WO2022080450A1 - ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ - Google Patents

ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ Download PDF

Info

Publication number
WO2022080450A1
WO2022080450A1 PCT/JP2021/038055 JP2021038055W WO2022080450A1 WO 2022080450 A1 WO2022080450 A1 WO 2022080450A1 JP 2021038055 W JP2021038055 W JP 2021038055W WO 2022080450 A1 WO2022080450 A1 WO 2022080450A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
conjugated diene
rubber
surfactant
Prior art date
Application number
PCT/JP2021/038055
Other languages
English (en)
French (fr)
Inventor
力丸 桑原
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020237010988A priority Critical patent/KR20230057468A/ko
Priority to EP21880185.0A priority patent/EP4230435A4/en
Priority to CN202180070413.5A priority patent/CN116348313A/zh
Priority to JP2022557436A priority patent/JPWO2022080450A1/ja
Priority to US18/248,945 priority patent/US20240002642A1/en
Publication of WO2022080450A1 publication Critical patent/WO2022080450A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/02Crosslinking with dienes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present disclosure relates to a rubber bale and a method for producing the same, a polymer composition, a crosslinked body, and a tire.
  • the conjugated diene-based polymer obtained by polymerization using a conjugated diene compound has good properties such as heat resistance, wear resistance, mechanical strength, and molding processability. Widely used in various industrial products such as hoses.
  • the polymer composition used for manufacturing treads, sidewalls, etc. of pneumatic tires is reinforced with carbon black, silica, etc. together with a conjugated diene-based polymer in order to improve the durability and wear resistance of the product. It is known that the agent is compounded.
  • conjugated diene-based polymer there are various modified conjugated diene-based polymers in which a functional group that interacts with silica is introduced into the terminal or main chain of the conjugated diene-based polymer chain in order to obtain a tire having excellent fuel efficiency. Proposed. Compared to unmodified conjugated diene-based polymers, modified conjugated diene-based polymers are more compatible with reinforcing fillers such as carbon black and silica, so heat generation is suppressed and fuel efficiency is improved in tire applications. It is possible to make it.
  • Patent Document 1 discloses that a dispersant such as bis- (2-hydroxyethylisotridecyloxypropylamine) is blended with a modified conjugated diene-based polymer
  • Patent Document 2 discloses modified or modified. It is disclosed that the dispersibility of silica is improved by producing a rubber veil by adding a nonionic surfactant such as di (polyoxyethylene) stearylamine to an unmodified conjugated diene-based polymer.
  • the present disclosure has been made in view of the above problems, and its main purpose is to provide a rubber veil capable of obtaining a crosslinked body having excellent processability and scorch resistance and excellent fuel efficiency.
  • the present inventor has diligently studied to solve the above-mentioned problems of the prior art. As a result, it has been found that the above-mentioned problems can be solved by adding a specific additive to the modified conjugated diene-based polymer to obtain a rubber veil. Specifically, the present disclosure provides the following means.
  • a rubber veil containing a modified conjugated diene-based polymer and a surfactant having an HLB of 9.0 or less [1] A rubber veil containing a modified conjugated diene-based polymer and a surfactant having an HLB of 9.0 or less. [2] A mixing step of mixing a polymer solution in which a modified conjugated diene polymer is dissolved in a solvent and a surfactant having an HLB of 9.0 or less, and a solvent from the solution obtained by the mixing step. A method for producing a rubber veil, which comprises a desolvation step of removing. [3] A polymer composition obtained by blending the rubber veil of the above [1] with at least one reinforcing filler selected from the group consisting of silica, carbon black and an inorganic compound represented by the following formula (4). thing.
  • M 1 is a hydration of a specific metal which is any of aluminum, magnesium, titanium and calcium, an oxide of the specific metal, a hydroxide of the specific metal, and an oxide of the specific metal. It is at least one selected from the group consisting of a substance and a hydrate of the hydroxide of the specific metal.
  • N is an integer of 1 to 5
  • m is an integer of 0 to 10
  • k is 2 to 2. It is an integer of 5
  • i is an integer of 0 to 10.
  • the rubber veil of the present disclosure is, for example, a rectangular parallelepiped mass obtained by compression molding synthetic rubber, which is a material for rubber products. Various additives are mixed with this rubber veil, kneaded, and further subjected to processes such as molding and vulcanization to finally produce a rubber product.
  • the rubber veil of the present disclosure contains a modified conjugated diene-based polymer and a surfactant having an HLB of 9.0 or less.
  • the rubber bale of the present disclosure is preferably manufactured by a method including the following steps.
  • Polymerization step A step of polymerizing a monomer containing a conjugated diene compound in the presence of a polymerization initiator to obtain a conjugated diene-based polymer having an active terminal.
  • Modification step A step of reacting the active terminal of the conjugated diene polymer obtained by the above polymerization with a compound having a hydrocarbyloxysilyl group and a nitrogen-containing group (hereinafter, also referred to as "terminal modifier").
  • Mixing step A step of mixing a polymer solution in which a modified conjugated diene-based polymer is dissolved in a solvent and a surfactant.
  • Desolvent step A step of removing the solvent from the solution containing the modified conjugated diene polymer and the surfactant.
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, and 2, -Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like can be mentioned.
  • 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene are preferable, and 1,3-butadiene is highly effective in improving workability and reducing hysteresis loss in a well-balanced manner. Is particularly preferable.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the conjugated diene-based polymer may be a homopolymer using a conjugated diene compound, but from the viewpoint of increasing the strength of rubber, a structural unit derived from the conjugated diene compound and a structural unit derived from the aromatic vinyl compound are used. It is preferable that it is a copolymer having.
  • the aromatic vinyl compound include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and 4-t-butylstyrene.
  • the conjugated diene polymer produced in this step is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the conjugated diene polymer has high living property in anionic polymerization, and is 1,3-. It is preferably a copolymer having a structural unit derived from butadiene and a structural unit derived from styrene.
  • This copolymer is preferably a random copolymer of a conjugated diene compound and an aromatic vinyl compound.
  • the random copolymer may further have a block portion made of a conjugated diene compound or another aromatic vinyl compound.
  • the ratio of aromatic vinyl compounds used is the total amount of monomers used for polymerization from the viewpoint of improving the balance between the low hysteresis loss characteristics (low fuel consumption performance) of the obtained crosslinked product and the wet skid resistance and the wear resistance. On the other hand, it is preferably 3 to 55% by mass, and more preferably 5 to 50% by mass.
  • the content ratio of the structural unit derived from the aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
  • a compound other than the conjugated diene compound and the aromatic vinyl compound may be used as the monomer.
  • other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate and the like.
  • the ratio of the other monomers used is preferably 5% by mass or less, more preferably 3% by mass or less, based on the total amount of the monomers used for the polymerization.
  • the solution polymerization method is particularly preferable.
  • the polymerization type either a batch type or a continuous type may be used.
  • an example of a specific polymerization method is a method of polymerizing a monomer in an organic solvent in the presence of a polymerization initiator and, if necessary, a randomizer.
  • Examples of the polymerization initiator include alkali metal compounds and alkaline earth metal compounds. Specific examples of these include alkyllithium, 1,4-dilithiobutane, phenyllithium, stillbenlithium, naphthyllithium, 1,3-bis (1-lithio-1,3-dimethylpentyl) benzene, and 1,3-phenylene. Examples thereof include bis (3-methyl-1-phenylpentylidene) dilithium, sodium naphthyl, potassium naphthyl, di-n-butylmagnesium, di-n-hexylmagnesium, ethoxypotassium, calcium stearate and the like.
  • the alkyllithium examples include methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, t-butyllithium and the like.
  • the alkali metal compound and the alkaline earth metal compound are preferably lithium compounds.
  • the ratio of the alkali metal compound and the alkaline earth metal compound may be 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization. preferable.
  • a metal obtained by mixing an alkali metal compound or an alkaline earth metal compound as a polymerization initiator and a compound having a functional group that interacts with silica hereinafter, also referred to as “initiator modifier”.
  • An amide compound may be used.
  • a functional group derived from the initiation modifier can be introduced into the polymerization initiation terminal of the conjugated diene-based polymer.
  • the "functional group that interacts with silica” in the present specification means a group having an element that interacts with silica such as nitrogen, sulfur, phosphorus, and oxygen.
  • An “interaction” is an intermolecular force that forms a covalent bond between molecules or is weaker than a covalent bond (eg, ion-dipole interaction, dipole-dipole interaction, hydrogen bond, van der Waals). It means forming an electromagnetic force (electromagnetic force acting between molecules such as force).
  • the starting modifier is preferably a nitrogen-containing compound such as a secondary amine compound.
  • nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, di- (2-).
  • Chain amines such as ethylhexyl) amines and diallylamines; piperidine, pyrrolidine, hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, morpholine, N- (trimethylsilyl) piperazine, N- (tert-butyldimethylsilyl) Cyclic amines such as piperidine, 1,3-ditrimethylsilyl-1,3,5-triazinan and the like can be mentioned.
  • the alkali metal compound or the alkaline earth metal compound and the starting modifier are used. May be mixed in advance, and the mixture may be added to the polymerization system to carry out the polymerization.
  • the alkali metal compound or alkaline earth metal compound and the initiation modifier may be added to the polymerization system separately or simultaneously, and both may be mixed and polymerized in the polymerization system.
  • the amount of the starting modifier used is appropriately set according to the type of the alkali metal compound or the alkaline earth metal compound.
  • the amount of the starting modifier used is used for the above-mentioned polymerization from the viewpoint of achieving a good balance between the processability of the polymer composition and the low fuel consumption performance of the crosslinked product. It is preferably in the range of 0.1 to 1.8 mol, more preferably in the range of 0.2 to 1.0 mol, with respect to 1 mol of the total amount of metallic lithium.
  • the initiation modifier one type may be used alone or two or more types may be used in combination.
  • the randomizer (hereinafter, also referred to as "vinyl group content adjusting agent”) is used for the purpose of adjusting the vinyl group content, which represents the content of vinyl bonds in the polymer.
  • Examples of randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine. , N-Methylmorpholine, tetramethylethylenediamine and the like.
  • the randomizer one type can be used alone or two or more types can be used in combination.
  • the organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used.
  • hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, and 1-butene.
  • the organic solvent one of these can be used alone or in combination of two or more.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 120 ° C.
  • the polymerization reaction is carried out under a pressure sufficient to keep the monomer substantially in the liquid phase.
  • Such pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is inert to the polymerization reaction.
  • the 1,2-vinyl group content (hereinafter, also referred to as “vinyl group content”) of the conjugated diene polymer having an active terminal is preferably 20 to 70% by mass, and preferably 30 to 68% by mass. It is more preferably 33 to 65% by mass, and even more preferably 33 to 65% by mass. If the vinyl group content is less than 20% by mass, the wet grip characteristics tend to be low, and if it exceeds 70% by mass, the fuel efficiency performance tends to be low.
  • the "vinyl group content” is a value indicating the content ratio of the structural unit having a 1,2-bond to the total structural unit of butadiene in the conjugated diene polymer, and is obtained by 1 H-NMR. It is a measured value.
  • the alkali metal active end or the alkaline earth metal active end of the conjugated diene polymer obtained by the above polymerization step is reacted with the terminal modifier.
  • a conjugated diene-based polymer having an active terminal with a terminal modifier, a polymer having a nitrogen-containing group at the end of the main chain can be obtained.
  • the "active terminal” means a portion (more specifically, a metal terminal) other than the structure derived from the monomer having a carbon-carbon double bond, which is present at the end of the molecular chain.
  • the terminal modifier may have at least one hydrocarbyloxysilyl group and one nitrogen-containing group in each molecule.
  • the "hydrocarbyloxysilyl group” is a group in which at least one hydrocarbyloxy group is bonded to a silicon atom, and refers to a group represented by the following formula (5).
  • R 20 and R 21 are independently hydrocarbyl groups. I is an integer of 1 to 3. When i is 1, a plurality of R 21s in the formula are the same or different. . When i is 2 or 3, multiple R20s in the equation are the same or different. "*" Indicates that they are joiners.)
  • the terminal modifier is a compound represented by the following formula (6), a compound represented by the following formula (7), a compound represented by the following formula (8), and a compound represented by the following formula (9). It is preferably at least one selected from the group consisting of the represented compounds.
  • a 2 is a monovalent functional group having a nitrogen atom, no active hydrogen, and bonded to R 17 with a nitrogen atom.
  • R 15 and R 16 are hydrocarbyls.
  • Group, R 17 is a hydrocarbylene group, r is an integer of 0 to 2. When r is 0 or 1, multiple R 16s in the equation are the same or different, and when r is 2.
  • A3 has at least one atom selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon, has no active hydrogen, and has a nitrogen atom with respect to R22 . It is a monovalent functional group bonded with a phosphorus atom, an oxygen atom, a sulfur atom or a silicon atom, or a hydrocarbyl group having 1 to 20 carbon atoms.
  • R 22 is a single bond or a hydrocarbylene group, and R 23 .
  • R 24 are independently hydrocarbyl groups, R 25 is a hydrocarbylene group, and t is 0 or 1.
  • R 31 is an alkanediyl group having 1 to 20 carbon atoms
  • R 32 and R 33 are independently hydrocarbyl groups having 1 to 20 carbon atoms
  • a 1 is a group.
  • “* -C (R 35 ) N-" or group
  • “* -N C (R 35 )-” (where R 35 is a hydrogen atom or hydrocarbyl group and "*" is a bond that binds to R 34 . It indicates that it is a hand.).
  • R 34 has an m-valent hydrocarbon group having 1 to 20 carbon atoms, or at least one atom selected from the group consisting of nitrogen, oxygen and sulfur. It is a m-valent group having 1 to 20 carbon atoms and does not have active hydrogen. N is an integer of 1 to 3 and m is an integer of 2 to 10. R 31 to R 33 and A 1 respectively. When a plurality of identical symbols exist in an expression, the groups represented by the symbols are the same or different from each other.
  • R 42 , R 43 and R 45 are each independently an alkanediyl group having 1 to 12 carbon atoms, and are R 40 , R 41 , R 46 , R 47 , R 48 and R 49 , respectively.
  • R 40 , R 41 , R 46 , R 47 , R 48 and R 49 are independently hydrocarbyl groups having 1 to 20 carbon atoms.
  • A, c and d are independently integers of 1 to 3
  • b is an integer of 1 to 10.
  • the groups represented by the symbols are the same or different from each other.
  • the hydrocarbyl group represented by R 15 , R 16 , R 23 , and R 24 is a linear or branched alkyl group having 1 to 20 carbon atoms and 3 carbon atoms. It is preferably a cycloalkyl group of about 20 or an aryl group having 6 to 20 carbon atoms.
  • R 17 , R 22 and R 25 a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms is preferable.
  • a 2 is a nitrogen-containing group and may have a chain structure or a cyclic structure.
  • the nitrogen atom of A 2 may not be bound to active hydrogen and may be protected by a protecting group (for example, a trisubstituted hydrocarbylsilyl group).
  • a 2 may be a group that can become an onium ion by an onium salt producing agent.
  • a 2 for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protective groups, and one hydrogen atom of a secondary amino group is substituted by one protective group.
  • examples thereof include a nitrogen-containing group, a tertiary amino group, an imino group, and a pyridyl group.
  • a 2 is a group in which one hydrogen atom of a tertiary amino group or a secondary amino group is substituted with one protecting group and two hydrogen atoms of a primary amino group are substituted with two protecting groups. It is preferable to have at least one of the following groups.
  • the "protecting group” is a functional group that converts A2 into a functional group that is inactive with respect to the polymerization active terminal.
  • the nitrogen-containing group and the tertiary amino group in which one hydrogen atom of the secondary amino group is replaced by one protecting group may be chain-like or cyclic.
  • At least one atom selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon possessed by A3 is not bonded to active hydrogen and has a protecting group (for example, a trisubstituted hydrocarbylsilyl group). May be protected by.
  • a 3 may be a group that can become an onium ion by an onium salt producing agent.
  • A3 for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted with two protective groups, and one hydrogen atom of a secondary amino group is substituted with one protective group.
  • a phosphorus-containing group consisting of two hydrogen atoms of a nitrogen-containing group, a tertiary amino group, an imino group, a pyridyl group, and a primary phosphino group substituted with two protective groups, and one hydrogen atom of a secondary phosphino group is one.
  • the group etc. can be mentioned.
  • A3 is preferably a group having silicon or nitrogen, and more preferably a hydrocarbyloxysilyl group, a nitrogen-containing group having a protecting group, or a tertiary amino group.
  • examples of the hydrocarbylene group of R 31 include an alkanediyl group having 1 to 12 carbon atoms, a cycloalkylene group having 3 to 12 carbon atoms, and an arylene group having 6 to 12 carbon atoms.
  • examples of the hydrocarbyl group of R 32 and R 33 include an alkyl group having 1 to 20 carbon atoms, an allyl group, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • the m-valent hydrocarbon group of R 34 is a group obtained by removing m hydrogen atoms from the hydrocarbon.
  • the m- valent hydrocarbon group of R34 is preferably a group obtained by removing m hydrogen atoms from the ring portion of the aromatic hydrocarbon (m-valent aromatic ring group).
  • the aromatic hydrocarbon include a monocyclic or condensed ring such as a benzene ring, a naphthalene ring, and an anthracene ring, and a structure in which two or more of these rings are bonded by a single bond.
  • R 34 is a m-valent group having at least one atom selected from the group consisting of nitrogen, oxygen and sulfur and having no active hydrogen and having a carbon number of 1 to 20.
  • examples thereof include an m-valent heterocyclic group and an m-valent group having a tertiary amine structure.
  • the heterocyclic group is preferably a conjugated system, for example, a monocyclic or condensed ring such as pyridine, pyrimidine, pyrazine, quinoline, naphthalidine, furan, thiophene, or a ring having a structure in which a plurality of rings are linked. Examples thereof include a group obtained by removing m hydrogen atoms from the portion.
  • m is preferably 2 to 6 from the viewpoint of improving the processability of the polymer composition.
  • n is preferably 2 or 3 and more preferably 3 in that the effect of improving silica dispersibility can be further enhanced.
  • the alkanediyl groups of R 45 , R 42 and R 43 are preferably linear.
  • the hydrocarbyl group of R 40 , R 41 , R 46 to R 49 include an alkyl group having 1 to 20 carbon atoms, an allyl group, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. Be done. 2 or 3 is preferable, and 3 is more preferable, because a, c and d can further enhance the effect of improving silica dispersibility.
  • b is preferably 1 to 5, more preferably 1 to 3.
  • terminal modifier examples include N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane and N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane as compounds represented by the above formula (6).
  • Examples of the compound represented by the above formula (7) include 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane and 1-triethylsilyl-2,2-diethoxy-1-aza-2.
  • -Silacyclopentane, 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1,2-azacilolidine, 2,2-dimethoxy-1-phenyl-1,2-azasilolidine, 2- (2,2) -Dimethoxy-1,2-azasilolidin-1-yl) -N, N-diethylethane-1-amine and the like can be mentioned.
  • Examples of the compound represented by the above formula (8) include the following formulas (m-1-1) to (m-1-8). Examples thereof include a compound represented by each of the above, and a compound in which the alkyl group and the alkanediyl group in the compound are replaced with an alkyl group having 1 to 6 carbon atoms and an alkanediyl group having 1 to 6 carbon atoms, respectively.
  • Examples of the compound represented by the above formula (9) include tris (2-triethoxysilylethyl) amine, tris (3-triethoxysilylpropyl) amine, tris (5-triethoxysilylpentyl) amine, N, N.
  • the reaction between the polymerization active terminal and the terminal modifier is preferably performed as a solution reaction.
  • This solution reaction may be carried out using a solution containing an unreacted monomer after the completion of the polymerization reaction, and the conjugated diene polymer contained in the solution is isolated and dissolved in an appropriate solvent such as cyclohexane. You may. Further, the above reaction may be carried out by either a batch type or a continuous type.
  • the method of adding the terminal modifier is not particularly limited, and examples thereof include a method of adding all at once, a method of adding separately, and a method of continuously adding.
  • the amount of the terminal modifier used in the above reaction may be appropriately set according to the type of the compound used in the reaction, but is preferably 0.1 with respect to the metal atoms involved in the polymerization reaction of the polymerization initiator.
  • the molar equivalent or more more preferably 0.3 molar equivalent or more.
  • the amount of the terminal denaturing agent used in the above reaction is preferably 1.5 molar equivalents or less, more preferably 1 with respect to the metal atoms involved in the polymerization reaction of the polymerization initiator in order to avoid the addition of an excessive amount of the terminal modifier. .2 mol or less.
  • the temperature of the above reaction is usually the same as the temperature of the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., and more preferably 0 to 120 ° C. If the reaction temperature is too low, the viscosity of the modified conjugated diene polymer tends to increase. On the other hand, if the reaction temperature is too high, the polymerization active end is likely to be deactivated.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • a treatment may be performed in which the polymerization active end and the coupling agent are reacted for the purpose of enhancing the Mooney viscosity and cold flow characteristics of the polymer.
  • the reaction using the coupling agent may be carried out before or after the reaction between the polymerization active end and the terminal modifier, or may be carried out at the same time as the reaction between the polymerization active end and the end modifier.
  • the coupling agent examples include 2,4-tolylene diisocyanate, diphenylmethane diisocyanate, N, N, N', N'-tetramethylphthalic acid amide, tetrachlorosilicon, N, N, N', Examples thereof include N'-tetramethyl-4,4'-diaminobenzophenone and tetrachlorotin.
  • the modified conjugated diene polymer having a protecting group is used as the terminal modifier, a part or all of the protecting group is substituted with hydrogen in the modified conjugated diene polymer having a protecting group derived from the terminal modifier.
  • the polymer obtained in the above process may be used as a modified conjugated diene-based polymer in the subsequent steps.
  • a protecting group-containing compound is used as the terminal modifier, the modified conjugated diene polymer modified with the terminal modifier may be further reacted with the onium salt-producing agent.
  • a polymer having an onium salt structure at the terminal of the polymer can be obtained as a modified conjugated diene-based polymer. It is preferable that the modified conjugated diene-based polymer has an onium salt structure in that the shape retention of the crosslinked product obtained by using the polymer composition can be improved.
  • the polystyrene-equivalent weight average molecular weight (Mw) of the modified conjugated diene polymer by gel permeation chromatography (GPC) is preferably 1.0 ⁇ 105 or more. When Mw is smaller than 1.0 ⁇ 105, the shape stability, tensile strength and wear resistance of the crosslinked body tend to decrease.
  • the Mw of the modified conjugated diene polymer is more preferably 1.2 ⁇ 105 or more, still more preferably 1.5 ⁇ 105 or more.
  • the Mw of the modified conjugated diene polymer is preferably 1.5 ⁇ 106 or less. When Mw is larger than 1.5 ⁇ 106 , the processability of the polymer composition tends to decrease.
  • the Mw of the modified conjugated diene polymer is more preferably 1.3 ⁇ 106 or less, still more preferably 1.0 ⁇ 106 or less.
  • a polymer solution in which the modified conjugated diene polymer obtained by the above modification step is dissolved in a solvent (hereinafter, also referred to as “polymer solution A”) and a surfactant are mixed.
  • the reaction solution containing the modified conjugated diene polymer obtained in the above modification step may be used as it is, or the modified conjugated diene polymer contained in the reaction solution may be isolated and appropriate. It may be a solution prepared by dissolving it in a various solvent.
  • the solvent for dissolving the isolated modified conjugated diene polymer include the organic solvent exemplified as the solvent that can be used for the polymerization of the monomer. At this time, it is preferable to select an organic solvent capable of dissolving the surfactant.
  • reaction solution containing the modified conjugated diene-based polymer obtained by the above modification step as it is as the polymer solution A in that the number of steps can be reduced and the productivity can be further increased. ..
  • the content ratio of the modified conjugated diene-based polymer in the polymer solution A is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass, based on the total amount of the polymer solution A. % Or more.
  • the content of the modified conjugated diene polymer in the polymer solution A is preferably 90% by mass or less, more preferably 50% by mass or less, and further preferably 30% by mass or less.
  • HLB is a hydrophilic-lipophilic balance, and is a value that changes depending on the balance between the hydrophilic group and the lipophilic group in the molecule.
  • the HLB value is obtained by a calculation formula proposed by Griffin (Griffin method; 20 ⁇ (sum of formulas of hydrophilic parts (alkyl ether part, etc.) in surfactant / molecular weight of surfactant)). The value.
  • the surfactant C is composed of two or more kinds of surfactants, it means that the value obtained by the weighted average of the HLB values of each component is 9.0 or less.
  • the HLB value of the surfactant C is preferably 8.0 or less, preferably 7.0 or less, in that the surfactant C can be retained and stabilized in the rubber to obtain a rubber veil having excellent scorch resistance. It is more preferably less than or equal to, further preferably 6.7 or less, and particularly preferably 6.5 or less.
  • the HLB value of the surfactant C is 0 or more.
  • the surfactant C is preferably a nonionic surfactant, specifically, a compound represented by the following formula (1), a compound represented by the following formula (2), and the following formula (3). It is preferably at least one selected from the group consisting of the compounds represented by.
  • R 1 is a hydrocarbyl group having 10 to 18 carbon atoms
  • R 2 and R 3 are independently hydrocarbyl groups or-(R 6 O) r -H.
  • R 6 is an ethylene group or a propylene group
  • r is an integer of 1 or more. When r is 2 or more, a plurality of R 6s are the same or different from each other.
  • X 1 is a single bond, oxygen.
  • R 4 is a single bond when X 1 is a single bond
  • R 5 is a hydrocarbylene group when X 1 is an oxygen atom or -NR 5- . Hydrogen atom, hydrocarbyl group or-(R 6 O) r -H.)
  • R 1 is preferably a saturated or unsaturated linear hydrocarbyl group, more preferably a linear alkyl group or an alkenyl group.
  • R 4 is a hydrocarbylene group
  • R 4 is preferably a saturated or unsaturated linear hydrocarbylene group, more preferably a linear alkanediyl group or an arcendyl group.
  • the carbon number of each group in one molecule is selected so that the HLB is 9.0 or less.
  • the surfactant C a compound having a propylene glycol chain (-(R 50 -O) j- , where R 50 is a propylene group and j is an integer of 1 or more) is preferably used. Will be done.
  • the R 50 include a 1,2-propylene group and a 1,3-propylene group.
  • the surfactant C include polyoxyethylene alkylamine, polyoxypropylene polyoxyethylene alkylamine, polyoxypropylene alkylamine, and polyoxyethylene-alkylpropylene- as compounds represented by the above formula (1).
  • Diamine, polyoxypropylene-alkylpropylene-diamine, 1,1'-(dodecyl imino) bis (2-propanol), 2,2'- (dodecyl imino) bisethanol, 2,2'-(hexadecyl imino) bis Examples include ethanol.
  • Examples of the compound represented by the above formula (2) include glycerin monostearate and glycerin monooleate.
  • Examples of the compound represented by the above formula (3) include polyoxyethylene lauric acid monoethanolamide, polyoxypropylene coconut oil fatty acid monoethanolamide, polyoxypropylene myristic acid monoethanolamide, and polyoxypropylene coconut oil fatty acid monoisopropanolamide. And so on.
  • the surfactant C one type may be used alone, or two or more types may be used in combination.
  • the form in which the polymer solution A and the surfactant C are mixed is not particularly limited.
  • a method of collectively adding the surfactant C to the polymer solution A, a method of dividing the surfactant C, a method of adding the surfactant C in a divided manner, a method of continuously adding the surfactant, and the like can be mentioned. ..
  • After adding the surfactant C to the polymer solution A it is preferable to uniformly disperse the surfactant C in the polymer solution A by performing a treatment such as stirring.
  • the temperature at which the polymer solution A and the surfactant C are mixed is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 120 ° C., still more preferably 20 to 100 ° C., the same as the temperature of the above-mentioned polymerization reaction. ..
  • the ratio of the polymer solution A and the surfactant C to be mixed is preferably 0.05 parts by mass or more of the surfactant C with respect to 100 parts by mass of the modified conjugated diene-based polymer. That is, the blending ratio of the surfactant C is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass of the modified conjugated diene polymer. preferable.
  • the blending ratio of the surfactant C is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, still more preferably 5 parts by mass or less, based on 100 parts by mass of the modified conjugated diene polymer.
  • the surfactant C By setting the content ratio of the surfactant C to 0.05 parts by mass or more, the surfactant C can be sufficiently dispersed in the polymer solution A, and the fuel efficiency performance is sufficiently improved in the obtained crosslinked product. It is suitable in that it can be done. Further, by setting the content ratio of the surfactant C to 10 parts by mass or less, it is preferable in that the performance deterioration of the modified conjugated diene polymer due to the excessive content of the surfactant C can be suppressed.
  • ⁇ Solvent removal step> the solvent is removed from the solution containing the modified conjugated diene polymer obtained by the above mixing step and the surfactant C (hereinafter, also referred to as “mixed solution B”), and the modified conjugated diene polymer is isolated. do.
  • a rubber veil can be obtained by subjecting the isolated modified conjugated diene polymer to a drying operation such as heat treatment as necessary and compression molding it into a desired shape (for example, a rectangular parallelepiped shape).
  • the method for removing the solvent from the mixed solution A is not particularly limited, for example, a method for separating the solvent by steam stripping, dehydration / drying of the obtained polymer, a method for devolatile with a twin-screw extruder or the like, and a drum dryer. It can be carried out by a known desolvation method such as a method of directly devolatile with or the like. Of these, the method of contacting the mixed solution B with water to remove the solvent is preferable because the desolvation treatment can be easily performed. In this production method, in the above mixing step, a surfactant C having an HLB value of 9.0 or less is used as an additive to be mixed with the polymer solution A.
  • the surfactant C can remain in the system, and a sufficient amount of the surfactant C and the modified conjugated diene polymer are used. Can be kept mixed. This is preferable in that even when steam stripping is adopted, the effect of improving the scorch resistance and processability of the polymer composition and the fuel efficiency performance of the crosslinked product can be sufficiently obtained.
  • a component (additive) different from that of the modified conjugated diene-based polymer is blended as long as the effects of the present disclosure are not impaired. You may.
  • additives include spreading oils, antioxidants and the like.
  • the polymer composition of the present disclosure can be obtained by adding a reinforcing filler to the rubber veil. Further, the polymer composition of the present disclosure further contains components (other components) different from the modified conjugated diene-based polymer and the surfactant contained in the rubber veil, as long as the effects of the present disclosure are not impaired. May be good.
  • the reinforcing filler and other components that can be contained in the polymer composition will be described.
  • the reinforcing filler is added to the rubber veil to increase the strength of the crosslinked body.
  • the reinforcing filler include silica, carbon black, an inorganic compound represented by the following formula (4) (hereinafter, also referred to as “inorganic compound (M)”), and reinforcing fibers (for example, glass fiber and carbon fiber). Inorganic fibers such as, organic fibers such as nylon and polyester) and the like.
  • the reinforcing filler is preferably at least one selected from the group consisting of silica, carbon black and the inorganic compound (M).
  • M 1 is a specific metal which is any of aluminum, magnesium, titanium and calcium, an oxide of the specific metal, a hydroxide of the specific metal, a hydrate of the oxide of the specific metal, and At least one selected from the group consisting of hydroxide hydrates of a specific metal.
  • N is an integer of 1 to 5
  • m is an integer of 0 to 10
  • k is an integer of 2 to 5.
  • i is an integer from 0 to 10.
  • silica examples include wet silica (hydrous silicic acid), dry silica (silicic anhydride), colloidal silica, precipitated silica, calcium silicate, aluminum silicate and the like.
  • wet silica is particularly preferable from the viewpoint of improving the fracture characteristics and the effect of achieving both wet grip and low rolling resistance.
  • high dispersion type silica from the viewpoint of improving the dispersibility in the polymer composition and improving the physical properties and processability.
  • carbon black examples include GPF, FEF, HAF, ISAF, SAF, and the like, but the carbon black is not particularly limited.
  • various reinforcing fillers such as clay and calcium carbonate may be further blended in the polymer composition.
  • the inorganic compound (M) include compounds in which the specific metal is aluminum, such as aluminum oxide, alumina monohydrate, aluminum hydroxide, aluminum carbonate, aluminum silicate, and calcium oxide (Al 2 O 3 ). CaO ⁇ 2SiO 4 etc.);
  • a compound whose specific metal is magnesium for example, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium silicate, calcium silicate (CaMgSiO 4 ), talc, etc.
  • Examples of the compound are, for example, titanium oxide; examples of the compound in which the specific metal is calcium include calcium oxide, calcium hydroxide, calcium carbonate, calcium silicate and the like.
  • the reinforcing filler one of silica, carbon black and the inorganic compound (M) may be used alone, or two or more of these may be used in combination.
  • the polymer composition preferably contains silica as a reinforcing filler because it has a high effect of improving tire characteristics in combination with a modified conjugated diene-based polymer, and among them, wet silica, dry silica, and colloidal. It is preferable to use silica.
  • the content ratio of the reinforcing filler in the polymer composition (the total amount when two or more kinds are contained) is the total amount of the polymer components contained in the polymer composition. The amount is preferably 25 to 130 parts by mass, more preferably 30 to 110 parts by mass with respect to 100 parts by mass.
  • the polymer composition usually contains a cross-linking agent.
  • the cross-linking agent include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and the like, and sulfur is usually used.
  • the blending amount of sulfur is preferably 0.1 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the total amount of rubber components contained in the polymer composition.
  • the polymer composition may further contain a rubber component (hereinafter, also referred to as “another rubber component”) different from that of the modified conjugated diene-based polymer.
  • a rubber component hereinafter, also referred to as “another rubber component”
  • the "rubber component” contained in the polymer composition means a polymer capable of obtaining a cured product exhibiting rubber elasticity by thermosetting.
  • the cured product exhibits a property that it undergoes large deformation (for example, deformation that expands more than twice when stretched at room temperature) with a small force at room temperature, and rapidly returns to almost its original shape when the force is removed.
  • the type of other rubber components is not particularly limited, but unmodified rubber is preferable, and for example, butadiene rubber (BR, for example, high cis BR having 90% or more cis-1,4 bond), styrene butadiene rubber (SBR), and natural rubber. (NR), isoprene rubber (IR), styrene isoprene copolymer rubber, butadiene isoprene copolymer rubber and the like can be mentioned.
  • the blending amount of the other rubber components is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the total amount of the rubber components (modified conjugated diene-based polymer and other rubber components) contained in the polymer composition. It is preferably 10 to 50 parts by mass.
  • the polymer composition may contain, for example, an antiaging agent, zinc oxide, stearic acid, a softening agent, sulfur, a vulcanization accelerator, a silane coupling agent, a compatibilizer, a vulcanization aid, and a process.
  • an antiaging agent zinc oxide, stearic acid, a softening agent, sulfur, a vulcanization accelerator, a silane coupling agent, a compatibilizer, a vulcanization aid, and a process.
  • Various additives generally used in polymer compositions for tires and the like, such as oils, processing aids and anti-sulfur agents, can be blended. These blending ratios can be appropriately selected according to various components as long as the effects of the present disclosure are not impaired.
  • a rubber veil containing the above-mentioned modified conjugated diene polymer and a surfactant, and additives other than the vulcanization-based compounding agent (crosslinking agent, vulcanization accelerator, vulcanization aid) (hereinafter, "first”.
  • additive additives other than the vulcanization-based compounding agent (crosslinking agent, vulcanization accelerator, vulcanization aid)
  • first step a rubber veil containing the above-mentioned modified conjugated diene polymer and a surfactant, and additives other than the vulcanization-based compounding agent (crosslinking agent, vulcanization accelerator, vulcanization aid)
  • first additive
  • the first additive preferably contains at least a reinforcing filler.
  • the first additive may contain a surfactant as long as the effects of the present disclosure are not impaired.
  • the content of the surfactant in the first additive is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, based on 100 parts by mass of the surfactant used in the mixing step. , More preferably 1 part by mass or less.
  • the kneading temperature in the first step is appropriately set according to the melting point of the polymer component, the glass transition point, and the like. By this melt-kneading, the first additive is mixed with the polymer component to increase the strength of the rubber product after vulcanization, improve the kneading processability of the polymer composition, and radicals generated during kneading. It is possible to sufficiently obtain effects such as preventing deterioration of rubber due to the above.
  • a crosslinked product can be obtained by molding the polymer composition obtained in the second step and then cross-linking (vulcanizing) the polymer composition.
  • the crosslinked product obtained by using the above polymer composition can be applied to various rubber products.
  • various rubber products include tire applications such as tire treads, under treads, carcasses, sidewalls, and bead parts; sealing materials for packings, gaskets, weather strips, O-rings, etc .; automobiles, ships, aircraft, railways, etc. Interior / exterior skin materials for various vehicles such as; Building materials; Anti-vibration rubbers for industrial machinery and equipment; Various hoses and hose covers such as diaphragms, rolls, radiator hoses, air hoses; Power transmission belts, etc. Belts; linings; dust boots; materials for medical equipment; rubber barriers; insulating materials for electric wires; other industrial products and the like.
  • the polymer composition obtained by using the rubber veil of the present disclosure is particularly suitable as a material for one or both of the tread and sidewall of the tire.
  • Tires can be manufactured according to the usual method. For example, a polymer composition containing a polymer component and a component to be blended as necessary is mixed by a kneader, and a sheet-like product is placed in a predetermined position according to a conventional method and vulcanized. Formed as tread rubber or sidewall rubber, pneumatic tires are obtained.
  • the solvent was removed by steam stripping (steam temperature: 190 ° C.), and the polymer D was obtained by drying with a heat roll adjusted to 110 ° C.
  • the properties of polymer D are shown in Table 1 below.
  • N-Si-1 (* 1): 3- (4-trimethylsilyl-1-piperazino) propyltriethoxysilane
  • N-Si-2 (* 2): A compound represented by the above formula (N-Si-2)
  • Amizet 1PC Nonion surfactant manufactured by Kawaken Fine Chemicals, polyoxypropylene coconut oil
  • Examples 1 to 5 Comparative Examples 1 to 9
  • Each component was blended according to the blending formula shown in Table 2 below, and the mixture was melt-kneaded to produce a polymer composition. Kneading was performed by the following method. Batch type mixer with temperature control device (manufactured by Toyo Seiki Seisakusho; brand name: Labplast mill is used, and as the first stage kneading, the set temperature is adjusted to 100 ° C, the rotation speed is 60 rpm, and the kneading time is 4 minutes.
  • Polymer compositions were obtained by kneading under the conditions of several 60 rpm and a kneading time of 1.5 minutes.
  • the temperature at the time of discharging the kneaded material discharged from the mixer was 100 ° C. or lower.
  • each of the obtained polymer compositions was vulcanized and molded by a vulcanization press at 160 ° C. for a predetermined time to obtain a crosslinked rubber as a crosslinked product.
  • the following physical property evaluations (1) to (4) were carried out using the obtained crosslinked rubber. The results are shown in Table 2 below.
  • Mooney viscosity Using the kneaded product before vulcanization as a measurement sample, in accordance with JIS K6300-1: 2013, using a Mooney tester (manufactured by Alpha Technology), using an L rotor, preheating 1 minute, rotor operating time 4 minutes. , The measurement was carried out under the condition of a temperature of 100 ° C. It is shown as an index with Comparative Example 6 as 100, and the larger the value, the better the processability of the polymer composition.
  • a polymer solution containing a modified conjugated diene-based polymer and a surfactant having an HLB value of 9.0 or less are mixed, and then the solvent is removed from the mixed solution to obtain workability and processability.
  • Polymer compositions having excellent scorch resistance (Examples 1 to 5) could be obtained.
  • the polymer compositions of Examples 1 to 5 had a high filler uptake rate and were excellent in productivity.
  • the crosslinked rubber produced by using the polymer compositions of Examples 1 to 5 was also excellent in fuel efficiency.
  • Comparative Examples 1 to 3 in which the polymer composition was produced in the same manner as in Examples 1 to 5 except that the surfactant was not added to the polymer solution, the interface having an HLB value larger than 9.0. Comparative Examples 4 and 5 using the activator were inferior to Examples 1 to 5 in at least one of the characteristics of processability, scorch resistance, filler uptake speed, and fuel efficiency. Further, in Comparative Example 9 using the terminal-unmodified conjugated diene polymer, the processability, scorch resistance and filler uptake speed were the same as those in Examples 1 to 5, but the fuel efficiency performance was significantly inferior. ..
  • Comparative Examples 6 to 8 in which the surfactant was added during the first-stage kneading instead of adding the surfactant to the polymer solution had lower scorch resistance and lower scorch resistance than Examples 1 to 5. At least one of the fuel economy performance was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

変性共役ジエン系重合体と、HLBが9.0以下である界面活性剤と、を含有するゴムベールとする。変性共役ジエン系重合体が溶媒に溶解された重合体溶液と、HLBが9.0以下である界面活性剤とを混合する混合工程と、該混合工程により得られた溶液から溶媒を除去する脱溶媒工程と、を含む方法によりゴムベールを製造する。

Description

ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ 関連出願の相互参照
 本出願は、2020年10月16日に出願された日本特許出願番号2020-174575号に基づくもので、ここにその記載内容を援用する。
 本開示は、ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤに関する。
 共役ジエン化合物を用いた重合により得られる共役ジエン系重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホース等の各種工業製品に広く使用されている。例えば、空気入りタイヤのトレッド、サイドウォール等の製造に用いられる重合体組成物には、製品の耐久性や耐摩耗性を向上させるべく、共役ジエン系重合体と共に、カーボンブラックやシリカ等の補強剤が配合されることが知られている。
 共役ジエン系重合体としては、低燃費性能により優れたタイヤを得るべく、共役ジエン系重合体鎖の末端や主鎖に、シリカと相互作用する官能基を導入した変性共役ジエン系重合体が種々提案されている。変性共役ジエン系重合体は、未変性の共役ジエン系重合体に比べて、カーボンブラックやシリカ等の補強用充填剤との相性が良いことから、タイヤ用途において発熱を抑えて低燃費性能を向上させることが可能である。
 また従来、低燃費性能等のタイヤ特性をさらに改善するために、共役ジエン系重合体に添加剤を配合することが提案されている(特許文献1及び特許文献2参照)。特許文献1には、変性共役ジエン系重合体にビス-(2-ヒドロキシエチルイソトリデシルオキシプロピルアミン等の分散剤を配合することが開示されている。また、特許文献2には、変性又は未変性の共役ジエン系重合体にジ(ポリオキシエチレン)ステアリルアミン等の非イオン性界面活性剤を添加してゴムベールを製造することにより、シリカの分散性を改善することが開示されている。
特表2017-508841号公報 特開2019-182996号公報
 しかしながら、本発明者が検討したところ、特許文献1や特許文献2のように共役ジエン系重合体に添加剤を配合した場合、スコーチ性が低下するという不都合が生じてしまう。重合体組成物としては、耐スコーチ性及び加工性の低下を抑制しつつ、低燃費性能に優れた架橋体を得る技術が求められている。
 本開示は、上記課題に鑑みてなされたものであり、加工性及び耐スコーチ性に優れ、しかも低燃費性能に優れた架橋体を得ることができるゴムベールを提供することを主たる目的とする。
 本発明者は、上記のような従来技術の課題を解決するべく鋭意検討した。その結果、変性共役ジエン系重合体に特定の添加物を添加してゴムベールを得ることにより上記課題を解決可能であることを見出した。具体的には、本開示により以下の手段が提供される。
[1]変性共役ジエン系重合体と、HLBが9.0以下である界面活性剤と、を含有する、ゴムベール。
[2]変性共役ジエン系重合体が溶媒に溶解された重合体溶液と、HLBが9.0以下である界面活性剤とを混合する混合工程と、前記混合工程により得られた溶液から溶媒を除去する脱溶媒工程と、を含む、ゴムベールの製造方法。
[3]上記[1]のゴムベールに、シリカ、カーボンブラック及び下記式(4)で表される無機化合物よりなる群から選ばれる少なくとも1種の補強性充填剤が配合されてなる、重合体組成物。
 nM・mSiO・iHO  …(4)
(式(4)中、Mは、アルミニウム、マグネシウム、チタン及びカルシウムのいずれかである特定金属、前記特定金属の酸化物、前記特定金属の水酸化物、前記特定金属の酸化物の水和物、及び前記特定金属の水酸化物の水和物よりなる群から選ばれる少なくとも1種である。nは1~5の整数であり、mは0~10の整数であり、kは2~5の整数であり、iは0~10の整数である。)
[4]上記[4]の重合体組成物を用いて得られる架橋体。
[5]上記[4]の重合体組成物によりトレッド及びサイドウォールの一方又は両方が形成されたタイヤ。
 本開示によれば、加工性及び耐スコーチ性に優れ、しかも低転がり抵抗性に優れたゴム成形体を得ることができるゴムベールを製造することができる。
 以下、本開示の実施に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。
≪ゴムベール≫
 本開示のゴムベールは、ゴム製品の材料である合成ゴムを圧縮成形することにより得られる、例えば直方体状の塊である。このゴムベールに各種の添加剤が配合されて混練され、さらに成形や加硫等の工程を経ることにより、最終的にゴム製品が製造される。本開示のゴムベールは、変性共役ジエン系重合体と、HLBが9.0以下である界面活性剤とを含有する。以下では、ゴムベールの製造方法について説明しつつ、当該ゴムベールに含まれる各成分について説明する。
 本開示のゴムベールは、以下の工程を含む方法により製造することが好ましい。
重合工程:重合開始剤の存在下で共役ジエン化合物を含むモノマーを重合して、活性末端を有する共役ジエン系重合体を得る工程。
変性工程:上記重合により得られた共役ジエン系重合体が有する活性末端と、ヒドロカルビルオキシシリル基及び窒素含有基を有する化合物(以下「末端変性剤」ともいう)とを反応させる工程。
混合工程:変性共役ジエン系重合体が溶剤に溶解された重合体溶液と界面活性剤とを混合する工程。
脱溶媒工程:変性共役ジエン系重合体と界面活性剤を含む溶液から溶媒を除去する工程。
 以下に、各工程について詳しく説明する。
<重合工程>
(共役ジエン化合物)
 重合に使用する共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン、及び2,3-ジメチル-1,3-ブタジエンが好ましく、加工性とヒステリシスロス低減とをバランス良く改善する効果が高い点で、1,3-ブタジエンが特に好ましい。なお、共役ジエン化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 共役ジエン系重合体は、共役ジエン化合物を用いた単独重合体であってもよいが、ゴムの強度を高める観点から、共役ジエン化合物に由来する構造単位と芳香族ビニル化合物に由来する構造単位とを有する共重合体であることが好ましい。芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。芳香族ビニル化合物としては、これらのうちスチレン及びα-メチルスチレンが好ましい。
 本工程で製造される共役ジエン系重合体を共役ジエン化合物と芳香族ビニル化合物との共重合体とする場合、共役ジエン系重合体は、アニオン重合におけるリビング性が高い点で、1,3-ブタジエンに由来する構造単位とスチレンに由来する構造単位とを有する共重合体であることが好ましい。この共重合体は、共役ジエン化合物と芳香族ビニル化合物とのランダム共重合体であることが好ましい。なお、ランダム共重合体は、共役ジエン化合物又は他の芳香族ビニル化合物からなるブロック部分を更に有していてもよい。
 芳香族ビニル化合物の使用割合は、得られる架橋体の低ヒステリシスロス特性(低燃費性能)とウェットスキッド抵抗性とのバランス及び耐摩耗性を良好にする観点から、重合に使用するモノマーの合計量に対して、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、重合体中における、芳香族ビニル化合物に由来する構造単位の含有割合はH-NMRによって測定した値である。
 重合に際しては、モノマーとして、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーを使用する場合、他のモノマーの使用割合は、重合に使用するモノマーの全体量に対して、5質量%以下とすることが好ましく、3質量%以下とすることがより好ましい。
 重合法としては、溶液重合法が特に好ましい。重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、モノマーを、重合開始剤及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属化合物又はアルカリ土類金属化合物が挙げられる。これらの具体例としては、例えばアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。アルキルリチウムとしては、メチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等が挙げられる。アルカリ金属化合物及びアルカリ土類金属化合物は、これらの中でもリチウム化合物が好ましい。上記重合に際し、アルカリ金属化合物及びアルカリ土類金属化合物の使用割合(2種以上使用する場合にはその合計量)は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。
 上記重合反応においては、重合開始剤として、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物(以下「開始変性剤」ともいう)とを混合して得られる金属アミド化合物を用いてもよい。こうした金属アミド化合物の存在下でモノマーを重合することにより、開始変性剤に由来する官能基を共役ジエン系重合体の重合開始末端に導入することができる。
 ここで、本明細書において「シリカと相互作用する官能基」とは、窒素、硫黄、リン、酸素などのシリカと相互作用する元素を有する基を意味する。「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。
 開始変性剤は、第2級アミン化合物などの窒素含有化合物であることが好ましい。窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン等の鎖状アミン;ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等の環状アミンが挙げられる。
 なお、アルカリ金属化合物又はアルカリ土類金属化合物と、開始変性剤とを混合して得られる金属アミド化合物の存在下でモノマーを重合する場合、アルカリ金属化合物又はアルカリ土類金属化合物と開始変性剤とを予め混合しておき、その混合物を重合系中に添加して重合を行ってもよい。あるいは、アルカリ金属化合物又はアルカリ土類金属化合物と開始変性剤とを別々に又は同時に重合系中に添加し、重合系中で両者を混合して重合を行ってもよい。これらいずれの場合も、「アルカリ金属化合物又はアルカリ土類金属化合物と、開始変性剤とを混合して得られる金属アミド化合物の存在下で共役ジエン化合物を含むモノマーを重合」する実施態様に含まれる。
 開始変性剤の使用量は、アルカリ金属化合物又はアルカリ土類金属化合物の種類に応じて適宜設定される。例えば、金属リチウムを用いる場合、重合体組成物としたときの加工性と、架橋体としたときの低燃費性能とをバランス良く発現させる観点から、開始変性剤の使用量は、上記重合に使用する金属リチウムの全体1モルに対して、0.1~1.8モルの範囲であることが好ましく、0.2~1.0モルの範囲であることがより好ましい。開始変性剤としては、1種を単独で又は2種以上を組み合わせて使用できる。
 ランダマイザー(以下「ビニル基含量調整剤」ともいう)は、重合体中におけるビニル結合の含有率を表すビニル基含量の調整等を目的として使用される。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。ランダマイザーとしては1種を単独で又は2種以上を組み合わせて使用できる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶剤であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等を用いることができる。これらの中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。有機溶媒としては、これらの1種を単独で又は2種以上を組み合わせて使用できる。
 溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0~120℃であることがより好ましい。また、重合反応は、モノマーを実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって反応器内を加圧する等の方法により得ることができる。こうした重合反応により、活性末端(より具体的には、アルカリ金属活性末端又はアルカリ土類金属活性末端)を有する共役ジエン系重合体を得ることができる。
 活性末端を有する共役ジエン系重合体の1,2-ビニル基含量(以下、「ビニル基含量」ともいう)は、20~70質量%であることが好ましく、30~68質量%であることがより好ましく、33~65質量%であることがさらに好ましい。ビニル基含量が20質量%未満であると、ウェットグリップ特性が低くなる傾向があり、70質量%を超えると、低燃費性能が低下する傾向にある。なお、本明細書において「ビニル基含量」は、共役ジエン系重合体中のブタジエンの全構造単位に対する、1,2-結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。
<変性工程>
 本工程では、上記重合工程により得られた共役ジエン系重合体が有するアルカリ金属活性末端又はアルカリ土類金属活性末端と、末端変性剤とを反応させる。活性末端を有する共役ジエン系重合体と末端変性剤とを反応させることにより、窒素含有基を主鎖末端に有する重合体を得ることができる。なお、本明細書において「活性末端」とは、分子鎖の端に存在する、炭素-炭素二重結合を有するモノマーに由来する構造以外の部分(より具体的には金属末端)を意味する。
 末端変性剤は、ヒドロカルビルオキシシリル基と窒素含有基とをそれぞれ1分子内に1個以上有していればよい。こうした末端変性剤を用いることにより、架橋体としたときの低発熱性をより良好にできる点で好ましい。なお、「ヒドロカルビルオキシシリル基」とは、少なくとも1個のヒドロカルビルオキシ基がケイ素原子に結合した基であり、下記式(5)で表される基をいう。
Figure JPOXMLDOC01-appb-C000003
(式(5)中、R20及びR21は、それぞれ独立してヒドロカルビル基である。iは1~3の整数である。iが1の場合、式中の複数のR21は同一又は異なる。iが2又は3の場合、式中の複数のR20は同一又は異なる。「*」は結合手であることを表す。)
 末端変性剤は、具体的には、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、及び下記式(9)で表される化合物よりなる群から選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(6)中、Aは、窒素原子を有し、活性水素を有さず、かつR17に対して窒素原子で結合する1価の官能基である。R15及びR16はヒドロカルビル基であり、R17はヒドロカルビレン基であり、rは0~2の整数である。rが0又は1の場合、式中の複数のR16は同一又は異なり、rが2の場合、式中の複数のR15は同一又は異なる。)
Figure JPOXMLDOC01-appb-C000005
(式(7)中、Aは窒素、リン、酸素、硫黄及びケイ素からなる群より選択される少なくとも一種の原子を有し、活性水素を有さず、かつR22に対して窒素原子、リン原子、酸素原子、硫黄原子若しくはケイ素原子で結合する1価の官能基であるか、又は炭素数1~20のヒドロカルビル基である。R22は単結合又はヒドロカルビレン基であり、R23及びR24は、それぞれ独立してヒドロカルビル基であり、R25はヒドロカルビレン基であり、tは0又は1である。ただし、tが0の場合、式中の複数のR24は同一又は異なる。)
Figure JPOXMLDOC01-appb-C000006
(式(8)中、R31は、炭素数1~20のアルカンジイル基であり、R32及びR33は、それぞれ独立して炭素数1~20のヒドロカルビル基であり、Aは、基「*-C(R35)=N-」又は基「*-N=C(R35)-」(ただし、R35は水素原子又はヒドロカルビル基であり、「*」はR34に結合する結合手であることを示す。)である。R34は、炭素数1~20のm価の炭化水素基、又は窒素、酸素及び硫黄からなる群より選択される少なくとも1種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。R31~R33及びAの各記号につき、同一の記号が式中に複数個存在する場合、その記号が表す基は、互いに同一又は異なる。式中の複数のnは同一又は異なる。)
Figure JPOXMLDOC01-appb-C000007
(式(9)中、R42、R43及びR45は、それぞれ独立して炭素数1~12のアルカンジイル基であり、R40、R41、R46、R47、R48及びR49は、それぞれ独立して炭素数1~20のヒドロカルビル基である。a、c及びdは、それぞれ独立して1~3の整数であり、bは1~10の整数である。各記号につき、同一の記号が式中に複数個存在する場合、その記号が表す基は、互いに同一又は異なる。)
 上記式(6)及び式(7)において、R15、R16、R23、R24で表されるヒドロカルビル基は、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基であることが好ましい。R17、R22及びR25は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基又は炭素数6~20のアリーレン基が好ましい。
 Aは窒素含有基であり、鎖状構造でも環状構造でもよい。Aが有する窒素原子は、活性水素に結合しておらず、かつ保護基(例えば3置換のヒドロカルビルシリル基等)によって保護されていてもよい。Aは、オニウム塩生成剤によってオニウムイオンになり得る基であってもよい。
 Aの具体例としては、例えば1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基等が挙げられる。これらのうち、Aは、3級アミノ基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる基及び1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる基のうち少なくとも1つを有することが好ましい。なお、本明細書において「保護基」とは、Aを重合活性末端に対して不活性な官能基に変換しておく官能基である。2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基及び3級アミノ基は鎖状でも環状でもよい。
 Aが有する、窒素、リン、酸素、硫黄及びケイ素からなる群より選択される少なくとも1種の原子は、活性水素に結合しておらず、かつ保護基(例えば3置換のヒドロカルビルシリル基等)によって保護されていてもよい。Aは、オニウム塩生成剤によってオニウムイオンになり得る基であってもよい。
 Aの具体例としては、例えば1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、水酸基の水素原子が保護基によって保護された基、チオール基の水素原子が保護基によって置換されてなる硫黄含有基、ヒドロカルビルオキシシリル基等が挙げられる。これらのうち、Aは、ケイ素又は窒素を有する基であることが好ましく、ヒドロカルビルオキシシリル基、保護基を有する窒素含有基、又は3級アミノ基であることがより好ましい。
 上記式(8)において、R31のヒドロカルビレン基としては、例えば炭素数1~12のアルカンジイル基、炭素数3~12のシクロアルキレン基、炭素数6~12のアリーレン基が挙げられる。R32及びR33のヒドロカルビル基としては、例えば炭素数1~20のアルキル基、アリル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基が挙げられる。
 R34のm価の炭化水素基は、炭化水素からm個の水素原子を取り除いた基である。これらのうち、R34のm価の炭化水素基は、芳香族炭化水素の環部分からm個の水素原子を取り除いた基(m価の芳香環基)であることが好ましい。該芳香族炭化水素の具体例としては、例えばベンゼン環、ナフタレン環、アントラセン環等の単環又は縮合環、及びこれらの環の2個以上が単結合で結合された構造が挙げられる。
 R34が、窒素、酸素及び硫黄からなる群より選択される少なくとも1種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である場合、その具体例としては、m価の複素環基、3級アミン構造を有するm価の基等が挙げられる。複素環基は、共役系であることが好ましく、例えばピリジン、ピリミジン、ピラジン、キノリン、ナフタリジン、フラン、チオフェン等の単環若しくは縮合環、又はこれらが複数個の環が連結してなる構造の環部分からm個の水素原子を取り除いた基等が挙げられる。
 mは、重合体組成物の加工性をより良好にする観点から、2~6が好ましい。nは、シリカ分散性の改善効果をより高くできる点で、2又は3が好ましく、3がより好ましい。
 上記式(9)において、R45、R42及びR43のアルカンジイル基は、直鎖状であることが好ましい。R40、R41、R46~R49のヒドロカルビル基としては、例えば炭素数1~20のアルキル基、アリル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基が挙げられる。
 a、c及びdは、シリカ分散性の改善効果をより高くできる点で、2又は3が好ましく、3がより好ましい。bは、1~5が好ましく、1~3がより好ましい。
 末端変性剤の具体例としては、上記式(6)で表される化合物として、例えばN,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン等を挙げることができる。
 上記式(7)で表される化合物としては、例えば1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、1-トリエチルシリル-2,2-ジエトキシ-1-アザ-2-シラシクロペンタン、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジメトキシ-1-フェニル-1,2-アザシロリジン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルエタン-1-アミン等を挙げることができる。
 上記式(8)で表される化合物としては、例えば下記式(m-1-1)~式(m-1-8)
Figure JPOXMLDOC01-appb-C000008
のそれぞれで表される化合物、及び当該化合物中のアルキル基、アルカンジイル基を各々炭素数1~6のアルキル基、炭素数1~6のアルカンジイル基に置き換えた化合物等を挙げることができる。
 上記式(9)で表される化合物としては、例えばトリス(2-トリエトキシシリルエチル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(5-トリエトキシシリルペンチル)アミン、N,N,N’,N’-テトラ(2-トリエトキシシリルエチル)-1,2-ジアミノエタン、N,N,N’,N’-テトラ(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパン、及びこれらの化合物中のアルキル基、アルカンジイル基を各々炭素数1~6のアルキル基、炭素数1~6のアルカンジイル基に置き換えた化合物を挙げることができる。末端変性剤としては、これらのうちの1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 重合活性末端と末端変性剤との反応は、溶液反応として行うことが好ましい。この溶液反応は、重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、溶液に含まれる共役ジエン系重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、上記反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、末端変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法等が挙げられる。
 上記反応に際し、使用する末端変性剤の量は、反応に使用する化合物の種類に応じて適宜設定すればよいが、重合開始剤が有する重合反応に関与する金属原子に対し、好ましくは0.1モル当量以上、より好ましくは0.3モル当量以上である。上記反応の際に使用する末端変性剤の量を0.1モル当量以上とすることにより、変性反応を十分に進行させることができ、フィラーの分散性を好適に改良することができる。また、末端変性剤の使用量は、末端変性剤の過剰量の添加を避けるため、重合開始剤が有する重合反応に関与する金属原子に対し、好ましくは1.5モル当量以下、より好ましくは1.2モル以下である。
 上記反応の温度は、通常、重合反応の温度と同じであり、-20℃~150℃とすることが好ましく、0~120℃とすることがより好ましい。反応温度が低すぎると、変性後の共役ジエン系重合体の粘度が上昇する傾向がある。一方、反応温度が高すぎると、重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間、より好ましくは2分~1時間である。
 なお、変性共役ジエン系重合体を製造する際に、重合体のムーニー粘度やコールドフロー特性を高めること等を目的として、重合活性末端とカップリング剤とを反応させる処理を行ってもよい。カップリング剤を用いた反応は、重合活性末端と末端変性剤との反応前又は反応後に行ってもよく、あるいは重合活性末端と末端変性剤との反応と同時に行ってもよい。カップリング剤の具体例としては、2,4-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、N,N,N’,N’-テトラメチルフタル酸アミド、テトラクロロケイ素、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、テトラクロロスズ等が挙げられる。
 また、末端変性剤として保護基(トリメチルシリル基等)を有する化合物を用いた場合、末端変性剤由来の保護基を有する変性共役ジエン系重合体につき、保護基の一部又は全部を水素置換することによって得られる重合体を変性共役ジエン系重合体として、以降の工程において用いてもよい。また、末端変性剤として保護基含有化合物を用いた場合、末端変性剤により変性された変性共役ジエン系重合体と、オニウム塩生成剤とをさらに反応させてもよい。この場合、変性共役ジエン系重合体として、重合体末端にオニウム塩構造を有する重合体を得ることができる。変性共役ジエン系重合体がオニウム塩構造を有することにより、重合体組成物を用いて得られる架橋体の形状保持性を改善できる点で好ましい。
 変性共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、好ましくは1.0×10以上である。Mwが1.0×10よりも小さいと、架橋体の形状安定性、引張強度及び耐摩耗性が低下しやすい傾向にある。変性共役ジエン系重合体のMwは、より好ましくは1.2×10以上、さらに好ましくは1.5×10以上である。また、変性共役ジエン系重合体のMwは、好ましくは1.5×10以下である。Mwが1.5×10よりも大きいと、重合体組成物の加工性が低下しやすい傾向にある。変性共役ジエン系重合体のMwは、より好ましくは1.3×10以下、さらに好ましくは1.0×10以下である。
<混合工程>
 本工程では、上記変性工程により得られた変性共役ジエン系重合体が溶媒に溶解された重合体溶液(以下「重合体溶液A」ともいう)と、界面活性剤とを混合する。
 重合体溶液Aとしては、上記変性工程により得られた変性共役ジエン系重合体を含む反応溶液をそのまま用いてもよく、あるいは、当該反応溶液に含まれる変性共役ジエン系重合体を単離し、適当な溶媒に溶解することにより調製された溶液であってもよい。単離した変性共役ジエン系重合体を溶解する溶媒としては、モノマーの重合に用いることができる溶媒として例示した有機溶媒が挙げられる。このとき、界面活性剤を溶解可能な有機溶媒を選択することが好ましい。工業的な観点からすると、工程数を低減でき、生産性をより高くできる点で、上記変性工程により得られた変性共役ジエン系重合体を含む反応溶液を重合体溶液Aとしてそのまま用いることが好ましい。
 重合体溶液Aにおける変性共役ジエン系重合体の含有割合は、重合体溶液Aの全量に対して、好ましくは1質量%以上であり、より好ましくは2質量%以上であり、さらに好ましくは3質量%以上である。また、重合体溶液Aにおける変性共役ジエン系重合体の含有割合は、好ましくは90質量%以下であり、より好ましくは50質量%以下であり、さらに好ましくは30質量%以下である。重合体溶液A中の変性共役ジエン系重合体を1質量%以上とすることにより、ゴムベールの製造に際しその生産量を十分に確保できる。また、90質量%以下とすることにより、界面活性剤を重合体溶液A中に均一に分散させることができ、得られるゴムベールの品質及びその安定性を向上することができる。
(界面活性剤)
 界面活性剤としては、HLBが9.0以下であって1分子内に親水基と親油基とを有する化合物(以下「界面活性剤C」ともいう)が用いられる。ここで、HLBは、親水親油バランス(Hydrophilic-Lipophilic Balance)であり、分子内の親水基と親油基とのつり合いにより変化する値である。HLBは、数値が大きいほど親水性が高いことを表す。本明細書においてHLB値は、Griffinによって提唱された計算式(グリフィン法;20×(界面活性剤中の親水部(アルキルエーテル部等)の式量の総和/界面活性剤分子量))により求められる値である。界面活性剤Cが2種以上の界面活性剤からなる場合、各成分のHLB値の加重平均により求められる値が9.0以下であることを意味する。
 界面活性剤CのHLB値は、界面活性剤Cをゴム中に保持し安定化させ、スコーチ耐性に優れたゴムベールを得ることができる点で、8.0以下であることが好ましく、7.0以下であることがより好ましく、6.7以下であることがさらに好ましく、6.5以下であることが特に好ましい。界面活性剤CのHLB値は、0以上である。界面活性剤CのHLB値を上記範囲とすることで、次の脱溶媒工程において変性共役ジエン系重合体を単離する際に、水系の溶媒を用いて高性能な変性共役ジエン系重合体を得ることができる点で好適である。
 界面活性剤Cは非イオン性界面活性剤であることが好ましく、具体的には、下記式(1)で表される化合物、下記式(2)で表される化合物、及び下記式(3)で表される化合物よりなる群から選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(1)~式(3)中、Rは、炭素数10~18のヒドロカルビル基であり、R及びRは、それぞれ独立してヒドロカルビル基又は-(RO)-Hである。Rは、エチレン基又はプロピレン基であり、rは1以上の整数である。rが2以上の場合、複数のRは、互いに同一又は異なる。Xは、単結合、酸素原子又は-NR-であり、Rは、Xが単結合の場合に単結合であり、Xが酸素原子又は-NR-の場合にヒドロカルビレン基である。Rは、水素原子、ヒドロカルビル基又は-(RO)-Hである。)
 上記式(1)~式(3)において、Rは、飽和又は不飽和の直鎖状ヒドロカルビル基が好ましく、直鎖状のアルキル基又はアルケニル基がより好ましい。Rがヒドロカルビレン基である場合、Rは飽和又は不飽和の直鎖状ヒドロカルビレン基が好ましく、直鎖状のアルカンジイル基又はアルケンジイル基がより好ましい。1分子内における各基の炭素数は、HLBが9.0以下となるように選択される。界面活性剤Cとしては、これらの中でも、分子内にプロピレングリコール鎖(-(R50-O)-、ただしR50はプロピレン基であり、jは1以上の整数)を有する化合物が好ましく使用される。R50としては、1,2-プロピレン基、1,3-プロピレン基が挙げられる。
 界面活性剤Cの具体例としては、上記式(1)で表される化合物として、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレン-アルキルプロピレン-ジアミン、ポリオキシプロピレン-アルキルプロピレン-ジアミン、1,1’-(ドデシルイミノ)ビス(2-プロパノール)、2,2’-(ドデシルイミノ)ビスエタノール、2,2’-(ヘキサデシルイミノ)ビスエタノール等が挙げられる。
 上記式(2)で表される化合物としては、モノステアリン酸グリセリン、モノオレイン酸グリセリン等が挙げられる。
上記式(3)で表される化合物としては、ポリオキシエチレンラウリン酸モノエタノールアミド、ポリオキシプロピレンヤシ油脂肪酸モノエタノールアミド、ポリオキシプロピレンミリスチン酸モノエタノールアミド、ポリオキシプロピレンヤシ油脂肪酸モノイソプロパノールアミド等が挙げられる。界面活性剤Cとしては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 重合体溶液Aと界面活性剤Cとを混合する形態は特に限定されない。例えば、重合体溶液Aに界面活性剤Cを添加する場合、界面活性剤Cを重合体溶液Aに一括して添加する方法、分割して添加する方法、連続的に添加する方法等が挙げられる。重合体溶液Aに界面活性剤Cを添加した後には、撹拌等の処理を行うことにより界面活性剤Cを重合体溶液A中に均一に分散させるとよい。重合体溶液Aと界面活性剤Cとを混合する際の温度は、上記重合反応の温度と同じく、-20℃~150℃が好ましく、0~120℃がより好ましく、20~100℃がさらに好ましい。
 重合体溶液Aと界面活性剤Cとを混合する際の比率は、変性共役ジエン系重合体100質量部に対し、界面活性剤Cが0.05質量部以上となるようにすることが好ましい。すなわち、界面活性剤Cの配合割合は、変性共役ジエン系重合体100質量部に対し、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.2質量部以上がさらに好ましい。また、界面活性剤Cの配合割合は、変性共役ジエン系重合体100質量部に対し、10質量部以下が好ましく、8質量部以下がより好ましく、5質量部以下がさらに好ましい。界面活性剤Cの含有割合を0.05質量部以上とすることにより、界面活性剤Cを重合体溶液A中に十分に分散させることができ、得られる架橋体において低燃費性能を十分に改善できる点で好適である。また、界面活性剤Cの含有割合を10質量部以下とすることにより、界面活性剤Cが過剰量含まれることに起因する変性共役ジエン系重合体の性能低下を抑制できる点で好ましい。
<脱溶媒工程>
 本工程では、上記混合工程により得られた変性共役ジエン系重合体と界面活性剤Cを含む溶液(以下「混合溶液B」ともいう)から溶媒を除去し、変性共役ジエン系重合体を単離する。この単離された変性共役ジエン系重合体に対し、必要に応じて熱処理等の乾燥の操作を行い、所望の形状(例えば直方体形状)に圧縮成形することによりゴムベールを得ることができる。
 混合溶液Aから溶媒を除去する方法は特に限定されず、例えばスチームストリッピングにより溶媒を分離し、得られた重合体を脱水・乾燥する方法、二軸押出機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法等といった公知の脱溶媒方法により行うことができる。これらのうち、脱溶媒処理を簡便に行うことができる点で、混合溶液Bを水に接触させて脱溶媒する方法によることが好ましい。本製造方法では、上記混合工程において、重合体溶液Aに混ぜる添加剤としてHLB値が9.0以下の界面活性剤Cが用いられる。このため、本工程では、脱溶媒方法としてスチームストリッピングを採用した場合にも界面活性剤Cを系中に残存させることができ、十分な量の界面活性剤Cと変性共役ジエン系重合体とが混合された状態を保つことができる。これにより、スチームストリッピングを採用した場合にも、重合体組成物の耐スコーチ性及び加工性、並びに架橋体の低燃費性能の改善効果を十分に得ることができる点で好適である。
 脱溶媒により得られた変性共役ジエン系重合体を用いてゴムベールを製造する際には、本開示の効果を損なわない範囲で、変性共役ジエン系重合体とは異なる成分(添加剤)を配合してもよい。こうした添加剤としては、例えば伸展油、酸化防止剤等が挙げられる。
≪重合体組成物≫
 本開示の重合体組成物は、上記ゴムベールに補強性充填剤を配合することにより得ることができる。また、本開示の重合体組成物は、本開示の効果を損なわない限り、上記ゴムベールに含まれる変性共役ジエン系重合体及び界面活性剤とは異なる成分(その他の成分)をさらに含有していてもよい。以下に、重合体組成物に含ませることができる補強性充填剤及びその他の成分について説明する。
(補強性充填剤)
 補強性充填剤は、架橋体の強度を高めるためにゴムベールに配合される。補強用充填剤としては、例えばシリカ、カーボンブラック、下記式(4)で表される無機化合物(以下、「無機化合物(M)」ともいう。)、強化用繊維(例えば、ガラス繊維や炭素繊維等の無機系繊維、ナイロンやポリエステル等の有機系繊維)等が挙げられる。これらのうち、補強用充填剤は、シリカ、カーボンブラック及び無機化合物(M)よりなる群から選ばれる少なくとも1種が好ましい。
 nM・mSiO・iHO  …(4)
(式(4)中、Mは、アルミニウム、マグネシウム、チタン及びカルシウムのいずれかである特定金属、特定金属の酸化物、特定金属の水酸化物、特定金属の酸化物の水和物、及び特定金属の水酸化物の水和物よりなる群から選ばれる少なくとも1種である。nは1~5の整数であり、mは0~10の整数であり、kは2~5の整数であり、iは0~10の整数である。)
 シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらのうち、破壊特性の改良効果や、ウェットグリップ性と低転がり抵抗性との両立効果の観点から、湿式シリカが特に好ましい。また、高分散型(High Dispersible Type)のシリカを使用することも、重合体組成物中における分散性を良好にできるとともに物性及び加工性を向上できる観点から好ましい。なお、シリカとしては、1種を単独で又は2種以上を組み合わせて用いることができる。カーボンブラックとしては、GPF、FEF、HAF、ISAF、SAFなどが挙げられるが、特に限定されるものではない。また、重合体組成物には、無機フィラーとしてシリカやカーボンブラックの他に、クレー、炭酸カルシウムなどの各種の補強性充填剤が更に配合されていてもよい。
 無機化合物(M)の具体例としては、特定金属がアルミニウムである化合物として、例えば酸化アルミニウム、アルミナ一水和物、水酸化アルミニウム、炭酸アルミニウム、ケイ酸アルミニウム、酸化アルミニウムカルシウム(Al・CaO・2SiO等)等を;特定金属がマグネシウムである化合物として、例えば酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ酸マグネシウム、ケイ酸マグネシウムカルシウム(CaMgSiO)、タルク等を;特定金属がチタンである化合物として、例えば酸化チタン等を;特定金属がカルシウムである化合物として、例えば酸化カルシウム、水酸化カルシウム、炭酸カルシウム、ケイ酸カルシウム等を、それぞれ挙げることができる。
 補強性充填剤としては、シリカ、カーボンブラック及び無機化合物(M)のうち1種を単独で使用してもよく、これらのうちの2種以上を組み合わせて使用してもよい。これらのうち、変性共役ジエン系重合体との組み合わせにおいてタイヤ特性の改善効果が高い点で、重合体組成物は、補強性充填剤としてシリカを含むことが好ましく、中でも湿式シリカ、乾式シリカ、コロイダルシリカを用いることが好ましい。補強性充填剤を使用する場合、重合体組成物中における補強性充填剤の含有割合(2種以上を含有する場合にはその合計量)は、重合体組成物に含まれる重合体成分の全体量100質量部に対して、好ましくは25~130質量部、より好ましくは30~110質量部である。
(架橋剤)
 重合体組成物には、通常、架橋剤が含有される。架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。硫黄の配合量は、重合体組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
(他のゴム成分)
 重合体組成物には、変性共役ジエン系重合体とは異なるゴム成分(以下「他のゴム成分」ともいう)がさらに配合されていてもよい。なお、本明細書において、重合体組成物に含まれる「ゴム成分」とは、熱硬化によりゴム弾性を示す硬化物を得ることが可能な重合体をいう。当該硬化物は、室温において小さな力で大きな変形(例えば、室温で伸ばすと2倍以上に伸びる変形)を起こし、力を取り除くと急速にほぼ元の形状に戻る性質を示す。
 他のゴム成分の種類は特に限定されないが、未変性ゴムが好ましく、例えばブタジエンゴム(BR、例えばシス-1,4結合が90%以上のハイシスBRなど)、スチレンブタジエンゴム(SBR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンイソプレン共重合体ゴム、ブタジエンイソプレン共重合体ゴム等が挙げられる。他のゴム成分の配合量は、重合体組成物に含まれるゴム成分(変性共役ジエン系重合体と他のゴム成分)の合計量100質量部に対して、好ましくは5~60質量部、より好ましくは10~50質量部である。
 重合体組成物には、上記した成分の他に、例えば老化防止剤、亜鉛華、ステアリン酸、軟化剤、硫黄、加硫促進剤、シランカップリング剤、相溶化剤、加硫助剤、プロセスオイル、加工助剤、スコーチ防止剤など、タイヤ用等の重合体組成物において一般に使用される各種添加剤を配合することができる。これらの配合割合は、本開示の効果を損なわない範囲において、各種成分に応じて適宜選択することができる。
≪重合体組成物及び架橋体の製造方法≫
 上記重合体組成物は、ゴムベールと補強性充填剤のほか、必要に応じて配合される成分を、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混合(具体的には混練)することにより製造できる。
 混練工程ではまず、上記変性共役ジエン系重合体及び界面活性剤を含むゴムベールと、加硫系配合剤(架橋剤、加硫促進剤、加硫助剤)以外の添加剤(以下「第1の添加剤」ともいう)とを、混練機を使用して溶融混練する(第1の工程)。第1の添加剤は、少なくとも補強用充填剤を含んでいることが好ましい。なお、第1の添加剤は、本開示の効果を損なわない範囲で界面活性剤を含んでいてもよい。具体的には、第1の添加剤における界面活性剤の含有量は、上記混合工程で使用された界面活性剤100質量部に対して、好ましくは10質量部以下、より好ましくは5質量部以下、さらに好ましくは1質量部以下である。第1の工程における混練温度は、重合体成分の融点やガラス転移点等に応じて適宜設定される。この溶融混練により、第1の添加剤が重合体成分と混合され、加硫後のゴム製品の強度を高めたり、重合体組成物の混練加工性を良好なものとしたり、混練時に生じたラジカルに起因するゴムの劣化を防止したりする等の効果を十分に得ることができる。
 続いて、第1の工程により得られた混練物を必要に応じて室温に戻した後、混練物に加硫系配合剤を加え、混練機を使用して溶融混練する(第2の工程)。第2の工程により得られた重合体組成物を成形加工し、その後架橋(加硫)することにより架橋体を得ることができる。
≪架橋体及びタイヤ≫
 上記重合体組成物を用いて得られる架橋体は各種ゴム製品に適用可能である。各種ゴム製品の具体例としては、例えばタイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等が挙げられる。
 本開示のゴムベールによれば、転がり抵抗が小さく、低燃費性能に優れた架橋体を得ることができる。したがって、本開示のゴムベールを用いて得られる重合体組成物は、特にタイヤのトレッド及びサイドウォールのうち一方又は両方の材料として好適である。
 タイヤの製造は常法に従い行うことができる。例えば、重合体成分及び必要に応じて配合される成分を含有する重合体組成物を混練機で混合し、シート状にしたものを、常法に従い所定位置に配置して加硫成形することによりトレッドゴム又はサイドウォールゴムとして形成され、空気入りタイヤが得られる。
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体及びゴムの各種物性値の測定方法を以下に示す。
(1)結合スチレン含量(%):重クロロホルムを溶媒として用い、500MHzのH-NMR測定によって算出した。
(2)ビニル基含量(%):500MHzのH-NMR測定によって算出した。
(3)変性前の重合体の重量平均分子量:下記の条件にて、ゲルパーミエーションクロマトグラフィー(GPC)装置「HLC-8120GPC」(東ソー株式会社製)によって測定を行い、得られたGPC曲線の最大ピーク頂点に相当する保持時間から、ポリスチレン換算の重量平均分子量(Mw)を求めた。
(GPC条件)
 カラム;商品名「GMHXL」(東ソー社製)2本
 カラム温度;40℃  移動相;テトラヒドロフラン
 流速;1.0ml/分  サンプル濃度;10mg/20ml
(4)ムーニー粘度(MV):JIS K6300-1に準拠し、Lローターを用い、予熱1分間、ローター作動時間4分間、温度100℃の条件で測定した。
1.重合体の合成
[合成例1:重合体Aの合成]
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2500g、テトラヒドロフラン50g、スチレン125g、1,3-ブタジエン365gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム5.20mmolを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。重合転化率が99%に達した時点で(重合開始から26分経過後に)、1,3-ブタジエン10gを2分間かけて追加し、更に3分間重合させた後、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン4.46mmolを加えて15分間反応を行い、変性共役ジエン系重合体溶液を得た。
 得られた変性共役ジエン系重合体溶液に、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]を添加し、次いでスチームストリッピング(スチーム温度:190℃)により脱溶媒を行い、110℃に調温された熱ロールで乾燥することにより重合体Aを得た。重合体Aの性質を下記表1に示した。
[合成例2:重合体Bの合成]
 合成例1において3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン4.46mmolの代わりに、下記式(N-Si-2)で表される化合物を1.30mmol使用したこと以外は合成例1と同様の方法により重合体Bを得た。重合体Bの性質を下記表1に示した。
Figure JPOXMLDOC01-appb-C000010
[合成例3:重合体Cの合成]
 合成例1において3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシランを使用しなかったこと以外は合成例1と同様の方法により、未変性の共役ジエン系重合体として重合体Cを得た。重合体Cの性質を表1に示した。
[合成例4:重合体Dの合成]
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2500g、テトラヒドロフラン50g、スチレン125g、1,3-ブタジエン365gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム5.20mmolを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。重合転化率が99%に達した時点で(重合開始から26分経過後に)、1,3-ブタジエン10gを2分間かけて追加し、更に3分間重合させた後、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン4.46mmolを加えて15分間反応を行い、変性共役ジエン系重合体溶液を得た。
 得られた変性共役ジエン系重合体溶液に、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]を添加し、次いで、この変性共役ジエン系重合体溶液に、リポノールC/18-18(ライオン社製ノニオン界面活性剤、ポリオキシプロピレンポリオキシエチレンアルキル(C8~C18)アミン、HLB=6.4)を2.5g添加し、混合した。次いで、スチームストリッピング(スチーム温度:190℃)により脱溶媒を行い、110℃に調温された熱ロールで乾燥することにより重合体Dを得た。重合体Dの性質を下記表1に示した。
[合成例5~11:重合体E~Kの合成]
 合成例4において使用する末端変性剤及び界面活性剤の種類及び量を下記表1に記載のとおり変更したこと以外は合成例4と同様の方法により重合体E~Kをそれぞれ得た。なお、合成例11では、末端変性剤を使用しなかった。重合体E~Kの性質を下記表1にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000011
 表1中の略称は以下のとおりである。
(末端変性剤)
N-Si-1(*1):3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン
N-Si-2(*2):上記式(N-Si-2)で表される化合物
(界面活性剤)
a-1:リポノールC/18-18(ライオン社製ノニオン界面活性剤、ポリオキシプロピレンポリオキシエチレンアルキル(C8~C18)アミン、HLB=6.4)
a-2:FT-6020J(ライオン社製ノニオン界面活性剤、ポリオキシプロピレンアルキル(C8~C18)アミン、HLB=0)
a-3:レオスタットGS-95P(ライオン社製ノニオン界面活性剤、モノステアリン酸グリセリン、HLB=6.5)
a-4:アミゼット1PC(川研ファインケミカル社製ノニオン界面活性剤、ポリオキシプロピレンヤシ油脂肪酸モノイソプロパノールアミド、HLB=9.0)
a-5:ナイミーンS-210(日油製ノニオン界面活性剤、ポリオキシエチレンステアリルアミン、HLB=12.5)
a-6:リポノールT/25(ライオン社製ノニオン界面活性剤、ポリオキシエチレンアルキルアミン、HLB=14.0)
 なお、界面活性剤のHLB値は、グリフィン法で計算した値である。
[実施例1~5、比較例1~9]
 下記表2に示す配合処方により各成分を配合し、これを溶融混練することによって重合体組成物を製造した。混練は以下の方法で行った。
 温度制御装置を付属したバッチ式ミキサー(東洋精機製作所製;商品名ラボプラストミルを使用し、一段目の混練として、設定温度を100℃に温調して、回転数60rpm、混練時間4分の条件で、(変性)共役ジエン系重合体、ポリブタジエンゴム、伸展油、シリカ、シランカップリング剤、ステアリン酸、老化防止剤、及び酸化亜鉛を配合して混練りした。なお、比較例6~8では、さらに界面活性剤を配合した。ミキサーから排出された混練物の排出時の温度は、いずれも150℃前後であった。
 次いで、二段目の混練として、一段目の混練により得られた混練物を室温まで冷却後、加硫促進剤及び硫黄を上記ミキサーに配合し、設定温度を70℃に温調して、回転数60rpm、混練時間1.5分の条件で混練することにより重合体組成物をそれぞれ得た。ミキサーから排出された混練物の排出時の温度はいずれも100℃以下であった。次に、得られた各重合体組成物を160℃で所定時間、加硫プレスにて加硫成形を行うことにより、架橋体として架橋ゴムを得た。得られた架橋ゴムを用いて、以下の物性評価(1)~(4)を行った。それらの結果を下記表2に示した。
(1)ムーニー粘度(MV)
 加硫前の混練物を測定用試料とし、JIS K6300-1:2013に準拠し、ムーニー試験機(アルファテクノロジー社製)を用い、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。比較例6を100とした指数で示し、数値が大きいほど、重合体組成物の加工性が良好である。
(2)フィラー取り込み速度
 一段目の混練において、混錬物のトルク変化を上記バッチ式ミキサーにより測定し、混錬物のトルクがシリカ投入後にピークに到達するまでの時間(これを「ピーク到達時間」とする)の逆数を算出した。比較例6を100とした指数で示し、数値が大きいほどピーク到達時間が短く、生産性が高いことを示す。
(3)耐スコーチ性
 ムーニー試験機(アルファテクノロジー社製)を用い、JIS K6300-1:2013に準拠し、L型ローターを使用して、予熱1分、ローター作動時間4分、温度125℃の条件で測定し、粘度の最低値(Vm)から5ポイント上昇するまでの時間(t5)を耐スコーチ性の指標とした。比較例6を100とした指数で表示し、数値が大きいほど耐スコーチ性が良好であることを示す。
(4)損失正接(50℃tanδ 転がり抵抗)
 せん断型動的スペクトロメーター(TAインスツルメント社製)を用い、角速度100ラジアン毎秒、温度50℃の条件にてせん断歪1%の条件にて貯蔵弾性率G’に対する損失弾性率G’’の比(50℃tanδ)を測定した。比較例6を100とした指数で示し、数値が大きいほど転がり抵抗が小さく、低燃費性能が良好であることを示す。
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、変性共役ジエン系重合体を含む重合体溶液と、HLB値が9.0以下の界面活性剤とを混合し、その後混合溶液から溶媒を除去することにより、加工性及び耐スコーチ性に優れた重合体組成物(実施例1~5)を得ることができた。また、実施例1~5の重合体組成物はフィラーの取り込み速度も速く、生産性にも優れていた。さらに、実施例1~5の重合体組成物を用いて製造した架橋ゴムは低燃費性能にも優れていた。
 これに対し、重合体溶液に界面活性剤を添加しなかった以外は実施例1~5と同様にして重合体組成物を製造した比較例1~3、HLB値が9.0よりも大きい界面活性剤を用いた比較例4、5は、加工性、耐スコーチ性及びフィラーの取り込み速度、並びに低燃費性能のうち少なくともいずれかの特性が実施例1~5よりも劣っていた。また、末端未変性の共役ジエン系重合体を用いた比較例9は、加工性、耐スコーチ性及びフィラーの取り込み速度は実施例1~5と同等であるものの、低燃費性能が大きく劣っていた。さらに、重合体溶液に界面活性剤を添加する代わりに、一段目の混錬の際に界面活性剤を配合した比較例6~8は、実施例1~5に比べて、耐スコーチ性及び低燃費性能の少なくともいずれかが劣っていた。
 以上の結果から、変性共役ジエン系重合体を含む重合体溶液と、HLB値が9.0以下の界面活性剤とを混合し、得られた混合溶液から溶媒を除去することにより、加工性、耐スコーチ性及び生産性に優れた重合体組成物を得ることができるとともに、低燃費性能に優れた架橋ゴムを得ることができることが明らかとなった。

Claims (15)

  1.  変性共役ジエン系重合体と、
     HLBが9.0以下である界面活性剤と、
    を含有する、ゴムベール。
  2.  前記界面活性剤は、下記式(1)で表される化合物、下記式(2)で表される化合物、及び下記式(3)で表される化合物よりなる群から選択される少なくとも1種である、請求項1に記載のゴムベール。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)~式(3)中、Rは、炭素数10~18のヒドロカルビル基であり、R及びRは、それぞれ独立してヒドロカルビル基又は-(RO)-Hである。Rは、エチレン基又はプロピレン基であり、rは1以上の整数である。rが2以上の場合、複数のRは、互いに同一又は異なる。Xは、単結合、酸素原子又は-NR-であり、Rは、Xが単結合の場合に単結合であり、Xが酸素原子又は-NR-の場合にヒドロカルビレン基である。Rは、水素原子、ヒドロカルビル基又は-(RO)-Hである。)
  3.  前記変性共役ジエン系重合体100質量部に対し、前記界面活性剤を0.05~10質量部含有する、請求項1又は2に記載のゴムベール。
  4.  前記変性共役ジエン系重合体は、ヒドロカルビルオキシシリル基と窒素含有基とを重合体末端に有する、請求項1~3のいずれか一項に記載のゴムベール。
  5.  前記界面活性剤は、プロピレングリコール鎖を有する、請求項1~4のいずれか一項に記載のゴムベール。
  6.  前記変性共役ジエン系重合体の重量平均分子量が1.0×10以上1.5×10以下である、請求項1~5のいずれか一項に記載のゴムベール。
  7.  タイヤのトレッド又はサイドウォール用である、請求項1~6のいずれか一項に記載のゴムベール。
  8.  変性共役ジエン系重合体が溶媒に溶解された重合体溶液と、HLBが9.0以下である界面活性剤とを混合する混合工程と、
     前記混合工程により得られた溶液から溶媒を除去する脱溶媒工程と、
    を含む、ゴムベールの製造方法。
  9.  前記混合工程において、前記変性共役ジエン系重合体100質量部に対し、前記界面活性剤を0.05~10質量部配合する、請求項8に記載のゴムベールの製造方法。
  10.  前記脱溶媒工程において、前記混合工程で得られた溶液を水に接触させて脱溶媒する、請求項8又は9に記載のゴムベールの製造方法。
  11.  活性末端を有する共役ジエン系重合体と、ヒドロカルビルオキシシリル基及び窒素含有基を有する化合物と、を反応させて前記変性共役ジエン系重合体を得る工程をさらに含む、請求項8~10のいずれか一項に記載のゴムベールの製造方法。
  12.  前記界面活性剤は、下記式(1)で表される化合物、下記式(2)で表される化合物、及び下記式(3)で表される化合物よりなる群から選択される少なくとも1種である、請求項8~11のいずれか一項に記載のゴムベールの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)~式(3)中、Rは、炭素数10~18のヒドロカルビル基であり、R及びRは、それぞれ独立してヒドロカルビル基又は-(RO)-Hである。Rは、エチレン基又はプロピレン基であり、rは1以上の整数である。rが2以上の場合、複数のRは、互いに同一又は異なる。Xは、単結合、酸素原子又は-NR-であり、Rは、Xが単結合の場合に単結合であり、Xが酸素原子又は-NR-の場合にヒドロカルビレン基である。Rは、水素原子、ヒドロカルビル基又は-(RO)-Hである。)
  13.  請求項1~7のいずれか一項に記載のゴムベールに、シリカ、カーボンブラック及び下記式(4)で表される無機化合物よりなる群から選ばれる少なくとも1種の補強性充填剤が配合されてなる、重合体組成物。
     nM・mSiO・iHO  …(4)
    (式(4)中、Mは、アルミニウム、マグネシウム、チタン及びカルシウムのいずれかである特定金属、前記特定金属の酸化物、前記特定金属の水酸化物、前記特定金属の酸化物の水和物、及び前記特定金属の水酸化物の水和物よりなる群から選ばれる少なくとも1種である。nは1~5の整数であり、mは0~10の整数であり、kは2~5の整数であり、iは0~10の整数である。)
  14.  請求項13に記載の重合体組成物を用いて得られる架橋体。
  15.  請求項13に記載の重合体組成物によりトレッド及びサイドウォールの一方又は両方が形成されたタイヤ。
PCT/JP2021/038055 2020-10-16 2021-10-14 ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ WO2022080450A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237010988A KR20230057468A (ko) 2020-10-16 2021-10-14 고무 베일 및 그의 제조 방법, 중합체 조성물, 가교체 및 타이어
EP21880185.0A EP4230435A4 (en) 2020-10-16 2021-10-14 RUBBER BALL, PRODUCTION METHOD THEREFOR, POLYMER COMPOSITION, CROSS-LINKED OBJECT AND TIRE
CN202180070413.5A CN116348313A (zh) 2020-10-16 2021-10-14 橡胶块及其制造方法、聚合物组合物、交联体及轮胎
JP2022557436A JPWO2022080450A1 (ja) 2020-10-16 2021-10-14
US18/248,945 US20240002642A1 (en) 2020-10-16 2021-10-14 Rubber bale, production method therefor, polymer composition, crosslinked object, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174575 2020-10-16
JP2020174575 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080450A1 true WO2022080450A1 (ja) 2022-04-21

Family

ID=81208106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038055 WO2022080450A1 (ja) 2020-10-16 2021-10-14 ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ

Country Status (6)

Country Link
US (1) US20240002642A1 (ja)
EP (1) EP4230435A4 (ja)
JP (1) JPWO2022080450A1 (ja)
KR (1) KR20230057468A (ja)
CN (1) CN116348313A (ja)
WO (1) WO2022080450A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191018A (ja) * 2015-03-31 2016-11-10 東洋ゴム工業株式会社 ゴム組成物の製造方法、ゴム組成物および空気入りタイヤ
JP2017508841A (ja) 2014-11-26 2017-03-30 エルジー・ケム・リミテッド 分散剤を含む共役ジエン系重合体ゴム組成物
JP2017515864A (ja) * 2014-05-19 2017-06-15 株式会社 資生堂 二酸化チタン及び酸化亜鉛による過度の白さが皮膚塗布時に視覚的に隠蔽される日焼け止め製品
JP2019182990A (ja) * 2018-04-10 2019-10-24 旭化成株式会社 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法
JP2019182996A (ja) 2018-04-10 2019-10-24 旭化成株式会社 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法
JP2019183103A (ja) * 2018-04-03 2019-10-24 ハンコック タイヤ アンド テクノロジー カンパニー リミテッドHankook Tire & Technology Co., Ltd. タイヤトレッド用ゴム組成物、その製造方法及びそれを用いて製造したタイヤ
JP2020045449A (ja) * 2018-09-20 2020-03-26 旭化成株式会社 変性共役ジエン系重合体組成物のベール、及び変性共役ジエン系重合体組成物のベールの製造方法
JP2020050708A (ja) * 2018-09-25 2020-04-02 旭化成株式会社 共役ジエン系重合体組成物のベール及び共役ジエン系重合体組成物のベールの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031254B2 (ja) * 2006-03-31 2012-09-19 ユーエムジー・エービーエス株式会社 水性分散体の製造方法
WO2012111697A1 (ja) * 2011-02-17 2012-08-23 Jsr株式会社 ゴム組成物およびその製造方法並びにタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515864A (ja) * 2014-05-19 2017-06-15 株式会社 資生堂 二酸化チタン及び酸化亜鉛による過度の白さが皮膚塗布時に視覚的に隠蔽される日焼け止め製品
JP2017508841A (ja) 2014-11-26 2017-03-30 エルジー・ケム・リミテッド 分散剤を含む共役ジエン系重合体ゴム組成物
JP2016191018A (ja) * 2015-03-31 2016-11-10 東洋ゴム工業株式会社 ゴム組成物の製造方法、ゴム組成物および空気入りタイヤ
JP2019183103A (ja) * 2018-04-03 2019-10-24 ハンコック タイヤ アンド テクノロジー カンパニー リミテッドHankook Tire & Technology Co., Ltd. タイヤトレッド用ゴム組成物、その製造方法及びそれを用いて製造したタイヤ
JP2019182990A (ja) * 2018-04-10 2019-10-24 旭化成株式会社 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法
JP2019182996A (ja) 2018-04-10 2019-10-24 旭化成株式会社 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法
JP2020045449A (ja) * 2018-09-20 2020-03-26 旭化成株式会社 変性共役ジエン系重合体組成物のベール、及び変性共役ジエン系重合体組成物のベールの製造方法
JP2020050708A (ja) * 2018-09-25 2020-04-02 旭化成株式会社 共役ジエン系重合体組成物のベール及び共役ジエン系重合体組成物のベールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230435A4

Also Published As

Publication number Publication date
CN116348313A (zh) 2023-06-27
KR20230057468A (ko) 2023-04-28
EP4230435A4 (en) 2024-04-03
JPWO2022080450A1 (ja) 2022-04-21
EP4230435A1 (en) 2023-08-23
US20240002642A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JPH0987426A (ja) ゴム組成物の製造方法
TWI829906B (zh) 氫化共軛二烯系聚合物、聚合物組成物、交聯體及輪胎
WO2017014283A1 (ja) 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
JP7494173B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP6252705B2 (ja) 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
WO2017014282A1 (ja) 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2021085616A1 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
JP6885079B2 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
WO2021020189A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2019094390A (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
WO2021039985A1 (ja) 重合体組成物、架橋体及びタイヤ
JP2006137858A (ja) 共役ジエン系重合体及びそれを含むゴム組成物
EP3269744B1 (en) Modified conjugated diene polymer, method for producing modified conjugated diene polymer, polymer composition, crosslinked polymer, and tire
JP7346543B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
US11746216B2 (en) Polymer composition, crosslinked polymer, and tire
JP7194641B2 (ja) 重合体組成物及びその製造方法、並びにタイヤ
WO2022080450A1 (ja) ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ
JP2020196803A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2018199280A1 (ja) 架橋ゴム及びタイヤ
US20230312889A1 (en) Polymer composition, method for producing same, formulation, crosslinked product, and tire
JP7458373B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2022122538A (ja) 重合体組成物及びゴム成型品
JPH11189615A (ja) ジエン系重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
WO2022024219A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2546280B2 (ja) 共役ジエン系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557436

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010988

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18248945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021880185

Country of ref document: EP

Effective date: 20230516