrosion paints for ships and bridges, paints for inner surface coating of beverage cans; electrical and electronic fields such as laminated boards, semiconductor encapsulants, insulating powder paints, and coil impregnation.
  • Suitable for all applications such as seismic reinforcement of bridges, concrete reinforcement, flooring of buildings, lining of water supply facilities, drainage / water permeable pavement, civil engineering / construction / adhesive field of adhesives for vehicles / aircraft. Can be done.
  • the epoxy resin composition may be used after being cured for the above-mentioned application, or may be cured in the manufacturing process of the above-mentioned application.
  • the polycarbonate resin As the polycarbonate resin, the polycarbonate resin "NOVALEX (registered trademark) M7027BF" manufactured by Mitsubishi Chemical Engineering Plastics Co., Ltd. was used. Phenol, orthocresol, metacresol, cresol isomer mixture (orthocresol, metacresol, paracresol), toluene, sodium hydroxide, potassium hydroxide, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, tripropylamine , P-Toluene sulfonic acid, methane sulfonic acid, 35% hydrochloric acid, 98% sulfuric acid, 85% phosphoric acid, acetic acid, acetonitrile, cesium carbonate, pyridine, sodium chloride, dibromophenol, and carbon tetrachloride are Fuji Film Wako Pure Chemical Industries, Ltd. The reagent of Co., Ltd. was used. As diphenylene glycol,
  • the amount of sodium chloride contained in the neutralized wastewater was calculated from the mass of the residue after evaporating and drying the neutralized wastewater.
  • the concentration of hydrogen chloride contained in the hydrochloric acid wastewater was measured by the following device by neutralization titration. Equipment: Kyoto Electronics Manufacturing Co., Ltd. Potential difference automatic titrator AT-610
  • the concentration of sodium hydroxide contained in the sodium hydroxide wastewater was measured by the following device. ⁇ Equipment: Kyoto Electronics Manufacturing Co., Ltd. Potential difference automatic titrator AT-610
  • the sodium chloride concentration contained in the sodium hydroxide waste water was calculated by measuring the chloride ion concentration with the following apparatus and determining the amount of sodium having the same molar amount as the obtained chloride ion.
  • the obtained organic phase 1 is transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillation pipe, and a pressure regulator, and the internal temperature is gradually raised to 180 ° C. while observing the amount of distillation, and the internal pressure is increased.
  • the inside of the flask was repressurized with nitrogen, the internal temperature was lowered to 80 ° C., and 200 g of toluene was added to obtain an organic phase 2.
  • the obtained organic phase 2 was washed 5 times with 50 g of desalinated water to obtain an organic phase 3.
  • the temperature of the obtained organic phase 3 was lowered to 20 ° C. to obtain a slurry.
  • the obtained slurry was filtered to obtain a cake.
  • the obtained cake was dried on a rotary evaporator to obtain 35 g of bisphenol A.
  • the purity of the obtained bisphenol A was 99.8% by mass, and the melt color was APHA165.
  • Example 1-1 In Example 1-1, the same procedure as in Example 1-1 was carried out except that 320 g of a 25 mass% potassium hydroxide aqueous solution was used instead of 320 g of a 25 mass% sodium hydroxide aqueous solution.
  • the obtained bisphenol A was 41 g, the purity was 99.8% by mass, and the melt color was APHA157.
  • Example 2 In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 80 g of polycarbonate resin (0.315 mol in terms of repeating unit), 30 g of water, 250 g of phenol, and 10 g of sodium carbonate are placed at room temperature under a nitrogen atmosphere. rice field. The reaction solution was in the form of a slurry. Then, the internal temperature was raised to 85 ° C., and the reaction was carried out for 5 hours while maintaining 85 ° C. to obtain a uniform solution. When the composition of a part of the obtained uniform solution was confirmed by high performance liquid chromatography, the production of bisphenol A was 19.2% by mass.
  • Example 3 [Example 3-1] In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 80 g of polycarbonate resin (0.315 mol in terms of repeating unit), 30 g of water, 240 g of phenol, and a 40 mass% aqueous solution of methylamine under a nitrogen atmosphere. 2 g was added at room temperature. The reaction solution was in the form of a slurry. Then, the internal temperature was raised to 80 ° C., and the reaction was carried out for 5 hours while maintaining 80 ° C. to obtain a uniform solution. During the reaction, the generation of carbon dioxide was confirmed.
  • the production of bisphenol A was 19.9% by mass.
  • Example 3-1 In Example 3-1 the same procedure as in Example 3-1 was carried out except that 2 g of a 50% by mass dimethylamine aqueous solution was added instead of 2 g of a 40% by mass methylamine aqueous solution.
  • the production of bisphenol A was 19.6% by mass.
  • Example 3-3 In Example 3-1 the same procedure as in Example 3-1 was carried out except that 5 g of a trimethylamine aqueous solution was added instead of 2 g of a 40% by mass methylamine aqueous solution.
  • Example 3-4 In Example 3-1 the same procedure as in Example 3-1 was carried out except that 5 g of a 70% by mass ethylamine aqueous solution was added instead of 2 g of a 40% by mass methylamine aqueous solution.
  • Example 3-1 In Example 3-1 the same procedure as in Example 3-1 was carried out except that 10 g of diethylamine was added instead of 2 g of a 40% by mass methylamine aqueous solution. When a part of the obtained uniform solution was taken out and the composition was confirmed by high performance liquid chromatography, the production of bisphenol A was 19.7% by mass.
  • Example 3-1 In Example 3-1 the same procedure as in Example 3-1 was carried out except that 10 g of triethylamine was added instead of 2 g of a 40% by mass methylamine aqueous solution. When a part of the obtained uniform solution was taken out and the composition was confirmed by high performance liquid chromatography, the production of bisphenol A was 19.6% by mass.
  • Table 1 shows the results of Examples 3-1 to 3-7.
  • Example 3-8 In Example 3-6, instead of raising the internal temperature to 80 ° C. and reacting for 5 hours while maintaining 80 ° C., the internal temperature was raised to 70 ° C. and reacting for 5 hours while maintaining 70 ° C. Except for the above, the same procedure as in Example 3-6 was carried out. When a part of the obtained solution was taken out and the composition was confirmed by high performance liquid chromatography, the production of bisphenol A was 6.5% by mass.
  • Example 3-8-2 In Example 3-8, the reaction was carried out in the same manner as in Example 3-8, except that the reaction was carried out for 13 hours while maintaining 70 ° C. instead of the reaction for 5 hours while maintaining 70 ° C.
  • the production of bisphenol A was 13.1% by mass.
  • Table 2 shows the results of Examples 3-8 to 3-8-2.
  • Example 3-9 In Example 3-6, instead of raising the internal temperature to 80 ° C. and reacting for 5 hours while maintaining 80 ° C., the internal temperature was raised to 60 ° C. and reacting for 5 hours while maintaining 60 ° C. Except for the above, the same procedure as in Example 3-6 was carried out. When a part of the obtained solution was taken out and the composition was confirmed by high performance liquid chromatography, the production of bisphenol A was 1.8% by mass.
  • Example 3-9-2 In Example 3-9, the reaction was carried out in the same manner as in Example 3-9, except that the reaction was carried out for 56 hours while maintaining 60 ° C. instead of the reaction for 5 hours while maintaining 60 ° C.
  • the production of bisphenol A was 12.9% by mass.
  • Table 3 shows the results of Examples 3-9 to 3-9-2.
  • Example 3-6 it was carried out in the same manner as in Example 3-6 except that 30 g of water was not used. No carbon dioxide was confirmed during the reaction.
  • the production of bisphenol A was 13.1% by mass.
  • the amount of bisphenol A produced did not change at the same level even if the reaction time was further extended.
  • Comparative Example 3-3 In Comparative Example 3-2, the same procedure as in Comparative Example 3-2 was carried out except that the reaction temperature was changed to 60 ° C. instead of 80 ° C. No carbon dioxide was confirmed during the reaction. When a part of the obtained uniform solution was taken out and the composition was confirmed by high performance liquid chromatography, the amount of bisphenol A produced was a trace amount.
  • Example 3-6 it was carried out in the same manner as in Example 3-6 except that 240 g of phenol was not used. In the obtained reaction solution, most of the supplied polycarbonate resin remained as solid content. When a part of the obtained reaction solution was taken out and the composition was confirmed by high performance liquid chromatography, a trace amount of bisphenol A was produced.
  • Table 4 shows the results of Comparative Examples 3-1 to 3-4.
  • the polycarbonate resin can be efficiently decomposed by using phenol and water in combination. Further, since a chlorinated hydrocarbon solvent such as methylene chloride is not used, it can be seen that the decomposition method has a small environmental load. Further, in Examples 3-1 to 3-9-2, since the polycarbonate resin is decomposed into bisphenol A and carbon dioxide, recovery and purification of bisphenol A are easy.
  • Example 3-10 The reaction solution obtained in Example 3-6 was transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillate tube, and a pressure regulator, and the internal temperature was gradually increased to 180 ° C. while observing the distillate amount. The temperature was raised and the internal pressure was gradually lowered from normal pressure to 100 hPa to distill off water, triethylamine and phenol. Then, the inside of the flask was repressurized with nitrogen, the internal temperature was lowered to 80 ° C., and 200 g of toluene was added to obtain an organic phase 1. The obtained organic phase 1 was washed 5 times with 50 g of desalinated water to obtain an organic phase 2.
  • the temperature of the obtained organic phase 2 was lowered to 20 ° C. to obtain a slurry.
  • the obtained slurry was filtered to obtain a cake.
  • the obtained cake was dried on a rotary evaporator to obtain 32 g of bisphenol A.
  • the purity of the obtained bisphenol A was 99.8% by mass, and the melt color was APHA155.
  • Example 4-1 A jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer was supplied with 240 g of orthocresol and 30 g of water under a nitrogen atmosphere, and then 15 g of triethylamine was added and stirred. Then, 80 g of polycarbonate resin (0.315 mol in terms of repeating unit) was added. Then, the internal temperature was raised to 80 ° C., and the reaction was carried out for 5 hours while maintaining 80 ° C. to obtain a uniform solution. When a part of the obtained uniform solution was taken out and the composition was confirmed by high performance liquid chromatography, the production of bisphenol A was 19.4% by mass.
  • the obtained reaction solution was cooled to 20 ° C. and allowed to stand for 12 hours to obtain a slurry solution.
  • the obtained slurry liquid was filtered under reduced pressure to obtain Cake 1.
  • the obtained cake 1 was suspended and washed with toluene to obtain 21 g of cake 2.
  • orthocresol was 0.5% by mass and bisphenol A was 78.2% by mass.
  • Example 4-2 In Example 4-1 the procedure was the same as in Example 4-1 except that metacresol was used instead of orthocresol.
  • Cake 2 was obtained in an amount of 20 g.
  • metacresol was 0.6% by mass and bisphenol A was 78.5% by mass.
  • Example 4-3 In Example 4-1 it was carried out in the same manner as in Example 4-1 except that a cresol isomer mixture was used instead of orthocresol. I got 22g of cake 2.
  • the content of the cresol isomer mixture was 0.3% by mass
  • the content of bisphenol A was 79.7% by mass.
  • the bisphenol A is. It turned out to be a cake.
  • Example 4-4 The cake obtained in Example 4-1 was placed in a separable flask equipped with a thermometer, a stirring blade, and a cooling tube. Further, 50 g of toluene and 50 g of desalinated water were added, and the temperature was raised to 80 ° C. to obtain an organic phase 1. The obtained organic phase 1 was washed 5 times with 50 g of desalinated water to obtain an organic phase 2. The temperature of the obtained organic phase 2 was lowered to 20 ° C. to obtain a slurry. The obtained slurry was filtered to obtain a cake. The obtained cake was dried on a rotary evaporator to obtain 11 g of bisphenol A. The purity of the obtained bisphenol A was 99.8% by mass, and the melt color was APHA95.
  • Example 5 In Example 4-1 it was carried out in the same manner as in Example 4-1 except that phenol was used instead of orthocresol.
  • Cake 2 was obtained in an amount of 25 g.
  • phenol was 23% by mass and bisphenol A was 57% by mass.
  • Table 5 summarizes the organic solvents and cakes in Examples 4-1 to 4-3 and Example 5. From the results of Examples 4-1 to 4-3, it can be seen that a cake of bisphenol A can be obtained by using cresol without distilling phenol. Further, from the results of Example 5, it can be seen that co-crystals of bisphenol A and phenol can be obtained by crystallization in the presence of phenol.
  • Example 6 [Example 6-1] In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 80 g of polycarbonate resin (0.315 mol in terms of repeating unit), 100 g of water, 240 g of phenol, and 80 g of p-toluenesulfonic acid under a nitrogen atmosphere. Put at room temperature. Then, the internal temperature was raised to 80 ° C., and the reaction was carried out for 1 hour while maintaining 80 ° C. to obtain a reaction solution. During the reaction, the generation of carbon dioxide was confirmed.
  • polycarbonate resin 0.315 mol in terms of repeating unit
  • the production of bisphenol A was 13.2% by mass.
  • Example 6-1 In Example 6-1 the same procedure as in Example 6-1 was carried out except that 40 g of methanesulfonic acid was added instead of 80 g of p-toluenesulfonic acid.
  • the production of bisphenol A was 14.3% by mass.
  • Example 6-3 In Example 6-1 the same procedure as in Example 6-1 was carried out except that 240 g of 35% hydrochloric acid was added instead of 80 g of p-toluenesulfonic acid.
  • Example 6-5 In Example 6-1 the same procedure as in Example 6-1 was carried out except that 200 g of 85% phosphoric acid was added instead of 80 g of p-toluenesulfonic acid.
  • the production of bisphenol A was 9.6% by mass.
  • Table 6 summarizes the acids and reaction rates for Examples 6-1 to 6-5. As a result, it can be seen that the polycarbonate resin can be decomposed by using an acid.
  • Example 6-6 Toluene was added to the reaction solution obtained in Example 6-1 and then a 25% aqueous sodium hydroxide solution was added to adjust the pH to 9.1. The aqueous phase was removed to give the organic phase 1.
  • the obtained organic phase 1 is transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillate tube, and a pressure regulator, and the internal temperature is gradually raised to 180 ° C. while observing the distillate amount, and the internal pressure is increased.
  • the inside of the flask was repressurized with nitrogen, the internal temperature was lowered to 80 ° C., and 200 g of toluene was added to obtain an organic phase 2.
  • the obtained organic phase 2 was washed 5 times with 50 g of desalinated water to obtain an organic phase 3.
  • the temperature of the obtained organic phase 3 was lowered to 20 ° C. to obtain a slurry.
  • the obtained slurry was filtered to obtain a cake.
  • the obtained cake was dried on a rotary evaporator to obtain 25 g of bisphenol A.
  • the purity of the obtained bisphenol A was 99.8% by mass, and the melt color was APHA162.
  • Example 7-1 10.00 g (0.04 mol) of bisphenol A and 9.95 g (0.05 mol) of diphenyl carbonate obtained in Example 1-1 in a glass reaction tank having an internal volume of 45 mL equipped with a stirrer and a distillate. And 18 ⁇ L of a 400 mass ppm cesium carbonate aqueous solution was added. The operation of reducing the pressure of the glass reaction vessel to about 100 Pa and then restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reaction vessel with nitrogen. Then, the reaction vessel was immersed in an oil bath at 220 ° C. to dissolve the contents.
  • the rotation speed of the stirrer is set to 100 times per minute, and the pressure in the reaction vessel is increased by absolute pressure over 40 minutes while distilling off the phenol produced by the oligomerization reaction of bisphenol A and diphenyl carbonate in the reaction vessel.
  • the pressure was reduced from 101.3 kPa to 13.3 kPa.
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reaction vessel at 13.3 kPa and further distilling off phenol.
  • the temperature outside the reaction vessel was raised to 290 ° C., and the pressure inside the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove the distilled phenol to the outside of the system.
  • the absolute pressure of the reaction vessel was reduced to 30 Pa, and the polycondensation reaction was carried out.
  • the polycondensation reaction was terminated when the stirrer in the reaction tank became a predetermined stirring power.
  • the time from the temperature rise to 290 ° C. to the completion of the polymerization was 120 minutes.
  • reaction vessel was repressurized to 101.3 kPa with nitrogen in absolute pressure, and then the pressure was increased to 0.2 MPa with a gauge pressure, and the polycarbonate resin was extracted from the reaction vessel to obtain a regenerated polycarbonate resin.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 27100.
  • Example 7-2 In Example 7-1, the same procedure as in Example 7-1 was carried out except that the bisphenol A obtained in Example 3-10 was used instead of the bisphenol A obtained in Example 1-1.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 26,800.
  • Example 7-3 In Example 7-1, the same procedure as in Example 7-1 was carried out except that the bisphenol A obtained in Example 4-4 was used instead of the bisphenol A obtained in Example 1-1.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 24000.
  • Example 7-4 In Example 7-1, the same procedure as in Example 7-1 was carried out except that the bisphenol A obtained in Example 6-6 was used instead of the bisphenol A obtained in Example 1-1.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 26000.
  • Example 8-1-1 Acquisition of Neutralized Wastewater Diphenyl carbonate is produced according to (2) Production of Diphenyl Carbonate (paragraphs 0050 to 0051) of Example 12 of Japanese Patent Application Laid-Open No. 2004-345883, and is used in a neutralization mixing tank.
  • the aqueous phase generated by the separation of liquid was obtained as neutralized wastewater.
  • the composition of the obtained neutralized wastewater was 0.3% by mass of pyridine, 1.4% by mass of phenol, and 4% by mass of sodium chloride.
  • the obtained reaction solution is transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillate tube, and a pressure regulator, and the internal temperature is gradually raised to 180 ° C. while observing the distillate amount to reduce the internal pressure.
  • Water, pyridine, and phenol were distilled off by gradually lowering the pressure from normal pressure to 10 kPa.
  • the inside of the flask was repressurized with nitrogen, the internal temperature was lowered to 80 ° C., and 200 g of toluene was added to obtain an organic phase 1.
  • the obtained organic phase 1 was washed 5 times with 50 g of desalinated water to obtain an organic phase 2.
  • the temperature of the obtained organic phase 2 was lowered to 20 ° C. to obtain a slurry.
  • the obtained slurry was filtered to obtain a cake.
  • the obtained cake was dried on a rotary evaporator to obtain 31 g of bisphenol A.
  • the purity of the obtained bisphenol A was 99.8%
  • Example 8-2 Sodium chloride as a reagent and water (demineralized water) were mixed so that the concentration of sodium chloride was 4% by mass to obtain a 4% by mass sodium chloride aqueous solution (makeup sodium chloride aqueous solution).
  • Example 8-1 the same procedure as in Example 8-1 was carried out except that a make-up sodium chloride aqueous solution (29 g) was used instead of the neutralized wastewater (29 g).
  • a make-up sodium chloride aqueous solution 29 g
  • Example 8-3 In Example 8-1, water (demineralized water) (29 g) was used instead of the neutralized wastewater (29 g), but the same procedure as in Example 8-1 was carried out.
  • Table 7 summarizes the types of catalysts and organic solvents, the presence or absence of water, sodium chloride and wastewater, and the reaction rate (decomposition rate of polycarbonate resin) for Examples 8-1 to 8-3. From Table 7, it can be seen that the combined use of pyridine, phenol, water and sodium chloride improves the decomposition rate of the polycarbonate resin as compared with the case where sodium chloride is not used. It is also found that the wastewater from the diphenyl carbonate plant can be used. Since the wastewater from the diphenyl carbonate plant can be used, the wastewater can be recycled and the environmental load can be reduced.
  • Example 8-4 In Example 7-1, the bisphenol A obtained in Example 8-1 was used instead of the bisphenol A obtained in Example 1-1, and the temperature was raised to 290 ° C. until the polymerization was completed. The procedure was carried out in the same manner as in Example 7-1 except that the time was changed from 120 minutes to 140 minutes.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 26,900.
  • Example 9-1-1 Acquisition of hydrochloric acid wastewater Chlorine is produced according to Example 12 of Japanese Patent Application Laid-Open No. 2004-345883 (paragraphs 0055 to 0058) and continuously from the bottom of the divergent distillation column.
  • the hydrochloric acid water extracted from the target was obtained as hydrochloric acid wastewater.
  • the composition of the obtained hydrochloric acid wastewater was 18% by mass of hydrogen chloride and 50% by mass of dibromophenol.
  • Example 9-2 Dibromophenol as a reagent, 35% hydrochloric acid as a reagent, and water (demineralized water) were mixed so that dibromophenol was 50% by mass and hydrogen chloride was 18% by mass to obtain an aqueous hydrochloric acid solution (makeup hydrochloric acid waste liquid). ..
  • Example 9-1 the same procedure as in Example 9-1 was carried out except that the make-up hydrochloric acid wastewater (300 g) was used instead of the hydrochloric acid wastewater (300 g).
  • Example 9-3 Using 35% hydrochloric acid and water (demineralized water) as reagents, an aqueous hydrochloric acid solution (makeup hydrochloric acid aqueous solution) containing 18% by mass of hydrogen hydrochloride was prepared.
  • an aqueous hydrochloric acid solution makeup hydrochloric acid aqueous solution containing 18% by mass of hydrogen hydrochloride was prepared.
  • the same procedure as in Example 9-1 was carried out except that the 18% by mass hydrochloric acid (makeup hydrochloric acid aqueous solution) (300 g) was used instead of the hydrochloric acid wastewater (300 g).
  • Table 8 summarizes the types of catalysts and organic solvents, the presence or absence of water, dibromophenol and wastewater, and the reaction rate (decomposition rate of polycarbonate resin) for Examples 9-1 to 9-3. From Table 8, it can be seen that the polycarbonate resin can be decomposed by using the hydrochloric acid wastewater discharged from the hydrogen chloride recovery plant produced as a by-product during the production of diphenyl carbonate. It can be seen that the wastewater can be recycled by using hydrochloric acid wastewater, and the environmental load is low. Further, it can be seen that the decomposition rate of the polycarbonate resin becomes higher when the dibromophenol is contained.
  • Example 9-4 After adding 600 g of toluene to the reaction solution obtained in Example 9-1 at 80 ° C., an aqueous sodium hydroxide solution and an aqueous sodium bicarbonate solution were added until the aqueous phase reached pH 8.5, and then stirring was stopped to remove oil and water. After separation, the aqueous phase was withdrawn from the flask to give the organic phase 1.
  • the obtained organic phase 1 is transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillation pipe, and a pressure regulator, and the internal temperature is gradually raised to 180 ° C. while observing the amount of distillation, and the internal pressure is increased.
  • the temperature of the obtained organic phase 3 was lowered to 20 ° C. to obtain a slurry.
  • the obtained slurry was filtered to obtain a cake.
  • the obtained cake was dried on a rotary evaporator to obtain 25 g of bisphenol A.
  • the purity of the obtained bisphenol A was 99.8% by mass.
  • Example 9-5 In Example 7-1, the bisphenol A obtained in Example 9-4 was used instead of the bisphenol A obtained in Example 1-1, and the temperature was raised to 290 ° C. until the polymerization was completed. The procedure was carried out in the same manner as in Example 7-1 except that the time was changed from 120 minutes to 140 minutes.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 27,200.
  • Example 10-1 Acquisition of Sodium Hydroxide Wastewater ⁇ 1 of Example 12 of Japanese Patent Application Laid-Open No. 2004-345883. A part was extracted to make sodium hydroxide wastewater. The composition of the obtained sodium hydroxide waste water was 50% by mass of carbon tetrachloride, 0.1% by mass of sodium chloride, and 25% by mass of sodium hydroxide.
  • Example 10-2 Carbon tetrachloride of the reagent, sodium chloride of the reagent, sodium hydroxide and water of the reagent (desalted water) so that carbon tetrachloride is 50% by mass, sodium chloride is 0.1% by mass, and sodium hydroxide is 25% by mass. ) was mixed to obtain a sodium hydroxide aqueous solution (makeup sodium hydroxide waste liquid).
  • Example 10-1 the same procedure as in Example 10-1 was carried out except that the make-up sodium hydroxide wastewater (80 g) was used instead of the sodium hydroxide wastewater (80 g).
  • Example 10-3 A 25 mass% sodium hydroxide aqueous solution (makeup sodium hydroxide aqueous solution) was prepared using sodium hydroxide and water (demineralized water) as reagents.
  • Example 10-1 the same procedure as in Example 10-1 was carried out except that the make-up sodium hydroxide aqueous solution (80 g) was used instead of the sodium hydroxide wastewater (80 g).
  • Table 9 shows the types of catalysts and organic solvents, the presence or absence of water, carbon tetrachloride, sodium chloride, and wastewater, and the reaction rate (decomposition rate of polycarbonate resin) for Examples 10-1 to 10-3. I summarized it. From Table 9, it can be seen that the polycarbonate resin can be decomposed using the sodium hydroxide wastewater discharged from the detoxification treatment equipment of the carbonyl chloride (phosgene) production plant. Since sodium hydroxide wastewater can be used, it can be seen that the wastewater can be recycled and the environmental load is low. Further, it can be seen that the decomposition rate of the polycarbonate resin becomes higher when the sodium hydroxide wastewater is used.
  • Example 10-4 In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, in a nitrogen atmosphere, polycarbonate resin (80 g, 0.315 mol in terms of repeating unit), in 10-1-1 of Example 10-1.
  • the obtained sodium hydroxide waste water (80 g), water (40 g), and phenol (400 g) were added at room temperature.
  • the reaction solution was in the form of a slurry.
  • the temperature was raised to 80 ° C., and the reaction was carried out for 70 minutes while maintaining the temperature at 80 ° C.
  • the temperature of the obtained organic phase 3 was lowered to 20 ° C. to obtain a slurry.
  • the obtained slurry was filtered to obtain a cake.
  • the obtained cake was dried on a rotary evaporator to obtain 26 g of bisphenol A.
  • the purity of the obtained bisphenol A was 99.8% by mass.
  • Example 10-5 In Example 7-1, the same procedure as in Example 7-1 was carried out except that the bisphenol A obtained in Example 10-4 was used instead of the bisphenol A obtained in Example 1-1.
  • the viscosity average molecular weight (Mv) of the obtained regenerated polycarbonate resin was 26,500.
  • Example 11 46 g of bisphenol A, 259 g of epichlorohydrin, 100 g of isopropanol and 36 g of water obtained in Example 1-1 were charged into a 1 L four-necked flask equipped with a thermometer, a stirrer and a cooling tube, and the temperature was raised to 40 ° C. After uniformly dissolving, 38 g of a 48.5 mass% sodium hydroxide aqueous solution was added dropwise over 90 minutes. At the same time as the dropping, the temperature was raised from 40 ° C. to 65 ° C. over 90 minutes. Then, the reaction was held at 65 ° C.
  • reaction solution was transferred to a 1 L separatory funnel, 69 g of water at 65 ° C. was added, and the mixture was allowed to stand at 65 ° C. for 1 hour. After standing, the aqueous phase was extracted from the separated oil phase and aqueous phase to remove by-product salt and excess sodium hydroxide. Then, epichlorohydrin was completely removed under reduced pressure of 150 ° C. Then, 102 g of methyl isobutyl ketone was charged, the temperature was raised to 65 ° C.
  • Example 12 Epoxy resin composition, epoxy resin cured product, and evaluation of cured physical properties
  • the epoxy resin of Example 11 the curing agent (trade name: Jamaicacid MH-700 manufactured by Shin Nihon Rika Co., Ltd.), and the curing catalyst (trade name: Curesol 2E4MZ manufactured by Shikoku Chemicals Corporation) were weighed at the ratios shown in Table 10. Then, the mixture was stirred and mixed until uniform at room temperature to obtain an epoxy resin composition.
  • the obtained cured product was cut into a cylinder having a diameter of 1 cm and a thickness of 3 mm to obtain a test piece.
  • the test piece is heated by a thermomechanical analyzer (TMA: TMA / SS6100 manufactured by Seiko Instruments Inc.) in compression mode for the first temperature rise of 5 ° C / min (30 ° C to 200 ° C) and the first temperature reduction.
  • TMA thermomechanical analyzer
  • the second linear expansion coefficients ⁇ 1 and ⁇ 2 were measured at 10 ° C./min (200 ° C. to 30 ° C.) and the second temperature rise: 5 ° C./min and 30 ° C. to 200 ° C.
  • Tetraphenoxytitanium was synthesized and used according to the following procedure. 200 g (2.1 mol) of phenol and 100 mL of toluene were placed in a 500 mL three-necked flask equipped with a receiver and a distillate, and the inside of the flask was replaced with nitrogen flow. The flask was immersed in a 100 ° C. oil bath to obtain a uniform solution. 57 g (0.2 mol) of tetraisoprovoxytitanium was added thereto. When the internal temperature of the bottom of the flask was maintained at 100 ° C., distilling of the produced i-propyl alcohol started.
  • the internal temperature was gradually raised to 116 ° C., and 80 mL of a distillate, which was a mixture of i-propyl alcohol and toluene, was distilled off.
  • a distillate which was a mixture of i-propyl alcohol and toluene
  • the mixture was cooled to room temperature and crystallized.
  • the precipitated red crystals were obtained by filtration and dried in a rotary evaporator equipped with an oil bath at an oil bath temperature of 140 ° C. and a pressure of 50 Torr to obtain 60 g (0.1 mol) of tetraphenoxy titanium.
  • Example 13-1 Synthesis of dimethyl carbonate The synthesis of dimethyl carbonate from carbon dioxide was carried out in accordance with Non-Patent Document ChemSusChem, 2013, Vol.6, pp.1341-1344.
  • the carbon dioxide obtained in Example 1-1 was introduced into the autoclave by a compressor. After the replacement three times, the internal pressure of the autoclave was set to 5 MPa. Then, the autoclave was installed in an electric furnace and reacted at an internal temperature of 120 ° C. for 12 hours. After the reaction, the autoclave was immersed in ice water to return the internal pressure to normal pressure. Cerium oxide was removed by filtering the obtained reaction solution to obtain 12.6 g of a mixed solution.
  • the above operation was carried out multiple times to obtain 200 g of the mixed solution.
  • the obtained mixed solution was placed in a 1 L eggplant-shaped flask and then placed in an evaporator equipped with a water bath to remove the initial distillate to obtain 31 g of the main distillate.
  • the purity of dimethyl carbonate was 97% by mass.
  • the rotation speed of the stirrer is set to 100 times per minute, and the pressure in the reaction vessel is increased by absolute pressure over 40 minutes while distilling off the phenol produced by the oligomerization reaction of bisphenol A and diphenyl carbonate in the reaction vessel.
  • the pressure was reduced from 101.3 kPa to 13.3 kPa.
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reaction vessel at 13.3 kPa and further distilling off phenol.
  • the temperature outside the reaction vessel was raised to 290 ° C., and the pressure inside the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove the distilled phenol to the outside of the system.
  • the absolute pressure of the reaction vessel was reduced to 30 Pa, and the polycondensation reaction was carried out.
  • the polycondensation reaction was terminated when the stirrer in the reaction tank became a predetermined stirring power.
  • the time from the temperature rise to 290 ° C. to the completion of the polymerization was 120 minutes.
  • the reaction vessel was repressurized to 101.3 kPa with nitrogen in absolute pressure, and then the pressure was increased to 0.2 MPa with a gauge pressure, and the polycarbonate resin was extracted from the reaction vessel to obtain a polycarbonate resin.
  • the viscosity average molecular weight (Mv) of the obtained polycarbonate resin was 24,800.
  • bisphenol can be obtained from waste plastic or the like by utilizing chemical recycling. Further, using this, the polycarbonate resin can be produced again, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

温和で環境負荷が小さく、効率的にポリカーボネート樹脂を分解することができるケミカルリサイクル方法を利用した、ビスフェノール等の製造方法を提供する。また、前記ビスフェノール等の有用物質を用いた、再生ポリカーボネート樹脂等を製造する方法を提供する。 ポリカーボネート樹脂を、芳香族モノアルコール、水及び触媒の存在下で分解させる、ビスフェノールの製造方法。前記ビスフェノールの製造方法で生成した二酸化炭素を回収する二酸化炭素の製造方法。前記二酸化炭素を用いる炭酸ジエステルの製造方法。前記ビスフェノール及び/又は前記炭酸ジエステルを用いる、再生ポリカーボネート樹脂の製造方法。前記ビスフェノールを用いるエポキシ樹脂及びエポキシ樹脂硬化物の製造方法。

Description

ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、二酸化炭素の製造方法、炭酸ジエステルの製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法
 本発明は、ビスフェノールの製造方法に関するものである。詳しくは、ポリカーボネート樹脂の分解を利用したビスフェノールの製造方法に関するものである。更に、前記ビスフェノールの製造方法で得られるビスフェノールを用いた再生ポリカーボネート樹脂の製造方法に関するものである。また、本発明は、ポリカーボネート樹脂の分解を利用した二酸化炭素の製造方法及び炭酸ジエステルの製造方法に関するものである。また、本発明は、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法に関するものである。
 プラスチックは手軽で耐久性に富み、安価であることから我が国のみならず世界中で大量に生産されている。そのプラスチックの多くは「使い捨て」として用いられるため、適切に処理されず、環境中に流出するものもある。具体的には、プラスチックごみは河川から海へと流れ込み、その過程で波や紫外線で劣化して5mm以下となる。このような小さなプラスチックゴミは、マイクロプラスチックと呼ばれる。このマイクロプラスチックを、動物や魚が誤飲してしまう。このように、プラスチックゴミは生態系に甚大な影響を与え、近年、海洋プラスチック問題として世界中で問題視されている。透明性、機械物性、難燃性、寸法安定性、電気特性により、幅広い分野で用いられるポリカーボネート樹脂も例外ではない。
 ポリカーボネート樹脂のリサイクル方法の1つとして、ポリカーボネート樹脂を化学的に分解しビスフェノールまで戻して再利用するケミカルリサイクルがあり、ポリカーボネート樹脂の分解方法の1つとして、加水分解が知られている。
 加水分解方法としては、ポリカーボネート樹脂とアルカリ水溶液を耐圧容器に入れ、高温高圧下で加水分解させる方法が知られている(特許文献1)。また、ポリカーボネート樹脂を塩素化炭化水素溶媒に溶解し、塩基性の触媒としてアルカリ金属水酸化物を加えて、加水分解する方法も知られている(特許文献2)。
 また、ポリカーボネート樹脂の他の分解方法として、フェノリシスが知られている。例えば、フェノリシスによりポリカーボネート樹脂を分解させ、炭酸ジフェニルとビスフェノールAを製造する方法も知られている(特許文献3、4)。
特公昭40-16536号公報 国際公開第2006/114893号 特開平7-196582号公報 特開平7-316280号公報 特開2005-97568号公報 特開2004-345883号公報 特開2006-144023号公報
 ポリカーボネート樹脂のケミカルリサイクルは、海洋プラスチック問題の解決手段の1つとして重要である。
 ポリカーボネート樹脂の加水分解では、水を用いるが、前記加水分解が100℃(常圧における水の沸点)以上の場合、水の蒸気圧により高圧条件となる。例えば、特許文献1の実施例1によれば、ポリカーボネート樹脂を180~185℃で分解させているが、水を使用しているので高圧条件となり、耐圧容器を使用する必要がある。一方、常温付近でポリカーボネート樹脂を加水分解する方法においては、ポリカーボネート樹脂を溶解させるため、溶媒として塩素化炭化水素溶媒が用いられる。例えば、特許文献2の実施例1によれば、40℃でポリカーボネート樹脂を加水分解させるが、溶媒として塩化メチレンを使用している。塩化メチレンなどの塩素化炭化水素溶媒は、化学的に安定なため、難燃性化合物である。そのため、適切に高温での廃棄処理をしなければ、ダイオキシンが発生するという問題がある。
 また、ポリカーボネート樹脂のフェノリシスでは、フェノールを用いポリカーボネート樹脂の解重合を行うが、フェノールの沸点が高いことから、フェノリシスの温度を100℃以上で実施することが可能である。例えば、特許文献3の実施例1によれば、アミンを触媒として、ポリカーボネート樹脂を160℃でフェノリシスし、炭酸ジフェニルとビスフェノールAが得られる。しかしながら、生成した炭酸ジフェニルからビスフェノールAを精製するためには、厳密な真空条件下、高温で蒸留分離する必要があり、過酷な条件が求められ、精製操作も複雑であるという問題があった。
 このように従来のポリカーボネート樹脂のケミカルリサイクルは、いずれも環境負荷が大きい条件や過酷な条件が必要であり、さらなる改良が求められていた。
 一方、ポリカーボネート樹脂の原料である炭酸ジフェニルは、ピリジン等のアルカリ系触媒の存在下、塩化カルボニルとフェノールにより生成され、アルカリ性水溶液により中和された後、蒸留により得られる(特許文献5)。中和時に排出される中和廃水は、廃水処理工程で処理された後、活性汚泥により処理されるが、多量の中和廃水が排出されることで活性汚泥への負荷が大きいという問題があった。
 また、塩化カルボニルとフェノールとの反応では、炭酸ジフェニルに加えて、塩化水素が副生する。炭酸ジフェニルと共に生成した塩化水素は、一度水に吸収されて塩酸となった後、この塩酸は放散蒸留塔で放散された塩化水素と18質量%の塩酸となり、放散された塩化水素は次工程である酸化工程で塩素に変換されている(特許文献6)。この18質量%の塩酸には、硫黄成分が含まれる。この硫黄成分の系内濃縮を回避するため、一部が塩酸廃水として廃棄されている。
 また、炭酸ジフェニルの原料である塩化カルボニルは、塩素と一酸化炭素を反応させて合成される。特許文献7によれば、液化時に液化できなかった未液化ガスは、水酸化ナトリウム水溶液(苛性ソーダ水溶液)で無害化処理され、未液化ガス中に含まれる塩化カルボニル(ホスゲン)を完全に分解した後、廃ガスとして大気中に排出される。安全上、塩化カルボニルを完全に分解させる必要があることから、未液化ガスの無害化処理では、水酸化ナトリウムの濃度が高い水溶液が多量に用いられている。この濃度の高い、多量の水酸化ナトリウム水溶液は、水酸化ナトリウム廃水として廃棄されるという問題があった。
 環境負荷低減の観点から、炭酸ジフェニルの製造時に排出されている中和廃水や、副生した塩化水素の回収時に排出されている塩酸廃水、塩化カルボニルの製造時に生じる未液化ガスの無害化処理で排出されている水酸化ナトリウム廃水などの廃水を有効利用することも求められている。
 本発明は、このような事情に鑑みなされたものであって、温和で環境負荷が小さく、効率的にポリカーボネート樹脂を分解することができるケミカルリサイクル方法を利用することによって、ビスフェノールを製造するビスフェノールの製造方法を提供することを目的とする。
 更に、本発明は、得られた前記ビスフェノールを用いた再生ポリカーボネート樹脂の製造方法を提供することを目的とする。
 また、本発明は、前記ビスフェノールの製造方法を利用した二酸化炭素の製造方法、及び得られた二酸化炭素を用いた炭酸ジエステルの製造方法を提供することを目的とする。
 また、本発明は、エポキシ樹脂の製造方法、及び得られたエポキシ樹脂を用いたエポキシ樹脂硬化物の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、フェノールやクレゾールのような芳香族モノアルコールと、水と、触媒との存在下、ポリカーボネート樹脂を分解する分解方法を見出した。また、前記ポリカーボネート樹脂の分解方法を用い、ビスフェノールと二酸化炭素を製造する方法を見出した。更に、得られた前記ビスフェノール又は二酸化炭素を用いて再生ポリカーボネート樹脂等の有用物質を製造する製造方法を見出した。
 すなわち、本発明は、以下の発明に係るものである。
 <1> ポリカーボネート樹脂を、芳香族モノアルコール、水及び触媒の存在下で分解させる、ビスフェノールの製造方法。
 <2> 前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルキルアミン、含窒素複素環式化合物及び酸からなる群から選択されるいずれかである、前記<1>に記載のビスフェノールの製造方法。
 <3> 前記アルカリ金属水酸化物が、水酸化ナトリウム又は水酸化カリウムである、前記<2>に記載のビスフェノールの製造方法。
 <4> 前記アルキルアミンが、下記式(I)で示される、前記<2>に記載のビスフェノールの製造方法。
Figure JPOXMLDOC01-appb-C000002
 式中、RAは、炭素数1~3のアルキル基を表し、RB~RCは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表す。
 <5> 前記アルキルアミンが、第三級アミンである、前記<2>又は<4>に記載のビスフェノールの製造方法。
 <6> 前記酸が、塩酸、硫酸、リン酸及びスルホン酸からなる群から選択されるいずれかである、前記<2>に記載のビスフェノールの製造方法。
 <7> 前記触媒が含窒素複素環式化合物を含み、前記芳香族モノアルコール、前記水及び前記触媒に加えて、アルカリ金属塩化物の共存下で、前記ポリカーボネート樹脂を分解させる、前記<1>に記載のビスフェノールの製造方法。
 <8> 前記含窒素複素環式化合物が、ピリジン類である、前記<2>又は<7>に記載のビスフェノールの製造方法。
 <9> 前記アルカリ金属塩化物が、塩化ナトリウムである、前記<7>に記載のビスフェノールの製造方法。
 <10> 前記ポリカーボネート樹脂を分解させる反応温度が、110℃以下である、前記<1>から<9>のいずれかに記載のビスフェノールの製造方法。
 <11> 前記ポリカーボネート樹脂、前記芳香族モノアルコール、前記水及び前記触媒を含むスラリー状の反応液中で前記ポリカーボネート樹脂を分解させる、前記<1>から<10>のいずれかに記載のビスフェノールの製造方法。
 <12> 前記芳香族モノアルコールに対する前記水の質量比が、0.001以上10以下である、前記<1>から<11>のいずれかに記載のビスフェノールの製造方法。
 <13> 前記触媒が塩酸を含み、前記芳香族モノアルコール、前記水及び前記触媒に加えて、ブロモフェノール類の共存下で、前記ポリカーボネート樹脂を分解させる、前記<1>に記載のビスフェノールの製造方法。
 <14> 前記触媒が、水酸化ナトリウムを含み、前記芳香族モノアルコール、前記水及び前記触媒に加えて、塩化ナトリウム及び/又は四塩化炭素の共存下で、前記ポリカーボネート樹脂を分解させる、前記<1>に記載のビスフェノールの製造方法。
 <15> 前記芳香族モノアルコールが、フェノール、クレゾール及びキシレノールからなる群から選択されるいずれかである、前記<1>から<14>のいずれかに記載のビスフェノールの製造方法。
 <16> 前記ビスフェノールが、2,2-ビス(4-ヒドロキシフェニル)プロパンである、前記<1>から<15>のいずれかに記載のビスフェノールの製造方法。
 <17> 下記工程(a1)、工程(b1)、工程(b2)及び工程(b3)を有する方法により炭酸ジアリールを製造する際に工程(b1)にて除去される中和廃水を、前記ポリカーボネート樹脂の分解に用いる、前記<1>又は<7>に記載のビスフェノールの製造方法。
 工程(a1):塩化カルボニルと芳香族モノアルコールとを、含窒素複素環式化合物の存在下で反応させて炭酸ジアリールを含む反応液を得る工程
 工程(b1):工程(a1)で得られた炭酸ジアリールを含む反応液をアルカリ金属水酸化物水溶液で中和し、芳香族ジアリールを含む油相と、含窒素複素環式化合物とアルカリ金属塩化物とを含む水相とに油水分離させた後、前記水相を中和廃水として除去する工程
 工程(b2):工程(b1)で得られた油相を水で洗浄する工程
 工程(b3):工程(b2)後の油相から炭酸ジアリールを得る工程
 <18> 前記工程(b1)におけるアルカリ金属塩化物が、塩化ナトリウムであり、前記工程(b1)におけるアルカリ金属水酸化物水溶液が、水酸化ナトリウム水溶液である、前記<17>に記載のビスフェノールの製造方法。
 <19> 下記工程(a1)、工程(c1)、工程(c2)及び工程(c3)を有する炭酸ジアリールの製造及び副生する塩化水素の回収において、工程(c3)で除去される塩酸廃水を、前記ポリカーボネート樹脂の分解に用いる、前記<1>又は<13>に記載のビスフェノールの製造方法。
 工程(a1):塩化カルボニルと芳香族モノアルコールとを、含窒素複素環式化合物の存在下で反応させて炭酸ジアリールを含む反応液を得る工程
 工程(c1):工程(a1)で副生した塩化水素を吸収塔に供給し、水又は希塩酸に吸収させて、濃塩酸を得る工程
 工程(c2):濃塩酸を放散塔で蒸留し、塔頂より塩化水素ガスを回収し、塔底より塩酸を回収する工程
 工程(c3):前記塔底より回収した塩酸の一部を塩酸廃水として系外に除去し、残りの塩酸を工程(c1)の吸収塔に循環させる工程
 <20> 下記工程(d1)~工程(d4)を有する塩化カルボニルの製造及び未液化ガスの処理において、工程(d4)で除去される水酸化ナトリウム廃水を、前記ポリカーボネート樹脂の分解に用いる、前記<1>又は<14>に記載のビスフェノールの製造方法。
 工程(d1):塩素と一酸化炭素から塩化カルボニルガスを得る工程
 工程(d2):工程(d1)で得られた塩化カルボニルガスを冷却し、液化した塩化カルボニルを得る工程
 工程(d3):循環する水酸化ナトリウム水溶液と、前記(d2)において液化しなかった未液化ガスとを接触させて、前記未液化ガス中の塩化カルボニルを分解した後、排出する工程
 工程(d4);前記循環する水酸化ナトリウム水溶液の一部を水酸化ナトリウム廃水として除去する工程
 <21> 前記<1>から<20>のいずれかに記載のビスフェノールの製造方法で得られたビスフェノールを含むビスフェノール原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法。
 <22> 前記<1>から<20>のいずれかに記載のビスフェノールの製造方法で生成した二酸化炭素を回収する、二酸化炭素の製造方法。
 <23> 前記<22>に記載の二酸化炭素の製造方法で得られた二酸化炭素を用いて炭酸ジエステルを製造する、炭酸ジエステルの製造方法。
 <24> 前記二酸化炭素を含む二酸化炭素と脂肪族モノアルコールとを反応させる工程を有する、前記<23>に記載の炭酸ジエステルの製造方法。
 <25> 前記二酸化炭素を含む二酸化炭素とコークスから一酸化炭素を得、得られた一酸化炭素と塩素とを反応させて塩化カルボニルを得、得られた塩化カルボニルと芳香族モノアルコールとを反応させて前記炭酸ジエステルを得る、前記<23>に記載の炭酸ジエステルの製造方法。
 <26> 前記<23>から<25>のいずれかに記載の炭酸ジエステルの製造方法で得られた炭酸ジエステルを含む炭酸ジエステル原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法。
 <27> 前記<1>から<20>のいずれかに記載のビスフェノールの製造方法で得られたビスフェノールを用いてエポキシ樹脂を製造する、エポキシ樹脂の製造方法。
 <28> 前記エポキシ樹脂と多価ヒドロキシ化合物原料とを更に反応させる、前記<27>に記載のエポキシ樹脂の製造方法。
 <29> 前記<27>又は<28>に記載のエポキシ樹脂の製造方法で得られたエポキシ樹脂と硬化剤を含むエポキシ樹脂組成物を硬化して、エポキシ樹脂硬化物を得る、エポキシ樹脂硬化物の製造方法。
 本発明によれば、温和で環境負荷の小さい条件で、効率的にポリカーボネート樹脂を分解できるケミカルリサイクル方法を利用することによって、ビスフェノールを製造するビスフェノールの製造方法が提供される。また、本発明のビスフェノールの製造方法によれば、ビスフェノールの回収・精製時の操作も容易になる。
 また、本発明によれば、炭酸ジフェニルの製造時に排出されている中和廃水や、副生した塩化水素の回収時に排出されている塩酸廃水、塩化カルボニルの製造時に生じる未液化ガスの無害化処理で排出される水酸化ナトリウム廃水などの廃水を有効利用することができる。
 更に、本発明によれば、得られた前記ビスフェノールを用いた再生ポリカーボネート樹脂の製造方法が提供される。
 また、本発明によれば、前記ビスフェノールの製造方法を利用した二酸化炭素の製造方法、及び得られた二酸化炭素を用いた炭酸ジエステルの製造方法が提供される。
 また、本発明によれば、エポキシ樹脂の製造方法、及び得られたエポキシ樹脂を用いたエポキシ樹脂硬化物の製造方法が提供される。
廃水を利用した本発明のビスフェノールの製造方法の一例を説明するためのフロー図である。 廃水を利用した本発明のビスフェノールの製造方法の一例を説明するためのフロー図である。 廃水を利用した本発明のビスフェノールの製造方法の一例を説明するためのフロー図である。
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施の態様の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。なお、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
<ビスフェノールの製造方法>
 本発明は、ポリカーボネート樹脂を、芳香族モノアルコール、水及び触媒の存在下で分解させる、ビスフェノールの製造方法(以下、「本発明のビスフェノールの製造方法」と記載する場合がある。)に関するものである。
 本発明のビスフェノールの製造方法は、ポリカーボネート樹脂を、芳香族モノアルコール、水及び触媒の存在下で分解させるケミカルリサイクル方法を利用するものである。
 本発明者らは、触媒の存在下で、芳香族モノアルコールと水を併用することで、水の沸点程度(常圧、100℃程度)の温和な条件であっても、ポリカーボネート樹脂をビスフェノールと二酸化炭素に、及び/又は、ビスフェノールの塩と炭酸の金属塩に分解できることを見出した。また、ハロゲン溶媒のようなポリカーボネート樹脂の溶解性が高い溶媒を用いてポリカーボネート樹脂を完全に溶解させなくても、芳香族モノアルコールと水を併用することで、ポリカーボネート樹脂の分解反応が高い反応率で生じることがわかった。また、ポリカーボネート樹脂の分解により生成される二酸化炭素及び炭酸の金属塩は系外に除去することが容易であり、ビスフェノールの回収、精製も容易になることがわかった。本発明は、これらの知見に基づくものである。
 芳香族モノアルコールと水を併用することで、芳香族モノアルコールによる加溶媒分解(例えば、フェノリシス)と加水分解の反応が系内で起こるため、ポリカーボネート樹脂が温和な条件であっても分解されやすくなり、ポリカーボネート樹脂が芳香族モノアルコールと反応し生じるジアリールカルボキシレートが加水分解されることで二酸化炭素となり系外に排出されやすくなるため精製も容易になると考えられる。
(ポリカーボネート樹脂)
 本発明のビスフェノールの製造方法で用いられるポリカーボネート樹脂は、カーボネート結合(-O-C(=O)-O-)を含む重合組成物を含むものである。具体的には、本発明のビスフェノールの製造方法で用いられるポリカーボネート樹脂は、一般式(1)で示される、ビスフェノールに由来する構成単位を含むポリマーを含むものである。
Figure JPOXMLDOC01-appb-C000003
 R1~R4の置換基としては、それぞれに独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基などが挙げられる。例えば、水素原子、フルオロ基、クロロ基、ブロモ基、ヨード基、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。
 R5とR6の置換基としては、それぞれに独立に水素原子、アルキル基、アルコキシ基、アリール基などが挙げられる。例えば、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルへキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。
 R5とR6は、2つの基の間で互いに結合又は架橋していても良い。例えば、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、3,3,5-トリメチルシクロヘキシリデン、シクロヘプチリデン、シクロオクチリデン、シクロノニリデン、シクロデシリデン、シクロウンデシリデン、シクロドデシリデン、フルオレニリデン、キサントニリデン、チオキサントニリデンなどが挙げられる。
 中でも、上記一般式(1)のR1~R4が水素原子であり、R5、R6がメチル基であるポリカーボネート樹脂(以下、「ビスフェノールA型のポリカーボネート樹脂」と記載する場合がある。)を原料として用いることが好適である。
 一般式(1)において、nは特に限定はないが、例えば、2~1,000である。
 また、ポリカーボネート樹脂は、ポリカーボネート樹脂単独のものだけでなく、共重合体やポリマーアロイのようにポリカーボネート樹脂以外の樹脂を含む組成物を用いてもよい。ポリカーボネート樹脂以外の樹脂を含む組成物としては、例えば、ポリカーボネート/ポリエステル共重合体、ポリカーボネート/ポリエステルアロイ、ポリカーボネート/ポリアリレート共重合体、ポリカーボネート/ポリアリレートアロイ等が挙げられる。ポリカーボネート樹脂以外の樹脂を含む組成物を用いる場合、ポリカーボネート樹脂が主成分である(組成物中にポリカーボネート樹脂を50質量%以上含む)ものが好適である。
 また、ポリカーボネート樹脂は、2種以上の異なるポリカーボネート樹脂を混合して用いてもよい。なお、ポリカーボネート樹脂単独のものは、単にポリカーボネートと呼ばれることがある。
 ケミカルリサイクルの観点から、ポリカーボネート樹脂は、廃プラスチックに含まれるポリカーボネート樹脂が好ましい。ポリカーボネート樹脂が含まれる廃プラスチック、芳香族モノアルコール、水及び触媒を含む反応液を撹拌することで、廃プラスチックに含まれるポリカーボネート樹脂を分解させ、ビスフェノール又はその塩を生成させることができる。
 ポリカーボネート樹脂は、ヘッドランプなどの光学部材や、光学ディスクなどの光学記録媒体などの各種成形品に成形加工されて用いられている。ポリカーボネート樹脂を含む廃プラスチックとして、これらの成形品にポリカーボネート樹脂を成形加工する際の端材や不良品、使用済みの成形品などを用いることができる。
 廃プラスチックは、適宜、洗浄、破砕、粉砕などをして用いてよい。廃プラスチックの破砕の方法としては、ジョークラッシャや旋回式クラッシャを用いて20cm以下に破砕する粗砕、旋回式クラッシャ、コーンクラッシャ、ミルを用いて1cm以下まで破砕する中砕、ミルを用いて1mm以下まで破砕する粉砕等であり、分解槽に供給出来る大きさまで小さくできれば良い。また、廃プラスチックがCDやDVDのように薄いプラスチックの場合、シュレッダー等を用いて裁断し、分解槽に供給することができる。また、共重合体やポリマーアロイの他の樹脂、光学ディスクの表面や裏面の層のようにポリカーボネート樹脂以外の成分で形成される部分をあらかじめ除去して用いてもよい。
(芳香族モノアルコール)
 本発明のビスフェノールの製造方法は、芳香族モノアルコールを用いることが特徴の一つである。芳香族モノアルコールは、1つのヒドロキシル基が芳香環を形成する炭素原子に結合した化合物であり、フェノール、クレゾール及びキシレノールからなる群から選択されるいずれかが好ましい。
 クレゾールとしては、オルトクレゾール、メタクレゾール、パラクレゾール、及び、これらを1種以上含む異性体混合物が挙げられる。30℃付近で液体であれば分解槽に供給しやすいことから、好ましくは、オルトクレゾール、メタクレゾール、メタクレゾールとパラクレゾールの異性体混合物、又はオルトクレゾールとメタクレゾールとパラクレゾールの異性体混合物である。
 キシレノールとしては、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,5-キシレノール、3,4-キシレノール、及び、これらを1種以上含む異性体混合物が挙げられる。工業的に安価に入手できることから、好ましくは、2,5-キシレノールである。
 ポリカーボネート樹脂に対する芳香族モノアルコールの質量比(芳香族モノアルコールの質量/ポリカーボネート樹脂の質量)は、小さいと液に対する固体(ポリカーボネート樹脂)の量が多くなってスラリー濃度が高くなり、混合不良となる傾向にある。そのため、該質量比は、好ましくは0.01以上であり、より好ましくは0.03以上であり、更に好ましくは0.05以上である。また、該質量比が大きいとビスフェノールと二酸化炭素の製造効率が悪化する傾向にある。そのため、該質量比は、好ましくは100以下、より好ましくは70以下、更に好ましくは50以下である。
(水)
 本発明のビスフェノールの製造方法は、芳香族モノアルコールと共に水が用いられることが特徴の一つである。ポリカーボネート樹脂に対する水の質量比(水の質量/ポリカーボネート樹脂の質量)は、小さいと分解速度が低下するため、分解時間が長時間化して、効率が悪化する傾向にある。そのため、該質量比は、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1.0以上である。また、該質量比が大きいと、ビスフェノールと二酸化炭素の製造効率が低下する傾向にある。そのため、該質量比は、好ましくは100以下、より好ましくは70以下、更に好ましくは50以下である。
 また、芳香族モノアルコールに対する水の質量比(水の質量/芳香族モノアルコールの質量)は、0.001以上が好ましく、0.05以上がより好ましい。また、該質量比は、20以下が好ましく、15以下がより好ましい。該質量比は、10以下や、5以下、1以下、0.5以下、0.2以下などであってもよい。芳香族モノアルコールに対する水の質量比が小さいと分解速度が低下して分解時間が長時間化し、該質量比が大きいと反応液の容積が大きくなり、非効率になる。
(触媒)
 本発明のビスフェノールの製造方法では、更に触媒を用いることが特徴の一つである。触媒は、ポリカーボネート樹脂の分解を促進できるものであればよく、触媒は、塩基又は酸を用いることができる。塩基としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルキルアミン、及び含窒素複素環式化合物からなる群から選択される1種以上が好ましい。中でも、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルキルアミン、含窒素複素環式化合物及び酸からなる群から選択されるいずれかであることが好ましい。
[アルカリ金属水酸化物]
 アルカリ金属水酸化物は、アルカリ金属イオン(M+)と水酸化物イオン(OH-)との塩であり、MOH(Mはアルカリ金属原子を表す)で表される化合物である。アルカリ金属水酸化物としては、水酸化ナトリウム又は水酸化カリウムが好ましい。
 ポリカーボネート樹脂に対するアルカリ金属水酸化物の質量比(アルカリ金属水酸化物の質量/ポリカーボネート樹脂の質量)は、小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、該質量比は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.5以上である。また、該質量比が大きいと、分解後の中和に要する酸の量が増加して、ビスフェノールと二酸化炭素の製造効率が低下する傾向にある。そのため、該質量比は、好ましくは50以下、より好ましくは30以下、更に好ましくは10以下である。また、該質量比は、8以下や、5以下、3以下などであってもよい。
[アルカリ金属炭酸塩]
 アルカリ金属炭酸塩は、アルカリ金属イオン(M+)と炭酸イオン(CO3 2-)との塩であり、M2CO3(Mはアルカリ金属原子を表す)で表される化合物である。アルカリ金属炭酸塩としては、炭酸ナトリウム又は炭酸カリウムが好ましい。
 ポリカーボネート樹脂に対するアルカリ金属炭酸塩の質量比(アルカリ金属炭酸塩の質量/ポリカーボネート樹脂の質量)は、小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、該質量比は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.5以上である。また、該質量比が大きいと、分解後の中和に要する酸の量が増加して、ビスフェノールと二酸化炭素の製造効率が低下する傾向にある。そのため、該質量比は、好ましくは50以下、より好ましくは30以下、更に好ましくは10以下である。また、該質量比は、5以下や、1以下、0.5以下などであってもよい。
[アルキルアミン]
 アルキルアミンは、アンモニアの少なくとも1つの水素原子がアルキル基で置換された化合物である。アルキルアミンの中でも第一級アミンであるモノアルキルアミンはポリカーボネート樹脂のカーボネート結合部分と反応してイソシアネートを生成するので、より好ましくは第二級アミンであるジアルキルアミン及び第三級アミンであるトリアルキルアミンである。
 第二級アミンであるジアルキルアミンはポリカーボネート樹脂のカーボネート結合部分と反応してテトラアルキル尿素を生成するので、更に好ましくは第三級アミンであるトリアルキルアミンである。
 アルキルアミンは、200℃以下の沸点のものが好ましく、160℃以下の沸点のものがより好ましい。このような沸点であれば、フェノールなどの芳香族モノアルコールと共に減圧及び/又は加熱により除去することができる。また、沸点が低すぎると、分解反応中にアルキルアミンが揮発し分解速度が低下する場合があるため、アルキルアミンの沸点は、10℃以上が好ましく、30℃以上がより好ましい。
 アルキルアミンは、一般式(I)に示すアルキルアミンが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(I)中、RAは、炭素数1~3のアルキル基を表し、RB~RCは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表す。
 RAは、メチル基、エチル基、n-プロピル基、又はイソプロピル基が好ましく、RB~RCは、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基が好ましい。
 一般式(I)で示されるアルキルアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、ジエチルアミン等が挙げられる。
 ポリカーボネート樹脂に対するアルキルアミンの質量比(アルキルアミンの質量/ポリカーボネート樹脂の質量)は、小さいと分解速度が低下するため、分解時間が長時間化して、効率が悪化する傾向にある。そのため、該質量比は、好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.01以上である。また、該質量比が大きいと、過剰のアルキルアミンが二酸化炭素を生成する反応を阻害するので、該質量比は、好ましくは50以下、より好ましくは20以下、更に好ましくは10以下である。また、該質量比は、5以下や、1以下、0.5以下などであってもよい。
[含窒素複素環式化合物]
 含窒素複素環式化合物は、複素環を形成する原子として窒素原子を少なくとも1つ含む化合物であり、単環の化合物であっても、他の芳香族複素環又は芳香族炭素環と縮合した多環化合物であってもよい。また、環の中に窒素以外のヘテロ原子(イオウ原子、酸素原子、又は第二の窒素原子)を含んでいてもよい。含窒素複素環式化合物としては、ピリジン類、ピラジン類、ピリミジン類などの6員環化合物、イミダゾール類などの5員環化合物、キノリン類、イソキノリン類、アクリジン類などの多環化合物などが挙げられる。
 中でも、含窒素複素環式化合物はピリジン類が好ましい。ピリジン類は、置換又は非置換のピリジンである。ピリジンの水素原子と置換することができる置換基としては、例えば、アルキル基、アルコキシ基、ヒドロキシ基などが挙げられる。好ましくは、非置換のピリジン(C55N)、メチルピリジン、メトキシピリジン及びヒドロキシピリジンからなる群から選択される1種以上であり、より好ましくは、非置換のピリジンである。
 ポリカーボネート樹脂に対する含窒素複素環式化合物の質量比(含窒素複素環式化合物の質量/ポリカーボネート樹脂の質量)は、小さいと分解速度が低下するため、分解時間が長時間化して、効率が悪化する傾向にある。そのため、該質量比は、好ましくは0.0001以上、より好ましくは0.0005以上、更に好ましくは0.001以上である。また、該質量比が大きいと、過剰の含窒素複素環式化合物が二酸化炭素を生成する反応を阻害するので、該質量比は、好ましくは100以下、より好ましくは50以下、更に好ましくは10以下である。
[酸]
 酸としては、塩酸や硫酸、リン酸などの無機酸、及び、カルボン酸やスルホン酸などの有機酸が挙げられる。
 酸としては、好ましくは塩酸、硫酸、リン酸及びスルホン酸からなる群から選択されるいずれかである。スルホン酸としては、メタンスルホン酸などのアルキルスルホン酸、トルエンスルホン酸等の芳香族スルホン酸である。
 ポリカーボネート樹脂に対する酸の質量比(酸の質量/ポリカーボネート樹脂の質量)は、小さいと分解速度が低下するため、分解時間が長時間化して、効率が悪化する傾向にある。そのため、該質量比は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上である。また、該質量比が大きいと、中和に要する塩基の量が多くなる傾向にある。そのため、該質量比は、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下である。
(反応液の調製)
 ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒を含む反応液を撹拌等することで、ポリカーボネート樹脂を分解させ、ビスフェノール又はその塩を生成させることができる。ポリカーボネート樹脂を完全に溶解させなくても、芳香族モノアルコールと水を併用することで、ポリカーボネート樹脂の分解反応が進行する。そのため、調製される反応液は、スラリー状の反応液(液中にポリカーボネート樹脂が分散した反応液)であってよい。
 反応液中のスラリー濃度(反応液中の固形分の質量/反応液の質量)は、0.01以上が好ましく、0.05以上がより好ましい。また、0.5以下が好ましく、0.3以下がより好ましい。スラリー濃度(固形分の濃度)が低すぎると分解効率が低下し、スラリー濃度が高すぎると混合不良となりやすい。
 調製される反応液中の液体成分は、芳香族モノアルコール及び水を主成分とするものであり、全液体成分の質量に対する芳香族モノアルコール及び水の合計質量は、0.8以上や0.9以上、0.95以上などである。
 反応液の調製は、10℃以上で行うことが好ましく、20℃以上で行うことがより好ましい。また、反応液の調製は、40℃以下で行うことが好ましく、35℃以下が行うことがより好ましい。反応液調製時の温度が低すぎると芳香族モノアルコールの種類によっては固化しやすくなり、混合不良が生じやすくなったり、均一に混合することが困難になる場合がある。また、反応液の調製時の温度が高すぎると、触媒の種類によっては揮発しやすく、所定濃度に調製することが困難であったり、分解反応が暴走するおそれもある。
 ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒の混合順は特に限定されず、例えば、ポリカーボネート樹脂に、芳香族モノアルコール、水及び触媒を順次供給してもよいし、芳香族モノアルコールに、ポリカーボネート樹脂、水及び触媒を順次供給してもよい。より均一に混合できるため、ポリカーボネート樹脂は、芳香族モノアルコール及び/又は水の後に供給することが好ましい。
 ポリカーボネート樹脂の分解反応は、上記の通り、芳香族モノアルコール、水及び触媒の存在下で行われるが、本発明の目的を阻害しない限り、芳香族モノアルコール、水及び触媒の以外の成分を共存させた状態でポリカーボネート樹脂を分解させることもできる。この場合も、芳香族モノアルコール、水、触媒及びその他の成分を含む均一溶媒に、ポリカーボネート樹脂を分散させて分解反応を行うことが好ましい。共存させることができる成分としては、アルカリ金属塩化物や、ブロモフェノール類、四塩化炭素などが挙げられる。
 アルカリ金属塩化物は、アルカリ金属イオン(M+)と塩化物イオン(Cl-)との塩であり、MCl(Mはアルカリ金属原子を表す)で表される化合物である。具体的には、塩化ナトリウムや塩化カリウムなどが挙げられ、塩化ナトリウムが好ましい。アルカリ金属塩化物の量は特に限定されないが、多すぎると析出してスケーリングするおそれがある。そのため、水に対するアルカリ金属塩化物の質量比(アルカリ金属塩化物の質量/水の質量)は、好ましくは0.2以下であり、より好ましくは0.1以下である。また、少なすぎるとアルカリ金属塩化物添加による効果が弱くなり、また、廃水を利用する場合には希釈等が必要になり多量の水を使用して廃水処理の負荷が高くなる場合がある。そのため、水に対するアルカリ金属塩化物の質量比は、好ましくは0.00001以上であり、より好ましくは0.0001以上である。
 ブロモフェノール類は、芳香環を形成する炭素に、ヒドロキシ基が1つ結合し、臭素原子が1又2つ結合した化合物である。また、ブロモフェノール類は、ヒドロキシ基及び臭素原子以外の置換基を有するものであってもよい。好ましくは、モノブロモフェノール及び/又はジブロモフェノールである。ブロモフェノール類の量は特に限定されないが、多すぎるとブロモフェノール類が析出するおそれがある。そのため、水に対するブロモフェノール類の質量比(ブロモフェノール類の質量/水の質量)は、好ましくは0.001以下であり、より好ましくは0.0001以下である。少なすぎるとポリカーボネート樹脂の分解反応の効率向上効果が弱くなるため、水に対するブロモフェノール類の質量比は、好ましくは0.0000001以上であり、より好ましくは0.000001以上である。
 四塩化炭素の量は特に限定されないが、多すぎると反応液が油水分離してポリカーボネート樹脂を効率良く分解できなくなるという問題があるため、水に対する四塩化炭素の質量比(四塩化炭素の質量/水の質量)は、好ましくは0.0005以下であり、より好ましくは0.0001以下である。少なすぎるとポリカーボネート樹脂の分解反応の効率向上効果が弱くなるため、水に対する四塩化炭素の質量比は、好ましくは0.0000001以上であり、より好ましくは0.000001以上である。
 具体的には、触媒が含窒素複素環式化合物を含む場合、芳香族モノアルコール、水及び触媒に加えて、アルカリ金属塩化物(好ましくは、塩化ナトリウム)の共存下で、ポリカーボネート樹脂を分解させることができる。アルカリ金属塩化物が助触媒として働くことで、より効率的にポリカーボネート樹脂を分解させることができると考えられる。
 触媒が塩酸を含む場合、芳香族モノアルコール、水及び触媒に加えて、ブロモフェノール類の共存下で、ポリカーボネート樹脂を分解させることができる。ブロモフェノール類が助触媒として働くことで、より効率的にポリカーボネート樹脂を分解させることができると考えられる。
 触媒が水酸化ナトリウムを含む場合、芳香族モノアルコール、水及び触媒に加えて、塩化ナトリウム及び/又は四塩化炭素の共存下で、ポリカーボネート樹脂を分解させることができる。塩化ナトリウムや四塩化炭素が共存することで、より効率的にポリカーボネート樹脂を分解させることができると考えられる。
 反応液の調製には、炭酸ジアリールの製造時などに排出される廃水を利用することもできる。特に、芳香族モノアルコール、水、含窒素複素環式化合物、及びアルカリ金属塩化物の共存下でのポリカーボネート樹脂の分解や、芳香族モノアルコール、水、塩酸、及びブロモフェノール類の共存下でのポリカーボネート樹脂の分解、芳香族モノアルコール、水、水酸化ナトリウム、塩化ナトリウム、及び四塩化炭素の共存下でのポリカーボネート樹脂の分解には、後述する通り、製造プラントなどから排出される廃水を利用することで、反応液を簡単に調製することができ、かつ、環境負荷を低減することができる。
(分解反応)
 芳香族モノアルコール、水及び触媒の存在により、ポリカーボネート樹脂のカーボネート結合部分が切断され、ビスフェノールと二酸化炭素、又は、ビスフェノールの塩と金属炭酸塩が生成される。分解反応は、反応液の調製中(ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒の混合中)に進行しないように、ポリカーボネート樹脂の濃度や反応液の調製時の温度等を制御して、ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒を含む反応液を調製する工程と前記反応液中でポリカーボネート樹脂を分解させる工程とを明確に分けてもよいが、反応液の調製する工程と分解させる工程とは明確に分けなくてもよい。反応液の調製中にポリカーボネート樹脂の分解反応が進行し、ポリカーボネート樹脂の一部は分解されてよい。反応液の調製中にポリカーボネート樹脂の一部が分解することで、より効率的に分解反応を進行させることができる。
 分解反応は、常圧下で行っても加圧下で行ってもよいが、常圧下でも十分に反応は進行するため、常圧下で行うことが好ましい。
(反応温度)
 反応液の調製から分解反応の停止までは、反応液の調製時の温度と同じ温度で行ってもよいが、反応液を調製後(ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒を混合後)に所定の反応温度に昇温することが好ましい。反応液の調製時の温度が高すぎると分解反応が暴走するおそれがある。反応液を調製後に昇温することで、分解反応を安定に進行させることができるため好ましい。
 反応温度は、芳香族モノアルコールの種類や反応時間等に応じて適宜選択されるものであるが、高温の場合は反応液中の水が蒸発してしまい、加水分解が停止する。また、低温の場合は、芳香族モノアルコールが固化したり、加溶媒分解が進行しにくくなったり、加水分解の反応速度が低下したりするため、分解に要する時間が長時間化する。これらのことから、反応温度は、40℃以上が好ましく、50℃以上、60℃以上、70℃以上、75℃以上、80℃以上の順でより好ましい。また、好ましくは110℃以下、より好ましくは100℃以下、更に好ましくは95℃以下である。
 特に、ポリカーボネート樹脂の分解は、反応温度40~110℃かつ常圧下で行うことが好ましく、反応温度50~100℃かつ常圧下で行うことがより好ましく、反応温度60~95℃かつ常圧下で行うことが更に好ましい。
 なお、反応液の調製時と同じ温度で反応を行う場合、反応温度は、ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒の混合が完了した時点から、分解反応を停止させるための中和や留去の操作を始める時点までの平均の温度である。また、反応液調製後に昇温を行い反応を行う場合、反応温度は、所定の温度に到達した時点から、分解反応を停止させるための中和や留去の操作を始める時点までの平均の温度である。
(反応時間)
 反応時間は、スラリー濃度や反応温度等に応じて適宜選択されるものであるが、長い場合は生成したビスフェノールが分解する傾向にあることから、好ましくは30時間以内、より好ましくは25時間以内、更に好ましくは20時間以内である。また、反応時間が短い場合は分解反応が十分に進行しない場合があるため、好ましくは0.1時間以上、より好ましくは0.5時間以上、更に好ましくは1時間以上である。
 なお、反応時間は、ポリカーボネート樹脂、芳香族モノアルコール、水及び触媒の混合が完了した時点から、分解反応を停止させるための中和や留去の操作を始める時点までの時間である。反応時間の終点は、液体クロマトグラフィーなどで分解反応を追跡して決定してもよい。
(ポリカーボネート樹脂の分解反応の停止方法)
 ポリカーボネート樹脂の分解反応の停止方法は、用いる触媒の種類によって、適宜選択される。触媒として、アルカリ金属水酸化物、アルカリ金属炭酸塩又は酸が使用される場合は、中和などにより分解反応を停止することができる。また、触媒として、アルキルアミン又は含窒素複素環式化合物が使用される場合は、アルキルアミン又は含窒素複素環式化合物を留去や中和することにより、分解反応を停止することができる。酸を供給して中和によりアルキルアミン又は含窒素複素環式化合物を除去する方法では、アンモニウム塩などが発生し、その除去も必要となることから、アルキルアミン又は含窒素複素環式化合物の除去は、好ましくは留去する方法である。
(ビスフェノールの回収・精製方法)
 得られたビスフェノールの回収・精製は、常法により行うことが出来る。例えば、晶析やカラムクロマトグラフィーなどの簡便な手段により回収・精製することが可能である。具体的には、ポリカーボネート樹脂の分解反応後、触媒及び溶媒の除去や有機溶媒の混合を行い、得られた有機相を水又は食塩水などで洗浄し、更に必要に応じて塩化アンモニウム水などで中和洗浄する。次いで、洗浄後の有機相を冷却し晶析させる。
 有機溶媒としては、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、メシチレン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン等の脂肪族炭化水素、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、n-ウンデカノール、n-ドデカノール、エチレングリコール、ジエチレングルコール、トリエチレングリコール等の脂肪族アルコールなどを用いることができる。
 なお、該晶析前に蒸留により余剰の芳香族モノアルコールや有機溶媒を留去してから晶析させてもよい。また、ビスフェノールAは、フェノールの存在下で晶析すると、フェノールと共結晶を形成する。フェノールを用いてビスフェノールAに由来する構成単位を含有するポリカーボネート樹脂を分解させた場合、共結晶としないためには、晶析前にフェノールを留去する必要がある。
(二酸化炭素の回収・精製方法)
 本発明のビスフェノールの製造方法では、生成した二酸化炭素を回収・精製してもよい。二酸化炭素の精製は、常法により行うことが出来る。例えば、物理吸収法、化学吸収法、深冷分離法、膜分離法、圧力スイング吸着法等が適用でき、中和時に発生した二酸化炭素の不純物に合わせて、適宜選択できる。
 以下、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)に由来する構成単位を含有するポリカーボネート樹脂からビスフェノールAを製造する、ビスフェノールの製造方法(A)~(C)を例として、本発明のビスフェノールの製造方法をより具体的に説明する。
<ビスフェノールの製造方法(A)>
 ビスフェノールの製造方法(A)は、ビスフェノールAに由来する構成単位を含有するポリカーボネート樹脂、フェノール、水及びアルカリ金属水酸化物を含む反応液中でポリカーボネート樹脂を分解させる工程(A1)と、工程(A1)後の反応液を中和し、ビスフェノールAが溶解した有機相を得る工程(A2)と、工程(A2)で得られた有機相を減圧及び/又は加熱した後、晶析によりビスフェノールAを回収する工程(A3)を有する。ビスフェノールの製造方法(A)は、芳香族モノアルコールとしてフェノールを用い、触媒としてアルカリ金属水酸化物を用いた場合の本発明のビスフェノールの製造方法の一例である。
 主な分解反応は、以下に示す反応式(2)に従って行われ、工程(A1)で得られる主の分解生成物は、ビスフェノールのアルカリ金属塩とアルカリ金属炭酸塩である。なお、下記反応式(2)のnは2~1000である。
Figure JPOXMLDOC01-appb-C000005
 ビスフェノールの製造方法(A)では、ビスフェノールAのアルカリ金属塩からビスフェノールA、アルカリ金属炭酸塩から二酸化炭素を生成させるために、工程(A1)の後の反応液を中和し、ビスフェノールAが溶解した有機相を得る工程(A2)を行う。
 中和は反応液に酸を混合することで行われる。用いられる酸としては、塩酸、硫酸、リン酸などが挙げられる。酸の混合による中和は、反応液のpHが7よりも小さくなるようにしても、7よりも大きくなるようにしてもよいが、pHが7よりも小さくなると、単離されるビスフェノールAの品質が低下するおそれがある。そのため、酸の混合は、反応液のpHが7よりも大きいところ(例えば、pH7.5以上やpH8.0以上)が終点となるように行うことが好ましい。一方で、反応液のpHが高すぎると、ビスフェノール及び二酸化炭素が生成しにくいため、pH10以下となるように酸の混合は行われ、pH9.5以下とすることが好ましい。
 さらに、反応液と酸の混合液を静置することで、生成したビスフェノールAが溶解した有機相(フェノールの相)と、アルカリ金属水酸化物等(アルカリ金属水酸化物や、中和のために加えた酸、中和により生じた塩)が溶解した水相とに油水分離させることができるので、水相を除去すればアルカリ金属水酸化物等を除去できる。
 また、酸を混合する前又は後に、芳香族炭化水素などの有機溶媒を混合してもよい。反応液に酸及び有機溶媒を混合し中和を行った後、油水分離させ、水相を除去することで、ビスフェノールAが溶解した有機相(フェノールと有機溶媒の相)が得られる。有機溶媒を混合することで、油水分離させやすくなるため、アルカリ金属水酸化物等が溶解した水相の除去がより容易になる。
 工程(A3)では、工程(A2)で得られた有機相を減圧及び/又は加熱した後、晶析によりビスフェノールAを回収する。ビスフェノールAは、晶析時にフェノールが存在する場合、フェノールと共結晶を形成し、析出するため、ビスフェノールAを得るために、工程(A3)では晶析前にフェノールを除去する。
 具体的には、工程(A2)で得られる有機相を減圧及び/又は加熱して、フェノールなどの液体成分を留去する。次いで、芳香族炭化水素などの有機溶媒を加えて、ビスフェノールAが溶解した晶析用溶液を調製した後、これを冷却してビスフェノールAを析出させる。析出したビスフェノールAを、固液分離により回収する。
 また、触媒としてアルカリ金属炭酸塩を用いる場合も、ビスフェノールの製造方法(A)と同様の方法で実施することができる。
<ビスフェノールの製造方法(B)>
 ビスフェノールの製造方法(B)は、ビスフェノールAに由来する構成単位を含有するポリカーボネート樹脂、フェノール、水及びアルキルアミンを含む反応液中でポリカーボネート樹脂を分解させる工程(B1)と、工程(B1)後の反応液を減圧及び/又は加熱した後、晶析によりビスフェノールAを回収する工程(B2)を有する。ビスフェノールの製造方法(B)は、芳香族モノアルコールとしてフェノールを用い、触媒としてアルキルアミンを用いた場合の本発明のビスフェノールの製造方法の一例である。
 主な分解反応は、以下に示す反応式(3)に従って行われ、工程(B1)で得られる主の分解生成物は、ビスフェノールと二酸化炭素である。なお、下記反応式(3)のnは2~1000である。
Figure JPOXMLDOC01-appb-C000006
 ビスフェノールの製造方法(B)では、工程(B1)後の反応液を減圧及び/又は加熱した後、晶析によりビスフェノールAを回収する工程(B2)を行う。具体的には、工程(B1)後の反応液を減圧及び/又は加熱して、アルキルアミンやフェノールなどの液体成分を留去する。次いで、芳香族炭化水素などの有機溶媒を加えて、ビスフェノールAが溶解した晶析用溶液を調製した後、これを冷却してビスフェノールAを析出させる。析出したビスフェノールAを、固液分離により回収する。
 また、触媒としてアルキルアミンを用いる場合、酸を供給して中和する方法を用いてアルキルアミンを除去してもよい。この場合、ビスフェノールの製造方法(A)の工程(A2)のように、分解反応後の反応液に酸を混合し中和した後、油水分離させ、水相を除去することで、ビスフェノールAが溶解した有機相を得る。次いで、ビスフェノールの製造方法(A)の工程(A3)のように、得られる有機相を減圧及び/又は加熱し、晶析によりビスフェノールAが回収できる。
 このように、ポリカーボネート樹脂の分解反応液から、アルキルアミンを除去する方法としては、留去する方法、酸を供給して中和する方法が挙げられる。酸を供給して中和する方法では、アンモニウム塩が発生し、その除去も必要となることから、好ましくは留去する方法である。触媒としてアルキルアミンを用いることで、減圧及び/又は加熱によりフェノールとともにアルキルアミンを除去することができ、中和を必須としないため、精製を簡略化することができる。
 また、触媒として含窒素複素環式化合物を用いる場合も、ビスフェノールの製造方法(A)やビスフェノールの製造方法(B)と同様の方法で実施することができる。
<ビスフェノールの製造方法(C)>
 ビスフェノールの製造方法(C)は、ビスフェノールAに由来する構成単位を含有するポリカーボネート樹脂、フェノール、水及び酸を含む反応液中でポリカーボネート樹脂を分解させる工程(C1)と、工程(C1)後の反応液を中和し、ビスフェノールAが溶解した有機相を得る工程(C2)と、工程(C2)で得られた有機相を減圧及び/又は加熱した後、晶析によりビスフェノールAを回収する工程(C3)を有する。ビスフェノールの製造方法(C)は、芳香族モノアルコールとしてフェノールを用い、触媒として酸を用いた場合の本発明のビスフェノールの製造方法の一例である。
 主な分解反応は、以下に示す反応式(4)に従って行われ、工程(C1)で得られる主の分解生成物は、ビスフェノールと二酸化炭素である。なお、下記反応式(4)のnは、一般式(1)と同義である。なお、下記反応式(4)のnは2~1000である。
Figure JPOXMLDOC01-appb-C000007
 ビスフェノールの製造方法(C)では、工程(C1)の後に、反応液を中和し、ビスフェノールAが溶解した有機相を得る工程(C2)を行う。中和は反応液に塩基を混合することで行われる。用いられる塩基としては、炭酸ナトリウム、水酸化ナトリウムなどが挙げられる。
 中和は、ビスフェノールの製造方法(A)の工程(A2)と同様に、反応液のpHが7よりも大きいところが終点となるように行うことが好ましい。例えば、pH7.5以上やpH8.0以上となるように塩基を混合することが好ましい。また、pH10以下や9.5以下となるように塩基を混合することが好ましい。
 工程(C2)では、ビスフェノールの製造方法(A)の工程(A2)と同様に、反応液と塩基の混合液、又は、反応液と塩基と有機溶媒の混合液を油水分離させ、水相を除去することで、ビスフェノールAが溶解した有機相が得られる。
 工程(C3)では、工程(C2)で得られるビスフェノールAが溶解した有機相からビスフェノールAを回収する。ビスフェノールの製造方法(A)の工程(A3)と同様に、工程(C2)で得られた有機相を減圧及び/又は加熱した後、晶析によりビスフェノールAを回収できる。
 なお、ビスフェノールの製造方法(A)~(C)は、芳香族モノアルコールとしてフェノールを用いた例であるが、芳香族モノアルコールとして、クレゾールやキシレノールなどのフェノール以外の芳香族モノアルコールを用いる場合には、ビスフェノールAは共結晶を形成しないため、工程(A3)や工程(B2)、工程(C3)の減圧及び/又は加熱による芳香族モノアルコールの除去は必須ではない。この場合、工程(A2)や工程(C2)で得られる有機相や工程(B1)後の反応液を冷却して、ビスフェノールAを析出させることで、ビスフェノールAを回収することができる。クレゾールやキシレノールを用いることで、ビスフェノールAの精製を簡略化することができる。
 また、ビスフェノールAを、ビスフェノールAとフェノールの共結晶として回収してもよい。この場合、フェノールを留去せずに、工程(A2)や工程(C2)で得られる有機相や工程(B1)後の反応液を冷却して、ビスフェノールAとフェノールの共結晶を析出させ、回収する。
 また、上記の通り、本発明のビスフェノールの製造方法に用いられるポリカーボネート樹脂は、ビスフェノールAに由来する構成単位を含有するポリカーボネート樹脂に限定されない。ビスフェノールA以外のビスフェノールに由来する構成単位を含有するポリカーボネート樹脂を用いた本発明のビスフェノールの製造方法も、上記のビスフェノールの製造方法(A)~(C)と同様に適宜実施することができる。
<廃水を利用したビスフェノールの製造方法>
 本発明のビスフェノールの製造方法では、上記の通り、反応液の調製に炭酸ジアリールの製造プラント等で排出される廃水を利用することができる。廃水を利用することで、廃水を有効利用でき、より環境負荷の小さい製造方法とできる。
 例えば、炭酸ジアリールの製造プラントの中和処理設備から排出される中和廃水を、ポリカーボネート樹脂の分解に利用することができる。一般的に、炭酸ジアリールは、下記工程(a1)、工程(b1)、工程(b2)及び工程(b3)を有する方法により製造されており、工程(b1)が中和処理である。
 工程(a1):塩化カルボニルと芳香族モノアルコールとを、含窒素複素環式化合物の存在下で反応させて炭酸ジアリールを含む反応液を得る工程
 工程(b1):工程(a1)で得られた炭酸ジアリールを含む反応液をアルカリ金属水酸化物水溶液で中和し、芳香族ジアリールを含む油相と、含窒素複素環式化合物とアルカリ金属塩化物とを含む水相とに油水分離させた後、前記水相を中和廃水として除去する工程
 工程(b2):工程(b1)で得られた油相を水で洗浄する工程
 工程(b3):工程(b2)後の油相から炭酸ジアリールを得る工程
 本発明のビスフェノールの製造方法では、この工程(b1)にて除去される中和廃水(水相)を、ポリカーボネート樹脂の分解に用いることができる。芳香族モノアルコールは油相だけでなく、水相にも含まれるので、工程(b1)で排出される中和廃水は、芳香族モノアルコールと、含窒素複素環式化合物と、アルカリ金属塩化物(中和塩)を含む水である。そのため、ポリカーボネート樹脂と、工程(b1)で排出される中和廃水とを混合することで、ポリカーボネート樹脂、芳香族モノアルコール、水、含窒素複素環式化合物及びアルカリ金属塩化物を含む反応液が簡単に調製できる。
 なお、工程(a1)において、芳香族モノアルコールは、ポリカーボネート樹脂の分解に用いる芳香族モノアルコールと同様である。ポリカーボネート樹脂の分解に用いる芳香族モノアルコールと工程(a1)の芳香族モノアルコールとは同じであることが好ましい。また、工程(a1)において、含窒素複素環式化合物は、ポリカーボネート樹脂の分解に用いることのできる含窒素複素環式化合物と同様であり、ピリジン類が好ましい。
 また、工程(b1)で用いられるアルカリ金属水酸化物水溶液は、アルカリ金属水酸化物を水に溶解させた溶液である。アルカリ金属水酸化物は、ポリカーボネート樹脂の分解に用いることのできるアルカリ金属水酸化物と同様である。工程(b1)は、工程(a1)で得られた炭酸ジアリールを含む反応液を水酸化ナトリウム水溶液で中和し、芳香族ジアリールを含む油相と、含窒素複素環式化合物と塩化ナトリウムを含む水相とに油水分離させた後、前記水相を中和廃水として除去する工程とすることが好ましく、工程(a1)で得られた炭酸ジアリールを含む反応液を水酸化ナトリウム水溶液で中和し、芳香族ジアリールを含む油相と、ピリジン類と塩化ナトリウムを含む水相とに油水分離させた後、前記水相を中和廃水として除去する工程とすることがより好ましい。
 また、塩化カルボニルと芳香族モノアルコールとから炭酸ジアリールを製造する際に副生する塩化水素を回収するときに排出される塩酸廃水をポリカーボネート樹脂の分解に利用することができる。例えば、炭酸ジアリールの製造プラントに併設される塩化水素の回収設備から排出される塩酸廃水を利用することができる。一般的に、炭酸ジアリールの製造及び副生した塩化水素の回収は、下記工程(a1)、工程(c1)、工程(c2)及び工程(c3)を有する。
 工程(a1):塩化カルボニルと芳香族モノアルコールとを、含窒素複素環式化合物の存在下で反応させて炭酸ジアリールを含む反応液を得る工程
 工程(c1):工程(a1)で副生した塩化水素を吸収塔に供給し、水又は希塩酸に吸収させて、濃塩酸を得る工程
 工程(c2):濃塩酸を放散塔で蒸留し、塔頂より塩化水素ガスを回収し、塔底より塩酸を回収する工程
 工程(c3):前記塔底より回収した塩酸の一部を塩酸廃水として系外に除去し、残りの塩酸を工程(c1)の吸収塔に循環させる工程
 本発明のビスフェノールの製造方法では、この工程(c3)にて除去される塩酸廃水を、ポリカーボネート樹脂の分解に用いることができる。工程(c3)で排出される塩酸廃水は、工程(a1)で原料として用いられる塩化カルボニルに少量含まれるCl-Brと、芳香族モノアルコールとの副反応により生じたブロモフェノール類を含む。そのため、ポリカーボネート樹脂と、芳香族モノアルコールと、工程(c3)で排出される塩酸廃水とを混合することで、ポリカーボネート樹脂、芳香族モノアルコール、水、塩酸、及びブロモフェノール類を含む反応液が簡単に調製できる。
 また、炭酸ジアリールの原料である塩化カルボニルの製造時に生じる未液化ガスの無害化処理で排出される水酸化ナトリウム廃水をポリカーボネート樹脂の分解に利用することができる。例えば、塩化カルボニルの製造プラントに設けられる未液化ガスの除害塔(無化処理設備)から排出される水酸化ナトリウム廃水を利用することができる。一般的に、塩化カルボニルの製造及び未液化ガスの処理は、下記工程(d1)、工程(d2)、工程(d3)及び工程(d4)を有する。
 工程(d1):塩素と一酸化炭素から塩化カルボニルガスを得る工程
 工程(d2):工程(d1)で得られた塩化カルボニルガスを冷却し、液化した塩化カルボニルを得る工程
 工程(d3):循環する水酸化ナトリウム水溶液と、前記(d2)において液化しなかった未液化ガスとを接触させて、前記未液化ガス中の塩化カルボニルを分解した後、排出する工程
 工程(d4):前記循環する水酸化ナトリウム水溶液の一部を水酸化ナトリウム廃水として除去する工程
 本発明のビスフェノールの製造方法では、この工程(d4)にて除去される水酸化ナトリウム廃水を、ポリカーボネート樹脂の分解に用いることができる。工程(d3)で排出される水酸化ナトリウム廃水は、中和により生じる塩化ナトリウム及び副生成物の四塩化炭素を含む。そのため、ポリカーボネート樹脂と、芳香族モノアルコールと、工程(d4)で排出される水酸化ナトリウム廃水とを混合することで、ポリカーボネート樹脂、芳香族モノアルコール、水、水酸化ナトリウム、塩化ナトリウム、及び四塩化炭素を含む反応液が簡単に調製できる。
 以下、廃水を利用したビスフェノールの製造方法(R1)~(R3)について、図1~図3を参照して具体的に説明する。
<廃水を利用したビスフェノールの製造方法(R1)>
 図1は、炭酸ジフェニルの製造プラントから排出される中和廃水を利用してビスフェノールを製造する方法の一例を説明するためのフロー図である。
(炭酸ジフェニルの製造)
 図1で示される炭酸ジフェニルの製造プラント1では、まず、DPC反応器10において、塩化カルボニルガス(CDC、G1)とフェノール(PL)とを、ピリジン(PRD)の存在下で反応させることで炭酸ジフェニルを含む反応液(L10)が得られる(工程(a1))。このときに副生する塩化水素ガス(G10)は、DPC反応器10の上部から活性炭塔(図示せず)に送られる。
 炭酸ジフェニルを含む反応液(L10)は、DPC反応器10から脱塩化水素塔11に送られ脱塩化水素処理が行われる。脱塩化水素塔11で生じた塩化水素ガス(G12)は、DPC反応器10で副生した塩化水素ガス(G10)と同様に活性炭塔(図示せず)に送られる。
 脱塩化水素処理後の反応液(L11)は、混合槽12に送られ、次いで、中和槽13に送られる。中和槽13では、水酸化ナトリウム水溶液(L12)で、脱塩化水素塔11で除去しきれなかった塩酸を中和した後、油水分離させる。油水分離後、水相(L14)は中和廃水として排出され、得られた油相(L13)は、水洗槽14に送られる(工程(b1))。なお、この中和廃水(水相(L14))は、水、フェノール、ピリジン、及び塩化ナトリウムを含む。
 水洗槽14では、水(L15)での水洗処理が行われる(工程(b2))。水洗槽14に送られた油相(L13)と水(L15)の混合、及び水相(L17)の除去が行われ、油相(L16)が得られる。水洗処理された油相(L16)は、蒸留塔15、蒸留塔16に順次送られ、蒸留が行われ、蒸留塔16の塔頂より精製された炭酸ジフェニル(G13)が回収される(工程(b3))。
(ビスフェノールの製造)
 中和槽13から排出された水相(L14、中和廃水)は、分解槽100に送られ、ビスフェノールA型のポリカーボネート樹脂(PC)と混合され、ポリカーボネート樹脂の分解が行われる。また、分解槽100で調製される反応液は、少なくとも一部に水相(L14、中和廃水)を含めばよい。したがって、分解槽100に水相(L14、中和廃水)に加えて、中和廃水(L14)でない水(H2O)やフェノール(PL)を別に供給してポリカーボネート樹脂の分解を行うこともできる。また、触媒として、塩基(base)を別に供給してもよい。水やフェノール、塩基を別に供給できるようにすることで、水とフェノールの比率や触媒量を適宜調整することができる。このときに追加で供給される塩基としては、炭酸ジフェニルの製造時に触媒として用いられるピリジンが好ましい。PC分解後のビスフェノールAを含む溶液(L100)は、触媒の留去や中和などの次工程を行う設備に送られ、ビスフェノールAが回収される(図示せず)。
<廃水を利用したビスフェノールの製造方法(R2)>
 図2は、炭酸ジフェニルの製造時に副生した塩化水素の回収プラント2から排出される塩酸廃水を利用してビスフェノールを製造する方法の一例を説明するためのフロー図である。
(塩素の回収)
 DPC反応器10内で副生した塩化水素ガス(G10、G12)は、活性炭塔20に送られて、フェノールなどの有機不純物が吸着除去される。活性炭で処理後の塩化水素ガス(G20)は、吸収塔21に送られる。塩化水素ガス(G20)は、吸収塔21に供給される水(L20)又は希塩酸(L21、塩化水素の不飽和水溶液)に吸収され、濃塩酸(L23)として排出され、タンク22に貯留される(工程(c1))。次いで、放散塔23に送られ、蒸留され、塔頂からは純度の高い塩化水素ガス(G21)が留出する。また、放散塔23の塔底からは希塩酸(L24)が排出され、タンク24に貯留される(工程(c2))。タンク24に貯留された希塩酸(L24)は、不純物の濃縮を防ぐために一定量の希塩酸(L24)が塩酸廃水(L25)としてタンク24から排出され、残りの希塩酸(L26)は吸収塔21に戻される(工程(c3))。なお、塩酸廃水(L25)は、水、塩化水素及びブロモフェノール類(モノブロモフェノール及び/又はジブロモフェノール)を含む。
(ビスフェノールの製造)
 タンク24から排出される塩酸廃水(L25)は、分解槽102に送られ、ビスフェノールA型のポリカーボネート樹脂(PC)、及びフェノール(PL)と混合され、ポリカーボネート樹脂の分解が行われる。また、分解槽102で調製される反応液は、少なくとも一部に塩酸廃水(L25)を含めばよい。したがって、分解槽102に塩酸廃水(L25)に加えて、塩酸廃水(L25)でない水(H2O)を別に供給してポリカーボネート樹脂の分解を行うこともできる。また、触媒として、酸(acid)を別に供給してもよい。このときに追加で供給される酸としては、塩酸が好ましい。水や酸を別に供給できるようにすることで、触媒量を適宜調整することができる。PC分解後のビスフェノールAを含む溶液(L102)は、触媒の留去や中和などの次工程を行う設備に送られ、ビスフェノールAが回収される(図示せず)。
<廃水を利用したビスフェノールの製造方法(R3)>
 図3は、塩化カルボニルの製造プラント3に設けられる除害塔34から排出される水酸化ナトリウム廃水を利用してビスフェノールを製造する方法の一例を説明するためのフロー図である。
(塩化カルボニルの製造と未液化ガスの処理)
 塩化カルボニルの製造プラント3では、まず、一酸化炭素ガス(CO)と塩素ガス(CL2)とを粒状活性炭(触媒)を充填したCDC反応器30に供給し、粗塩化カルボニルガス(G30)を得る(工程(d1))。得られた粗塩化カルボニルガス(G30)は、凝集器31に送られ、ブラインで冷却され、液化した塩化カルボニル(L30)は、タンク32に貯留される(工程(d2))。タンク32に貯留される塩化カルボニル(L30)は蒸発器33で蒸発させ、塩化カルボニルガス(G1)として炭酸ジフェニルの製造プラントなどに使用される(図示せず)。
 また、凝縮器31で液化されなかった未液化ガス(G31)は、水酸化ナトリウム水溶液(L31)が循環する除害塔34に供給され、未液化ガス(G31)と水酸化ナトリウム水溶液(L31)を接触させて、未液化ガス(G31)中の塩化カルボニルを分解した後、廃棄ガス(G32)として大気中に排出される(工程(d3))。また、除害塔34では、不純物の濃縮などを防ぐため、循環する水酸化ナトリウム(L31)の一部が水酸化ナトリウム廃水(L32)として排出される(工程(d4))。なお、水酸化ナトリウム廃水(L32)は、水、水酸化ナトリウム、塩化ナトリウム及び四塩化炭素を含む。
(ビスフェノールの製造)
 除害塔34から排出される水酸化ナトリウム廃水(L32)は、分解槽103に送られ、ビスフェノールA型のポリカーボネート樹脂(PC)、及びフェノール(PL)と混合され、ポリカーボネート樹脂の分解が行われる。また、分解槽103で調製される反応液は、少なくとも一部に水酸化ナトリウム廃水(L32)を含めばよい。したがって、分解槽103に水酸化ナトリウム廃水(L32)に加えて、水酸化ナトリウム廃水(L32)でない水(H2O)を別に供給してポリカーボネート樹脂の分解を行うこともできる。また、触媒として、塩基(base)を別に供給してもよい。このときに追加で供給される塩基としては、水酸化ナトリウムが好ましい。水や触媒を別に供給できるようにすることで、触媒量を適宜調整することができる。PC分解後のビスフェノールAを含む溶液(L103)は、触媒の留去や中和などの次工程を行う設備に送られ、ビスフェノールAが回収される(図示せず)。
<ビスフェノールの用途>
 本発明のビスフェノールの製造方法で得られるビスフェノール(以下、「再生ビスフェノール」と記載する場合がある。)は、光学材料、記録材料、絶縁材料、透明材料、電子材料、接着材料、耐熱材料など種々の用途に用いられるポリエーテル樹脂、ポリエステル樹脂、ポリアリレ-ト樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、アクリル樹脂など種々の熱可塑性樹脂や、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリベンゾオキサジン樹脂、シアネート樹脂など種々の熱硬化性樹脂などの構成成分、硬化剤、添加剤もしくはそれらの前駆体などとして用いることができる。また、感熱記録材料等の顕色剤や退色防止剤、殺菌剤、防菌防カビ剤等の添加剤としても有用である。
 これらのうち、良好な機械物性を付与できるため、熱可塑性樹脂、熱硬化性樹脂の原料(モノマ-)として用いることが好ましく、中でもポリカーボネート樹脂、エポキシ樹脂の原料として用いることがより好ましい。また、顕色剤として用いることも好ましく、特にロイコ染料、変色温度調整剤と組み合わせて用いることがより好ましい。
<二酸化炭素の製造方法>
 本発明は、本発明のビスフェノールの製造方法で生成した二酸化炭素を回収する、二酸化炭素の製造方法(以下、「本発明の二酸化炭素の製造方法」と記載する場合がある。)に関するものである。本発明の二酸化炭素の製造方法によれば、温和で環境負荷の小さい条件で、効率的にポリカーボネート樹脂を分解させて二酸化炭素を得ることができる。上記の通り、本発明のビスフェノールの製造方法では、ポリカーボネート樹脂の分解反応及び/又は分解反応後の中和により、二酸化炭素が生成する。この二酸化炭素を回収し、炭酸ジメチルや炭酸ジフェニル等の炭酸ジエステルの原料や、エチレンカーボネート等の炭酸アルキレンの原料、一酸化炭素の原料等とすることができる。
 具体的には、ポリカーボネート樹脂の分解に用いる触媒が塩基である場合、本発明の二酸化炭素の製造方法は、ポリカーボネート樹脂を、芳香族モノアルコール、水及び塩基(触媒)の存在下で分解させる工程と、前記ポリカーボネート樹脂の分解により生成した二酸化炭素を回収する工程を有するものとすることができる。
 また、ポリカーボネート樹脂の分解に用いる触媒が塩基である場合、分解反応後の中和の際にも二酸化炭素が発生するため、本発明の二酸化炭素の製造方法は、ポリカーボネート樹脂を、芳香族モノアルコール、水及び塩基(触媒)の存在下で分解させる工程と、前記ポリカーボネート樹脂を分解させた反応液を中和する工程と、前記ポリカーボネート樹脂の分解及び/又は前記中和により生成した二酸化炭素を回収する工程を有するものとしてもよい。
 ポリカーボネート樹脂の分解に用いる触媒が酸である場合、本発明の二酸化炭素の製造方法は、ポリカーボネート樹脂を、芳香族モノアルコール、水及び酸(触媒)の存在下で分解させる工程と、前記ポリカーボネート樹脂の分解により生成した二酸化炭素を回収する工程を有するものとすることができる。
 二酸化炭素の回収は、上記の通り、常法により行うことができ、その他の不純物に合わせて適宜選択できる。例えば、物理吸収法、化学吸収法、深冷分離法、膜分離法、圧力スイング吸着法等が適用できる。
<炭酸ジエステルの製造方法>
 本発明は、本発明の二酸化炭素の製造方法で得られた二酸化炭素(以下、「再生二酸化炭素」と称する場合がある。)を用いて、炭酸ジエステルを製造する、炭酸ジエステルの製造方法(以下、「本発明の炭酸ジエステルの製造方法」と記載する場合がある。)に関するものである。
 本発明の炭酸ジエステルの製造方法は、二酸化炭素を原料とする、公知の炭酸ジエステルの製造方法を利用することができる。また、原料の二酸化炭素の少なくとも一部に再生二酸化炭素を用いるものであればよく、二酸化炭素中の再生二酸化炭素の含有量に特に制限はない。例えば、二酸化炭素中の再生二酸化炭素の含有量は、0.1体積%以上が好ましく、0.5体積%以上がより好ましい。
 本発明の炭酸ジエステルの製造方法により、炭酸ジメチル等の炭酸ジアルキルや、炭酸ジフェニル等の炭酸ジアリールなどを製造することができる。本発明の炭酸ジエステルの製造方法により得られた炭酸ジエステルは、ポリカーボネート樹脂の原料や、電解液等として用いることができる。
 例えば、本発明の炭酸ジエステルの製造方法は、下記(M1)に記載の炭酸ジアルキルの製造方法や、下記(M2)又は(M3)に記載の炭酸ジアリールの製造方法等を利用することができる。
(M1)二酸化炭素と脂肪族モノアルコールとを反応させて炭酸ジアルキルを得る方法
(M2)二酸化炭素と脂肪族モノアルコールとを反応させて炭酸ジアルキルを得、得られた炭酸ジアルキルと芳香族モノアルコールとを反応させて、炭酸ジアリールを得る方法
(M3)二酸化炭素とコークスから一酸化炭素を得、得られた一酸化炭素と塩素とを反応させて塩化カルボニルを得、得られた塩化カルボニルと芳香族モノアルコールとを反応させて、炭酸ジアリールを得る方法
 脂肪族モノアルコールとしては、例えば、炭素数1~10のアルコールが挙げられる。メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール等の炭素数1~6のアルコールが好ましく、メタノール又はブタノールがより好ましい。
 芳香族モノアルコールとしては、本発明のビスフェノールの製造方法に用いられる芳香族モノアルコールと同様のものを用いることができ、フェノールであることが好ましい。
 また、各反応は、公知の触媒の存在下で行っても良い。触媒の存在下で、二酸化炭素と脂肪族モノアルコールを反応させてもよく、触媒としては、酸化セリウム等の公知の触媒が挙げられる。炭酸ジアルキルと芳香族モノアルコールとの反応に用いられる触媒としては、例えば、テトラフェノキシチタンなどの有機チタン触媒を用いることができる。
 中でも、上記(M1)又は(M2)のように、本発明の炭酸ジエステルの製造方法は、本発明の二酸化炭素の製造方法で得られた二酸化炭素を含む二酸化炭素と脂肪族モノアルコールとを反応させる工程を有する方法とすることが好ましい。
<再生ポリカーボネート樹脂の製造方法>
 本発明の再生ポリカーボネート樹脂の製造方法は、本発明のビスフェノールの製造方法で得られたビスフェノール(再生ビスフェノール)を含むビスフェノール原料、及び/又は、本発明の炭酸ジエステルの製造方法で得られた炭酸ジエステル(以下、「再生炭酸ジエステル」と称する場合がある。)を含む炭酸ジエステル原料を用いて、再生ポリカーボネート樹脂を製造する方法である。
 以下、再生ビスフェノールを含むビスフェノール原料を用いて再生ポリカーボネート樹脂を製造する方法を、「第一の再生ポリカーボネート樹脂の製造方法」とし、再生炭酸ジエステルを含む炭酸ジエステル原料を用いて再生ポリカーボネート樹脂を製造する方法を、「第二の再生ポリカーボネート樹脂の製造方法」として説明する。また、「第一の再生ポリカーボネート樹脂の製造方法」と「第二の再生ポリカーボネート樹脂の製造方法」をまとめて、「本発明の再生ポリカーボネート樹脂の製造方法」と記載する。
(第一の再生ポリカーボネート樹脂の製造方法)
 第一の再生ポリカーボネート樹脂の製造方法は、本発明のビスフェノールの製造方法で得られたビスフェノール(再生ビスフェノール)を含むビスフェノール原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法である。第一の再生ポリカーボネート樹脂の製造方法は、廃プラスチック等に含まれるポリカーボネート樹脂をモノマーであるビスフェノールまで分解して得られる再生ビスフェノールを原料としてポリカーボネート樹脂の製造するケミカルリサイクル方法を利用するものである。
 第一の再生ポリカーボネート樹脂の製造方法により製造される再生ポリカーボネート樹脂は、ビスフェノールを原料とする公知のポリカーボネート樹脂の製造方法を利用することができる。例えば、再生ビスフェノール(本発明のビスフェノールの製造方法により、ポリカーボネート樹脂を分解することによって得られたビスフェノール)を含むビスフェノール原料と炭酸ジエステル原料とを重合させることで得ることができる。重合は公知の方法を適宜選択して行うことができる。
 例えば、再生ビスフェノールを含むビスフェノール原料と、炭酸ジフェニル等の炭酸ジエステル原料とを、アルカリ金属化合物及び/又はアルカリ土類金属化合物の存在下でエステル交換反応させる方法などにより再生ポリカーボネート樹脂を製造することができる。
 再生ビスフェノールは、ビスフェノール原料の全部として使用してもよいし、再生ビスフェノールでない一般のビスフェノールと混合してビスフェノール原料の一部として使用してもよい。ビスフェノール原料に対する再生ビスフェノールの量に特に限定はなく、0.1質量%以上や、1質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上など任意である。再生ビスフェノールの割合が多いほど、環境に優しいため、環境への配慮の観点からは、ビスフェノール原料に対する再生ビスフェノールの量は、多いことが好ましい。
 また、炭酸ジエステル原料は、再生炭酸ジエステルを含むものとしてもよいし、一般の炭酸ジエステルだけを使用し、再生炭酸ジエステルを含まないものとしてもよい。
 上記エステル交換反応は、公知の方法を適宜選択して行うことができるが、以下に炭酸ジエステル原料として炭酸ジフェニルを用いた方法の一例を説明する。
 上記の第一の再生ポリカーボネート樹脂の製造方法において、炭酸ジフェニルは、ビスフェノール原料に対して過剰量用いることが好ましい。該ビスフェノール原料に対して用いる炭酸ジフェニルの量は、製造された再生ポリカーボネート樹脂に末端水酸基が少なく、ポリマーの熱安定性に優れる点では大きいことが好ましく、また、エステル交換反応速度が速く、所望の分子量の再生ポリカーボネート樹脂を製造し易い点では少ないことが好ましい。これらのことから、ビスフェノール原料1モルに対する使用する炭酸ジフェニルの量は、通常1.001モル以上、好ましくは1.002モル以上であり、また、通常1.3モル以下、好ましくは1.2モル以下である。
 原料の供給方法としては、ビスフェノール原料及び炭酸ジフェニルを固体で供給することもできるが、一方又は両方を、溶融させて液体状態で供給することが好ましい。
 炭酸ジフェニルとビスフェノール原料とのエステル交換反応で再生ポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。このエステル交換触媒として、アルカリ金属化合物及び/又はアルカリ土類金属化合物を使用するのが好ましい。これらは、1種で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。実用的には、アルカリ金属化合物を用いることが望ましい。
 ビスフェノール原料又は炭酸ジフェニル1モルに対して用いられる触媒量は、通常0.05μモル以上、好ましくは0.08μモル以上、更に好ましくは0.10μモル以上である。また、通常100μモル以下、好ましくは50μモル以下、更に好ましくは20μモル以下である。
 触媒の使用量が上記範囲内であることにより、所望の分子量の再生ポリカーボネート樹脂を製造するのに必要な重合活性を得やすく、且つ、ポリマー色相に優れ、また過度のポリマーの分岐化が進まず、成形時の流動性に優れたポリカーボネート樹脂を得やすい。
 上記方法により再生ポリカーボネート樹脂を製造するには、上記の両原料を、原料混合槽に連続的に供給し、得られた混合物とエステル交換触媒を重合槽に連続的に供給することが好ましい。
 エステル交換法による再生ポリカーボネート樹脂の製造においては、通常、原料混合槽に供給された両原料は、均一に攪拌された後、触媒が添加される重合槽に供給され、ポリマーが生産される。
(第二の再生ポリカーボネート樹脂の製造方法)
 第二の再生ポリカーボネート樹脂の製造方法は、本発明の炭酸ジエステルの製造方法で得られた炭酸ジエステル(再生炭酸ジエステル)を含む炭酸ジエステル原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法である。第二の再生ポリカーボネート樹脂の製造方法は、再生炭酸ジエステルを含む炭酸ジエステル原料を用いる以外は、公知のポリカーボネート樹脂の重合方法を適宜選択して行うことができる。例えば、ビスフェノール原料と再生炭酸ジエステルを含む炭酸ジエステル原料とを反応させ、再生ポリカーボネート樹脂を製造することができる。再生炭酸ジエステルを含む炭酸ジエステル原料を用いる以外の、ビスフェノール原料と炭酸ジエステル原料との比率や用いる触媒等は、第一の再生ポリカーネート樹脂の製造方法に記載の方法と同様である。
 再生炭酸ジエステルは、炭酸ジエステル原料の全部として使用してもよいし、再生炭酸ジエステルでない一般の炭酸ジエステルと混合して炭酸ジエステル原料の一部として使用してもよい。炭酸ジエステル原料に対する再生炭酸ジエステルの量に特に限定はなく、0.1質量%以上や、1質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上など任意である。環境への配慮の観点からは、炭酸ジエステル原料に対する再生炭酸ジエステルの量は、多いことが好ましい。
 第二の再生ポリカーボネート樹脂の製造方法における炭酸ジエステル原料は、本発明の炭酸ジエステルの製造方法で得られた炭酸ジアリールを含む炭酸ジアリール原料であることが好ましく、本発明の炭酸ジエステルの製造方法で得られた炭酸ジフェニルを含む炭酸ジフェニル原料であることがより好ましい。
 また、再生炭酸ジエステルを含む炭酸ジエステル原料を用いる場合、ビスフェノール原料は、再生ビスフェノールを含むものとしてもよいし、一般のビスフェノールだけを使用し、再生ビスフェノールを含まないものとしてもよい。
(再生ポリカーボネート樹脂及びその組成物)
 本発明の再生ポリカーボネート樹脂の製造方法により得られた再生ポリカーボネート樹脂は、そのまま用いてもよいし、未使用のポリカーボネート樹脂と再生ポリカーボネート樹脂とを含む再生ポリカーボネート樹脂組成物として用いてもよい。再生ポリカーボネート樹脂組成物は、公知の混練方法等を適宜選択して、未使用のポリカーボネート樹脂と再生ポリカーボネート樹脂とを混合することで得ることができる。未使用のポリカーボネート樹脂と再生ポリカーボネート樹脂とを含む再生ポリカーボネート樹脂組成物とする場合、再生ポリカーボネート樹脂の量に特に限定はないが、再生ポリカーボネート樹脂の割合が多いほど、環境に優しい。そのため、環境への配慮の観点からは、再生ポリカーボネート樹脂組成物に対する再生ポリカーボネート樹脂の量は、50質量%以上が好ましく、70質量%以上、80質量%以上、90質量%以上の順でより好ましい。
 得られた再生ポリカーボネート樹脂や組成物は、未使用のポリカーボネート樹脂と同様に、光学部材や光学記録媒体などの各種成形品に成形加工することができる。
<エポキシ樹脂の製造方法>
 本発明は、本発明のビスフェノールの製造方法で得られたビスフェノールを用いて製造する、エポキシ樹脂の製造方法に関するものである。また、得られたエポキシ樹脂を、多価ヒドロキシ化合物原料と更に反応させ、エポキシ樹脂を製造してもよい。
 このように、本発明のエポキシ樹脂の製造方法は、原料の少なくとも一部に、再生ビスフェノール及び/又は再生ビスフェノールを用いて製造されたエポキシ樹脂を用いてエポキシ樹脂を製造する方法である。本発明のエポキシ樹脂の製造方法は、再生ビスフェノール(本発明のビスフェノールの製造方法で得られたビスフェノール)及び/又は再生ビスフェノールを用いて製造されたエポキシ樹脂を原料として用いる以外は、特に制限なく、公知のエポキシ樹脂の製造方法を利用することができる。例えば、再生ビスフェノールは、後述する通り、一段法や酸化法、二段法を利用して製造する際の多価ヒドロキシ化合物原料の少なくとも一部として用いることができる。得られたエポキシ樹脂は、二段法を利用して製造する際のエポキシ樹脂原料の少なくとも一部として用いることもできる。
 なお、「エポキシ樹脂原料」とは、本発明のエポキシ樹脂の製造方法により得られるエポキシ樹脂(以下、「再生エポキシ樹脂」と記載する場合がある。)の原料として用いられるエポキシ樹脂を意味する。「多価ヒドロキシ化合物」は、2価以上のフェノール化合物及び2価以上のアルコール化合物の総称であり、「多価ヒドロキシ化合物原料」とは、再生エポキシ樹脂の原料として用いられる多価ヒドロキシ化合物を意味する。
 本発明のエポキシ樹脂の製造方法としては、一段法、酸化法、二段法などを利用することができる。
 一段法によるエポキシ樹脂の製造方法は、再生ビスフェノール(本発明のビスフェノールの製造方法で得られるビスフェノール)を用いてエピハロヒドリンと反応させてエポキシ樹脂を得る方法である。
 酸化法によるエポキシ樹脂の製造方法は、再生ビスフェノールを、ハロゲン化アリル(塩化アリルや臭化アリル等)を用いてアリル化した後に、酸化反応させてエポキシ樹脂を得る方法である。
 二段法によるエポキシ樹脂の製造方法は、エポキシ樹脂原料と多価ヒドロキシ化合物原料とを反応させる方法であり、原料として、再生ビスフェノール及び/又は再生ビスフェノールを用いて製造されたエポキシ樹脂を用いる。
 以下、一段法、酸化法、及び二段法を利用したエポキシ樹脂の製造方法について説明する。
(一段法によるエポキシ樹脂の製造方法)
 一段法によるエポキシ樹脂の製造方法は、公知の製造方法であれば特に制限はないが、以下に詳述する。
 一段法によるエポキシ樹脂の製造方法は、再生ビスフェノールに、再生ビスフェノール以外の多価ヒドロキシ化合物(以下、「他の多価ヒドロキシ化合物」と称す場合がある。)を併用して製造してもよい。すなわち、一段法によるエポキシ樹脂の製造方法は、多価ヒドロキシ化合物原料とエピハロヒドリンと反応させてエポキシ樹脂を得る方法であり、多価ヒドロキシ化合物原料の少なくとも一部が、再生ビスフェノールである方法とすることができる。
 多価ヒドロキシ化合物原料における再生ビスフェノールの含有量は特に限定されないが、再生ビスフェノールの含有量が高いと環境に優しいことから、1~100質量%が好ましく、10~100質量%がより好ましい。
 ここで、「他の多価ヒドロキシ化合物」とは、再生ビスフェノールを除く、2価以上のフェノール化合物及び2価以上のアルコール化合物の総称である。一段法によるエポキシ樹脂の製造方法においては、「多価ヒドロキシ化合物原料」は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物である。
 他の多価ヒドロキシ化合物としては、ビスフェノールA、テトラメチルビスフェノールA、ビスフェノールF、テトラメチルビスフェノールF、ビスフェノールS、ビスフェノールC、ビスフェノールAD、ビスフェノールAF、ハイドロキノン、レゾルシン、メチルレゾルシン、ビフェノール、テトラメチルビフェノール、ジヒドロキシナフタレン、ジヒドロキシジフェニルエーテル、チオジフェノール類、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、テルペンフェノール樹脂、ジシクロペンタジエンフェノール樹脂、ビスフェノールAノボラック樹脂、ナフトールノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂等の種々の多価フェノール類や、種々のフェノール類とベンズアルデヒド、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール等の種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂類、キシレン樹脂とフェノール類との縮合反応で得られる多価フェノール樹脂類、重質油又はピッチ類とフェノール類とホルムアルデヒド類との共縮合樹脂等の各種のフェノール樹脂類、エチレングリコール、トリメチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等の鎖状脂肪族ジオール類、シクロヘキサンジオール、シクロデカンジオール等の環状脂肪族ジオール類、ポリエチレンエーテルグリコール、ポリオキシトリメチレンエーテルグリコール、ポリプロピレンエーテルグリコール等のポリアルキレンエーテルグリコール類等が例示される。
 反応に際しては、多価ヒドロキシ化合物原料を、エピハロヒドリンに溶解させて均一な溶液とする。エピハロヒドリンとしては、通常、エピクロロヒドリン又はエピブロモヒドリンが用いられるが、本発明ではエピクロロヒドリンが好ましい。
 エピハロヒドリンの使用量は、多価ヒドロキシ化合物原料(全多価ヒドロキシ化合物)の水酸基1当量あたり、通常1.0~14.0当量、特に2.0~10.0当量に相当する量であることが好ましい。エピハロヒドリンの量が上記下限以上であると、高分子量化反応を制御しやすく、得られるエポキシ樹脂を適切なエポキシ当量とすることができるために好ましい。一方、エピハロヒドリンの量が上記上限以下であると、生産効率が向上する傾向にあるために好ましい。
 次いで、上記溶液を撹拌しながら、多価ヒドロキシ化合物原料の水酸基1当量あたり通常0.1~3.0当量、好ましくは0.8~2.0当量に相当する量のアルカリ金属水酸化物を固体又は水溶液で加えて反応させる。アルカリ金属水酸化物の添加量が上記下限以上であると、未反応の水酸基と生成したエポキシ樹脂が反応しにくく、高分子量化反応を制御しやすいために好ましい。また、アルカリ金属水酸化物の添加量が上記上限以下であると、副反応による不純物が生成しにくいために好ましい。ここで用いられるアルカリ金属水酸化物としては通常、水酸化ナトリウム又は水酸化カリウムが挙げられる。
 この反応は、常圧下又は減圧下で行うことができ、反応温度は好ましくは20~200℃、より好ましくは40~150℃である。反応温度が上記下限以上であると、反応を進行させやすく、且つ反応を制御しやすいために好ましい。また、反応温度が上記上限以下であると、副反応が進行しにくく、特にポリマー量を低減しやすいために好ましい。
 また、この反応は、必要に応じて所定の温度を保持しながら反応液を共沸させ、揮発する蒸気を冷却して得られた凝縮液を油/水分離し、水分を除いた油分を反応系へ戻す方法により脱水しながら行われる。アルカリ金属水酸化物は、急激な反応を抑えるために、好ましくは0.1~24時間、より好ましくは0.5~10時間かけて少量ずつを断続的又は連続的に添加する。アルカリ金属水酸化物の添加時間が上記下限以上であると、急激に反応が進行するのを防ぐことができ、反応温度の制御がしやすくなるために好ましい。添加時間が上記上限以下であると、ポリマー量を低減しやすいため好ましい。
 反応終了後、不溶性の副生塩を濾別して除くか、水洗により除去した後、未反応のエピハロヒドリンを加温及び/又は減圧留去によって留去し、除くことができる。
 また、この反応においては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミド等の第四級アンモニウム塩、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等の第三級アミン、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類、エチルトリフェニルホスホニウムアイオダイド等のホスホニウム塩、トリフェニルホスフィン等のホスフィン類等の触媒を用いてもよい。
 更に、この反応においては、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジオキサン、エチレングリコールジメチルエーテル等のエーテル類、メトキシプロパノール等のグリコールエーテル類、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等の不活性な有機溶媒を用いてもよい。
[全塩素含有量が低下したエポキシ樹脂の製造]
 上記のようにして得られたエポキシ樹脂の全塩素含有量を低減する必要がある場合には、アルカリとの反応によって全塩素含有量が低下したエポキシ樹脂を製造することができる。
 アルカリとの反応には、エポキシ樹脂を溶解させるための有機溶媒を用いてもよい。反応に用いる有機溶媒は、特に制限されるものではないが、製造効率、取り扱い性、作業性等の面から、ケトン系の有機溶媒を用いることが好ましい。また、より加水分解性塩素量を下げる観点から、非プロトン性極性溶媒を用いても良い。
 ケトン系の有機溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒が挙げられる。効果や後処理の容易さなどから、特にメチルイソブチルケトンが好ましい。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非プロトン性極性溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの非プロトン性極性溶媒の中では、入手し易く、効果が優れていることから、ジメチルスルホキシドが好ましい。
 上記の溶媒の使用量は、アルカリによる処理に供する液中のエポキシ樹脂の濃度が通常1~95質量%となる量であり、好ましくは5~80質量%となる量である。
 アルカリとしては、アルカリ金属水酸化物の固体又は溶液を使用することができる。アルカリ金属水酸化物としては、水酸化カリウム、水酸化ナトリウム等が挙げられ、好ましくは水酸化ナトリウムである。また、アルカリ金属水酸化物は、有機溶媒や水に溶解したものを使用してもよい。好ましくは、アルカリ金属水酸化物を水溶媒、又は有機溶媒に溶解した溶液として用いる。
 使用するアルカリ金属水酸化物の量としては、アルカリ金属水酸化物の固形分換算でエポキシ樹脂100質量部に対して0.01~20.0質量部以下が好ましい。より好ましくは0.10~10.0質量部である。アルカリ金属水酸化物の使用量が上記下限以下の場合、全塩素含有量の低減効果が低く、また上記上限以上の場合は、ポリマーが多く生成するため収率が低下する。
 反応温度は好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は好ましくは0.1~24時間、より好ましくは0.5~10時間である。
 反応後、水洗等の方法で過剰のアルカリ金属水酸化物や副性塩を除去し、更に有機溶媒を加温及び/又は減圧留去及び/又は水蒸気蒸留で除去することができる。
(酸化法によるエポキシ樹脂の製造方法)
 酸化法によるエポキシ樹脂の製造方法は、公知の製造方法であれば特に制限はないが、例えば、特開2011-225711号公報、特開2012-092247号公報、特開2012-111858号公報等に記載の方法に従って実施することができる。
 酸化法によるエポキシ樹脂の製造方法においても、一段法と同様に、再生ビスフェノールに、再生ビスフェノール以外の他の多価ヒドロキシ化合物を併用して製造してもよい。すなわち、酸化法によるエポキシ樹脂の製造方法は、多価ヒドロキシ化合物原料を、ハロゲン化アリルを用いてアリル化した後に、酸化反応させてエポキシ樹脂を得る方法であり、多価ヒドロキシ化合物原料の少なくとも一部が、再生ビスフェノールである方法とすることができる。
 酸化法によるエポキシ樹脂の製造方法においては、「多価ヒドロキシ化合物原料」は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物であり、他の多価ヒドロキシ化合物としては、一段法と同様のものが挙げられる。多価ヒドロキシ化合物原料における再生ビスフェノールの含有量は特に限定されないが、再生ビスフェノールの含有量が高いと環境に優しいことから、1~100質量%が好ましく、10~100質量%がより好ましい。
(二段法によるエポキシ樹脂の製造方法)
 二段法によるエポキシ樹脂の製造方法は、公知の製造方法であれば特に制限はないが、以下に詳述する。
 二段法によるエポキシ樹脂の製造方法は、エポキシ樹脂原料と多価ヒドロキシ化合物原料とを反応させる工程を有し、前記エポキシ樹脂原料の少なくとも一部が、再生ビスフェノールを用いて製造されたエポキシ樹脂であり、及び/又は、前記多価ヒドロキシ化合物原料の少なくとも一部が、再生ビスフェノールである、方法とすることができる。
 すなわち、二段法によるエポキシ樹脂の製造方法は、下記方法(i)~方法(iii)のいずれかである。
方法(i):再生ビスフェノールを用いて製造されたエポキシ樹脂以外の他のエポキシ樹脂と、再生ビスフェノールを含む多価ヒドロキシ化合物原料を反応させる方法
 方法(i)において、エポキシ樹脂原料は、再生ビスフェノールを用いて製造されたエポキシ樹脂以外の他のエポキシ樹脂である。また、多価ヒドロキシ化合物原料は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物である。
方法(ii):再生ビスフェノールを用いて製造されたエポキシ樹脂を含むエポキシ樹脂原料と、再生ビスフェノールを含む多価ヒドロキシ化合物原料を反応させる方法
 方法(ii)において、エポキシ樹脂原料は、再生ビスフェノールを用いて製造されたエポキシ樹脂と、必要に応じて用いられる他のエポキシ樹脂をあわせた全エポキシ樹脂である。また、多価ヒドロキシ化合物原料は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物である。
方法(iii):再生ビスフェノールを用いて製造されたエポキシ樹脂を含むエポキシ樹脂原料と、再生ビスフェノール以外の他の多価ヒドロキシ化合物を反応させる方法
 方法(iii)において、エポキシ樹脂原料は、再生ビスフェノールを用いて製造されたエポキシ樹脂と、必要に応じて用いられる他のエポキシ樹脂をあわせた全エポキシ樹脂である。また、多価ヒドロキシ化合物原料は、再生ビスフェノール以外の他の多価ヒドロキシ化合物である。
 方法(ii)及び方法(iii)で用いられる再生ビスフェノールを用いて製造されたエポキシ樹脂は、一段法によるエポキシ樹脂の製造方法や、酸化法によるエポキシ樹脂の製造方法により得ることができる。また、方法(i)で得られたエポキシ樹脂を用いてもよい。なお、再生ビスフェノールを用いて製造されたエポキシ樹脂以外の他のエポキシ樹脂は、エポキシ樹脂硬化物の製造方法において後述する他のエポキシ樹脂と同様であり、他の多価ヒドロキシ化合物は、一段法と同様である。
 方法(i)、方法(ii)において、再生ビスフェノールを含む多価ヒドロキシ化合物における再生ビスフェノールの含有量は特に限定されないが、再生ビスフェノールの含有量が高いと環境に優しいため、1~100質量%が好ましく、10~100質量%がより好ましい。
 また、方法(ii)、方法(ii)において、再生ビスフェノールを用いて製造されたエポキシ樹脂を含むエポキシ樹脂原料における再生ビスフェノールを用いて製造されたエポキシ樹脂の含有量は特に限定されないが、再生ビスフェノールを用いて製造されたエポキシ樹脂の含有量が高いと環境に優しいため、1~100質量%が好ましく、10~100質量%がより好ましい。
 二段法による反応において、エポキシ樹脂原料と多価ヒドロキシ化合物原料の使用量は、その配合当量比で、(エポキシ基当量):(水酸基当量)=1:0.1~2.0となるようにするのが好ましい。より好ましくは、1:0.2~1.2である。この当量比が上記範囲内であると高分子量化を進行させやすく、また、エポキシ基末端をより多く残すことができるため好ましい。
 また、二段法による反応においては触媒を用いてもよく、その触媒としては、エポキシ基とフェノール性水酸基、アルコール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類等が挙げられる。これらの中でも第4級アンモニウム塩が好ましい。また、触媒は1種のみを使用することも、2種以上を組み合わせて使用することもできる。触媒の使用量は、エポキシ樹脂原料に対して、通常0.001~10質量%である。
 また、二段法による反応において、溶媒を用いてもよく、その溶媒としては、エポキシ樹脂原料を溶解するものであれどのようなものでもよい。例えば、芳香族系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒等が挙げられる。溶媒は1種のみで用いてもよく、2種以上を組み合わせて用いることもできる。また溶媒中の樹脂濃度は10~95質量%が好ましい。より好ましくは20~80質量%である。また、反応途中で高粘性生成物が生じたときは溶媒を追加添加して反応を続けることもできる。反応終了後、溶媒は必要に応じて、除去することもできるし、更に追加することもできる。
 二段法による反応において、反応温度は好ましくは20~250℃、より好ましくは50~200℃である。反応温度が上記上限以上の場合、生成するエポキシ樹脂が劣化するおそれがある。また上記下限以下の場合、十分に反応が進まないことがある。また、反応時間は通常0.1~24時間、好ましくは0.5~12時間である。
<エポキシ樹脂硬化物の製造方法>
 本発明は、本発明のエポキシ樹脂の製造方法で得られたエポキシ樹脂と硬化剤を含むエポキシ樹脂組成物を硬化してエポキシ樹脂硬化物を得る、エポキシ樹脂硬化物の製造方法に関するものである。本発明のエポキシ樹脂硬化物の製造方法では、上述する本発明のエポキシ樹脂の製造方法で得られたエポキシ樹脂と硬化剤を混合し、該エポキシ樹脂と硬化剤を含む組成物(以下、「エポキシ樹脂組成物」と称する場合がある。)を得た後、該エポキシ樹脂組成物を硬化してエポキシ樹脂硬化物を得る。
 また、エポキシ樹脂組成物には必要に応じて、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂以外の他のエポキシ樹脂(以下、単に「他のエポキシ樹脂」と称す場合がある。)、硬化剤、硬化促進剤、無機充填剤、カップリング剤等を適宜配合することができる。
 エポキシ樹脂組成物における再生エポキシ樹脂の含有量は特に限定されない。再生エポキシ樹脂の含有量が高いと環境に優しいため、再生エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して、再生エポキシ樹脂は40質量部以上が好ましく、60質量部以上がより好ましい。他のエポキシ樹脂を含む場合、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して、再生エポキシ樹脂は40~99質量部や、60~99質量部などとすることができる。なお、「全エポキシ樹脂成分」とは、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の量に相当し、再生エポキシ樹脂と必要に応じて用いられる他のエポキシ樹脂との合計である。
(硬化剤)
 本発明において硬化剤とは、エポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質を示す。なお、本発明においては、通常、「硬化促進剤」と呼ばれるものであってもエポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質であれば、硬化剤とみなすこととする。
 エポキシ樹脂組成物において、硬化剤の含有量は、全エポキシ樹脂成分100質量部に対して好ましくは0.1~1000質量部である。また、より好ましくは500質量部以下である。
 硬化剤としては、特に制限はなく一般的にエポキシ樹脂硬化剤として知られているものはすべて使用できる。例えば、フェノール系硬化剤、脂肪族アミン、ポリエーテルアミン、脂環式アミン、芳香族アミンなどのアミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、第3級アミン、イミダゾール類等が挙げられる。硬化剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。硬化剤を2種以上併用する場合、これらをあらかじめ混合して混合硬化剤を調製してから使用してもよいし、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂や他のエポキシ樹脂の各成分を混合する際に硬化剤の各成分をそれぞれ別々に添加して同時に混合してもよい。
[フェノール系硬化剤]
 フェノール系硬化剤の具体例としては、再生ビスフェノール、ビスフェノールA、テトラメチルビスフェノールA、ビスフェノールF、テトラメチルビスフェノールF、ビスフェノールC、ビスフェノールS、ビスフェノールAD、ビスフェノールAF、ハイドロキノン、レゾルシン、メチルレゾルシン、ビフェノール、テトラメチルビフェノール、ジヒドロキシナフタレン、ジヒドロキシジフェニルエーテル、チオジフェノール類、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、テルペンフェノール樹脂、ジシクロペンタジエンフェノール樹脂、ビスフェノールAノボラック樹脂、トリスフェノールメタン型樹脂、ナフトールノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂等の種々の多価フェノール類や、種々のフェノール類とベンズアルデヒド、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール等の種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂類、キシレン樹脂とフェノール類との縮合反応で得られる多価フェノール樹脂類、重質油又はピッチ類とフェノール類とホルムアルデヒド類との共縮合樹脂、フェノール・ベンズアルデヒド・キシリレンジメトキサイド重縮合物、フェノール・ベンズアルデヒド・キシリレンジハライド重縮合物、フェノール・ベンズアルデヒド・4,4’-ジメトキサイドビフェニル重縮合物、フェノール・ベンズアルデヒド・4,4’-ジハライドビフェニル重縮合物等の各種のフェノール樹脂類等が挙げられる。
 これらのフェノール系硬化剤は、1種のみで用いても2種以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。
 フェノール系硬化剤の配合量は、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して好ましくは0.1~1000質量部であり、より好ましくは500質量部以下である。
[アミン系硬化剤]
 アミン系硬化剤(ただし、第3級アミンを除く。)の例としては、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられる。
 脂肪族アミン類としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノプロパン、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が例示される。
 ポリエーテルアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が例示される。
 脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N-アミノエチルピペラジン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が例示される。
 芳香族アミン類としては、テトラクロロ-p-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノアニソール、2,4-トルエンジアミン、2,4-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-1,2-ジフェニルエタン、2,4-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、m-アミノフェノール、m-アミノベンジルアミン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α-(m-アミノフェニル)エチルアミン、α-(p-アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等が例示される。
 以上で挙げたアミン系硬化剤は1種のみで用いても2種以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。
 上記のアミン系硬化剤は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分中のエポキシ基に対する硬化剤中の官能基の当量比で0.1~2.0の範囲となるように用いることが好ましい。より好ましくは当量比で0.8~1.2の範囲である。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。
[第3級アミン]
 第3級アミンとしては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等が例示される。
 以上で挙げた第3級アミンは1種のみで用いても2種以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。
 上記の第3級アミンは、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分中のエポキシ基に対する硬化剤中の官能基の当量比で0.1~2.0の範囲となるように用いることが好ましい。より好ましくは当量比で0.8~1.2の範囲である。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。
[酸無水物系硬化剤]
 酸無水物系硬化剤としては、酸無水物、酸無水物の変性物等が挙げられる。
 酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、ドデセニルコハク酸無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック酸無水物、トリアルキルテトラヒドロフタル酸無水物、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、エチレングリコールビストリメリテート二無水物、ヘット酸無水物、ナジック酸無水物、メチルナジック酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等が挙げられる。
 酸無水物の変性物としては、例えば、上述した酸無水物をグリコールで変性したもの等が挙げられる。ここで、変性に用いることのできるグリコールの例としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール等のアルキレングリコール類や、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルグリコール類等が挙げられる。更には、これらのうちの2種以上のグリコール及び/又はポリエーテルグリコールの共重合ポリエーテルグリコールを用いることもできる。
 以上で挙げた酸無水物系硬化剤は1種のみでも2種以上を任意の組み合わせ及び配合量で組み合わせて用いてもよい。
 酸無水物系硬化剤を用いる場合、エポキシ樹脂組成物中の全エポキシ樹脂成分中のエポキシ基に対する硬化剤中の官能基の当量比で0.1~2.0の範囲となるように用いることが好ましい。より好ましくは当量比で0.8~1.2の範囲である。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。
[アミド系硬化剤]
 アミド系硬化剤としてはジシアンジアミド及びその誘導体、ポリアミド樹脂等が挙げられる。
 アミド系硬化剤は1種のみで用いても、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 アミド系硬化剤を用いる場合、エポキシ樹脂組成物中の全エポキシ樹脂成分とアミド系硬化剤との合計に対してアミド系硬化剤が0.1~20質量%となるように用いることが好ましい。
[イミダゾール類]
 イミダゾール類としては、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール類との付加体等が例示される。なお、イミダゾール類は触媒能を有するため、一般的には硬化促進剤にも分類されうるが、本発明においては硬化剤として分類するものとする。
 以上に挙げたイミダゾール類は1種のみでも、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 イミダゾール類を用いる場合、エポキシ樹脂組成物中の全エポキシ樹脂成分とイミダゾール類との合計に対してイミダゾール類が0.1~20質量%となるように用いることが好ましい。
[他の硬化剤]
 エポキシ樹脂組成物においては前記硬化剤以外にその他の硬化剤を用いることができる。エポキシ樹脂組成物に使用することのできるその他の硬化剤は特に制限はなく、一般的にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。
 これらの他の硬化剤は1種のみで用いても、2種以上を組み合わせて用いてもよい。
(他のエポキシ樹脂)
 エポキシ樹脂組成物は、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂以外の他のエポキシ樹脂を含むことができる。他のエポキシ樹脂を含むことにより、様々な物性を向上させることができる。
 エポキシ樹脂組成物に用いることのできる他のエポキシ樹脂は、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂以外のエポキシ樹脂すべてが該当する。具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノール変性キシレン樹脂型エポキシ樹脂、ビスフェノールシクロドデシル型エポキシ樹脂、ビスフェノールジイソプロピリデンレゾルシン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、メチルハイドロキノン型エポキシ樹脂、ジブチルハイドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂、ビフェノール型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ジヒドロキシジフェニルエーテル型エポキシ樹脂、チオジフェノール類から誘導されるエポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシアントラセン型エポキシ樹脂、ジヒドロキシジヒドロアントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロキシスチルベン類から誘導されるエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、テルペンフェノール型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、フェノール・ヒドロキシベンズアルデヒドの縮合物から誘導されるエポキシ樹脂、フェノール・クロトンアルデヒドの縮合物から誘導されるエポキシ樹脂、フェノール・グリオキザールの縮合物から誘導されるエポキシ樹脂、重質油又はピッチ類とフェノール類とホルムアルデヒド類との共縮合樹脂から誘導されるエポキシ樹脂、ジアミノジフェニルメタンから誘導されるエポキシ樹脂、アミノフェノールから誘導されるエポキシ樹脂、キシレンジアミンから誘導されるエポキシ樹脂、メチルヘキサヒドロフタル酸から誘導されるエポキシ樹脂、ダイマー酸から誘導されるエポキシ樹脂等が挙げられる。これらは1種のみで用いても、2種以上を任意の組み合わせ及び配合比率で用いてもよい。
 エポキシ樹脂組成物が、上記の他のエポキシ樹脂を含む場合、その含有量は組成物中の、全エポキシ樹脂成分100質量部に対して好ましくは1~60質量部であり、より好ましくは40質量部以下である。
(硬化促進剤)
 エポキシ樹脂組成物は、硬化促進剤を含むことが好ましい。硬化促進剤を含むことにより、硬化時間の短縮、硬化温度の低温化が可能となり、所望の硬化物を得やすくすることができる。
 硬化促進剤は特に制限されないが、具体例としては、有機ホスフィン類、ホスホニウム塩等のリン系化合物、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体等が挙げられる。
 硬化促進剤として使用可能なリン系化合物としては、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の有機ホスフィン類又はこれら有機ホスフィン類と有機ボロン類との錯体やこれら有機ホスフィン類と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン等の化合物を付加してなる化合物等が例示される。
 以上に挙げた硬化促進剤の中でも有機ホスフィン類、ホスホニウム塩が好ましく、有機ホスフィン類が最も好ましい。また、硬化促進剤は、上記に挙げたもののうち、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 硬化促進剤は、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して0.1質量部以上20質量部以下の範囲で用いることが好ましい。硬化促進剤の含有量が上記下限値以上であると、良好な硬化促進効果を得ることができ、一方、上記上限値以下であると、所望の硬化物性が得られやすいために好ましい。
(無機充填材)
 エポキシ樹脂組成物には無機充填材を配合することができる。無機充填材としては例えば、溶融シリカ、結晶性シリカ、ガラス粉、アルミナ、炭酸カルシウム、硫酸カルシウム、タルク、チッ化ホウ素等が挙げられる。これらは、1種のみで用いても2種以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。無機充填材の配合量はエポキシ樹脂組成物全体の10~95質量%が好ましい。
(離型剤)
 エポキシ樹脂組成物には離型剤を配合することができる。離型剤としては例えば、カルナバワックス等の天然ワックスや、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸類及びその金属塩類、パラフィン等の炭化水素系離型剤を用いることができる。これらは、1種のみで用いても2種以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。
 離型剤の配合量は、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して、好ましくは0.001~10.0質量部である。離型剤の配合量が上記範囲内であると、硬化特性を維持しつつ、良好な離型性を発現することができるために好ましい。
[カップリング剤]
 エポキシ樹脂組成物には、カップリング剤を配合することができる。カップリング剤は無機充填材と併用することが好ましく、カップリング剤を配合することにより、マトリックスであるエポキシ樹脂と無機充填材との接着性を向上させることができる。カップリング剤としてはシランカップリング剤、チタネートカップリング剤等が挙げられる。
 シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン、p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン、更に、エポキシ系、アミノ系、ビニル系の高分子タイプのシラン等が挙げられる。
 チタネートカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジイソプロピルビス(ジオクチルホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
 これらのカップリング剤は、いずれも1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 エポキシ樹脂組成物にカップリング剤を用いる場合、その配合量は、全エポキシ樹脂成分100質量部に対し、好ましくは0.001~10.0質量部である。カップリング剤の配合量が上記下限値以上であると、カップリング剤を配合したことによるマトリックスであるエポキシ樹脂と無機充填材との密着性の向上効果が向上する傾向にあり、一方、カップリング剤の配合量が上記上限値以下であると、得られる硬化物からカップリング剤がブリードアウトしにくくなるために好ましい。
(その他の配合成分)
 エポキシ樹脂組成物には、前記した以外の成分を配合することができる。その他の配合成分としては例えば、難燃剤、可塑剤、反応性希釈剤、顔料等が挙げられ、必要に応じて適宜に配合することができる。ただし、上記で挙げた成分以外のものを配合することを何ら妨げるものではない。
 難燃剤としては、臭素化エポキシ樹脂、臭素化フェノール樹脂等のハロゲン系難燃剤、三酸化アンチモン等のアンチモン化合物、赤燐、リン酸エステル類、ホスフィン類等のリン系難燃剤、メラミン誘導体等の窒素系難燃剤及び水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤等が挙げられる。
(硬化方法)
 エポキシ樹脂組成物を硬化させることによりエポキシ樹脂硬化物を得ることができる。硬化方法について、特に限定はされないが、通常、加熱による熱硬化反応により硬化物を得ることができる。熱硬化反応時には、用いた硬化剤の種類によって硬化温度を適宜選択することが好ましい。例えば、フェノール系硬化剤を用いた場合、硬化温度は通常80~250℃である。またこれらの硬化剤に硬化促進剤を添加することで、その硬化温度を下げることも可能である。反応時間は、0.01~20時間が好ましい。反応時間が上記下限値以上であると硬化反応が十分に進行しやすくなる傾向にあるために好ましい。一方、反応時間が上記上限値以下であると加熱による劣化、加熱時のエネルギーロスを低減しやすいために好ましい。
(用途)
 エポキシ樹脂組成物を硬化して得られるエポキシ樹脂硬化物は線膨張係数が低く、耐熱クラック性に優れた硬化物を得ることができる。
 従って、エポキシ樹脂硬化物はこれらの物性が求められる用途であれば、いかなる用途にも有効に用いることができる。例えば、自動車用電着塗料、船舶・橋梁用重防食塗料、飲料用缶の内面塗装用塗料等の塗料分野;積層板、半導体封止材、絶縁粉体塗料、コイル含浸用等の電気電子分野;橋梁の耐震補強、コンクリート補強、建築物の床材、水道施設のライニング、排水・透水舗装、車両・航空機用接着剤の土木・建築・接着剤分野等の用途にいずれにも好適に用いることができる。
 エポキシ樹脂組成物は、前記用途に対し硬化後に使用してもよく、前記用途の製造工程にて硬化させてもよい。
 以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。
[原料及び試薬]
 ポリカーボネート樹脂は、三菱ケミカルエンジニアリングプラスチックス株式会社のポリカーボネート樹脂「NOVAREX(登録商標) M7027BF」を使用した。
 フェノール、オルトクレゾール、メタクレゾール、クレゾール異性体混合物(オルトクレゾール、メタクレゾール、パラクレゾール)、トルエン、水酸化ナトリウム、水酸化カリウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、トリプロピルアミン、p-トルエンスルホン酸、メタンスルホン酸、35%塩酸、98%硫酸、85%リン酸、酢酸、アセトニトリル、炭酸セシウム、ピリジン、塩化ナトリウム、ジブロモフェノール、及び四塩化炭素は、富士フィルム和光純薬株式会社の試薬を使用した。
 炭酸ジフェニルは、三菱ケミカル株式会社の製品を使用した。
[分析]
 ビスフェノールの生成確認と純度は、高速液体クロマトグラフィーにより、以下の手順と条件で行った。
・装置:島津製作所社製LC-2010A、Waters社 5μm 150mm×4.6mmID
・方式:低圧グラジェント法
・分析温度:40℃
・溶離液組成:
 A液 アセトニトリル
 B液 85%リン酸:水=1mL:999mLの溶液
 分析時間0分では、A液:B液=35:65(体積比、以下同様。)、分析時間0~5分は溶離液組成をA液:B液=35:65に維持した後、分析時間5~40分で徐々にA液:B液=90:10にした。
・流速:0.85mL/分
・検出波長:280nm
 中和廃水に含まれるピリジン及びフェノールの分析は、ガスクロマトグラフィーにより、以下の手順と条件で行った。
・装置:島津製作所社製 GC-2014
    Agilent DB-1 0.530mm×30m 1.5μm
・検出方法:FID
・気化室温度:230℃
・検出器温度:300℃
・分析時間0分~5分では、カラム温度を50℃に保ち、分析時間5~30分はカラム温度を280℃まで徐々に昇温し、分析時間30分~40分はカラム温度を280℃に維持した。
・定量法:ビフェニルを内部標準とした内部標準方法
 中和廃水に含まれる塩化ナトリウムの量は、中和廃水を蒸発乾固させ、残分の質量より算出した。
 塩酸廃水に含まれるジブロモフェノールの分析は、ガスクロマトグラフィーにより、以下の手順と条件で行った。
・装置:島津製作所社製 GC-2014
    Agilent DB-1 0.530mm×30m 1.5μm
・検出方法:FID
・気化室温度:230℃
・検出器温度:300℃
・分析時間0分~5分では、カラム温度を50℃に保ち、分析時間5~30分はカラム温度を280℃まで徐々に昇温し、分析時間30分~40分はカラム温度を280℃に維持した。
・定量は、絶対検量線法で実施した。
 塩酸廃水に含まれる塩化水素濃度は、中和滴定により下記の装置で測定した。
装置:京都電子工業株式会社 電位差自動滴定装置AT-610
 水酸化ナトリウム廃水に含まれる四塩化炭素の分析は、ガスクロマトグラフィーにより、以下の手順と条件で行った。
・装置: アジレント・テクノロジー株式会社
   J&W DB-17 0.32mm×30m×0.5μm
・分析時間0分ではカラム温度を50℃とし、毎分10℃で昇温させ、250℃とした。
・検出器:MS
 水酸化ナトリウム廃水に含まれる水酸化ナトリウム濃度は、下記の装置で測定した。
・装置:京都電子工業株式会社 電位差自動滴定装置AT-610
 水酸化ナトリウム廃水に含まれる塩化ナトリウム濃度は、下記の装置で塩化物イオン濃度を測定し、得られた塩化物イオンと同モルとなるナトリウム量を求めて、算出した。
・装置:京都電子工業株式会社 電位差自動滴定装置AT-610
[粘度平均分子量(Mv)]
 粘度平均分子量(Mv)は、ポリカーボネート樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管を用いて20℃における比粘度(ηsp)を測定し、下記の式により粘度平均分子量(Mv)を算出した。
 ηsp/C=[η](1+0.28ηsp)
 [η]=1.23×10-4Mv0.83
[ビスフェノールの溶融色]
 ビスフェノールの溶融色は、日電理化硝子社製試験管「P-24」(2mmφ×200mm)にビスフェノールを20g入れて、174℃で30分溶融させ、日本電色工業社製「OME7700」を用い、そのハーゼン色数を測定した。
[pHの測定]
 pHの測定は、株式会社堀場製作所pH計「pH METER ES-73」を用いて、フラスコから取り出した25℃の水相に対して実施した。
(実施例1)
[実施例1-1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂80g(ポリカーボネート樹脂の繰り返し単位は254g/モルであることから、繰り返し単位換算で80g÷254g/モル=0.315モル)、水30g、フェノール250g、25質量%水酸化ナトリウム水溶液320gを室温で入れた。反応液はスラリー状であった。
 その後、内温を80℃に昇温し、80℃を維持したまま5時間反応させ、均一溶液を得た。
 得られた均一溶液にトルエン200gを入れた後、水相がpH8.6となるまで35質量%塩酸を加えたところ、二酸化炭素のガスが発生した。
 その後、攪拌を停止して油水分離し、水相をフラスコから抜き出し、有機相1を得た。得られた有機相1の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成を確認した。
 得られた有機相1を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移し、留出量を見ながら、内温を徐々に180℃まで昇温し、内圧を常圧から徐々に100hPaまで下げて、水、トルエンとフェノールを留去させた。
 その後、フラスコ内を窒素で復圧して、内温を80℃まで降温させ、トルエン200gを加えて、有機相2を得た。得られた有機相2を脱塩水50gで5回洗浄し、有機相3を得た。
 得られた有機相3を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。
 得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA35gを得た。得られたビスフェノールAの純度は99.8質量%、溶融色はAPHA165であった。
[実施例1-2]
 実施例1-1において、25質量%の水酸化ナトリウム水溶液320gの代わりに、25質量%の水酸化カリウム水溶液320gを用いた以外は、実施1-1と同様に実施した。得られたビスフェノールAは41gであり、純度は99.8質量%、溶融色はAPHA157であった。
(実施例2)
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂80g(繰り返し単位換算で0.315モル)、水30g、フェノール250g、炭酸ナトリウム10gを室温で入れた。反応液はスラリー状であった。
 その後、内温を85℃に昇温し、85℃を維持したまま5時間反応させ、均一溶液を得た。
 得られた均一溶液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.2質量%であった。均一溶液の質量は、80g+30g+250g+10g=370gであり、生成したビスフェノールは19.2質量%×370g÷228g/モル=0.312モルとなり、反応率は0.312モル÷0.315モル×100=99%であった。
(実施例3)
[実施例3-1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂80g(繰り返し単位換算で0.315モル)、水30g、フェノール240g、40質量%のメチルアミン水溶液2gを室温で入れた。反応液はスラリー状であった。
 その後、内温を80℃に昇温し、80℃を維持したまま5時間反応させて、均一溶液を得た。反応中、二酸化炭素の発生が確認された。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.9質量%であった。
 均一溶液の質量は、80g+30g+240g+2g=352gであり、生成したビスフェノールは19.9質量%×352g÷228.29g/モル=0.307モルとなり、反応率は0.307モル÷0.315モル×100=97%であった。
[実施例3-2]
 実施例3-1において、40質量%のメチルアミン水溶液2gの代わりに、50質量%のジメチルアミン水溶液2gを加えた以外は、実施例3-1と同様に実施した。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.6質量%であった。
 均一溶液の質量は、80g+30g+240g+2g=352gであり、生成したビスフェノールは19.6質量%×352g÷228.29g/モル=0.302モルとなり、反応率は0.302モル÷0.315モル×100=96%であった。
[実施例3-3]
 実施例3-1において、40質量%のメチルアミン水溶液2gの代わりに、トリメチルアミン水溶液5gを加えた以外は、実施例3-1と同様に実施した。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.6質量%であった。
 均一溶液の質量は、80g+30g+240g+5g=355gであり、生成したビスフェノールは19.6質量%×355g÷228.29g/モル=0.304モルとなり、反応率は0.304モル÷0.315モル×100=97%であった。
[実施例3-4]
 実施例3-1において、40質量%のメチルアミン水溶液2gの代わりに、70質量%のエチルアミン水溶液5gを加えた以外は、実施例3-1と同様に実施した。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が20.1質量%であった。
 均一溶液の質量は、80g+30g+240g+5g=355gであり、生成したビスフェノールは20.1質量%×355g÷228.29g/モル=0.313モルとなり、反応率は0.313モル÷0.315モル×100=99%であった。
[実施例3-5]
 実施例3-1において、40質量%のメチルアミン水溶液2gの代わりに、ジエチルアミン10gを加えた以外は、実施例3-1と同様に実施した。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.7質量%であった。
 均一溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは19.7質量%×360g÷228.29g/モル=0.311モルとなり、反応率は0.311モル÷0.315モル×100=99%であった。
[実施例3-6]
 実施例3-1において、40質量%のメチルアミン水溶液2gの代わりに、トリエチルアミン10gを加えた以外は、実施例3-1と同様に実施した。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.6質量%であった。均一溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは19.6質量%×360g÷228.29g/モル=0.309モルとなり、反応率は0.309モル÷0.315モル×100=98%であった。
[実施例3-7]
 実施例3-1において、40質量%のメチルアミン水溶液2gの代わりに、トリプロピルアミン10gを加えた以外は、実施例3-1と同様に実施した。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.4質量%であった。均一溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは19.4質量%×360g÷228.29g/モル=0.306モルとなり、反応率は0.306モル÷0.315モル×100=97%であった。
 表1に、実施例3-1~実施例3-7の結果を示す。
Figure JPOXMLDOC01-appb-T000008
[実施例3-8]
 実施例3-6において、内温を80℃に昇温し、80℃を維持したまま5時間反応させた代わりに、内温を70℃に昇温し、70℃を維持したまま5時間反応させて以外は、実施例3-6と同様に実施した。
 得られた溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が6.5質量%であった。溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは6.5質量%×360g÷228.29g/モル=0.103モルとなり、反応率は0.103モル÷0.315モル×100=33%であった。
[実施例3-8-2]
 実施例3-8において、70℃を維持したまま5時間反応させた代わりに、70℃を維持したまま13時間反応させた以外は、実施例3-8と同様に実施した。
 得られた溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が13.1質量%であった。溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは13.1質量%×360g÷228.29g/モル=0.207モルとなり、反応率は0.207モル÷0.315モル×100=66%であった。
 表2に、実施例3-8~実施例3-8-2の結果を示す。
Figure JPOXMLDOC01-appb-T000009
[実施例3-9]
 実施例3-6において、内温を80℃に昇温し、80℃を維持したまま5時間反応させた代わりに、内温を60℃に昇温し、60℃を維持したまま5時間反応させて以外は、実施例3-6と同様に実施した。
 得られた溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が1.8質量%であった。溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは1.8質量%×360g÷228.29g/モル=0.028モルとなり、反応率は0.028モル÷0.315モル×100=9%であった。
[実施例3-9-2]
 実施例3-9において、60℃を維持したまま5時間反応させた代わりに、60℃を維持したまま56時間反応させた以外は、実施例3-9と同様に実施した。
 得られた溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が12.9質量%であった。溶液の質量は、80g+30g+240g+10g=360gであり、生成したビスフェノールは12.9質量%×360g÷228.29g/モル=0.203モルとなり、反応率は0.203モル÷0.315モル×100=64%であった。
 表3に、実施例3-9~実施例3-9-2の結果を示す。
Figure JPOXMLDOC01-appb-T000010
[比較例3-1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂80g(繰り返し単位換算で0.315モル)、水30g、塩化メチレン240g、40質量%のメチルアミン水溶液2gを室温で入れた。
 その後、塩化メチレンの沸点が40℃であるので、内温を40℃に昇温し、40℃を維持したまま5時間反応させた。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが痕跡量しか得られなかった。
[比較例3-2]
 実施例3-6において、水30gを用いなかった以外は、実施例3-6と同様に実施した。なお、反応中に二酸化炭素の発生は確認されなかった。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が13.1質量%であった。
 均一溶液の質量は、80g+240g+10g=330gであり、生成したビスフェノールは13.1質量%×322g÷228g/モル=0.190モルとなり、反応率は0.190モル÷0.315モル×100=60%であった。
 また、ビスフェノールAの生成量は、反応時間を更に長くしても同程度で変わらなかった。
[比較例3-3]
 比較例3-2において、反応温度80℃の代わりに60℃に変えた以外は、比較例3-2と同様に実施した。なお、反応中に二酸化炭素の発生は確認されなかった。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成量は痕跡量であった。
 また、ビスフェノールAの生成量は、反応時間を更に長くしても変わらなかった。
[比較例3-4]
 実施例3-6において、フェノール240gを用いなかった以外、実施例3-6と同様に実施した。
 得られた反応液には、供給したポリカーボネート樹脂の大部分が固形分として残っていた。得られた反応液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、痕跡量のビスフェノールAが生成していた。
 表4に、比較例3-1~比較例3-4の結果を示す。
Figure JPOXMLDOC01-appb-T000011
 表1~表4より、フェノールと水を併用することで、ポリカーボネート樹脂を効率良く分解できることが分かる。また、塩化メチレンなどの塩素化炭化水素溶媒を使用しないことから、環境負荷の小さい分解方法であることが分かる。また、実施例3-1~3-9-2では、ポリカーボネート樹脂がビスフェノールAと二酸化炭素に分解されるため、ビスフェノールAの回収・精製も容易である。
[実施例3-10]
 実施例3-6で得られた反応液を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移し、留出量を見ながら、内温を徐々に180℃まで昇温し、内圧を常圧から徐々に100hPaまで下げて、水、トリエチルアミンとフェノールを留去させた。
 その後、フラスコ内を窒素で復圧して、内温を80℃まで降温させ、トルエン200gを加えて、有機相1を得た。
 得られた有機相1を脱塩水50gで5回洗浄し、有機相2を得た。得られた有機相2を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。
 得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA32gを得た。得られたビスフェノールAの純度は99.8質量%、溶融色はAPHA155であった。
(実施例4)
[実施例4-1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、オルトクレゾール240g、水30gを供給した後、トリエチルアミン15gを入れて攪拌した。その後、ポリカーボネート樹脂80g(繰り返し単位換算で0.315モル)を加えた。
 その後、内温を80℃に昇温し、80℃を維持したまま5時間反応させて、均一溶液を得た。
 得られた均一溶液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が19.4質量%であった。均一溶液の質量は、240g+30g+15g+80g=365gであり、生成したビスフェノールは19.4質量%×365g÷228.29g/モル=0.310モルとなり、反応率は0.310モル÷0.315モル×100=98%であった。
 得られた反応液を20℃まで冷却し、12時間静置したところ、スラリー液が得られた。得られたスラリー液を減圧濾過し、ケーキ1を得た。
 得られたケーキ1をトルエンで懸濁洗浄し、ケーキ2を21g得た。
 ケーキ2の一部を高速液体クロマトグラフィーで組成を確認したところ、オルトクレゾールが0.5質量%であり、ビスフェノールAは78.2質量%であった。ケーキ2に含まれるオルトクレゾールは、21g×0.5質量%÷108g/モル=1ミリモルであり、ビスフェノールAは21g×78.2質量%÷228g/モル=72ミリモルであり、ビスフェノールAのケーキであることが分かった。
[実施例4-2]
 実施例4-1において、オルトクレゾールの代わりに、メタクレゾールを用いた以外は、実施例4-1と同様に実施した。ケーキ2は20g得た。
 ケーキ2の一部を高速液体クロマトグラフィーで組成を確認したところ、メタクレゾールが0.6質量%であり、ビスフェノールAは78.5質量%であった。ケーキ2に含まれるメタクレゾールは、20g×0.6質量%÷108g/モル=1ミリモルであり、ビスフェノールAは20g×78.5質量%÷228g/モル=69ミリモルであり、ビスフェノールAのケーキであることが分かった。
[実施例4-3]
 実施例4-1において、オルトクレゾールの代わりに、クレゾール異性体混合物を用いた以外は、実施例4-1と同様に実施した。ケーキ2は22g得た。
 ケーキ2の一部を高速液体クロマトグラフィーで組成を確認したところ、クレゾール異性体混合物分が0.3質量%であり、ビスフェノールAは79.7質量%であった。ケーキ2に含まれるクレゾール異性体混合物は、22g×0.3質量%÷108g/モル=1ミリモルであり、ビスフェノールAは22g×79.7質量%÷228g/モル=77ミリモルであり、ビスフェノールAのケーキであることが分かった。
[実施例4-4]
 実施例4-1で得られたケーキを、温度計、攪拌翼、冷却管を備えたセパラブルフラスコに入れた。更に、トルエン50gと脱塩水50gを入れ、80℃に昇温して、有機相1を得た。得られた有機相1を脱塩水50gで5回洗浄し、有機相2を得た。
 得られた有機相2を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。
 得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA11gを得た。得られたビスフェノールAの純度は99.8質量%、溶融色はAPHA95であった。
(実施例5)
 実施例4-1において、オルトクレゾールの代わりに、フェノールを用いた以外は、実施例4-1と同様に実施した。ケーキ2は、25g得た。
 ケーキ2の一部を高速液体クロマトグラフィーで組成を確認したところ、フェノールが23質量%であり、ビスフェノールAは57質量%であった。ケーキ2に含まれるフェノールは、25g×23質量%÷94g/モル=61ミリモルであり、ビスフェノールAは25g×57質量%÷228g/モル=63ミリモルであり、フェノールとビスフェノールAの共結晶のケーキであることが分かった。
 表5に、実施例4-1~4-3、実施例5において、有機溶媒、ケーキについて纏めた。
 実施例4-1~4-3の結果から、クレゾールを用いることで、フェノールを留去しなくてもビスフェノールAのケーキが得られることが分かる。
 また、実施例5の結果から、フェノールの共存下で晶析させると、ビスフェノールAとフェノールの共結晶が得られることがわかる。
Figure JPOXMLDOC01-appb-T000012
(実施例6)
[実施例6-1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂80g(繰り返し単位換算で0.315モル)、水100g、フェノール240g、p-トルエンスルホン酸80gを室温で入れた。
 その後、内温を80℃に昇温し、80℃を維持したまま1時間反応させて、反応液を得た。反応中、二酸化炭素の発生が確認された。
 得られた反応液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が13.2質量%であった。反応液の質量は、80g+100g+240g+80g=500gであり、生成したビスフェノールAは13.2質量%×500g÷228.29g/モル=0.289モルとなり、反応率は0.289モル÷0.315モル×100=92%であった。
[実施例6-2]
 実施例6-1において、p-トルエンスルホン酸80gの代わりに、メタンスルホン酸40gを加えた以外は、実施例6-1と同様に実施した。
 得られた反応液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が14.3質量%であった。反応液の質量は、80g+100g+240g+40g=460gであり、生成したビスフェノールAは14.3質量%×460g÷228.29g/モル=0.288モルとなり、反応率は0.288モル÷0.315モル×100=91%であった。
[実施例6-3]
 実施例6-1において、p-トルエンスルホン酸80gの代わりに、35%塩酸240gを加えた以外は、実施例6-1と同様に実施した。
 得られた反応液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が8.5質量%であった。反応液の質量は、80g+100g+240g+240g=660gであり、生成したビスフェノールAは8.5質量%×660g÷228.29g/モル=0.246モルとなり、反応率は0.246モル÷0.315モル×100=78%であった。
[実施例6-4]
 実施例6-1において、p-トルエンスルホン酸80gの代わりに、98%硫酸100gを加えた以外は、実施例6-1と同様に実施した。
 得られた反応液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が11.8質量%であった。反応液の質量は、80g+100g+240g+100g=520gであり、生成したビスフェノールAは11.8質量%×520g÷228.29g/モル=0.269モルとなり、反応率は0.269モル÷0.315モル×100=85%であった。
[実施例6-5]
 実施例6-1において、p-トルエンスルホン酸80gの代わりに、85%リン酸200gを加えた以外は、実施例6-1と同様に実施した。
 得られた反応液の一部を取り出し、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAの生成が9.6質量%であった。反応液の質量は、80g+100g+240g+200g=620gであり、生成したビスフェノールAは9.6質量%×620g÷228.29g/モル=0.261モルとなり、反応率は0.261モル÷0.315モル×100=83%であった。
 表6に、実施例6-1~6-5について、酸及び反応率について、纏めた。その結果、酸を用いることで、ポリカーボネート樹脂を分解出来ることが分かる。
Figure JPOXMLDOC01-appb-T000013
[実施例6-6]
 実施例6-1で得られた反応液に、トルエン200gを入れた後、25%水酸化ナトリウム水溶液を入れて、pH9.1とした。水相を除去し、有機相1を得た。
 得られた有機相1を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移し、留出量を見ながら、内温を徐々に180℃まで昇温し、内圧を常圧から徐々に100hPaまで下げて、水とフェノールを留去させた。その後、フラスコ内を窒素で復圧して、内温を80℃まで降温させ、トルエン200gを加えて、有機相2を得た。得られた有機相2を脱塩水50gで5回洗浄し、有機相3を得た。
 得られた有機相3を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA25gを得た。得られたビスフェノールAの純度は99.8質量%、溶融色はAPHA162であった。
(実施例7)
[実施例7-1]
 撹拌機及び留出管を備えた内容量45mLのガラス製反応槽に、実施例1-1で得られたビスフェノールA10.00g(0.04モル)、炭酸ジフェニル9.95g(0.05モル)及び400質量ppmの炭酸セシウム水溶液18μLを入れた。該ガラス製反応槽を約100Paに減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応槽の内部を窒素に置換した。その後、該反応槽を220℃のオイルバスに浸漬させ、内容物を溶解した。
 撹拌機の回転数を毎分100回とし、反応槽内のビスフェノールAと炭酸ジフェニルのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応槽内の圧力を、絶対圧力で101.3kPaから13.3kPaまで減圧した。続いて反応槽内の圧力を13.3kPaに保持し、フェノールを更に留去させながら、80分間、エステル交換反応を行った。その後、反応槽外部温度を290℃に昇温すると共に、40分間かけて反応槽内圧力を絶対圧力で13.3kPaから399Paまで減圧し、留出するフェノールを系外に除去した。その後、反応槽の絶対圧力を30Paまで減圧し、重縮合反応を行った。反応槽の撹拌機が予め定めた所定の撹拌動力となったときに、重縮合反応を終了した。290℃に昇温してから重合を終了するまでの時間は120分であった。
 次いで、反応槽を窒素により絶対圧力で101.3kPaに復圧した後、ゲージ圧力で0.2MPaまで昇圧し、反応槽からポリカーボネート樹脂を抜出し、再生ポリカーボネート樹脂を得た。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は27100であった。
[実施例7-2]
 実施例7-1において、実施例1-1で得られたビスフェノールAの代わりに、実施例3-10で得られたビスフェノールAを用いた以外は、実施例7-1と同様に実施した。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は26800であった。
[実施例7-3]
 実施例7-1において、実施例1-1で得られたビスフェノールAの代わりに、実施例4-4で得られたビスフェノールAを用いた以外は、実施例7-1と同様に実施した。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は24000であった。
[実施例7-4]
 実施例7-1において、実施例1-1で得られたビスフェノールAの代わりに、実施例6-6で得られたビスフェノールAを用いた以外は、実施例7-1と同様に実施した。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は26000であった。
(実施例8)
[実施例8-1]
8-1-1:中和廃水の取得
 特許文献特開2004-345883号公報の実施例12の▲2▼ジフェニルカーボネートの製造(段落0050~0051)に従ってジフェニルカーボネートを製造し、中和混合槽での分液で生じる水相を中和廃水として取得した。得られた中和廃水の組成は、ピリジンが0.3質量%、フェノールが1.4質量%、塩化ナトリウムが4質量%であった。
8-1-2:ビスフェノールの製造(ポリカーボネート樹脂の分解)
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂(80g、繰り返し単位換算で0.315モル)、ピリジン(2g)、前記8-1-1で得られた中和廃水(29g)、フェノール(240g)を室温で入れた。反応液はスラリー状であった。反応液の質量は、80g+2g+29g+240g=351gであった。その後、昇温して85℃として、85℃を維持したまま4時間反応させた。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが15.5質量%(15.5÷100×351g=54.4g,ポリカーボネート樹脂の分解率は54.4g÷228g/モル÷0.315モル×100=75.7モル%)であった。
 得られた反応液を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移し、留出量を見ながら、内温を徐々に180℃まで昇温し、内圧を常圧から徐々に10kPaまで下げて、水、ピリジン、及びフェノールを留去させた。
 その後、フラスコ内を窒素で復圧して、内温を80℃まで降温させ、トルエン200gを加えて、有機相1を得た。
 得られた有機相1を脱塩水50gで5回洗浄し、有機相2を得た。得られた有機相2を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。
 得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA31gを得た。得られたビスフェノールAの純度は99.8質量%であった。
[実施例8-2]
 塩化ナトリウムの濃度が4質量%となるように、試薬の塩化ナトリウムと水(脱塩水)を混合し、4質量%の塩化ナトリウム水溶液(メイクアップ塩化ナトリウム水溶液)を得た。実施例8-1において、中和廃水(29g)の代わりに、メイクアップ塩化ナトリウム水溶液(29g)を用いた以外は、実施例8-1と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが14.6質量%(14.6÷100×351g=51.2g,ポリカーボネート樹脂の分解率は51.2g÷228g/モル÷0.315モル×100=71.3モル%)であった。
[実施例8-3]
 実施例8-1において、中和廃水(29g)の代わりに、水(脱塩水)(29g)を用いた以外は、実施例8-1と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが14.2質量%(14.2÷100×351g=49.8g,ポリカーボネート樹脂の分解率は49.8g÷228g/モル÷0.315モル×100=69.3モル%)であった。
 表7に、実施例8-1~8-3について、触媒及び有機溶媒の種類、水、塩化ナトリウム及び廃水の利用の有無、反応率(ポリカーボネート樹脂の分解率)を纏めた。表7より、ピリジン、フェノール、水及び塩化ナトリウムを併用することで、塩化ナトリウムを用いない場合に比べて、ポリカーボネート樹脂の分解率が向上することがわかる。また、炭酸ジフェニルプラントの廃水を使用できることがわかる。炭酸ジフェニルプラントの廃水を用いることが出来るので、廃水のリサイクルが可能であり、環境負荷が低いものとできる。
Figure JPOXMLDOC01-appb-T000014
[実施例8-4]
 実施例7-1において、実施例1-1で得られたビスフェノールAの代わりに、実施例8-1で得られたビスフェノールAを用い、290℃に昇温してから重合を終了するまでの時間を120分から140分に変更した以外は、実施例7-1と同様に実施した。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は26900であった。
(実施例9)
[実施例9-1]
9-1-1:塩酸廃水の取得
 特許文献特開2004-345883号公報の実施例12の▲3▼塩素の製造(段落0055~0058)に従って塩素を製造し、放散蒸留塔の塔底より連続的に抜き出される塩酸水を塩酸廃水として取得した。得られた塩酸廃水の組成は、塩化水素が18質量%であり、ジブロモフェノールが50質量ppmであった。
9-1-2:ビスフェノールの製造(ポリカーボネート樹脂の分解)
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂(80g、繰り返し単位換算で0.315モル)、前記9-1-1で得られた塩酸廃水(300g)、フェノール(200g)、を室温で入れた。反応液はスラリー状であった。反応液の質量は、80g+300g+200g=580gであった。その後、80℃まで昇温して、80℃を維持したまま60分間反応させた。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが8.0質量%(8.0÷100×580g=46.4g,ポリカーボネート樹脂の分解率は46.4g÷228g/モル÷0.315モル×100=64.6モル%)であった。
[実施例9-2]
 ジブロモフェノールが50質量ppm、塩化水素が18質量%となるように、試薬のジブロモフェノールと試薬の35%塩酸と水(脱塩水)とを混合し、塩酸水溶液(メイクアップ塩酸廃液)を得た。実施例9-1において、塩酸廃水(300g)の代わりに、前記メイクアップ塩酸廃液(300g)を用いた以外は、実施例9-1と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールA7.7質量%(7.7÷100×580g=44.7g,ポリカーボネート樹脂の分解率は44.7g÷228g/モル÷0.315モル×100=62.2モル%)であった。
[実施例9-3]
 試薬の35%塩酸と水(脱塩水)を用いて、塩酸水素が18質量%の塩酸水溶液(メイクアップ塩酸水溶液)を調製した。実施例9-1において、塩酸廃水(300g)の代わりに、前記18質量%の塩酸(メイクアップ塩酸水溶液)(300g)を用いた以外は、実施例9-1と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールA6.9質量%(6.9÷100×580g=40.0g,ポリカーボネート樹脂の分解率は40.0g÷228g/モル÷0.315モル×100=55.7モル%)であった。
 表8に、実施例9-1~実施例9-3について、触媒及び有機溶媒の種類、水、ジブロモフェノール及び廃水の利用の有無、反応率(ポリカーボネート樹脂の分解率)を纏めた。表8より、炭酸ジフェニル製造時に副生する塩化水素の回収プラントから排出される塩酸廃水を用い、ポリカーボネート樹脂を分解できることがわかる。塩酸廃水を用いることで廃水のリサイクルが可能であり、環境負荷が低いことが分かる。また、ジブロモフェノールを含有すると、ポリカーボネート樹脂の分解率がより高くなることが分かる。
Figure JPOXMLDOC01-appb-T000015
[実施例9-4]
 実施例9-1で得られた反応液にトルエン600gを入れた80℃とした後、水相がpH8.5となるまで水酸化ナトリウム水溶液と重曹水溶液を加えた
 その後、攪拌を停止して油水分離し、水相をフラスコから抜き出し、有機相1を得た。
 得られた有機相1を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移し、留出量を見ながら、内温を徐々に180℃まで昇温し、内圧を常圧から徐々に10kPaまで下げて、水、トルエンとフェノールを留去させた。
 その後、フラスコ内を窒素で復圧して、内温を80℃まで降温させ、トルエン200gを加えて、有機相2を得た。得られた有機相2を脱塩水50gで5回洗浄し、有機相3を得た。
 得られた有機相3を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。
 得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA25gを得た。得られたビスフェノールAの純度は99.8質量%であった。
[実施例9-5]
 実施例7-1において、実施例1-1で得られたビスフェノールAの代わりに、実施例9-4で得られたビスフェノールAを用い、290℃に昇温してから重合を終了するまでの時間を120分から140分に変更した以外は、実施例7-1と同様に実施した。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は27200であった。
(実施例10)
[実施例10-1]
10-1-1:水酸化ナトリウム廃水の取得
 特許文献特開2004-345883号公報の実施例12の▲1▼ホスゲンの製造に従ってホスゲンを製造し、苛性ソーダ水溶液の循環する無毒化塔から苛性ソーダを一部抜き出して水酸化ナトリウム廃水とした。得られた水酸化ナトリウム廃水の組成は、四塩化炭素が50質量ppm、塩化ナトリウムが0.1質量%、水酸化ナトリウムが25質量%であった。
10-1-2:ビスフェノールの製造(ポリカーボネート樹脂の分解)
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂(80g、繰り返し単位換算で0.315モル)、前記10-1-1で得られた水酸化ナトリウム廃水(80g)、水(40g)、フェノール(400g)、を室温で入れた。反応液はスラリー状であった。反応液の質量は、80g+80g+40g+400g=600gであった。
 その後、60℃まで昇温して、60℃を維持したまま70分間反応させた。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが9.2質量%(9.2÷100×600g=55.2g,ポリカーボネート樹脂の分解率は55.2g÷228g/モル÷0.315モル×100=76.9モル%)であった。
[実施例10-2]
 四塩化炭素が50質量ppm、塩化ナトリウムが0.1質量%、水酸化ナトリウムが25質量%となるように、試薬の四塩化炭素と試薬の塩化ナトリウムと試薬の水酸化ナトリウムと水(脱塩水)とを混合し、水酸化ナトリウム水溶液(メイクアップ水酸化ナトリウム廃液)を得た。
 実施例10-1において、水酸化ナトリウム廃水(80g)の代わりに、前記メイクアップ水酸化ナトリウム廃液(80g)を用いた以外は、実施例10-1と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが8.9質量%(8.9÷100×600g=53.4g,ポリカーボネート樹脂の分解率は53.4g÷228g/モル÷0.315モル×100=74.3モル%)であった。
[実施例10-3]
 試薬の水酸化ナトリウムと水(脱塩水)を用いて、25質量%の水酸化ナトリウム水溶液(メイクアップ水酸化ナトリウム水溶液)を調製した。
 実施例10-1において、水酸化ナトリウム廃水(80g)の代わりに、前記メイクアップ水酸化ナトリウム水溶液(80g)を用いた以外は、実施例10-1と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが8.5質量%(8.5÷100×600g=51.0g,ポリカーボネート樹脂の分解率は51.0g÷228g/モル÷0.315モル×100=71.0モル%)であった。
 表9に、実施例10-1~実施例10-3について、触媒及び有機溶媒の種類、水、四塩化炭素、塩化ナトリウム、及び廃水の利用の有無、反応率(ポリカーボネート樹脂の分解率)を纏めた。表9より、塩化カルボニル(ホスゲン)の製造プラントの無毒化処理設備から排出される水酸化ナトリウム廃水を用い、ポリカーボネート樹脂を分解できることがわかる。水酸化ナトリウム廃水を用いることが出来るので、廃水のリサイクルが可能であり、環境負荷が低いことが分かる。また、水酸化ナトリウム廃水を用いると、ポリカーボネート樹脂の分解率がより高くなることが分かる。
Figure JPOXMLDOC01-appb-T000016
[実施例10-4]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂(80g、繰り返し単位換算で0.315モル)、実施例10-1の10-1-1で得られた水酸化ナトリウム廃水(80g)、水(40g)、フェノール(400g)を室温で入れた。反応液はスラリー状であった。反応液の質量は、80g+80g+40g+400g=600gであった。
 その後、80℃に昇温して、80℃に維持したまま70分間反応させた。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが11.8質量%(11.8÷100×600g=70.8g,ポリカーボネート樹脂の分解率は70.8g÷228g/モル÷0.315モル×100=98.6モル%)であった。
 得られた反応液にトルエン600gを入れた後、水相がpH8.6となるまで35質量%塩酸を加えたところ、二酸化炭素のガスが発生した。
 その後、攪拌を停止して油水分離し、水相をフラスコから抜き出し、有機相1を得た。
 得られた有機相1を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移し、留出量を見ながら、内温を徐々に180℃まで昇温し、内圧を常圧から徐々に10kPaまで下げて、水、トルエンとフェノールを留去させた。
 その後、フラスコ内を窒素で復圧して、内温を80℃まで降温させ、トルエン200gを加えて、有機相2を得た。得られた有機相2を脱塩水50gで5回洗浄し、有機相3を得た。
 得られた有機相3を20℃まで降温し、スラリーを得た。得られたスラリーを濾過して、ケーキを得た。
 得られたケーキを、ロータリーエバポレータで乾燥させて、ビスフェノールA26gを得た。得られたビスフェノールAの純度は99.8質量%であった。
[実施例10-5]
 実施例7-1において、実施例1-1で得られたビスフェノールAの代わりに、実施例10-4で得られたビスフェノールAを用いた以外は、実施例7-1と同様に実施した。
 得られた再生ポリカーボネート樹脂の粘度平均分子量(Mv)は26500であった。
[実施例11]
 温度計、撹拌装置、冷却管を備えた内容量1Lの四口フラスコに、実施例1-1で得られたビスフェノールA46g、エピクロルヒドリン259g、イソプロパノール100g、水36gを仕込み、40℃に昇温して均一に溶解させた後、48.5質量%の水酸化ナトリウム水溶液38gを90分かけて滴下した。滴下と同時に、40℃から65℃まで90分かけて昇温した。その後、65℃で30分保持し反応を完了させ、1Lの分液ロートに反応液を移し、65℃の水69gを加えて65℃の状態で1時間静置した。静置後、分離した油相と水相から水相を抜き出し、副生塩及び過剰の水酸化ナトリウムを除去した。その後、150℃の減圧下でエピクロルヒドリンを完全に除去した。
 その後、メチルイソブチルケトン102gを仕込み、65℃に昇温して均一に溶解させた後、48.5質量%の水酸化ナトリウム水溶液1.4gを仕込み、60分反応させた後、メチルイソブチルケトン57gを仕込み、水200gを用いて水洗を4回行った。
 その後、150℃の減圧下でメチルイソブチルケトンを完全に除去して実施例11のエポキシ樹脂を得た。
 JISK7236(2009)に従い、得られたエポキシ樹脂のエポキシ当量を測定した結果、175g/当量であった。
[参考例11c]
 実施例1-1で得られたビスフェノールAの代わりに、ビスフェノールA(三菱ケミカル株式会社製)を用いた以外は実施例11と同様に実施し、参考例11cのエポキシ樹脂を得た。
 JISK7236(2009)に従い、得られたエポキシ樹脂のエポキシ当量を測定した結果、173g/当量であった。
(エポキシ樹脂組成物、エポキシ樹脂硬化物、及び硬化物性の評価)
[実施例12]
 表10に示す割合で、実施例11のエポキシ樹脂と、硬化剤(新日本理化社製 商品名 リカシッド MH-700)及び硬化触媒(四国化成工業社製 商品名 キュアゾール 2E4MZ)を計量した。次いで、室温で均一になるまで攪拌し混合して、エポキシ樹脂組成物を得た。
 離型ペットフィルムを貼りつけたガラス板を2枚用意し、離型ペットフィルムを2枚とも内側にしてガラス板間隔を3mmに調整し、金型を作成した。この金型に、エポキシ樹脂組成物を注型し、100℃3時間、その後140℃3時間加熱して、エポキシ樹脂硬化物を得た。
 得られた硬化物を直径1cm、厚さ3mmの円柱状に切削して試験片を得た。試験片を熱機械分析装置(TMA:セイコーインスツルメント社製TMA/SS6100)により、圧縮モードにて、1回目の昇温を5℃/分(30℃から200℃)、1回目の降温を10℃/分(200℃から30℃)、2回目の昇温を:5℃/分、30℃から200℃として、2回目の線膨張係数α1、α2を測定した。
[参考例12c]
 表10に示す割合で、参考例11のエポキシ樹脂と、硬化剤(新日本理化社製 商品名 リカシッド MH-700)及び硬化触媒(四国化成工業社製 商品名 キュアゾール 2E4MZ)を計量した。次いで、室温で均一になるまで攪拌し混合して、エポキシ樹脂組成物を得た。
 実施例12と同様の方法で、得られたエポキシ樹脂組成物を硬化させ、得られたエポキシ樹脂硬化物を評価し、線膨張係数α1、α2を求めた。
Figure JPOXMLDOC01-appb-T000017
[結果の評価]
 表10より、実施例12のエポキシ樹脂硬化物は、参考例12cのエポキシ樹脂硬化物に比べて線膨張係数が低く、耐熱クラック性に優れることが分かる。
[参考例13c]
 テトラフェノキシチタンは、以下の手順で合成し、使用した。
 受器および留出管を備えた500mLの三口フラスコに、フェノール200g(2.1モル)とトルエン100mLを仕込み、フラスコ内を窒素流通置換した。フラスコを100℃オイルバスに浸漬し、均一溶液を得た。そこへ、テトライソプロボキシチタン57g(0.2モル)を添加した。フラスコのボトムの内温を100℃に保持したところ、生成したi-プロピルアルコールの留出が開始した。その後、内温を徐々に116℃まで昇温して、i-プロピルアルコールとトルエンの混合物である留出液80mLを留出させた。得られた釜残に、ヘキサン50mLを加えた後、室温まで冷却して、晶析させた。析出した赤色結晶を濾過することにより取得し、オイルバスを備えたロータリーエバポレータでオイルバス温度140℃、圧力50Torrで乾燥させ、テトラフェノキシチタン60g(0.1モル)を得た。
[実施例13]
13-1:炭酸ジメチルの合成
 二酸化炭素から炭酸ジメチルの合成は、非特許文献ChemSusChem,2013年,Vol.6,pp.1341-1344に従って実施した。
 誘導攪拌翼、圧力計、及び温度計を備えた200mLのオートクレーブに、予め600℃で焼成した酸化セリウム0.4g、シアノピリジン10.4g、メタノール1.6g(1.6g÷32g/モル=50ミリモル)を入れた。そこへ、実施例1-1で得られた二酸化炭素を圧縮機によってオートクレーブに導入した。3回置換した後に、オートクレーブの内圧を5MPaとした。その後、オートクレーブを電気炉に設置し、内温120℃で12時間反応させた。反応後、氷水にオートクレーブを浸漬させ、内圧を常圧に戻した。得られた反応液を濾過することで酸化セリウムを除去し、混合液12.6gを得た。
 得られた混合液の一部を、ガスクロマトグラフィーで分析したところ、炭酸ジメチルが16.2質量%(16.2質量%×12.6g=2.0g、2.0g÷90g/モル=22ミリモル)であり、反応率は、22ミリモル×2÷50ミリモル×100%=88%であった。
 以上の操作を複数回実施して、混合液200gを得た。得られた混合液を1Lのナス型フラスコに入れた後、水バスを備えたエバポレータに設置して、初留分を除去し、主留分31gを得た。得られた主留分の一部を、ガスクロマトグラフィーで分析したところ、炭酸ジメチル純度は97質量%であった。
13-2:炭酸ジフェニルの合成
 留出管及び攪拌翼を備えたフラスコに、前記主留分31g(炭酸ジメチル30g)と試薬の炭酸ジメチル40g(合計の炭酸ジメチル70g、0.78モル)、フェノール500g(5.32モル)、テトラフェノキシチタン5gを入れた。常圧下、生成したメタノールを、炭酸ジメチルと共に留出させた。留出が止まった後、圧力を1kPaにし、徐々に温度を上げて185℃とし、炭酸ジメチルを留去しながら、反応させた。その後、オイルバスを210℃に設定して、炭酸ジフェニル11gを得た。
13-3:再生ポリカーボネート樹脂の合成
 撹拌機及び留出管を備えた内容量45mLのガラス製反応槽に、ビスフェノールA10.00g(0.04モル)、前記得られた炭酸ジフェニル9.95g(0.05モル)及び400質量ppmの炭酸セシウム水溶液18μLを入れた。該ガラス製反応槽を約100Paに減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応槽の内部を窒素に置換した。その後、該反応槽を220℃のオイルバスに浸漬させ、内容物を溶解した。
 撹拌機の回転数を毎分100回とし、反応槽内のビスフェノールAと炭酸ジフェニルのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応槽内の圧力を、絶対圧力で101.3kPaから13.3kPaまで減圧した。
 続いて反応槽内の圧力を13.3kPaに保持し、フェノールを更に留去させながら、80分間、エステル交換反応を行った。
 その後、反応槽外部温度を290℃に昇温すると共に、40分間かけて反応槽内圧力を絶対圧力で13.3kPaから399Paまで減圧し、留出するフェノールを系外に除去した。
 その後、反応槽の絶対圧力を30Paまで減圧し、重縮合反応を行った。反応槽の撹拌機が予め定めた所定の撹拌動力となったときに、重縮合反応を終了した。290℃に昇温してから重合を終了するまでの時間は120分であった。
 次いで、反応槽を窒素により絶対圧力で101.3kPaに復圧した後、ゲージ圧力で0.2MPaまで昇圧し、反応槽からポリカーボネート樹脂を抜出し、ポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の粘度平均分子量(Mv)は24800であった。
 本発明のビスフェノールの製造方法によれば、ケミカルリサイクルを利用して廃プラスチック等からビスフェノールを得ることができる。更に、これを用いて、再度、ポリカーボネート樹脂を製造することができ、産業上有用である。
 1 炭酸ジフェニルの製造プラント
 2 塩化水素の回収プラント
 3 塩化カルボニルの製造プラント
 10 DPC反応器
 11 脱塩化水素塔
 12 混合槽
 13 中和槽
 14 水洗槽
 15、16 蒸留塔
 20 活性炭塔
 21 吸収塔
 22、24、32 タンク
 23 放散塔
 30 CDC反応器
 31 凝集器
 33 蒸発器
 34 除害塔
 100、102、103 分解槽
 G10、G12、G20 塩化水素ガス
 G30 粗塩化カルボニルガス
 G31 未液化ガス
 G32 廃棄ガス
 G13 炭酸ジフェニル
 L10 炭酸ジフェニルを含む反応液
 L11 脱塩化水素処理後の反応液
 L12、L31 水酸化ナトリウム水溶液
 L13、L16 油相
 L14 水相(中和廃水)
 L15、L20 水
 L17 水相
 L21、L24、L26 希塩酸
 L23 濃塩酸
 L25 塩酸廃水
 L30 塩化カルボニル
 L32 水酸化ナトリウム廃液
 L100、L102、L103 ビスフェノールAを含む溶液
 CDC、G1 塩化カルボニルガス
 CO 一酸化炭素ガス
 CL2 塩素ガス
 H2O 水
 PC ポリカーボネート樹脂
 PL フェノール
 PRD ピリジン
 acid 酸
 base 塩基

Claims (29)

  1.  ポリカーボネート樹脂を、
     芳香族モノアルコール、水及び触媒の存在下で分解させる、ビスフェノールの製造方法。
  2.  前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルキルアミン、含窒素複素環式化合物及び酸からなる群から選択されるいずれかである、請求項1に記載のビスフェノールの製造方法。
  3.  前記アルカリ金属水酸化物が、水酸化ナトリウム又は水酸化カリウムである、請求項2に記載のビスフェノールの製造方法。
  4.  前記アルキルアミンが、下記式(I)で示される、請求項2に記載のビスフェノールの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式中、RAは、炭素数1~3のアルキル基を表し、RB~RCは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表す。
  5.  前記アルキルアミンが、第三級アミンである、請求項2又は4に記載のビスフェノールの製造方法。
  6.  前記酸が、塩酸、硫酸、リン酸及びスルホン酸からなる群から選択されるいずれかである、請求項2に記載のビスフェノールの製造方法。
  7.  前記触媒が含窒素複素環式化合物を含み、
     前記芳香族モノアルコール、前記水及び前記触媒に加えて、アルカリ金属塩化物の共存下で、前記ポリカーボネート樹脂を分解させる、請求項1に記載のビスフェノールの製造方法。
  8.  前記含窒素複素環式化合物が、ピリジン類である、請求項2又は7に記載のビスフェノールの製造方法。
  9.  前記アルカリ金属塩化物が、塩化ナトリウムである、請求項7に記載のビスフェノールの製造方法。
  10.  前記ポリカーボネート樹脂を分解させる反応温度が、110℃以下である、請求項1から9のいずれかに記載のビスフェノールの製造方法。
  11.  前記ポリカーボネート樹脂、前記芳香族モノアルコール、前記水及び前記触媒を含むスラリー状の反応液中で前記ポリカーボネート樹脂を分解させる、請求項1から10のいずれかに記載のビスフェノールの製造方法。
  12.  前記芳香族モノアルコールに対する前記水の質量比が、0.001以上10以下である、請求項1から11のいずれかに記載のビスフェノールの製造方法。
  13.  前記触媒が塩酸を含み、
     前記芳香族モノアルコール、前記水及び前記触媒に加えて、ブロモフェノール類の共存下で、前記ポリカーボネート樹脂を分解させる、請求項1に記載のビスフェノールの製造方法。
  14.  前記触媒が、水酸化ナトリウムを含み、
     前記芳香族モノアルコール、前記水及び前記触媒に加えて、塩化ナトリウム及び/又は四塩化炭素の共存下で、前記ポリカーボネート樹脂を分解させる、請求項1に記載のビスフェノールの製造方法。
  15.  前記芳香族モノアルコールが、フェノール、クレゾール及びキシレノールからなる群から選択されるいずれかである、請求項1から14のいずれかに記載のビスフェノールの製造方法。
  16.  前記ビスフェノールが、2,2-ビス(4-ヒドロキシフェニル)プロパンである、請求項1から15のいずれかに記載のビスフェノールの製造方法。
  17.  下記工程(a1)、工程(b1)、工程(b2)及び工程(b3)を有する方法により炭酸ジアリールを製造する際に工程(b1)にて除去される中和廃水を、前記ポリカーボネート樹脂の分解に用いる、請求項1又は7に記載のビスフェノールの製造方法。
     工程(a1):塩化カルボニルと芳香族モノアルコールとを、含窒素複素環式化合物の存在下で反応させて炭酸ジアリールを含む反応液を得る工程
     工程(b1):工程(a1)で得られた炭酸ジアリールを含む反応液をアルカリ金属水酸化物水溶液で中和し、芳香族ジアリールを含む油相と、含窒素複素環式化合物とアルカリ金属塩化物とを含む水相とに油水分離させた後、前記水相を中和廃水として除去する工程
     工程(b2):工程(b1)で得られた油相を水で洗浄する工程
     工程(b3):工程(b2)後の油相から炭酸ジアリールを得る工程
  18.  前記工程(b1)におけるアルカリ金属塩化物が、塩化ナトリウムであり、
     前記工程(b1)におけるアルカリ金属水酸化物水溶液が、水酸化ナトリウム水溶液である、請求項17に記載のビスフェノールの製造方法。
  19.  下記工程(a1)、工程(c1)、工程(c2)及び工程(c3)を有する炭酸ジアリールの製造及び副生する塩化水素の回収において、工程(c3)で除去される塩酸廃水を、前記ポリカーボネート樹脂の分解に用いる、請求項1又は13に記載のビスフェノールの製造方法。
     工程(a1):塩化カルボニルと芳香族モノアルコールとを、含窒素複素環式化合物の存在下で反応させて炭酸ジアリールを含む反応液を得る工程
     工程(c1):工程(a1)で副生した塩化水素を吸収塔に供給し、水又は希塩酸に吸収させて、濃塩酸を得る工程
     工程(c2):濃塩酸を放散塔で蒸留し、塔頂より塩化水素ガスを回収し、塔底より塩酸を回収する工程
     工程(c3):前記塔底より回収した塩酸の一部を塩酸廃水として系外に除去し、残りの塩酸を工程(c1)の吸収塔に循環させる工程
  20.  下記工程(d1)~工程(d4)を有する塩化カルボニルの製造及び未液化ガスの処理において、工程(d4)で除去される水酸化ナトリウム廃水を、前記ポリカーボネート樹脂の分解に用いる、請求項1又は14に記載のビスフェノールの製造方法。
     工程(d1):塩素と一酸化炭素から塩化カルボニルガスを得る工程
     工程(d2):工程(d1)で得られた塩化カルボニルガスを冷却し、液化した塩化カルボニルを得る工程
     工程(d3):循環する水酸化ナトリウム水溶液と、前記(d2)において液化しなかった未液化ガスとを接触させて、前記未液化ガス中の塩化カルボニルを分解した後、排出する工程
     工程(d4);前記循環する水酸化ナトリウム水溶液の一部を水酸化ナトリウム廃水として除去する工程
  21.  請求項1から20のいずれかに記載のビスフェノールの製造方法で得られたビスフェノールを含むビスフェノール原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法。
  22.  請求項1から20のいずれかに記載のビスフェノールの製造方法で生成した二酸化炭素を回収する、二酸化炭素の製造方法。
  23.  請求項22に記載の二酸化炭素の製造方法で得られた二酸化炭素を用いて炭酸ジエステルを製造する、炭酸ジエステルの製造方法。
  24.  前記二酸化炭素を含む二酸化炭素と脂肪族モノアルコールとを反応させる工程を有する、請求項23に記載の炭酸ジエステルの製造方法。
  25.  前記二酸化炭素を含む二酸化炭素とコークスから一酸化炭素を得、得られた一酸化炭素と塩素とを反応させて塩化カルボニルを得、得られた塩化カルボニルと芳香族モノアルコールとを反応させて前記炭酸ジエステルを得る、請求項23に記載の炭酸ジエステルの製造方法。
  26.  請求項23から25のいずれかに記載の炭酸ジエステルの製造方法で得られた炭酸ジエステルを含む炭酸ジエステル原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法。
  27.  請求項1から20のいずれかに記載のビスフェノールの製造方法で得られたビスフェノールを用いて、エポキシ樹脂を製造する、エポキシ樹脂の製造方法。
  28.  前記エポキシ樹脂と多価ヒドロキシ化合物原料とを更に反応させる、請求項27に記載のエポキシ樹脂の製造方法。
  29.  請求項27又は28に記載のエポキシ樹脂の製造方法で得られたエポキシ樹脂と硬化剤を含むエポキシ樹脂組成物を硬化して、エポキシ樹脂硬化物を得る、エポキシ樹脂硬化物の製造方法。
PCT/JP2021/039740 2020-10-30 2021-10-28 ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、二酸化炭素の製造方法、炭酸ジエステルの製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法 WO2022092176A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180074063.XA CN116368098A (zh) 2020-10-30 2021-10-28 双酚的制法、再生聚碳酸酯树脂的制法、二氧化碳的制法、碳酸二酯的制法、环氧树脂的制法及环氧树脂固化物的制法
JP2022559214A JPWO2022092176A1 (ja) 2020-10-30 2021-10-28
KR1020237011405A KR20230096984A (ko) 2020-10-30 2021-10-28 비스페놀의 제조 방법, 재생 폴리카보네이트 수지의 제조 방법, 이산화탄소의 제조 방법, 탄산디에스테르의 제조 방법, 에폭시 수지의 제조 방법 및 에폭시 수지 경화물의 제조 방법
EP21886293.6A EP4238954A4 (en) 2020-10-30 2021-10-28 METHOD FOR PRODUCING BISPHENOL, METHOD FOR PRODUCING RECYCLED POLYCARBONATE RESIN, METHOD FOR PRODUCING CARBON DIOXIDE, METHOD FOR PRODUCING CARBONIC DIESTER, METHOD FOR PRODUCING EPOXY RESIN, AND METHOD FOR PRODUCING CURED EPOXY RESIN PRODUCT
US18/140,739 US20230322653A1 (en) 2020-10-30 2023-04-28 Bisphenol production method , recycled polycarbonate resin production method, carbon dioxide production method, carbonic acid diester production method, epoxy resin production method, and epoxy resin cured product production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-182543 2020-10-30
JP2020182543 2020-10-30
JP2021061030 2021-03-31
JP2021-061030 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/140,739 Continuation US20230322653A1 (en) 2020-10-30 2023-04-28 Bisphenol production method , recycled polycarbonate resin production method, carbon dioxide production method, carbonic acid diester production method, epoxy resin production method, and epoxy resin cured product production method

Publications (1)

Publication Number Publication Date
WO2022092176A1 true WO2022092176A1 (ja) 2022-05-05

Family

ID=81382656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039740 WO2022092176A1 (ja) 2020-10-30 2021-10-28 ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、二酸化炭素の製造方法、炭酸ジエステルの製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法

Country Status (7)

Country Link
US (1) US20230322653A1 (ja)
EP (1) EP4238954A4 (ja)
JP (1) JPWO2022092176A1 (ja)
KR (1) KR20230096984A (ja)
CN (1) CN116368098A (ja)
TW (1) TW202222755A (ja)
WO (1) WO2022092176A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070871A1 (ja) * 2022-09-30 2024-04-04 三菱ケミカル株式会社 ビスフェノールの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法、並びにビスフェノール組成物
WO2024101364A1 (ja) * 2022-11-07 2024-05-16 旭化成株式会社 複合材の処理方法、気体及びリサイクルシステム

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4016536B1 (ja) 1961-08-24 1965-07-29
JPH0656985A (ja) * 1992-06-22 1994-03-01 Bayer Ag ポリカーボネート類を開裂させてビスフエノール類とジアリールカーボネート類を生じさせる方法
JPH06287295A (ja) * 1993-04-05 1994-10-11 Teijin Chem Ltd 芳香族ポリカーボネート樹脂のリサイクル方法
JPH07196582A (ja) 1993-09-07 1995-08-01 General Electric Co <Ge> スクラップの芳香族ポリカーボネートから有用なビスヒドロキシ芳香族有機化合物とビスアリールカーボネートを回収する方法
JPH07316280A (ja) 1994-05-23 1995-12-05 Teijin Ltd 廃芳香族ポリカーボネート樹脂のリサイクル方法
JP2004051620A (ja) * 2002-05-30 2004-02-19 Victor Co Of Japan Ltd 廃プラスチックからの有用物回収方法
JP2004345883A (ja) 2003-05-21 2004-12-09 Mitsubishi Chemicals Corp 塩素の製造方法および芳香族ポリカーボネートの製造方法
JP2005008773A (ja) * 2003-06-19 2005-01-13 Victor Co Of Japan Ltd 廃プラスチックからの有用物回収方法
JP2005097568A (ja) 2003-08-21 2005-04-14 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
JP2006144023A (ja) 1999-12-28 2006-06-08 Mitsubishi Chemicals Corp 一酸化炭素の製造方法、ホスゲンの製造方法及び炭酸ジアリールの製造方法
WO2006114893A1 (ja) 2005-04-20 2006-11-02 Teijin Chemicals Ltd. 廃芳香族ポリカーボネートから芳香族ジヒドロキシ化合物のアルカリ金属塩水溶液を得る方法
JP2008195646A (ja) * 2007-02-13 2008-08-28 Teijin Chem Ltd ビスフェノール化合物の回収方法
JP2011225711A (ja) 2010-04-19 2011-11-10 Nippon Kayaku Co Ltd エポキシ樹脂の製造法、エポキシ樹脂、および硬化性樹脂組成物
JP2012092247A (ja) 2010-10-28 2012-05-17 Showa Denko Kk 液状硬化性組成物
JP2012111858A (ja) 2010-11-25 2012-06-14 Showa Denko Kk 半導体封止用硬化性組成物
WO2020257237A1 (en) * 2019-06-19 2020-12-24 Sabic Global Technologies B.V. Depolymerization of a poly(carbonate) and isolation of bisphenol a from a depolymerized poly(carbonate)

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4016536B1 (ja) 1961-08-24 1965-07-29
JPH0656985A (ja) * 1992-06-22 1994-03-01 Bayer Ag ポリカーボネート類を開裂させてビスフエノール類とジアリールカーボネート類を生じさせる方法
JPH06287295A (ja) * 1993-04-05 1994-10-11 Teijin Chem Ltd 芳香族ポリカーボネート樹脂のリサイクル方法
JPH07196582A (ja) 1993-09-07 1995-08-01 General Electric Co <Ge> スクラップの芳香族ポリカーボネートから有用なビスヒドロキシ芳香族有機化合物とビスアリールカーボネートを回収する方法
JPH07316280A (ja) 1994-05-23 1995-12-05 Teijin Ltd 廃芳香族ポリカーボネート樹脂のリサイクル方法
JP2006144023A (ja) 1999-12-28 2006-06-08 Mitsubishi Chemicals Corp 一酸化炭素の製造方法、ホスゲンの製造方法及び炭酸ジアリールの製造方法
JP2004051620A (ja) * 2002-05-30 2004-02-19 Victor Co Of Japan Ltd 廃プラスチックからの有用物回収方法
JP2004345883A (ja) 2003-05-21 2004-12-09 Mitsubishi Chemicals Corp 塩素の製造方法および芳香族ポリカーボネートの製造方法
JP2005008773A (ja) * 2003-06-19 2005-01-13 Victor Co Of Japan Ltd 廃プラスチックからの有用物回収方法
JP2005097568A (ja) 2003-08-21 2005-04-14 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
WO2006114893A1 (ja) 2005-04-20 2006-11-02 Teijin Chemicals Ltd. 廃芳香族ポリカーボネートから芳香族ジヒドロキシ化合物のアルカリ金属塩水溶液を得る方法
JP2008195646A (ja) * 2007-02-13 2008-08-28 Teijin Chem Ltd ビスフェノール化合物の回収方法
JP2011225711A (ja) 2010-04-19 2011-11-10 Nippon Kayaku Co Ltd エポキシ樹脂の製造法、エポキシ樹脂、および硬化性樹脂組成物
JP2012092247A (ja) 2010-10-28 2012-05-17 Showa Denko Kk 液状硬化性組成物
JP2012111858A (ja) 2010-11-25 2012-06-14 Showa Denko Kk 半導体封止用硬化性組成物
WO2020257237A1 (en) * 2019-06-19 2020-12-24 Sabic Global Technologies B.V. Depolymerization of a poly(carbonate) and isolation of bisphenol a from a depolymerized poly(carbonate)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMSUSCHEM, vol. 6, 2013, pages 1341 - 1344
See also references of EP4238954A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070871A1 (ja) * 2022-09-30 2024-04-04 三菱ケミカル株式会社 ビスフェノールの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法、並びにビスフェノール組成物
WO2024101364A1 (ja) * 2022-11-07 2024-05-16 旭化成株式会社 複合材の処理方法、気体及びリサイクルシステム

Also Published As

Publication number Publication date
JPWO2022092176A1 (ja) 2022-05-05
EP4238954A1 (en) 2023-09-06
TW202222755A (zh) 2022-06-16
CN116368098A (zh) 2023-06-30
EP4238954A4 (en) 2024-05-22
KR20230096984A (ko) 2023-06-30
US20230322653A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2022092176A1 (ja) ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、二酸化炭素の製造方法、炭酸ジエステルの製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法
CN107922588B (zh) 环氧树脂、环氧树脂组合物、固化物和电气/电子部件
TWI753136B (zh) 含磷之酚化合物、含磷之環氧樹脂、其之硬化性樹脂組成物或環氧樹脂組成物及其之硬化物
WO2022113847A1 (ja) ポリカーボネート樹脂の分解方法、ビスフェノールの製造方法、炭酸ジアルキルの製造方法、炭酸アルキルアリールの製造方法、炭酸ジアリールの製造方法、再生ポリカーボネート樹脂の製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法
CN109553756B (zh) 含磷环氧树脂的制造方法
JP6772680B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子部品
US11299620B2 (en) Epoxy resin composition, cured product, and electrical or electronic component
JP2023124421A (ja) ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、エポキシ樹脂の製造方法及びエポキシ樹脂硬化物の製造方法
WO2023163026A1 (ja) ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、エポキシ樹脂の製造方法、エポキシ樹脂硬化物の製造方法及びビスフェノール-炭酸アルキル縮合体の製造方法
CN116583495A (zh) 聚碳酸酯树脂的分解方法、双酚的制法、碳酸二烷基酯的制法、碳酸烷基芳基酯的制法、碳酸二芳基酯的制法、再生聚碳酸酯树脂的制法、环氧树脂的制法及环氧树脂固化物的制法
TW202142584A (zh) 含磷的苯氧基樹脂、樹脂組成物、硬化物、電氣電子電路用積層板、及含磷的苯氧基樹脂的製造方法
JP2004010877A (ja) 結晶性エポキシ樹脂、及びその製法
WO2024070871A1 (ja) ビスフェノールの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法、並びにビスフェノール組成物
WO2021033584A1 (ja) エポキシ樹脂組成物、硬化物及び電気・電子部品
JP7290205B2 (ja) エポキシ樹脂、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルム
JP2024048433A (ja) ビスフェノールaの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法
JP2024048954A (ja) ビスフェノールの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法
JP6972943B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子部品
CN115244101B (zh) 环氧树脂组合物、固化物及电气电子部件
JP2024017469A (ja) 無機物及びフェノール化合物の併産方法、及び複合材料の製造方法
JP2021147613A (ja) エポキシ樹脂組成物、硬化物及び電気・電子部品
JP6750427B2 (ja) 多官能エポキシ樹脂、その製造方法、硬化性樹脂組成物及びその硬化物
WO2023002902A1 (ja) フェノール混合物、エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子部品
JP2024048992A (ja) ビスフェノール組成物、ビスフェノール組成物の製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法
JP2024017471A (ja) 金属フェノキシドの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886293

Country of ref document: EP

Effective date: 20230530