WO2022088401A1 - 1,1-二氟乙烯的制备方法 - Google Patents

1,1-二氟乙烯的制备方法 Download PDF

Info

Publication number
WO2022088401A1
WO2022088401A1 PCT/CN2020/134866 CN2020134866W WO2022088401A1 WO 2022088401 A1 WO2022088401 A1 WO 2022088401A1 CN 2020134866 W CN2020134866 W CN 2020134866W WO 2022088401 A1 WO2022088401 A1 WO 2022088401A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
rare earth
mixture
mass ratio
alcohol
Prior art date
Application number
PCT/CN2020/134866
Other languages
English (en)
French (fr)
Inventor
司林旭
司志红
陈志刚
黄爱东
Original Assignee
常熟三爱富中昊化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟三爱富中昊化工新材料有限公司 filed Critical 常熟三爱富中昊化工新材料有限公司
Publication of WO2022088401A1 publication Critical patent/WO2022088401A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof

Definitions

  • the present invention relates to a method for producing 1,1-difluoroethylene using 1,1-difluoro-1-chloroethane (HCFC-142b).
  • the process of the present invention has improved HCFC-142b conversion and 1,1-difluoroethylene (VDF) selectivity.
  • Fluorine-containing materials have excellent high temperature resistance, oil resistance, solvent resistance, weather resistance and physical and mechanical properties. They are one of the indispensable and substitute basic materials in modern industry, especially in high-tech fields. They are widely used in industrial and agricultural production. Widely used, mainly used in chemical equipment, electronic and electrical, piezoelectric materials, lithium batteries and architectural coatings and other fields. In recent years, with the advancement of science and technology and the development of material synthesis technology, people's market demand for fluorine-containing materials and their performance requirements have become higher and higher, which has led to the rapid development of the synthesis field of monomer 1,1-difluoroethylene.
  • 1,1-Vinylidene fluoride also known as vinylidene fluoride (VDF)
  • VDF vinylidene fluoride
  • It is one of the important monomers in the fluorine chemical industry. It is mainly used for the production of polyvinylidene fluoride, fluorine rubber and fluorine-containing copolymers. such as vinylidene fluoride-hexafluoropropylene, vinylidene fluoride-vinylidene fluoride, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene, etc.
  • the industrial production method of VDF monomer mainly uses 1,1-difluoro-1-chloroethane (HCFC-142b) as the raw material, dehydrochlorination (HCl) through empty pipe cracking or steam dilution cracking, and then through a series of The post-processing steps include carbon removal, water washing, alkali washing, compression, and cold stripping, and finally obtain VDF monomer through rectification.
  • HCFC-142b 1,1-difluoro-1-chloroethane
  • HCl dehydrochlorination
  • the post-processing steps include carbon removal, water washing, alkali washing, compression, and cold stripping, and finally obtain VDF monomer through rectification.
  • CN103664508A discloses a production method of vinylidene fluoride monomer, which includes: 1) using HCFC-142b as a raw material, cracking through empty tubes or steam dilution and cracking, and removing light components by a vinylidene fluoride delight tower 2) vinylidene fluoride rectifying tower obtains vinylidene fluoride monomer; 3) side line impurity removal tower removes impurities and high boilers, and the tower top still reclaims vinylidene fluoride, and the bottom of the tower still extracts high boiler impurities, and the tower top
  • the temperature is -35°C
  • the temperature of the tower is 90-95°C
  • the pressure at the top of the tower is 2MPa
  • the pressure drop of the whole tower is controlled at 9KPa
  • the molar reflux ratio is 80
  • the vinylidene fluoride monomer and the unreacted difluoro-chloroethyl alkyl includes: 1) using HCFC-
  • the cracked gas obtained by the HCFC-142b cracking method has many impurities: CH 3 F, CH 3 CHF 2 , C 2 H 3 F, C 2 H 2 ClF, etc.
  • the content of these impurities is more than 3%, and through refining Distillation is difficult to remove, and when these impurities accumulate to a certain extent, it will increase the difficulty of temperature control of the distillation column and increase energy consumption.
  • this process also has disadvantages such as large equipment investment, high reaction temperature (600-900° C.), large energy consumption, easy coking of the reaction tube, and poor product selectivity.
  • CN105384596A discloses a preparation method of vinylidene fluoride, which comprises adding an inorganic alkali solution with a mass percentage concentration of 10-70%, a phase transfer agent and 1,1-difluoro-1-chloroethane The reaction is carried out in the reaction kettle, and the reaction temperature is 60-200 ° C. During the reaction process, the pressure of the reaction kettle is controlled at 1-5.0 MPa by extracting and collecting gas-phase materials. The gas phase material in the reaction kettle is collected under pressure, and the gas phase material collected before and after mixing is obtained to obtain the crude vinylidene fluoride product.
  • this improved method has the advantages of simple process, relatively mild reaction conditions, less equipment investment, low energy consumption, and few by-products, but the preparation method also has the following shortcomings:
  • the object of the present invention is to provide a method for preparing vinylidene fluoride, which not only has the advantages of simple process, low energy consumption, low equipment investment, high product purity, and convenient post-processing, but also has improved 1,1 - Conversion of difluoro-1-chloroethane and selectivity to vinylidene fluoride.
  • the present invention relates to a kind of preparation method of 1,1-difluoroethylene, comprising the following steps:
  • the preparation method of 1,1-difluoroethylene of the present invention comprises:
  • Inorganic bases suitable for the method of the present invention are not particularly limited, and can be conventional inorganic bases known in the art.
  • it may be the inorganic base mentioned in CN105384596A, which is hereby incorporated by reference as part of the present invention.
  • the inorganic base is selected from alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates or mixtures thereof.
  • the inorganic base is selected from potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, or a mixture of two or more thereof.
  • the alcohol suitable for the method of the present invention is not particularly limited as long as it can form an alcohol-saturated solution of the inorganic base with the inorganic base and the resulting saturated solution can be advantageously used in the method of the present invention.
  • the alcohols are C 1-18 alkanols and hyperbranched polyglycerols.
  • the alcohol is selected from hyperbranched polyglycerol, ethanol, methanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-hexyl-1-decanol or mixtures thereof.
  • the hyperbranched polyglycerol used in the present invention can be purchased in the market, or prepared by the method disclosed in CN105209520A, for example.
  • the hyperbranched polyglycerol is hyperbranched polyglycerol 4th generation.
  • the method for preparing the saturated solution of inorganic alkali alcohol is not particularly limited, and may be a conventional method known in the art.
  • the inorganic base can be added to the alcohol solvent or the alcohol solvent can be added to the inorganic base and mixed to obtain an alcohol saturated solution of the inorganic base.
  • the saturated solution of the inorganic alkali alcohol can also optionally contain an ionic liquid.
  • the ionic liquid is selected from tetrabutylammonium bromide, tetrabutylammonium chloride, (1-butyl-3-methylimidazole) chloride, 1-butyl-2, At least one of 3-dimethylimidazolium chloride.
  • the mass ratio of the ionic liquid to the saturated inorganic alkali alcohol solution is 1:(80-120), preferably 1:(85-110), more preferably 1:(90-100 ).
  • the reactor suitable for the method of the present invention is not particularly limited, and can be a conventional reactor known in the art, the reactor has a condensation reflux device and a gas collection pipeline fluidly connected with the condensation reflux device.
  • the rare earth fluoride used as a catalyst in the method of the present invention may be a rare earth fluoride known in the art, for example, a fluoride produced by the method described in CN101348274A (which is hereby incorporated by reference as part of the present invention).
  • Rare Earths In an example of the present invention, the rare earth fluoride is selected from fluorides of yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, or a mixture of two or more of them.
  • the rare earth fluoride catalyst includes an active component and an auxiliary component
  • the active component includes rare earth fluoride, acetylacetonate and ferric chloride
  • the auxiliary component includes a C 1-6 alkyl group Amines, C 1-6 alkanediamines, C 1-6 alkyl alkoxides, C 1-6 alkyl alkanolamines, alkali metal hydrides, or mixtures of two or more thereof.
  • the rare earth fluoride catalyst includes an active component and an auxiliary component, and the mass ratio of the two is (3-5):1, preferably (3.2-4.8):1, more preferably ( 3.4-4.6):1, preferably (3.6-4.4):1, preferably (3.8-4.2):1.
  • the acetylacetonate comprises copper acetylacetonate.
  • the C 1-6 alkylamine is selected from n-propylamine, n-butylamine, n-hexylamine or a mixture thereof;
  • the C 1-6 alkanediamine is selected from ethylenediamine, propylenediamine or a mixture thereof;
  • the C 1-6 alkyl alkoxide is selected from potassium tert-butyl alkoxide, sodium tert-butyl alkoxide, sodium methoxide, sodium ethoxide, potassium ethoxide, potassium methoxide or a mixture thereof;
  • the alkanolamine is selected from ethanolamine, methanolamine or a mixture thereof;
  • the alkali metal hydride is selected from potassium hydride, sodium hydride or a mixture thereof.
  • the active ingredient is a mixture of rare earth fluoride, copper acetylacetonate, and ferric chloride in a mass ratio of 1:(2-3):1.
  • the method of the present invention includes placing the alcohol-saturated solution of the inorganic base prepared above and the rare earth fluoride catalyst in the reaction kettle.
  • the amount of rare earth fluoride used is a catalytically effective amount.
  • the mass ratio of the alcohol-saturated solution of the inorganic base to the catalyst is (8-10):0.1, preferably (8.2-9.8):0.1, more preferably (8.4-9.6): 0.1, preferably (8.6-9.2):0.1, preferably (8.8-9.0):0.1.
  • the method of the present invention may further comprise the step of replacing the gas in the reaction kettle with an inert gas.
  • the applicable inert gas is not particularly limited, and can be a conventional inert gas known in the art.
  • the inert gas can be selected from any one of nitrogen, helium, neon, and argon. From the viewpoint of cost, nitrogen gas is preferred.
  • the method of the present invention includes the step of feeding HCFC-142b into the reaction kettle.
  • the flow rate of HCFC-142b is not particularly limited, and can be a conventional flow rate in the field.
  • the flow rate of the HCFC-142b introduced is 1-2g/min, preferably 1.1-1.9g/min, more preferably 1.2-1.8g/min, preferably 1.3-1.7g /min, preferably 1.4-1.6 g/min.
  • the reaction temperature of the reaction kettle is 60-80°C, preferably 62-78°C, more preferably 65-75°C, preferably 68-72°C.
  • the temperature of the refrigerant in the condensation reflux device is -25 to -15°C, preferably -22 to -18°C.
  • the freezing liquid is prepared by mixing ethylene glycol and water in a mass ratio of (3-5):1.
  • the method of the present invention may further comprise the step of purifying it.
  • the applicable purification method is not particularly limited, and can be a conventional purification method known in the art.
  • the purification step includes washing and drying the vinylidene fluoride obtained by the reaction in sequence to obtain a finished product of vinylidene fluoride.
  • the preparation method of 1,1-difluoroethylene provided by the present invention can safely, quickly and efficiently convert HCFC-142b into VDF, without high temperature cracking process, and without the use of expensive catalysts, simple post-processing, no need It will cause environmental pollution, the by-products are easy to handle, and have high economic value, social value and ecological value;
  • the preparation method of 1,1-difluoroethylene provided by the present invention overcomes the defects such as large investment in equipment, high reaction temperature, large energy consumption, easy coking of reaction tubes, poor product selectivity in the production process of traditional VDF, and has the advantages of producing High efficiency, less by-products and three wastes, low cost, high atomic utilization rate, simpler process route and post-processing, low energy consumption, low equipment investment, suitable for continuous large-scale production;
  • ionic liquid is added in the elimination reaction process, which can not only improve the solubility selectivity, but also catalyze the reaction, thereby effectively improving the yield and Product purity. Especially through the rational selection of catalysts, the product selectivity and the conversion rate of reactants are improved;
  • Yttrium fluoride (YF 3 ) was prepared according to the embodiment 1 of CN101348274A, and yttrium fluoride, copper acetylacetonate and ferric chloride were mixed in a mass ratio of 1:2:1 to form an active component; the active component was mixed with n-butyl The amines are mixed in a mass ratio of 3:1 to prepare a rare earth fluoride catalyst.
  • potassium hydroxide was added to the ethanol solvent, and after mixing uniformly, it was prepared into a saturated solution of potassium hydroxide in ethanol.
  • Tetrabutylammonium bromide was added to the ethanol saturated solution of potassium hydroxide in an amount such that the mass ratio of tetrabutylammonium bromide to the ethanol saturated solution of potassium hydroxide was 1:80.
  • the ethanol saturated solution of potassium hydroxide and the rare earth fluoride catalyst were placed in a reaction kettle with a condensation reflux device in a mass ratio of 8:0.1, and a gas collection pipe was arranged at the upper end of the condensation reflux device.
  • the temperature of the freezing liquid of the condensation reflux device is -15° C. (the freezing liquid is formed by mixing ethylene glycol and water in a mass ratio of 3:1).
  • the air in the kettle was replaced by nitrogen purging, then HCFC-142b was gradually introduced into the solution of the reactor at a flow rate of 1 g/min, and stirred at 65 ° C. When gas was released from the gas collection pipeline, the gas was directly collected. Get crude product.
  • the crude product is washed with water and dried successively to obtain the finished product of 1,1-difluoroethylene.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 92%, and the selectivity of VDF reaches 95%.
  • Lanthanum fluoride (LaF 3 ) was prepared as described in Example 2 of CN101348274A, and lanthanum fluoride, copper acetylacetonate, and ferric chloride were mixed in a mass ratio of 1:2.3:1 to form an active ingredient; the active ingredient was mixed with ethylene glycol The amines are mixed in a mass ratio of 3.5:1 to prepare a rare earth fluoride catalyst.
  • potassium carbonate was added to methanol solvent, and after mixing uniformly, it was prepared as a methanol saturated solution of potassium carbonate.
  • the methanol saturated solution of potassium carbonate and the rare earth fluoride catalyst were placed in a reaction kettle with a condensation reflux device in a mass ratio of 8.5:0.1, and a gas collection pipe was arranged at the upper end of the condensation reflux device.
  • the temperature of the freezing liquid of the condensation reflux device is -17° C. (the freezing liquid is formed by mixing ethylene glycol and water in a mass ratio of 3.5:1).
  • the air in the kettle was replaced by nitrogen purging, then HCFC-142b was gradually introduced into the solution of the reactor at a flow rate of 1.2 g/min, and stirred at 68 °C. When gas was released from the gas collection pipeline, the gas was directly collected. , to get the crude product.
  • the crude product is washed with water and dried successively to obtain the finished product of 1,1-difluoroethylene.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 93%, and the selectivity of VDF reaches 91%.
  • Praseodymium fluoride (PrF 3 ) was prepared according to Example 3 of CN101348274A, and praseodymium fluoride, copper acetylacetonate, and ferric chloride were mixed in a mass ratio of 1:2.5:1 to form an active ingredient; the active ingredient was mixed with n-butyl The mixture of amine and potassium tert-butylate (1:1 mixture) is mixed in a mass ratio of 4:1 to prepare a rare earth fluoride catalyst.
  • the methanol saturated solution of potassium carbonate and the rare earth fluoride catalyst were placed in a reaction kettle with a condensation reflux device in a mass ratio of 9:0.1, and a gas collection pipe was arranged at the upper end of the condensation reflux device.
  • the temperature of the freezing liquid of the condensation reflux device is -20° C. (the freezing liquid is formed by mixing ethylene glycol and water in a mass ratio of 4:1).
  • the air in the kettle was replaced by nitrogen purging, then HCFC-142b was gradually introduced into the solution of the reactor at a flow rate of 1.5 g/min, stirred at 70 °C, and when gas was released from the gas collection pipeline, the gas was directly collected. , to get the crude product.
  • the crude product is washed with water and dried successively to obtain the finished product of 1,1-difluoroethylene.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 96%, and the selectivity of VDF reaches 96%.
  • Neodymium fluoride (NdF 3 ) was prepared as described in Example 4 of CN101348274A, and neodymium fluoride, copper acetylacetonate, and ferric chloride were mixed in a mass ratio of 1:2.9:1 to form an active ingredient; Amine, ethanolamine, potassium tert-butyl alkoxide and sodium hydride form an auxiliary component mixture in a ratio of 1:1:3:2:1, and the active component and the auxiliary component mixture are mixed in a mass ratio of 4.5:1 to prepare a rare earth fluoride catalyst .
  • a mixture of potassium hydroxide, potassium carbonate and sodium carbonate with a mass ratio of 1:2:4 was added to a mixed alcohol solvent, which was composed of ethanol, methanol, 2-hexyl-1- Decyl alcohol and the fourth generation of hyperbranched polyglycerol are mixed in a mass ratio of 1:1:3:2, and are configured into an alcohol-saturated solution of an inorganic base.
  • ionic liquid which is tetrabutylammonium bromide, (1-butyl-3-methylimidazole) chloride, 1-butyl-2,3-dimethylimidazole Chloride salts are mixed in a mass ratio of 1:1:3.
  • the mass ratio of the ionic liquid to the saturated alcohol solution is 1:115.
  • the alcohol saturated solution and the rare earth fluoride catalyst were placed in a reaction kettle with a condensation reflux device in a mass ratio of 9.5:0.1, and a gas collection pipe was arranged at the upper end of the condensation reflux device.
  • the temperature of the freezing liquid of the condensation reflux device is -23° C. (the freezing liquid is obtained by mixing ethylene glycol and water in a mass ratio of 4.5:1).
  • the air in the kettle was replaced by nitrogen purging, then HCFC-142b was gradually introduced into the solution of the reactor at a flow rate of 1.8 g/min, stirred at 73 °C, and when gas was released from the gas collection pipeline, the gas was directly collected. , to get the crude product.
  • the crude product is washed with water and dried successively to obtain the finished product of 1,1-difluoroethylene.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 97%, and the selectivity of VDF reaches 98%.
  • Samarium fluoride (SmF 3 ) was prepared according to Example 6 of CN101348274A, and samarium fluoride, copper acetylacetonate, and ferric chloride were mixed in a mass ratio of 1:3:1 to form an active ingredient; the active ingredient and hydrogenated The sodium is mixed at a mass ratio of 5:1 to prepare a rare earth fluoride catalyst.
  • potassium hydroxide was added to the mixed alcohol solvent at a mass ratio of 3:5, the mixed alcohol solvent was composed of 2-hexyl-1-decanol and the 4th generation of hyperbranched polyglycerol in a mass of 3:5 It is mixed and configured as an alcohol-saturated solution of inorganic base.
  • the alcohol saturated solution and the rare earth fluoride catalyst are placed in a reaction kettle with a condensation reflux device in a mass ratio of 10:0.1, and a gas collection pipe is arranged at the upper end of the condensation reflux device.
  • the temperature of the freezing liquid of the condensation reflux device is -25°C (the freezing liquid is formed by mixing ethylene glycol and water in a mass ratio of 5:1).
  • the air in the kettle was replaced by nitrogen purging, then HCFC-142b was gradually introduced into the solution of the reactor at a flow rate of 2 g/min, and stirred at 75 ° C. When the gas was released from the gas collection pipeline, the gas was directly collected. Get crude product.
  • the crude product is washed with water and dried successively to obtain the finished product of 1,1-difluoroethylene.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 92%, and the selectivity of VDF reaches 90%.
  • Vinylidene fluoride was prepared by the same method as Example 1 of CN105384596A.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 75%, and the selectivity of VDF reaches 52%.
  • Vinylidene fluoride was prepared by basically the same method as in Example 1, except that no rare earth fluoride catalyst was added.
  • Tests show that, based on the consumption of HCFC-142b, the conversion rate of HCFC-142b is 72%, and the selectivity of VDF reaches 65%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种1,1-二氟乙烯的制备方法,包括以下步骤:i)配制无机碱醇饱和溶液;ii)将所述无机碱醇饱和溶液、氟化稀土催化剂置于设置有冷凝回流装置和气体收集管道的反应釜中,通入1,1-二氟-1-氯乙烷,收集气体收集管道放出的偏氟乙烯产品。所述氟化稀土催化剂包括活性成分和辅助成分,所述活性成分包括氟化稀土、乙酰丙酮酸盐和氯化铁;所述辅助成分包括C 1-6烷基胺、C 1-6烷基醇盐、C 1-6烷基链烷醇胺、碱金属氢化物或其混合物。

Description

1,1-二氟乙烯的制备方法 技术领域
本发明涉及采用1,1-二氟-1-氯乙烷(HCFC-142b)生产1,1-二氟乙烯的方法。本发明方法具有改进的HCFC-142b转化率和1,1-二氟乙烯(VDF)选择性。
背景技术
含氟材料具有出色的耐高温性、耐油性、耐溶剂性、耐候性和物理力学性能,是现代工业尤其是高技术领域中不可缺少和替代的基础材料之一,在工农业生产中应用非常广泛,主要用于化工设备、电子电气、压电材料、锂电池和建筑涂料等领域。近年来,随着科技的进步及材料合成技术的发展,人们对含氟材料的市场需求量及其性能要求越来越高,带动制备单体1,1-二氟乙烯合成领域发展迅速。
1,1-二氟乙烯也称偏氟乙烯(VDF),分子式为CH 2=CF 2,是氟化工行业重要的单体之一,主要用于生产聚偏氟乙烯、氟橡胶以及含氟共聚物如偏氟乙烯-六氟丙烯、偏氟乙烯-偏氟乙烯、偏氟乙烯-四氟乙烯-六氟丙烯等。目前工业上生产VDF单体的方法主要采用1,1-二氟-1-氯乙烷(HCFC-142b)作为原料,通过空管裂解或者水蒸气稀释裂解脱氯化氢(HCl),再经过一系列的后处理步骤,包括除碳、水洗、碱洗、压缩、冷脱后,最终通过精馏得到VDF单体。
例如,CN103664508A公开了一种偏氟乙烯单体的生产方法,包括:1)采用HCFC-142b作为原料,经空管裂解或者水蒸气稀释裂解,并由偏氟乙烯脱轻塔脱除轻组分;2)偏氟乙烯精馏塔得到偏氟乙烯单体;3)侧线除杂塔除去杂质和高沸物,塔顶塔釜回收偏氟乙烯,塔釜底部采出高沸物杂质,塔顶温度-35℃,塔釜温度90-95℃,塔顶压力2MPa,全塔压降控制在9KPa,摩尔回流比为80;4)回收偏氟乙烯单体和未参与反应的二氟一氯乙烷。
通过HCFC-142b裂解法得到的裂解气均有较多的杂质:CH 3F、CH 3CHF 2、C 2H 3F、C 2H 2ClF等,这些杂质含量在3%以上,且通过精馏除去比较困难,这些杂质积累到一定程度时会增加精馏塔温度控制的难度,增加能耗。另外,该工艺还存在设备投资大、反应温度高(600~900℃)、能耗大、反应管易结焦、产品选择性差等缺点。
为解决上述问题,CN105384596A公开了一种偏氟乙烯的制备方法,包括将质量百分浓度为10-70%的无机碱液、相转移剂和1,1-二氟-1-氯乙烷加入反应釜中进行反应,反应温度为60-200℃,反应过程中通过采出并收集气相物料控制反应釜压力在1-5.0MPa,反应0.5-5h后停止收集气相物料,将反应液冷却,卸压收集反应釜中气相物料,混合前后收集的气相物料,即得偏氟乙烯粗品。虽然与现有的裂解法相比这种改进方法具有工艺简单、反应条件相对温和、设备投资少、能耗低、副产物少的优点,然而该制备方法还存在如下缺点:
a)反应在碱水溶液中进行,1,1-二氟-1-氯乙烷易发生取代反应而导致产率低,且1,1-二氟-1-氯乙烷消去反应易发生脱氟产品,导致产品选择性不佳;
b)反应在高压中进行,且后续需要经过蒸馏操作,公用工程消费大,整个设备投资仍偏高,不适合工业化生产;
c)1,1-二氟-1-氯乙烷的转化率和偏氟乙烯的选择性仍有改进的余地。
本领域仍需要开发一种偏氟乙烯的制备方法,这种方法不仅具有工艺简单、能耗小、设备投资低、产品纯度高、后处理方便的优点,并且还具有改进的1,1-二氟-1-氯乙烷的转化率和偏氟乙烯的选择性。
发明内容
本发明的发明目的是提供一种偏氟乙烯的制备方法,这种方法不仅具有工艺简单、能耗小、设备投资低、产品纯度高、后处理方便的优点,并且还具有改进的1,1-二氟-1-氯乙烷的转化率和偏氟乙烯的选择性。
因此,本发明涉及一种1,1-二氟乙烯的制备方法,包括以下步骤:
i)配制无机碱的醇饱和溶液;
ii)将所述无机碱的醇饱和溶液、氟化稀土催化剂置于设置有冷凝回流装置和气体收集管道的反应釜中,通入1,1-二氟-1-氯乙烷,收集气体收集管道放出的偏氟乙烯产品。
具体实施方式
本发明1,1-二氟乙烯的制备方法包括:
i)配制无机碱的醇饱和溶液
适合本发明方法的无机碱无特别的限制,可以是本领域已知的常规无机碱。 例如,它可以是CN105384596A(该文以引用的方式插入本文作为本发明的一部分)中提到的无机碱。在本发明的一个实例中,所述无机碱选自碱金属氢氧化物、碱土金属氢氧化物、碱金属碳酸盐或其混合物。在本发明的一个实例中,所述无机碱选自氢氧化钾、氢氧化钠、碳酸钾、碳酸钠或它们中两种或更多种形成的混合物。
适合本发明方法的醇无特别的限制,只要其能与无机碱形成无机碱的醇饱和溶液并且得到的饱和溶液可有利地用于本发明方法即可。在本发明的一个实例中,所述醇为C 1-18链烷醇和超支化聚甘油。在本发明的一个实例中,所述醇选自超支化聚甘油、乙醇、甲醇、正丙醇、异丙醇、正丁醇、异丁醇、2-己基-1-癸醇或其混合物。
本发明使用的超支化聚甘油可由市场上购得,或者采用例如CN105209520A公开的方法制得。在本发明的一个实例中,所述超支化聚甘油是超支化聚甘油第4代。
用于配制无机碱醇饱和溶液的方法无特别的限制,可以是本领域已知的常规方法。例如,可以将无机碱加入醇溶剂中或者将醇溶剂加入无机碱中混合后得到无机碱醇饱和溶液。
为提高反应效率,还可任选地使所述无机碱醇饱和溶液含有离子液体。在本发明的一个实例中,所述离子液体选自四丁基溴化铵、四丁基氯化铵、氯化(1-丁基-3-甲基咪唑)、1-丁基-2,3-二甲基咪唑氯盐中的至少一种。在本发明的一个实例中,所述离子液体和无机碱醇饱和溶液的质量比为1∶(80-120),较好为1∶(85-110),更好为1∶(90-100)。
ii)将所述无机碱的醇饱和溶液、氟化稀土催化剂置于设置有冷凝回流装置和气体收集管道的反应釜中,通入1,1-二氟-1-氯乙烷,收集气体收集管道放出的偏氟乙烯产品。
适用于本发明方法的反应釜无特别的限制,可以是本领域已知的常规反应釜,所述反应釜带有冷凝回流装置和与所述冷凝回流装置流体相连的气体收集管道。
在本发明方法中用作催化剂的氟化稀土可以是本领域已知的氟化稀土,例如可以是CN101348274A(该文以引用的方式插入本文作为本发明的一部分)所述方法制得的氟化稀土。在本发明的一个实例中,所述氟化稀土选自钇、镧、镨、钕、 钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪的氟化物,或它们中的两种或更多种的混合物。
在本发明的一个实例中,所述氟化稀土催化剂包括活性成分和辅助成分,所述活性成分包括氟化稀土、乙酰丙酮酸盐和氯化铁,所述辅助成分包括C 1-6烷基胺、C 1-6烷二胺、C 1-6烷基醇盐、C 1-6烷基链烷醇胺、碱金属氢化物或其两种或更多种形成的混合物。
在本发明的一个实例中,所述氟化稀土催化剂包括活性成分和辅助成分,两者的质量比为(3-5)∶1,较好为(3.2-4.8)∶1,更好为(3.4-4.6)∶1,宜为(3.6-4.4)∶1,优选为(3.8-4.2)∶1。
在本发明的一个实例中,所述乙酰丙酮酸盐包括乙酰丙酮酸铜。
在本发明的一个实例中,所述C 1-6烷基胺选自正丙胺、正丁胺、正己胺或其混合物;所述C 1-6烷二胺选自乙二胺、丙二胺或其混合物;所述C 1-6烷基醇盐选自叔丁基醇钾、叔丁基醇钠、甲醇钠、乙醇钠、乙醇钾、甲醇钾或其混合物;所述C 1-6烷基链烷醇胺选自乙醇胺、甲醇胺或其混合物;所述碱金属氢化物选自氢化钾、氢化钠或其混合物。
在本发明的一个实例中,所述活性成分为氟化稀土、乙酰丙酮酸铜、氯化铁按质量比1∶(2-3)∶1混合而成。
本发明方法包括将前面配制的无机碱的醇饱和溶液和氟化稀土催化剂置于所述反应釜中。氟化稀土的用量为催化有效量。
在本发明的一个实例中,所述无机碱的醇饱和溶液和催化剂的质量比为(8-10)∶0.1,较好为(8.2-9.8)∶0.1,更好为(8.4-9.6)∶0.1,宜为(8.6-9.2)∶0.1,优选(8.8-9.0)∶0.1。
在将无机碱的醇饱和溶液和氟化稀土催化剂置于所述反应釜后,本发明方法还可包括用惰性气体置换反应釜内气体的步骤。适用的惰性气体无特别的限制,可以是本领域已知的常规惰性气体,例如,所述惰性气体可选自氮气、氦气、氖气、氩气中的任意一种。从成本的角度,较好是氮气。
在用惰性气体置换后,本发明方法包括向反应釜中通入HCFC-142b的步骤。HCFC-142b的流量不特别的限制,可以是本领域的常规流量。在本发明的一个实例中,所述通入HCFC-142b的流量为1-2g/min,较好为1.1-1.9g/min,更好为1.2-1.8g/min,宜为1.3-1.7g/min,优选1.4-1.6g/min。
在本发明的一个实例中,在通入HCFC-142b并启动反应釜进行反应时,反应釜的反应温度为60-80℃,较好为62-78℃,更好为65-75℃,优选68-72℃。
在本发明的一个实例中,所述冷凝回流装置中的冷冻液的温度为-25至-15℃,较好为-22至-18℃。在本发明的一个实例中,所述冷冻液为乙二醇、水按质量比(3-5)∶1混合而成。
在反应得到偏氟乙烯后,本发明方法还可包括对其进行纯化的步骤。适用的纯化方法无特别的限制,可以是本领域已知的常规纯化方法。在本发明的一个实例中,所述纯化步骤包括将反应得到的偏氟乙烯依次经过水洗、干燥,得到1,1-二氟乙烯成品。
本发明提供的1,1-二氟乙烯的合成方法与现有技术相比具有以下优点:
(1)本发明提供的1,1-二氟乙烯的制备方法,能安全、快捷、高效地将HCFC-142b转化为VDF,无需高温裂解过程,也无需昂贵催化剂的使用,后处理简单,不会造成环境污染,副产品处理方便,具有较高的经济价值、社会价值和生态价值;
(2)本发明提供的1,1-二氟乙烯的制备方法,克服了传统VDF的生产过程设备投资大、反应温度高、能耗大、反应管易结焦、产品选择性差等缺陷,具有生产效率较高、副产物和三废较少、成本较低、原子利用率较高、工艺路线和后处理较简捷,能耗小,设备投资低,适合连续规模化生产的优点;
(3)本发明提供的1,1-二氟乙烯的制备方法,在消除反应过程中添加有离子液体,不仅能改善溶解选择性,还能对反应起到催化作用,进而有效改善产率和产品纯度。特别是通过对催化剂的合理选择,使得产品选择性和反应物转化率提高;
(4)本发明提供的1,1-二氟乙烯的制备方法,反应在低温下进行,避免了含不饱和键的单体的氧化或聚合反应,在常压下进行,操作更简单、安全,无需后续蒸馏操作,降低了公用工程耗能及设备投资成本。
实施例
下面结合实施例对本发明作进一步详细的描述。
实施例1
1.制备氟化稀土催化剂
按照CN101348274A实施例1所述制得氟化钇(YF 3),将氟化钇、乙酰丙酮酸铜、氯化铁按质量比1∶2∶1混合形成活性成分;将该活性成分与正丁胺按质量比3∶1混合,制得氟化稀土催化剂。
2.配制有机碱醇饱和溶液
在20℃下,将氢氧化钾加入到乙醇溶剂中,混合均匀后,配置成氢氧化钾的乙醇饱和溶液。
向该氢氧化钾的乙醇饱和溶液中加入四丁基溴化铵,加入的量使得四丁基溴化铵与氢氧化钾的乙醇饱和溶液的质量比为1∶80。
3.消除反应和纯化
将所述氢氧化钾的乙醇饱和溶液、氟化稀土催化剂以8∶0.1的质量比置于带有冷凝回流装置的反应釜中,所述冷凝回流装置的上端设置有气体收集管道。所述冷凝回流装置冷冻液的温度为-15℃(所述冷冻液为乙二醇、水按质量比3∶1混合而成)。用氮气吹扫置换出釜内空气,接着以1g/min的流量向反应釜的溶液中逐渐通入HCFC-142b,在65℃下搅拌,待气体收集管道处有气体放出时,直接收集气体,得到粗产品。
将粗产品依次经过水洗、干燥,得到1,1-二氟乙烯成品。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为92%,VDF的选择性达到95%。
实施例2
1.制备氟化稀土催化剂
按照CN101348274A实施例2所述制得氟化镧(LaF 3),将氟化镧、乙酰丙酮酸铜、氯化铁按质量比1∶2.3∶1混合形成活性成分;将该活性成分与乙二胺按质量比3.5∶1混合,制得氟化稀土催化剂。
2.配制有机碱醇饱和溶液
在23℃下,将碳酸钾加入到甲醇溶剂中,混合均匀后,配置成碳酸钾的甲醇饱和溶液。
向该碳酸钾的甲醇饱和溶液中加入氯化(1-丁基-3-甲基咪唑),加入的量使 得氯化(1-丁基-3-甲基咪唑)与碳酸钾的甲醇饱和溶液的质量比为1∶90。
3.消除反应和纯化
将所述碳酸钾的甲醇饱和溶液、氟化稀土催化剂以8.5∶0.1的质量比置于带有冷凝回流装置的反应釜中,所述冷凝回流装置的上端设置有气体收集管道。所述冷凝回流装置冷冻液的温度为-17℃(所述冷冻液为乙二醇、水按质量比3.5∶1混合而成)。用氮气吹扫置换出釜内空气,接着以1.2g/min的流量向反应釜的溶液中逐渐通入HCFC-142b,在68℃下搅拌,待气体收集管道处有气体放出时,直接收集气体,得到粗产品。
将粗产品依次经过水洗、干燥,得到1,1-二氟乙烯成品。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为93%,VDF的选择性达到91%。
实施例3
1.制备氟化稀土催化剂
按照CN101348274A实施例3所述制得氟化镨(PrF 3),将氟化镨、乙酰丙酮酸铜、氯化铁按质量比1∶2.5∶1混合形成活性成分;将该活性成分与正丁胺和叔丁基醇钾的混合物(1∶1混合物)按质量比4∶1混合,制得氟化稀土催化剂。
2.配制有机碱醇饱和溶液
在25℃下,将碳酸钠加入到2-己基-1-癸醇溶剂中,混合均匀后,配置成碳酸钠的2-己基-1-癸醇饱和溶液。
向该碳酸钠的2-己基-1-癸醇饱和溶液中加入氯化(1-丁基-2,3-二甲基咪唑),加入的量使得氯化(1-丁基-2,3-二甲基咪唑)与碳酸钠的2-己基-1-癸醇饱和溶液的质量比为1∶100。
3.消除反应和纯化
将所述碳酸钾的甲醇饱和溶液、氟化稀土催化剂以9∶0.1的质量比置于带有冷凝回流装置的反应釜中,所述冷凝回流装置的上端设置有气体收集管道。所述冷凝回流装置冷冻液的温度为-20℃(所述冷冻液为乙二醇、水按质量比4∶1混合而成)。用氮气吹扫置换出釜内空气,接着以1.5g/min的流量向反应釜的溶液中 逐渐通入HCFC-142b,在70℃下搅拌,待气体收集管道处有气体放出时,直接收集气体,得到粗产品。
将粗产品依次经过水洗、干燥,得到1,1-二氟乙烯成品。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为96%,VDF的选择性达到96%。
实施例4
1.制备氟化稀土催化剂
按照CN101348274A实施例4所述制得氟化钕(NdF 3),将氟化钕、乙酰丙酮酸铜、氯化铁按质量比1∶2.9∶1混合形成活性成分;将正丁胺、乙二胺、乙醇胺、叔丁基醇钾和氢化钠以1∶1∶3∶2∶1形成辅助成分混合物,将所述活性成分与辅助成分混合物按质量比4.5∶1混合,制得氟化稀土催化剂。
2.配制有机碱醇饱和溶液
在28℃下,将质量比为1∶2∶4的氢氧化钾、碳酸钾和碳酸钠的混合物加入到混合醇溶剂中,所述混合醇溶剂是由乙醇、甲醇、2-己基-1-癸醇和超支化聚甘油第4代按1∶1∶3∶2的质量比混合而成,配置成无机碱的醇饱和溶液。
向该醇饱和溶液中加入离子液体,所述离子液体为四丁基溴化铵、氯化(1-丁基-3-甲基咪唑)、1-丁基-2,3-二甲基咪唑氯盐按质量比1∶1∶3混合而成。所述离子液体和醇饱和溶液的质量比为1∶115。
3.消除反应和纯化
将所述醇饱和溶液、氟化稀土催化剂以9.5∶0.1的质量比置于带有冷凝回流装置的反应釜中,所述冷凝回流装置的上端设置有气体收集管道。所述冷凝回流装置冷冻液的温度为-23℃(所述冷冻液为乙二醇、水按质量比4.5∶1混合而成)。用氮气吹扫置换出釜内空气,接着以1.8g/min的流量向反应釜的溶液中逐渐通入HCFC-142b,在73℃下搅拌,待气体收集管道处有气体放出时,直接收集气体,得到粗产品。
将粗产品依次经过水洗、干燥,得到1,1-二氟乙烯成品。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为97%,VDF的选择性达到98%。
实施例5
1.制备氟化稀土催化剂
按照CN101348274A实施例6所述制得氟化钐(SmF 3),将氟化钐、乙酰丙酮酸铜、氯化铁按质量比1∶3∶1混合形成活性成分;将所述活性成分和氢化钠按质量比5∶1混合,制得氟化稀土催化剂。
2.配制有机碱醇饱和溶液
在30℃下,以质量比3∶5将氢氧化钾加入到混合醇溶剂中,所述混合醇溶剂是由2-己基-1-癸醇和超支化聚甘油第4代按3∶5的质量比混合而成,配置成无机碱的醇饱和溶液。
向该醇饱和溶液中加入四丁基溴化铵。所述四丁基溴化铵和醇饱和溶液的质量比为1∶120。
3.消除反应和纯化
将所述醇饱和溶液、氟化稀土催化剂以10∶0.1的质量比置于带有冷凝回流装置的反应釜中,所述冷凝回流装置的上端设置有气体收集管道。所述冷凝回流装置冷冻液的温度为-25℃(所述冷冻液为乙二醇、水按质量比5∶1混合而成)。用氮气吹扫置换出釜内空气,接着以2g/min的流量向反应釜的溶液中逐渐通入HCFC-142b,在75℃下搅拌,待气体收集管道处有气体放出时,直接收集气体,得到粗产品。
将粗产品依次经过水洗、干燥,得到1,1-二氟乙烯成品。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为92%,VDF的选择性达到90%。
对比例1
采用与CN105384596A实施例1相同的方法制备偏氟乙烯。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为75%,VDF的选择性达到52%。
对比例2
采用与实施例1基本相同的方法制备偏氟乙烯,不同的是没有添加氟化稀土催化剂。
经测试表明,以HCFC-142b的消耗量为基准计算,HCFC-142b的转化率为72%,VDF的选择性达到65%。

Claims (10)

  1. 一种1,1-二氟乙烯的制备方法,包括以下步骤:
    i)配制无机碱醇饱和溶液;
    ii)将所述无机碱醇饱和溶液、氟化稀土催化剂置于设置有冷凝回流装置和气体收集管道的反应釜中,通入1,1-二氟-1-氯乙烷,收集气体收集管道放出的偏氟乙烯产品。
  2. 如权利要求1所述的制备方法,其特征在于所述无机碱选自氢氧化钾、氢氧化钠、碳酸钾、碳酸钠或它们中两种或更多种形成的混合物;所述醇选自C 1-18链烷醇和超支化聚甘油。
  3. 如权利要求1所述的制备方法,其特征在于所述无机碱醇饱和溶液还含有离子液体,所述离子液体选自四丁基溴化铵、四丁基氯化铵、氯化(1-丁基-3-甲基咪唑)、1-丁基-2,3-二甲基咪唑氯盐中的至少一种;所述离子液体和无机碱醇饱和溶液的质量比为1∶80-120,较好为1∶85-110,更好为1∶90-100。
  4. 如权利要求1-3中任一项所述的制备方法,其特征在于所述氟化稀土催化剂包括活性成分和辅助成分,所述活性成分包括氟化稀土、乙酰丙酮酸盐和氯化铁;所述辅助成分包括C 1-6烷基胺、C 1-6烷二胺、C 1-6烷基醇盐、C 1-6烷基链烷醇胺、碱金属氢化物或其混合物。
  5. 如权利要求4所述的制备方法,其特征在于所述活性成分和辅助成分的质量比为3-5∶1,较好为3.2-4.8∶1,更好为3.4-4.6∶1,宜为3.6-4.4∶1,优选为3.8-4.2∶1。
  6. 如权利要求4所述的制备方法,其特征在于所述乙酰丙酮酸盐包括乙酰丙酮酸铜;所述C 1-6烷基胺选自正丙胺、正丁胺、正己胺或其混合物;所述C 1-6二胺选自乙二胺、丙二胺或其混合物;所述C 1-6烷基醇盐选自叔丁基醇钾、叔丁基醇 钠、甲醇钠、乙醇钠、乙醇钾或其混合物;所述C 1-6烷基链烷醇胺选自乙醇胺、甲醇胺或其混合物;所述碱金属氢化物选自氢化钾、氢化钠或其混合物。
  7. 如权利要求4所述的制备方法,其特征在于所述活性成分为氟化稀土、乙酰丙酮酸盐、氯化铁按质量比1∶(2-3)∶1混合而成。
  8. 如权利要求1-3中任一项所述的制备方法,其特征在于所述无机碱醇饱和溶液和氟化稀土催化剂的质量比为8-10∶0.1,较好为8.2-9.8∶0.1,更好为8.4-9.6∶0.1,宜为8.6-9.2∶0.1,优选8.8-9.0∶0.1。
  9. 如权利要求1-3中任一项所述的制备方法,其特征在于在将无机碱醇饱和溶液和氟化稀土催化剂置于所述反应釜后,所述方法还包括用惰性气体置换反应釜内气体的步骤。
  10. 如权利要求1-3中任一项所述的制备方法,其特征在于反应釜的反应温度为60-80℃,较好为62-78℃,更好为65-75℃,优选68-72℃;通入HCFC-142b的流量为1-2g/min,较好为1.1-1.9g/min,更好为1.2-1.8g/min,宜为1.3-1.7g/min,优选1.4-1.6g/min。
PCT/CN2020/134866 2020-10-28 2020-12-09 1,1-二氟乙烯的制备方法 WO2022088401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011170535.5 2020-10-28
CN202011170535.5A CN114409499B (zh) 2020-10-28 2020-10-28 1,1-二氟乙烯的制备方法

Publications (1)

Publication Number Publication Date
WO2022088401A1 true WO2022088401A1 (zh) 2022-05-05

Family

ID=81260282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134866 WO2022088401A1 (zh) 2020-10-28 2020-12-09 1,1-二氟乙烯的制备方法

Country Status (2)

Country Link
CN (1) CN114409499B (zh)
WO (1) WO2022088401A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091043A (en) * 1975-12-29 1978-05-23 Daikin Kogyo Co., Ltd. Process for the preparation of 1-chloro-1,1-difluoroethane and/or 1,1,1-trifluoroethane
CN101348274A (zh) * 2008-08-27 2009-01-21 西南交通大学 一种制备氟化稀土的方法
CN103664508A (zh) * 2013-12-18 2014-03-26 常熟振氟新材料有限公司 偏氟乙烯单体的生产方法
CN105384596A (zh) * 2015-11-13 2016-03-09 巨化集团技术中心 一种偏氟乙烯的制备方法
CN106588563A (zh) * 2016-12-28 2017-04-26 浙江工业大学 一种1,1‑二氟乙烯的制备方法
CN106866354A (zh) * 2017-01-18 2017-06-20 浙江工业大学 一种1,1‑二氟乙烯的制备方法
CN109180420A (zh) * 2018-09-27 2019-01-11 浙江工业大学 一种1,1-二氟乙烯的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2044370C3 (de) * 1970-09-08 1978-11-02 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von 1,1 -Difluoräthylen
CN104817425B (zh) * 2015-04-03 2016-07-13 常熟三爱富中昊化工新材料有限公司 一种1,1,2,3-四氯丙烯的合成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091043A (en) * 1975-12-29 1978-05-23 Daikin Kogyo Co., Ltd. Process for the preparation of 1-chloro-1,1-difluoroethane and/or 1,1,1-trifluoroethane
CN101348274A (zh) * 2008-08-27 2009-01-21 西南交通大学 一种制备氟化稀土的方法
CN103664508A (zh) * 2013-12-18 2014-03-26 常熟振氟新材料有限公司 偏氟乙烯单体的生产方法
CN105384596A (zh) * 2015-11-13 2016-03-09 巨化集团技术中心 一种偏氟乙烯的制备方法
CN106588563A (zh) * 2016-12-28 2017-04-26 浙江工业大学 一种1,1‑二氟乙烯的制备方法
CN106866354A (zh) * 2017-01-18 2017-06-20 浙江工业大学 一种1,1‑二氟乙烯的制备方法
CN109180420A (zh) * 2018-09-27 2019-01-11 浙江工业大学 一种1,1-二氟乙烯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN WENFENG, LIU BING, KANG YIKUN, WANG ZHIKUN, YU WEI, YANG HONG, LIU YONGNAN, LU JIAQIN, TANG HAODONG, LI YING, SONG WEIYU: "Experimental and DFT Mechanistic Study of Dehydrohalogenation of 1-Chloro-1,1-difluoroethane over Metal Fluorides", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 58, no. 39, 2 October 2019 (2019-10-02), pages 18149 - 18159, XP055927013, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.9b03976 *

Also Published As

Publication number Publication date
CN114409499A (zh) 2022-04-29
CN114409499B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
CN104844556B (zh) 管式反应器连续制备碳酸亚乙烯酯的方法
CN105384596A (zh) 一种偏氟乙烯的制备方法
CN109180420A (zh) 一种1,1-二氟乙烯的制备方法
CN102516039A (zh) 一种含氟乙烯基醚的制备方法
CN115745794A (zh) 乙烯法醋酸乙烯生产工艺及装置
CN101941892A (zh) 一种由甲醇生产二甲醚的方法
WO2022088401A1 (zh) 1,1-二氟乙烯的制备方法
CN101058534B (zh) 一种用甲醇生产二甲醚的设备和方法
CN103724167B (zh) 一种高收率的全氟甲基乙烯基醚(pmve)的绿色合成方法
CN108689811B (zh) 一种制备全氟烷基乙烯基醚的方法和反应系统
CN111087280B (zh) 乙炔氯化-气相催化脱氯化氢制备三氯乙烯的生产方法
CN106588657B (zh) 一种合成碳酸二甲酯的方法
CN101455908B (zh) 一种萃取精馏制备高纯六氟环氧丙烷的方法
CN111393257A (zh) 乙基麦芽酚及其同系物生产中从含氯乙烷废气中回收氯乙烷的方法
CN217140346U (zh) 一种乙烯-乙烯醇共聚物前驱体的生产系统
CN112552149B (zh) 一种制备全氟烷基乙烯基醚的反应系统及其方法
CN214881197U (zh) 一种能够回收残液的二甲基乙酰胺生产装置
CN212701226U (zh) 一种有效提高一甲胺气体回收效率的分离装置
CN100584766C (zh) 盐酸全脱吸系统
CN101070266A (zh) 一种二氟一氯甲烷/六氟丙烯共沸物分离及回收方法
CN202415403U (zh) 用二氟一氯甲烷热解法生产四氟乙烯的装置
CN1432556A (zh) 2,2,2-三氟乙基醋酸酯的制备方法
CN214032306U (zh) 一种液相连续管式脱羧制备全氟烷基乙烯基醚的装置
CN110563580A (zh) 一种高纯度丙酸丙酯的合成方法
CN104016848A (zh) 一种五氟丙酰氟的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959560

Country of ref document: EP

Kind code of ref document: A1