JP2019182990A - 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法 - Google Patents

共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法 Download PDF

Info

Publication number
JP2019182990A
JP2019182990A JP2018075200A JP2018075200A JP2019182990A JP 2019182990 A JP2019182990 A JP 2019182990A JP 2018075200 A JP2018075200 A JP 2018075200A JP 2018075200 A JP2018075200 A JP 2018075200A JP 2019182990 A JP2019182990 A JP 2019182990A
Authority
JP
Japan
Prior art keywords
conjugated diene
diene polymer
mass
silica
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018075200A
Other languages
English (en)
Inventor
大祐 早田
Daisuke Hayata
大祐 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2018075200A priority Critical patent/JP2019182990A/ja
Publication of JP2019182990A publication Critical patent/JP2019182990A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】ベール製品として経時変化が小さく安定した品質を担保しつつ、かつシリカを含むゴム組成物とした場合に、共役ジエン系重合体の構造への依存が少なく、優れた生産性とシリカの分散性を発現することで、優れた省燃費性能を有するゴム組成物を得ることが可能な、共役ジエン系重合体組成物のベールを提供する。【解決手段】共役ジエン系重合体を含むゴム成分100質量部と、イオン性界面活性剤0.1〜10質量部と、を、含有する、共役ジエン系重合体組成物のベール。【選択図】なし

Description

本発明は、共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法に関する。
近年、自動車に対する省燃費化要求が高まり、自動車用タイヤ、特に地面と接するタイヤトレッドの材料として、転がり抵抗が小さい材料の開発が求められている。
一方、安全性の観点からは、湿潤路面でのブレーキ性能(ウェットスキッド抵抗性)に優れ、かつ引張特性や耐摩耗性にも優れたゴム材料の開発が求められている。
補強性充填剤として、従来多く用いられてきたカーボンブラックに替えてシリカを用いた場合、転がり抵抗性とウェットスキッド抵抗性のバランスに優れたゴム組成物が得られることが知られている。
しかしながら、シリカの表面は親水性を有するため、疎水性の高い共役ジエン系重合体と組み合わせて組成物とすると、当該組成物中では、シリカ粒子同士が凝集し、良好な分散性が得られないという問題を有している。そのため、共役ジエン系重合体とシリカ表面との親和性を高め、組成物中でのシリカの分散性を改良して、転がり抵抗性をより優れたものにする試みが行われている。
例えば、特許文献1には、ゴム溶液にシリカ等のフィラーと、カップリング剤等の表面改質剤を加えて混合し、分散させた後、乾燥することにより、シリカが分散したゴムマスターバッチを製造する方法が開示されている。
特表2016−538394号公報
特許文献1に記載されている方法のように、シリカ等のフィラーと、シランカップリング剤、酸化亜鉛、ステアリン酸、老化防止剤、促進剤等をゴム溶液に加えて混合することにより、フィラーの分散性を向上させることができると考えられる。
しかしながら、本発明者が検討したところ、特許文献1に記載されている方法のように、ゴム溶液にシランカップリング剤を添加し、溶液中で混合させ、乾燥させた製品は、その保管中にシランカップリング剤に含まれる硫黄による共役ジエン系重合体の架橋反応が進行し、そのため、得られるベール製品としてのゴム組成物が貯蔵安定性に劣ったりするという問題を有している。
そこで本発明においては、上述した従来技術が有する問題点に鑑みて、ベール製品として経時変化が小さく安定した品質を担保しつつ、かつシリカを含むゴム組成物とした場合に、共役ジエン系重合体の構造への依存が少なく、優れた生産性とシリカの分散性を発現することで、優れた省燃費性能を有するゴム組成物を得ることが可能な、共役ジエン系重合体組成物のベール、及び共役ジエン系重合体組成物のベールの製造方法を提供することを目的とする。
本発明者らは、上記従来技術の課題を解決するために鋭意研究を重ねた結果、共役ジエン系重合体を含むゴム成分100質量部に対し、イオン性界面活性剤を0.1〜10質量部含む組成物のベールにより、上記従来技術の課題を解決できることを見出し、本発明を完成するに至った。
すなわち本発明は以下の通りである。
〔1〕
共役ジエン系重合体を含むゴム成分100質量部と、
イオン性界面活性剤0.1〜10質量部と、
を、含有する、共役ジエン系重合体組成物のベール。
〔2〕
前記共役ジエン系重合体が変性されている、前記〔1〕に記載の共役ジエン系重合体組成物のベール。
〔3〕
前記〔1〕又は〔2〕に記載の共役ジエン系重合体組成物のベールは、タイヤトレッド用であって、
前記共役ジエン系重合体組成物を含有するタイヤトレッドを具備する空気入りタイヤ。
〔4〕
共役ジエン系重合体を含むゴム成分100質量部と、イオン性界面活性剤0.1〜10質量部とを含むベールの製造方法であって、
共役ジエン系重合体を含むゴム成分が溶剤に溶解した溶液に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し0.1〜10質量部添加し、混合液を得る工程(A)と、
前記工程(A)で得られた混合液を脱溶剤する工程(B)と、
を、有する共役ジエン系重合体組成物のベールの製造方法。
〔5〕
前記脱溶剤する工程(B)において、前記工程(A)で得られた混合液を、水に接触させずに脱溶剤する、前記〔4〕に記載の共役ジエン系重合体組成物のベールの製造方法。
〔6〕
共役ジエン系重合体を含むゴム成分100質量部と、イオン性界面活性剤0.1〜10質量部とを含むベールの製造方法であって、
共役ジエン系重合体を含むゴム成分に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し0.1〜10質量部混合する工程(C)
を、有する、共役ジエン系重合体組成物のベールの製造方法。
〔7〕
前記共役ジエン系重合体が変性されている、前記〔4〕乃至〔6〕のいずれか一に記載の共役ジエン系重合体組成物のベールの製造方法。
本発明によれば、ベール製品として経時変化が小さく安定した品質を担保しつつ、かつシリカを含むゴム組成物とした場合に、共役ジエン系重合体の構造への依存が少なく、優れた生産性とシリカの分散性を発現することで、優れた省燃費性能を有するゴム組成物を得ることが可能な、共役ジエン系重合体組成物のベール、及び共役ジエン系重合体組成物のベールの製造方法を提供できる。
以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。
なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に制限されるものではない。本発明は、その要旨の範囲内で適宜変形して実施することができる。
〔共役ジエン系重合体組成物のベール〕
本実施形態の共役ジエン系重合体組成物のベールは、
共役ジエン系重合体を含むゴム成分100質量部と、
イオン性界面活性剤0.1〜10質量部と、
を、含有する。
(ゴム成分)
本実施形態の共役ジエン系重合体組成物のベールは、共役ジエン系重合体を含むゴム成分を含有する。
(共役ジエン系重合体)
本実施形態の共役ジエン系重合体組成物のベールは、共役ジエン系重合体を含有する。
「共役ジエン系重合体」とは、繰り返し単位に共役ジエン由来の構造を少なくとも1種類有する高分子量体である。
共役ジエン系重合体は、共役ジエン単量体を重合することによって得られる単独重合体であってもよく、共役ジエン単量体と他の単量体との共重合体であってもよい。
共役ジエン単量体としては、重合可能な単量体であれば特に限定されず、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、1,3−ヘプタジエン、及び1,3−ヘキサジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3−ブタジエン、及びイソプレンが好ましい。
これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
前記共役ジエン系重合体は、前記の共役ジエン単量体と芳香族ビニル単量体との共重合体であってもよい。
芳香族ビニル単量体としては、共役ジエン単量体と共重合可能な単量体であれば特に限定されず、例えば、スチレン、m又はp−メチルスチレン、α−メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレン、及びジビニルベンゼンが挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
共役ジエン系重合体中に、芳香族ビニル単量体単位を含む場合、結合した芳香族ビニル単量体の量(以下、単に「結合芳香族ビニル量」ともいう。)は、共役ジエン系重合体の総量(100質量%)に対して、5.0質量%以上70質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましい。
結合芳香族ビニル量がこのような範囲であると、本実施形態の共役ジエン系重合体組成物のベールをタイヤに加工した場合に、タイヤの転がり抵抗性とウェットスキッド抵抗性とのバランスがより優れる傾向にあり、耐摩耗性及び破壊強度も満足する共役ジエン系重合体組成物の加硫物を得られる傾向にある。
結合芳香族ビニル量は、具体的には、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。
共役ジエン系重合体における共役ジエン結合単位中のビニル結合量(1,2−又は3,4−結合)は、10モル%以上75モル%以下であることが好ましく、13モル%以上65モル%以下であることがより好ましい。
共役ジエン系重合体のビニル結合量が前記範囲であると、タイヤに加工した場合に低ヒステリシスロス性とウェットスキッド抵抗性とのバランスがより優れ、耐摩耗性及び破壊強度も満足する共役ジエン系重合体組成物の加硫物を得ることができる傾向にある。
共役ジエン系重合体がブタジエンの単独重合体である場合は、そのブタジエン結合単位中のビニル結合量(1,2−結合量)は赤外分光光度計を用いた測定結果を、モレロ法にてデータ処理することで算出することができる。
なお、共役ジエン系重合体が共重合体である場合は、その共重合体は、ランダム共重合体であっても、ブロック共重合体であってもよい。ここで、共役ジエン系重合体がブタジエンとスチレンの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2−結合量)を求めることができる。
ランダム共重合体としては、以下に限定されないが、例えば、ブタジエン−イソプレンランダム共重合体、ブタジエン−スチレンランダム共重合体、イソプレン−スチレンランダム共重合体、及びブタジエン−イソプレン−スチレンランダム共重合体が挙げられる。
共重合体鎖中の各単量体の組成分布は、統計的ランダムな組成に近い完全ランダム共重合体、及び組成分布に勾配があるテーパー(勾配)ランダム共重合体が挙げられる。共役ジエン系重合体の結合様式、すなわち1,4−結合、1,2−結合等の組成は、分子鎖によって均一であってもよいし、異なっていてもよい。
ブロック共重合体としては、以下に限定されないが、例えば、ブロックが2個からなる2型ブロック共重合体、3個からなる3型ブロック共重合体、及び4個からなる4型ブロック共重合体挙げられる。ここで、スチレン等の芳香族ビニル単量体からなるブロックをSで表し、ブタジエン、イソプレン等の共役ジエン単量体からなるブロック及び/又は芳香族ビニル単量体と共役ジエン単量体との共重合体からなるブロックをBで表すと、S−B2型ブロック共重合体、S−B−S3型ブロック共重合体、及びS−B−S−B4型ブロック共重合体等の式で表される。
前記式において、各ブロックの境界は必ずしも明瞭に区別される必要はない。例えば、ブロックBが芳香族ビニル単量体と共役ジエン単量体との共重合体の場合、ブロックB中の芳香族ビニル単量体は均一に分布していても、又はテーパー状に分布していてもよい。また、ブロックBに、芳香族ビニル単量体が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個共存していてもよい。さらに、ブロックBに、芳香族ビニル単量体含有量が異なるセグメントが複数個共存していてもよい。共重合体中にブロックS、ブロックBがそれぞれ複数存在する場合、それらの分子量及び組成の構造は、同一でもよいし、異なっていてもよい。
共役ジエン系重合体の分子量の大きさは、シリカ系無機充填剤の分散性には直接的な影響は少ないが、本実施形態の共役ジエン系重合体組成物のベールをタイヤに利用する場合、共役ジエン系重合体の重量平均分子量(Mw)は、加工性や物性の観点から10万以上200万以下であることが好ましい。また、15万以上であることがより好ましく、20万以上であることがさらに好ましく、25万以上であることがさらにより好ましい。また、重量平均分子量は、180万以下であることがより好ましく、150万以下であることがさらに好ましく、130万以下であることがさらにより好ましい。
共役ジエン系重合体の分子量分布(Mw/Mn)(Mn:数平均分子量、Mw:重量平均分子量)は、1.02以上5.0以下であることが好ましく、1.05以上4.0以下であることがより好ましく、1.07以上3.0以下であることがさらに好ましい。分子量分布が5.0以下であることにより、低ヒステリシスロス性が良好となる傾向にある。また、分子量分布が1.02以上であることにより、シリカ系無機充填剤の混合性及び加工性が良好となる傾向にある。
また、重量平均分子量及び数平均分子量は、標準ポリスチレン試料を用いた検量式として、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と表す。)から求められる。
本実施形態の共役ジエン系重合体組成物のベール及びその成形体の耐摩耗性や強度の観点から、共役ジエン系重合体は、当該共役ジエン系重合体の総量(100質量%)に対して、分子量100万以上の成分の含有量が1.0質量%以上99質量%以下であることが好ましく、5.0質量%以上70質量%以下であることがより好ましく、10質量%以上50質量%以下であることがさらに好ましい。共役ジエン系重合体中の分子量100万以上の成分は、上述のように標準ポリスチレン試料を用いた検量式として、GPCにより測定することができる。
共役ジエン系重合体のムーニー粘度は、20以上120以下であることが好ましく、30以上110以下であることがより好ましく、40以上100以下であることがさらに好ましい。ムーニー粘度が120以下であることで、本実施形態の共役ジエン系重合体組成物の加工性が良好となる傾向にある上、シリカ系無機充填剤の混合性が良好となる傾向にある。また、ムーニー粘度が20以上であることで、加硫物性が良好となる傾向にある。ムーニー粘度は、JIS K6300−1:2001に準拠した方法により測定でき、具体的には後述する実施例に記載する方法により測定できる。
(共役ジエン系重合体の製造方法)
共役ジエン系重合体の製造方法としては、特に限定されないが、乳化重合法や溶液重合法等が挙げられるが、運転制御や分子構造制御、分子修飾(変性)の容易さから溶液重合法が好ましい。
溶液重合法を用いた共役ジエン系重合体の製造方法は、公知の方法を適用することができる。一般的には炭化水素溶媒中にて、アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン単量体、又は共役ジエン単量体と芳香族ビニル単量体とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程、必要に応じて変性剤と反応させる変性工程、さらに炭化水素溶媒を揮発させ固形分(共役ジエン系重合体)を単離する脱揮工程から成る製法にて製造することができる。
<重合反応用溶剤>
溶液重合法を用いた共役ジエン系重合体の、重合工程における重合反応は、溶剤(以下、「重合反応用溶剤」ともいう。)中で重合する溶液重合の反応が好ましい。
重合反応用溶剤としては、以下に限定されるものではないが、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。
具体的な重合反応用溶剤としては、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;これらの混合物からなる炭化水素等が挙げられる。
<重合開始剤>
溶液重合法を用いた共役ジエン系重合体の、重合工程における重合開始剤として用いるアルカリ金属化合物は、特に限定されないが、有機リチウム化合物が好ましい。
有機リチウム化合物としては、低分子化合物、可溶化したオリゴマーの有機リチウム化合物、有機基とリチウムの結合様式において炭素−リチウム結合を有する化合物、錫−リチウム結合を有する化合物等が挙げられる。
有機リチウム化合物としては、以下に限定されるものではないが、例えば、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、n−ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウム等が挙げられる。
上記のモノ有機リチウム化合物に加え、多官能有機リチウム化合物を併用して、重合を行うこともできる。
前記多官能有機リチウム化合物としては、以下に限定されるものではないが、例えば、1,4−ジリチオブタン、sec−ブチルリチウムとジイソプロペニルベンゼンの反応物、1,3,5−トリリチオベンゼン、n−ブチルリチウムと1,3−ブタジエン及びジビニルベンゼンの反応物、n−ブチルリチウムとポリアセチレン化合物の反応物等が挙げられる。さらに、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されている公知の有機アルカリ金属化合物も使用することができる。
有機リチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n−ブチルリチウム、sec−ブチルリチウムが好ましい。
これらの有機リチウム化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
他の有機アルカリ金属化合物としては、例えば、有機ナトリウム化合物、有機カリウム化合物、有機ルビジウム化合物、有機セシウム化合物等が挙げられる。具体的には、ナトリウムナフタレン、カリウムナフタレン等が挙げられる。その他にも、リチウム、ナトリウム及びカリウム等のアルコキサイド、スルフォネート、カーボネート等が挙げられる。また、他の有機金属化合物と併用してもよい。
重合工程における重合開始剤として用いるアルカリ土類金属化合物としては、有機マグネシウム化合物、有機カルシウム化合物、有機ストロンチウム化合物等が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート等の化合物を用いてもよい。これらの有機アルカリ土類金属化合物は、アルカリ金属化合物や、その他有機金属化合物と併用してもよい。
<重合形態>
溶液重合法を用いた共役ジエン系重合体の重合様式としては、特に限定されないが、回分式(「バッチ式」ともいう。)、連続式等の重合様式で行うことができる。連続式においては、1個又は2個以上の連結された反応器を用いることができる。反応器は、撹拌機付きの槽型、管型等のものが用いられる。一般的に、バッチ式では槽内の滞留時間分布が狭いため分子量分布の狭いポリマーが生成し、一方連続式では槽内の滞留時間分布が広いため分子量分布の広いポリマーが生成する傾向にある。
(変性共役ジエン系重合体)
本実施形態の共役ジエン系重合体組成物のベールに含有されている共役ジエン系重合体は、その製造工程において変性されたもの(官能基を導入したもの)であってもよく、非変性のものであってもよい。
非変性の共役ジエン系重合体と、後述するイオン性界面活性剤との組み合わせで、シリカ系無機充填剤の分散性を改善する場合、重合体の構造の選択の自由度が大きくなるメリットがある。
例えば、タイヤ用組成物においてシリカの分散性を改善する目的で、変性した共役ジエン系重合体が採用される場合があるが、後述するイオン性界面活性剤を添加したベールにすることでシリカの分散性が担保されると、非変性の共役ジエン系重合体を採用できる場合があると考えられる。
変性共役ジエン系重合体は、タイヤ用組成物の加工性を悪化させる傾向があるとも言われるが、非変性の重合体を採用することでこれを解消できることも期待できる。
他方、重合体の変性には補強性改善が期待される面もあり、イオン性界面活性剤を含有するベールとし、かつ、共役ジエン系重合体としては変性したものを採用すると、分散性と補強性の両立をはかれる観点から好ましい。
変性によってシリカ系無充填剤に親和性のある官能基を導入する場合には、重合反応の最後に変性剤を反応させたり、重合体同士をカップリングする等の方法があるが、ある程度導入の場所や数が限られる。これに対し、溶液中あるいは押出機等の混練機内でイオン性界面活性剤と重合体とを混合する場合、イオン性界面活性剤の量は適宜調整できるので、目的に応じて設定可能である。
変性共役ジエン系重合体には、シリカ系無機充填剤に対し吸着または反応し易くなることを意図して変性されたものが多く、このような変性共役ジエン系重合体を用いることにより、シリカ系無機充填剤の配合物とした際に、その変性された箇所もシリカ系無機充填剤の表面に吸着又は反応するため、シリカ系無機充填剤を含む配合物とした時に、より補強効果が発現し、耐摩耗性や引張特性が向上する上、さらに共役ジエン系重合体に由来するヒステリシスロスを低減し省燃費性向上に寄与するため好ましい。
非変性共役ジエン系重合体とイオン性界面活性剤の組み合わせの場合、非変性共役ジエン系重合体とシリカ系無機充填剤が吸着又は反応する位置は制御できないが、例えば末端を変性した変性共役ジエン系重合体の場合には、確実に重合体の末端をシリカ系無機充填剤に固定することができるため、共役ジエン系重合体の運動を抑制する効果が高く見込まれる。
変性共役ジエン系重合体は、従来、シリカ系無機充填剤と溶融混練する工程で官能基がシリカ系無機充填剤に作用することが想定されているのに対し、後述する本実施形態の共役ジエン系重合体組成物のベールの製造方法においては、共役ジエン系重合体とイオン性界面活性剤を溶液状態で混合することによって(工程(A))、あるいは、共役ジエン系重合体とイオン性界面活性剤を押出機等の中で混合することによって(工程(C))、変性共役ジエン系重合体とイオン性界面活性剤とが均一に混合されたベールを製造できるため、シリカ系無機充填剤を含む組成物とした場合に、変性共役ジエン系重合体の官能基とイオン性界面活性剤中の親水性基の双方がより効率よく、均一に高い吸着性又は反応性を発揮できると想定される。このため、得られるシリカ系無機充填剤の組成物の効果を最大化できる傾向にある。
本実施形態の共役ジエン系重合体組成物のベールに含まれる共役ジエン系重合体が、溶液重合法を用いて製造された共役ジエン系重合体の場合であって、これを変性する際には、その変性工程において、重合工程で得られた共役ジエン系重合体の活性末端に対して、エポキシ基及びアルコキシシリル基からなる群より選ばれる少なくとも1種の官能基を有する化合物(以下、「変性剤」ともいう。)で変性を行うことが好ましい。
変性剤であるエポキシ基を有する化合物としては、以下に限定されないが、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;4,4’−ジグリシジル−ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル;1,4−ジグリシジルベンゼン、1,3,5−トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;4,4’−ジグリシジル−ジフェニルメチルアミン、4,4’−ジグリシジル−ジベンジルメチルアミン等のエポキシ基含有3級アミン;ジグリシジルアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル−p−フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物等が挙げられる。
上述した変性剤であるエポキシ基を有する化合物の中では、分子中に、2個以上のエポキシ基及び1個以上の窒素含有基を有する多官能化合物が好ましく、後述する一般式(2)で表される化合物がより好ましく、ジグリシジルアミノ基を持つ多官能化合物がさらに好ましい。
また、ジグリシジルアミノ基を持つ多官能化合物は、分子中に、エポキシ基を2個以上有し、3個以上有することが好ましく、4個以上有することがより好ましい。
変性剤であるアルコキシシリル基を有する化合物としては、以下に限定されないが、例えば、ジメトキシジメチルシラン、キシジメチルシラン、ジエトキシジエチルシラン、トリフェノキシビニルシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、トリ(2−メチルブトキシ)エチルシラン、トリ(2−メチルブトキシ)ビニルシラン、トリフェノキシフェニルシラン、テトラフェノキシシラン、テトラエトキシシラン、テトラメトキシシラン、テトラキス(2−エチルヘキシルオキシ)シラン、フェノキシジビニルクロロシラン、メトキシジエチルクロロシラン、ジフェノキシメチルクロロシラン、ジフェノキシフェニルヨードシラン、ジエトキシメチルクロロシラン、ジメトキシエチルクロロシラン、トリエトキシクロロシラン、トリフェノキシクロロシラン、トリス(2−エチルヘキシルオキシ)クロロシラン、フェノキシメチルジクロロシラン、メトキシエチルジクロロシラン、エトキシメチルジクロロシラン、フェノキシフェニルジヨードシラン、フェノキシジクロロシラン、ジメトキシジクロロシラン、及びビス(2−メチルブトキシ)ジブロモシラン等が挙げられる。
変性剤であるアルコキシシリル基を有する化合物の中でも、分子内にN原子と複数個のアルコキシシリル基を有するものが好ましい。このような化合物としては、以下に限定されるものではないが、例えば、2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−(4−トリメトキシシリルブチル)−1−アザ−2−シラシクロヘキサン、2,2−ジメトキシ−1−(5−トリメトキシシリルペンチル)−1−アザ−2−シラシクロヘプタン、2,2−ジメトキシ−1−(3−ジメトキシメチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−ジエトキシエチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2−メトキシ,2−メチル−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2−エトキシ,2−エチル−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2−メトキシ,2−メチル−1−(3−ジメトキシメチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2−エトキシ,2−エチル−1−(3−ジエトキシエチルシリルプロピル)−1−アザ−2−シラシクロペンタン、1−[3−(トリアルコキシシリル)−プロピル]−4−アルキルピペラジン、1−[3−(アルキルジアルコキシシリル)−プロピル]−4−アルキルピペラジン、1−[3−(トリアルコキシシリル)−プロピル]−3−アルキルイミダゾリジン、1−[3−(アルキルジアルコキシシリル)−プロピル]−3−アルキルイミダゾリジン、1−[3−(トリアルコキシシリル)−プロピル]−3−アルキルヘキサヒドロピリミジン、1−[3−(アルキルジアルコキシシリル)−プロピル]−3−アルキルヘキサヒドロピリミジン、3−[3−(トリアルコキシシリル)−プロピル]−1−アルキル−1,2,3,4−テトラヒドロピリミジン、3−[3−(アルキルジアルコキシシリル)−プロピル]−1−アルキル−1,2,3,4−テトラヒドロピリミジン、1−[3−(トリエトキシシリル)−プロピル]−4−メチルピペラジン、1−[3−(ジエトキシエチルシリル)−プロピル]−4−メチルピペラジン、1−[3−(トリメトキシシリル)−プロピル]−3−メチルイミダゾリジン、1−[3−(ジエトキシエチルシリル)−プロピル]−3−エチルイミダゾリジン、1−[3−(トリエトキシシリル)−プロピル]−3−メチルヘキサヒドロピリミジン、1−[3−(ジメトキシメチルシリル)−プロピル]−3−メチルヘキサヒドロピリミジン、3−[3−(トリブトキシシリル)−プロピル]−1−メチル−1,2,3,4−テトラヒドロピリミジン、3−[3−(ジメトキシメチルシリル)−プロピル]−1−エチル−1,2,3,4−テトラヒドロピリミジン、1−(2−エトキシエチル)−3−[3−(トリメトキシシリル)−プロピル]−イミダゾリジン、及び(2−{3−[3−(トリメトキシシリル)−プロピル]−テトラヒドロピリミジン−1−イル}−エチル)ジメチルアミン等が挙げられる。
これらの中でも、アルコキシシリル基を有する化合物官能基とシリカ等の無機充填剤との反応性及び相互作用性の観点と、加工性の観点から、1−[3−(トリエトキシシリル)−プロピル]−4−メチルピペラジン、2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、及び2,2−ジエトキシ−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタンが好ましい。
上述した変性剤であるアルコキシシリル基を有する化合物の中でも、分子中に、窒素原子及び2個以上のアルコキシシリル基を有する化合物がより好ましく、後述する一般式(3)で表される化合物がさらに好ましい。
これらの中でも、変性剤の官能基と、シリカ等の無機充填剤との反応性及び相互作用性の観点や、加工性の観点から、変性剤は、下記の一般式(2)で表される化合物及び下記の一般式(3)で表される化合物からなる群より選ばれる少なくとも1種の化合物であることが好ましい。
前記式(2)中、R1及びR2は、各々独立して、炭素数1〜10のアルキル基、又は、エーテル基、及び3級アミン基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1〜10のアルキル基を表す。
3及びR4は、各々独立して、水素原子、炭素数1〜20のアルキル基、又は、エーテル基、及び3級アミン基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1〜20のアルキル基を表す。
5は、炭素数1〜20のアルキル基、又は、エーテル基、3級アミン基、エポキシ基、カルボニル基、及びハロゲン基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1〜20のアルキル基を表す。
oは、1〜6の整数を表す。
前記式(3)中、R1〜R4は、各々独立して、炭素数1〜20のアルキル基、又は、炭素数6〜20のアリール基を表す。
5は、炭素数3〜10のアルキレン基を表し、R6は、炭素数1〜20のアルキレン基、活性水素原子を有さず、かつヘテロ原子で置換されている炭素数1〜20のアルキレン基、又は、有機置換シリル基を表す。
pは1又は2の整数を表し、qは2又は3の整数を表す。
前記一般式(2)で表される化合物としては、以下に限定されないが、例えば、テトラグリシジル−p−フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサンが挙げられる。
前記一般式(3)で表される化合物としては、以下に限定されないが、例えば、2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−(4−トリメトキシシリルブチル)−1−アザ−2−シラシクロヘキサン、2,2−ジメトキシ−1−(5−トリメトキシシリルペンチル)−1−アザ−2−シラシクロヘプタン、2,2−ジメトキシ−1−(3−ジメトキシメチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−ジエトキシエチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2−メトキシ−2−メチル−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2−エトキシ−2−エチル−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2−メトキシ−2−メチル−1−(3−ジメトキシメチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2−エトキシ−2−エチル−1−(3−ジエトキシエチルシリルプロピル)−1−アザ−2−シラシクロペンタンが挙げられる。
上述した変性剤の中でも、変性剤の官能基とシリカ等の無機充填剤との反応性及び相互作用性の観点、並びに加工性の観点から、式(3)中、pが2、qが3であるものがより好ましく、2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタンがさらに好ましい。
(共役ジエン系重合体以外のゴム成分)
上述した共役ジエン系重合体以外のゴム成分としては、特に限定されず、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、その他の共役ジエン系共重合体又はその水素添加物、非ジエン系重合体、天然ゴム等が挙げられる。
共役ジエン系重合体又はその水素添加物の具体例としては、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物等が挙げられる。
共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物の具体例としては、スチレン−ブタジエンゴム又はその水素添加物が挙げられる。
共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物の具体例としては、スチレン−ブタジエンブロック共重合体又はその水素添加物、スチレン−イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマーが挙げられる。
その他の共役ジエン系共重合体又はその水素添加物の具体例としては、アクリロニトリル−ブタジエンゴム又はその水素添加物等が挙げられる。
また、非ジエン系重合体としては、エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴム、エチレン−ブテン−ジエンゴム、エチレン−ブテンゴム、エチレン−ヘキセンゴム、エチレン−オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β−不飽和ニトリル−アクリル酸エステル−共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴム等が挙げられる。
(イオン性界面活性剤)
本実施形態の共役ジエン系重合体組成物のベールは、共役ジエン系重合体を含むゴム成分100質量部に対し、イオン性界面活性剤を0.1〜10質量部、含有しており、0.2〜9質量部がより好ましく、0.3〜8質量部がさらに好ましい。
イオン性界面活性剤とは、水に溶けた時、イオンに乖離する親水基を持つ界面活性剤をいう。
イオン性界面活性剤の添加効果を十分に発現する観点から0.1質量部以上とすることが好ましく、一方で添加量が多すぎるとベール中でイオン性界面活性剤の凝集が生じてしまうため、10質量部以下とすることが好ましい。
本実施形態の共役ジエン系重合体組成物のベールをシリカ系無機充填剤と配合した際に、イオン性界面活性剤はシリカ系無機充填剤表面を改質し、配合物中での再凝集を抑制することができるため、シリカ系無機充填剤の分散性が向上する。
イオン性界面活性剤としては、その分子内にシリカ系無機充填剤表面に吸着ないし反応する官能基(親水性基)と、シリカ系無機充填剤表面まわりに立体障害層を形成し、シリカ系無機充填剤同士の再凝集を防ぐ疎水性基とを有する化合物を使用することができる。
イオン性界面活性剤は、その構造にもよるが、一般的に極性が高く、シリカ系無機充填剤を含む組成物とした場合、素早くシリカ系無機充填剤表面に吸着し、短い混練時間でも良好なシリカ分散効果を発現しやすい傾向にあるため、生産性が向上し好ましい。
本実施形態に適したイオン性界面活性剤を選択するために、共役ジエン系重合体との疎水性/親水性バランスの近さの観点を利用することが好ましい。
例えば、疎水性の高い共役ジエン系重合体に対し、疎水性の高い界面活性剤を適用すると、相溶性が上がるが、一方において、界面活性剤と共役ジエン系重合体の相溶性が高すぎると、シリカ系無機充填剤を含む組成物とする際に、界面活性剤がシリカ系無機充填剤表面に吸着しにくい、あるいは吸着速度が遅くなってしまい、混練時間が長くなり生産性が落ちる傾向にある。
他方、疎水性の高い共役ジエン系重合体に対し、親水性の高い界面活性剤を適用すると、シリカ系無機充填剤を含む組成物とする際に、界面活性剤がシリカ系無機充填剤表面に吸着しやすくなり、あるいは吸着速度が速くなり、混練時間が短くなり生産性が向上するが、一方において、共役ジエン系重合体との相溶性が下がり、ベール内で界面活性剤が凝集してしまう、あるいはシリカ系無機充填剤との配合物中において立体障害層形成が効果的になされず、再凝集抑制効果を発揮しにくくなる傾向にある。イオン性界面活性剤は、以上の観点から選定することができる。
共役ジエン系重合体の疎水性/親水性バランスの指標としては、例えば公知のHansenの溶解性パラメーターの計算方法を使用できる。
共役ジエン系重合体として、SBRやBR、天然ゴムを使用した場合、溶解度パラメーター(SP値[(cal/cm3)1/2])は、計算方法や測定方法にもよるが、SBRだと8.1から9.4、BRだと8.1から8.6、天然ゴムだと7.9から8.4程度である。これに対し、イオン性界面活性剤の溶解度パラメーターは、上述した観点から好ましくは0.1〜30、より好ましくは0.2〜25、さらに好ましくは0.3〜20のものを選択する。
イオン性界面活性剤は、大きくカチオン性界面活性剤とアニオン性界面活性剤に分類される。
カチオン性界面活性剤とは、水に溶けたとき、プラスイオンとなる界面活性剤であり、アニオン性界面活性剤とは、水に溶けたとき、マイナスイオンとなる界面活性剤である。
カチオン性界面活性剤としては、以下に限定されないが、例えば、第一級アミン塩、第二級アミン塩、第三級アミン塩、第四級アンモニウム塩、ピリジニウム塩、イミダゾリジウム塩等が挙げられる。
第四級アンモニウム塩としては、以下に限定されるものではないが、例えば、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムヨージド、オクタデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムヨージド、ジメチルエチルヘキサデシルアンモニウムクロリド、ジメチルエチルヘキサデシルアンモニウムブロミド、ジメチルエチルヘキサデシルアンモニウムヨージド、ジメチルエチルオクタデシルアンモニウムクロリド、ジメチルエチルオクタデシルアンモニウムブロミド、ジメチルエチルオクタデシルアンモニウムヨージド、ベンジルジメチルヘキサデシルアンモニウムクロリド、ベンジルジメチルヘキサデシルアンモニウムブロミド、ベンジルジメチルヘキサデシルアンモニウムヨージド、ベンジルジメチルオクダデシルアンモニウムクロリド、ベンジルジメチルオクダデシルアンモニウムブロミド、ベンジルジメチルオクダデシルアンモニウムヨージド等が挙げられる。
ピリジニウム塩としては、以下に限定されるものではないが、例えば、テトラデシルピリジニウムクロリド、テトラデシルピリジニウムブロミド、テトラデシルピリジニウムヨージド、ヘキサデシルピリジニウムクロリド、ヘキサデシルピリジニウムブロミド、ヘキサデシルピリジニウムヨージド、1−テトラデシル−4−メチルピリジニウムクロリド、1−テトラデシル−4−メチルピリジニウムブロミド、1−テトラデシル−4−メチルピリジニウムヨージド、1−ヘキサデシル−4−メチルピリジニウムクロリド、1−ヘキサデシル−4−メチルピリジニウムブロミド、1−ヘキサデシル−4−メチルピリジニウムヨージド等が挙げられる。
イミダゾリウム塩としては、以下に限定されるものではないが、例えば、1−ドデシル−3−メチルイミダゾリウムクロリド、1−ドデシル−3−メチルイミダゾリウムブロミド、1−ドデシル−3−メチルイミダゾリウムヨージド、1−メチル−3−ドデシルイミダゾリウムクロリド、1−メチル−3−ドデシルイミダゾリウムブロミド、1−メチル−3−ドデシルイミダゾリウムヨージド、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロリド、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムブロミド、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムヨージド、1−テトラデシル−3−メチルイミダゾリウムクロリド、1−テトラデシル−3−メチルイミダゾリウムブロミド、1−テトラデシル−3−メチルイミダゾリウムヨージド、1−メチル−3−テトラデシルイミダゾリウムクロリド、1−メチル−3−テトラデシルイミダゾリウムブロミド、1−メチル−3−テトラデシルイミダゾリウムヨージド、1−ヘキサデシル−3−メチルイミダゾリウムクロリド、1−ヘキサデシル−3−メチルイミダゾリウムブロミド、1−ヘキサデシル−3−メチルイミダゾリウムヨージド、1−ヘキサデシル−4−メチルイミダゾリウムクロリド、1−ヘキサデシル−4−メチルイミダゾリウムブロミド、1−ヘキサデシル−4−メチルイミダゾリウムヨージド、1−メチル−3−ヘキサデシルイミダゾリウムクロリド、1−メチル−3−ヘキサデシルイミダゾリウムブロミド、1−メチル−3−ヘキサデシルイミダゾリウムヨージド等が挙げられる。
イオン性界面活性剤であるアニオン性界面活性剤としては、例えば、スルホン酸塩、硫酸エステル塩、カルボン酸塩(脂肪酸塩)等が挙げられる。
スルホン酸塩としては、以下に限定されるものではないが、例えば、ドデシルジフェニルエーテルジスルホン酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸カルシウムなどのアルキルジフェニルエーテルジスルホン酸塩;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;等が挙げられる。
硫酸エステル塩としては、以下に限定されるものではないが、例えば、ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、ヘキサデシル硫酸ナトリウム、オクチル硫酸ナトリウム等が挙げられる。
カルボン酸塩(脂肪酸塩)としては、以下に限定されるものではないが、例えば、ステアリン酸リチウム、ステアリン酸カリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ラウリン酸ナトリウム、、ラウリン酸カルシウム、ラウリン酸バリウム、リシノール酸カルシウム、リシノール酸バリウム、オクチル酸カルシウム、オレイン酸ナトリウム、カプリン酸ナトリウム、カプリル酸ナトリウム、カプロン酸ナトリウム、オレイン酸カリウム、オレイン酸カルシウム等が挙げられる。
上述したイオン性界面活性剤の中でも、シリカ系無機充填剤との配合物とした時のシリカの分散性及び生産性の観点から、特に第四級アンモニウム塩、ピリジニウム塩、カルボン酸塩が好ましく、共役ジエン系重合体との相溶性の観点から、疎水性部分の炭素数が10〜18のものが好ましい。
イオン性界面活性剤は、後述する共役ジエン系重合体組成物のベールの製造方法において、共役ジエン系重合体を含むゴム成分が溶解した溶液に、イオン性界面活性剤を添加して混合する工程(工程(A))に記載のごとく、共役ジエン系重合体が溶解した溶液に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対して0.1〜10質量部添加するか、または、共役ジエン系重合体を含むゴム成分に、イオン性界面活性剤を混合する工程(工程(C))に記載のごとく、共役ジエン系重合体にイオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対して0.1〜100質量部添加することが好ましい。
かかる工程(A)及び工程(C)についての詳細は、後述する。
上述した配合量によりイオン性界面活性剤を添加することにより、イオン性界面活性剤の添加効果を十分に発現でき、かつベール中での界面活性剤の凝集を防止することができる。
(オイル)
本実施形態の共役ジエン系重合体組成物のベールは、共役ジエン系重合体を含有するゴム成分100質量部に対し、ゴム用軟化剤としてオイルを5〜50質量部を含んでいてもよい。
ゴム用軟化剤としては、鉱物油、又は液状若しくは低分子量の合成軟化剤が好適である。ゴムの軟化、増容、加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30〜45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。
本実施形態の共役ジエン系重合体組成物のベールに用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共役ジエン系重合体との馴染みがよい傾向にあるため好ましい。また、イオン性界面活性剤との相溶性に優れるものが、ブリードアウトを抑制できる傾向にあるため好ましく、さらに共役ジエン系重合体の溶液にオイルを添加する場合は、その溶媒に溶解しやすいものであることにより、均一溶液となり製造工程における取扱いが容易になるため好ましい。
添加されたオイルは、後述する工程(A)で得られた混合液を脱溶剤する工程(B)、及び共役ジエン系重合体を含むゴム成分にイオン性界面活性剤を混合する工程(C)においてトルクを下げる効果を有するとともに、混合液から溶剤を脱揮した後にも、脱揮されずに共役ジエン系重合体組成物と共に残存し、他の材料と混合加工する際に、加工性を改良する効果を有する。
本実施形態の共役ジエン系重合体組成物において、オイルの添加は必須ではないが、添加する場合の配合量は、本実施形態の共役ジエン系重合体組成物に含まれる共役ジエン系重合体を含有するゴム成分100質量部に対して、5〜50質量部が好ましく、8〜48質量部がより好ましく、10〜45質量部がさらに好ましい。オイルの配合量がゴム成分100質量部に対して50質量部以下とすることにより、ブリードアウトを抑制でき、本実施形態の共役ジエン系重合体組成物のベールの表面にベタツキを生ずることを防止することができる。
〔共役ジエン系重合体組成物の製造方法(第一の製造方法)〕
本実施形態の共役ジエン系重合体組成物のベールの製造方法においては、共役ジエン系重合体に、イオン性界面活性剤が分散した共役ジエン系重合体組成物のベールを製造する。
本実施形態の共役ジエン系重合体組成物のベールの第一の製造方法は、
共役ジエン系重合体を含むゴム成分が溶剤に溶解した溶液に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し、0.1〜10質量部添加し、混合液を得る工程(A)と、
前記混合液を脱溶剤する工程(B)と、
を、有する。
なお、前記工程(A)と前記工程(B)の間、又は工程(A)より前に、ゴム用軟化剤としてオイルや安定剤等を加える調整工程を実施してもよい。
本実施形態の共役ジエン系重合体組成物の製造方法においては、他の実施形態として、例えば後述する第二の製造方法の工程(C)のように、押出機内で共役ジエン系重合体を含むゴム成分とイオン性界面活性剤とを混練する工程を実施してもよい。
押出機内では、共役ジエン系重合体は溶融した高粘度状態である一方、イオン性界面活性剤は、溶融した低粘度状態であることが多いが、一般的に、状態が異なる2相を均一混合するのは困難であることが知られている。
本実施形態の共役ジエン系重合体組成物の製造方法における工程(A)のように、溶液状態で、すなわち低粘度状態で、共役ジエン系重合体とイオン性界面活性剤とを混合することで、工程(B)により混合液を脱溶剤する工程を経て、最終的に得られる共役ジエン系重合体組成物のベール中において、イオン性界面活性剤の分散性が向上し、シリカ系無機充填剤と配合した際に、その混練物の物性改良効果を最大化できる傾向にある。
一方、第二の製造方法における工程(C)を採用する場合は、共役ジエン系重合体組成物中のポリマーとして、溶液重合以外の重合方法で製造された共役ジエン系重合体も採用できるという利点がある。
(工程(A))
本実施形態の、共役ジエン系重合体組成物のベールの第一の製造方法は、共役ジエン系重合体を含むゴム成分が溶剤に溶解した溶液(共役ジエン系重合体の溶液と記載する場合がある。)に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し、0.1〜10質量部添加し、混合液を得る工程(A)を有する。
<共役ジエン系重合体の溶液>
工程(A)における共役ジエン系重合体を含むゴム成分が溶解した溶液は、共役ジエン系重合体を含むゴム成分と溶剤とを含む。
溶剤としては、特に限定されないが、例えば、C4〜C8の炭化水素溶剤、トルエン、キシレンが挙げられる。さらに、溶剤は環式の構造を有するものでもよく、不飽和結合又は分岐構造を有するものでもよい。沸点及び蒸気圧が製造工程上取り扱いやすいことから、C5又はC6の炭化水素溶剤が好ましく、ペンタン、ノルマルヘキサン、及びシクロヘキサンがより好ましい。これらは1種のみを単独で用いてもよく、2種類以上を組み合わせてもよい。
共役ジエン系重合体の溶液の製造方法としては、固形の共役ジエン系共重合体を、前記溶剤に溶解させてもよく、溶液重合法を用いて製造した共役ジエン系重合体溶液をそのまま使用してもよい。
溶液重合法を用いて製造した共役ジエン系重合体の場合、製造プロセス簡素化の観点から、共役ジエン系重合体の重合工程で使用したものと同じ溶剤であることが好ましい。すなわち、重合反応や、必要に応じて変性反応を行った溶液から溶媒を除くことなくそのまま使用することができる。
共役ジエン系重合体とイオン性界面活性剤の双方が溶解し、均一溶液を得られるようにこれらの組合せと溶媒を選ぶことが、工程での取り扱いの観点から好ましい。疎水性の溶媒を選択した場合、イオン性界面活性剤が溶解し難くなる。一方、親水性の溶媒を選択した場合、イオン性界面活性剤が溶解しやすくなるが、共役ジエン系重合体が溶解し難くなる傾向にある。
そのため、イオン性界面活性剤が溶解しない又は溶解しにくい場合には、例えば、イオン性界面活性剤の疎水性基/親水性基の量バランスを変えて、溶解性をコントロールし、溶解するものを選択する方法や、共役ジエン系重合体の溶液とイオン性界面活性剤の攪拌混合を強化し微分散させる方法も好ましい方法である。
具体的には、分散時の単位体積あたりの撹拌動力が高い程、イオン性界面活性剤が分散し易く、また、粘度は低い程分散し易い傾向にある。
撹拌時の温度は、分散性に直接は影響しないものの、温度が上がることで混合液の粘度が下がるため、分散性が高くなる傾向にある。
共役ジエン系重合体が溶解した溶液は、その共役ジエン系重合体溶液の総量(100質量%)に対して、溶剤を10質量%以上99質量%以下含むことが好ましく、より好ましくは30質量%以上98質量%以下、さらに好ましくは50質量%以上97質量%以下含む。溶剤を10質量%以上含むことにより、イオン性界面活性剤を混合する際の溶液粘度を低下させ、イオン性界面活性剤の均一分散性をより向上させる効果がある。一方、99質量%以下含むことで、後述する脱溶剤する工程(B)で揮発させる溶剤量を減らし、プロセスへの負荷を低減することができる。
共役ジエン系重合体の溶液にイオン性界面活性剤が「微分散」している場合、粒径の限定は厳密ではないものの、分散径100μm以下になっていることは好ましい態様である。
イオン性界面活性剤が微分散した混合液から脱溶媒し、ベールを製造すると、ベールを形成するゴムマトリクス中にイオン性界面活性剤が均一に分散した状態になると考えられる。このようなベールに、その他のゴム成分やシリカ等の充填剤を混合し、タイヤ用組成物を調製する場合、ベール中に分散したイオン性界面活性剤の親水部はシリカ表面に反応又は吸着し、疎水部はマトリクスに相溶すると想定される。この吸着反応が速いことがイオン性界面活性剤の特徴であり、タイヤ用組成物におけるシリカの分散性向上に寄与し易いと想定される。
また、タイヤ用組成物の調製時にゴム成分とは別にイオン性界面活性剤を添加することよりも、共役ジエン系重合体組成物のベール中に予めイオン性界面活性剤を配合しておくことが好ましい。この理由は、本発明者は下記のように考えている。
すなわち、イオン性界面活性剤をタイヤ用ゴム組成物の混練時に添加する場合、混練機内において、シリカもイオン性界面活性剤も、ともに分散と吸着が競争的に起こる結果、シリカ及び/又はイオン性界面活性剤が分散しきらないうちに吸着が進行することとなり、最終的なシリカ分散状態にムラができる傾向にある。
一方、共役ジエン系重合体組成物のベール中にイオン性界面活性剤を予め分散させておくと、シリカが分散した時点で効率的に吸着が進行し、効率よく分散安定化できる傾向にある。
このように、イオン性界面活性剤のシリカへの吸着が非常に速いことに着目し、イオン性界面活性剤を、共役ジエン系重合体組成物のベール中に先に分散させておくことが、タイヤ用組成物においてシリカの分散性を向上させるために重要である。
<安定剤、オイル>
工程(A)においては、共役ジエン系重合体溶液に、共役ジエン系重合体に対して、保管中のゲルの生成を防止する観点、及び加工時の安定性を向上させる観点から、ゴム用安定剤を共存させてもよい。
ゴム用安定剤は、公知のものを用いることができ、以下に限定されるものではないが、例えば、2,6−ジ−tert−ブチル−4−ヒドロキシトルエン(BHT)、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェノール)プロピネート、2−メチル−4,6−ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましいものとして挙げられる。
これらは1種のみを単独で用いてもよく、2種類以上を組み合わせてもよい。
本実施形態の共役ジエン系重合体組成物のベールの第一の製造方法においては、上述した工程(A)で得られた、イオン性界面活性剤を含む共役ジエン系重合体の混合液に対し、必要に応じて上述したオイル、安定剤等を加える調整工程を実施することができる。
かかる調整工程においては、後述する工程(B)にて取り出す、共役ジエン系重合体組成物中の共役ジエン系重合体、界面活性剤、ゴム用軟化剤、安定剤等の組成を調整した混合液を作製する。
前記調整工程において添加するオイルとしては、ゴム用軟化剤(伸展油)が適用できる。これにより、後述する脱溶剤する工程(B)において、トルクを下げる効果を有するとともに、混合液から溶剤を脱揮した後にも、脱揮されずに共役ジエン系重合体組成物と共に残存し、他の材料と混合加工する際に、加工性を改良する効果を有する。
ゴム用軟化剤としては、鉱物油、又は液状若しくは低分子量の合成軟化剤が好適である。ゴムの軟化、増容、加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30〜45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。
本実施形態の共役ジエン系重合体組成物のベールに用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共役ジエン系重合体との馴染みがよい傾向にあるため好ましい。また、イオン性界面活性剤との相溶性に優れるものが、ブリードアウトを抑制できる傾向にあるため好ましく、更に、工程(A)において溶媒に溶解しやすいものであることにより、製造工程における取扱いが容易になるため好ましい。
本実施形態の共役ジエン系重合体組成物のベールの第一の製造方法において、オイル等を添加する調整工程を行うタイミングは特に限定されず、後述する脱溶剤する工程(B)よりも前の工程であればよく、工程(A)の前でもよく、工程(A)に続く工程として実施してもよい。
添加されたオイル、例えば、ゴム用軟化剤は、後述する脱溶剤する工程(B)においてトルクを下げる効果を有するとともに、混合液から溶剤を脱揮した後にも、脱揮されずに共役ジエン系重合体組成物のベールに残存し、他の材料と混合加工する際に、加工性を改良する効果を有する。
オイルの配合量は、本実施形態の共役ジエン系重合体組成物に由来する共役ジエン系重合体を含有するゴム成分100質量部に対して、5〜50質量部が好ましく、8〜48質量部がより好ましく、10〜45質量部がさらに好ましい。オイルの配合量がゴム成分100質量部に対して50質量部以下とすることにより、ブリードアウトを抑制でき、本実施形態の共役ジエン系重合体組成物の表面にベタツキを生ずることを防止することができる。
前記調整工程において、共役ジエン系重合体に対して、保管中のゲルの生成を防止する観点、及び加工時の安定性を向上させる観点から、ゴム用安定剤を添加してもよい。ゴム用安定剤としては、公知のものを用いることができ、以下に限定されるものではないが、例えば、2,6−ジ−tert−ブチル−4−ヒドロキシトルエン(BHT)、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェノール)プロピネート、2−メチル−4,6−ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。
(工程(B))
本実施形態の、共役ジエン系重合体組成物のベールの第一の製造方法は、上記工程(A)で得られた、共役ジエン系重合体を含むゴム成分とイオン性界面活性剤との混合液を脱溶剤する工程(B)を有する。
工程(B)は、上述した工程(A)又は上述した調整工程で得られた共役ジエン系重合体組成物の混合液から溶剤を揮発させ、固形分としての共役ジエン系重合体組成物を得る工程である。
<脱揮方法>
工程(B)は、スチームストリッピング、フラッシュタンク、薄膜型濃縮器、ドラムドライヤー、及び撹拌翼付き濃縮容器、脱揮二軸押出機等を用いる方法が挙げられるが、上述した工程(A)又は調整工程で得られた共役ジエン系重合体組成物の混合液を、水と接触させずに脱揮できる方法を適用することが好ましい。水と接触し脱溶剤するプロセスとして、例えば、スチームストリッピングによって溶媒を除去する場合、工程(A)又は調整工程で得られた共役ジエン系重合体組成物の混合液に含まれるイオン性界面活性剤が親水部を持つため、水に溶解し流出してしまい排水を汚染する上、添加した界面活性剤のロスが発生し効果が低減してしまうこと、あるいはスチームストリッピング工程において界面活性剤として作用し、同工程内で泡が生成し運転が困難になってしまう、あるいは得られる共役ジエン系重合体組成物の粒子サイズが小さく粉状になってしまい、下流工程の生産性が落ちてしまう等が考えられるが、脱揮二軸押出機等、水と接触しない脱溶剤プロセスを適用すると、イオン性界面活性剤をロスすることなく所望の組成物を得やすく、シリカ系無機充填剤との組成物とした場合の物性向上効果を最大化できる上に、排水への環境負荷低減という観点でも好ましく、更にはプロセスの安定性の観点からも好ましい。
脱揮された共役ジエン系重合体組成物の残揮発分量は、その組成物の総量(100質量%)に対して、0.001質量%以上5.0質量%以下であることが、組成物を製品に加工する際の作業性の観点から好ましい。残揮発分は、重合や溶剤などの原料、水分を含んでもよい。
〔共役ジエン系重合体組成物の製造方法(第二の製造方法)〕
本実施形態の共役ジエン系重合体組成物のベールの第二の製造方法は、
共役ジエン系重合体を含むゴム成分に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し0.1〜10質量部混合する工程(C)を有する。
なお、前記工程(C)の前に、ゴム用軟化剤としてオイルや安定剤等を加える調整工程を実施してもよい。
(工程(C))
工程(C)は、共役ジエン系重合体を含むゴム成分に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し0.1〜10質量部混合する工程である。
<添加方法>
工程(C)は、共役ジエン系重合体を含むゴム成分と、イオン性界面活性剤とを混合できるプロセスであれば特に限定されず、例えば単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用い、共役ジエン系重合体を含むゴム成分の供給速度に応じて所定量のイオン性界面活性剤を添加し連続的に混合する方法、あるいはバンバリーミキサーやニーダー、ロール等を用い、共役ジエン系重合体を含むゴム成分とイオン性界面活性剤とを所定量ずづ、回分式に混合する方法等が挙げられる。
上記工程(A)にて記載の通り、粘度が大きく異なる2相を均一混合するのは困難であることから、その混合均一性は第一の製造方法に対し劣る傾向にある。さらに、運転中に共役ジエン系重合体を含むゴム成分の供給速度が乱れると、共役ジエン系重合体を含むゴム成分とイオン性界面活性剤との比率が乱れ、組成が均一でなくなる傾向にある。
<イオン性界面活性剤添加時の含水量>
工程(C)において、共役ジエン系重合体を含むゴム成分が水分を含んでいると、添加するイオン性界面活性剤と親和性を有するため、以降の工程内で水分を除去するのが困難となり、最終的にベール内に水分が残存してしまう傾向にある。一般的に、ベール内に残存する水分は、シリカ系無機充填剤との組成物とする際、その組成物の品質に大きく影響することから、極力低く抑えることが好ましく、そのベールの総量(100質量%)に対して、0.001質量%以上5.0質量%以下であることが好ましい。かかる観点から、工程(C)においては、共役ジエン系重合体を含むゴム成分にイオン性界面活性剤を添加する時点で、共役ジエン系重合体を含むゴム成分100質量部に対する含水量が0.01〜30質量部であることが好ましく、0.02〜25質量部であることがより好ましく、0.03〜20質量部であることがさらに好ましい。
工程(C)及びその下流工程において、共役ジエン系重合体を含むゴム成分が含有する水を排出する排水機構が設けられている場合、添加したイオン性界面活性剤が排水へ流出し、排水を汚染する上、添加したイオン性界面活性剤のロスが発生し効果が低減してしまうことが考えられるが、かかる排水汚染やイオン性界面活性剤のロスの発生を防止する観点からも、共役ジエン系重合体を含むゴム成分にイオン性界面活性剤を添加する時点で、共役ジエン系重合体を含むゴム成分100質量部に対する含水量が0.01〜30質量部であることが好ましく、0.02〜25質量部であることがより好ましく、0.03〜20質量部であることがさらに好ましい。
〔用途〕
本実施形態の共役ジエン系重合体組成物のベールは、直方体に圧縮成形されたものであり、各種用途に適用することができる。
また、共役ジエン系重合体組成物のベールは、天然ゴム等の他のゴム材料、シリカ系無機充填剤、カーボン等の無機材料等と配合して、タイヤトレッド等のタイヤ用部材、前記タイヤトレッドを具備するタイヤ(空気入りの状態であるものを含む)、各種工業用ベルト、履物等にも加工できる。
〔ゴム組成物、及びその成形体〕
本実施形態の共役ジエン系重合体組成物のベールは、上述した各種成分の他、必要に応じてその他の成分を配合することにより、所望の機能をもたせたゴム組成物、及びその成形体とすることができる。
(その他の成分)
本実施形態の共役ジエン系重合体組成物のベールは、ゴム成分として上述した共役ジエン系重合体以外のゴム成分を添加してもよい。このようなゴム成分については、上記において説明したものを適宜選択することができる。
また、本実施形態の共役ジエン系重合体組成物のベールは、加硫物として好適に用いられる。
加硫物は、例えば本実施形態の共役ジエン系重合体組成物のベールを、必要に応じて、シリカ系無機充填剤やカーボンブラック等の有機充填剤、本実施形態の共役ジエン系重合体組成物に含まれるゴム成分以外のゴム状重合体、シランカップリング剤、ゴム用軟化剤、加硫剤、加硫促進剤・助剤等と混合して組成物とした後、加熱して加硫することにより得ることができる。
本実施形態の共役ジエン系重合体組成物のベールは、タイヤ等のゴム製品の製造に利用できる。
従来のタイヤ用ゴム組成物では、ゴム成分とシリカ系無機充填剤を溶融混練していたが、シリカ表面の親水基のため、ゴム成分とシリカ系無機充填剤は相溶し難く、分散性を高めるのが難しかった。これに対し、本実施形態の共役ジエン系重合体組成物のベールは、シリカ表面の親水基に作用する部分と共役ジエン系重合体に相溶しシリカ表面に吸着層を形成する部分を持つイオン性界面活性剤を含有しており、かつ共役ジエン系重合体中にあらかじめ均一分散しているので、目的の組成物中においてシリカ系無機充填剤の再凝集を抑制し微分散した状態になり易い。そのため、加硫物としたときに、シリカの分散性が良好となり、省燃費性能と引張特性及び耐摩耗性に優れ、かつその混練物の品質のばらつきが少なく生産安定性に優れたゴム組成物を提供できる。
<シリカ系無機充填剤>
本実施形態の共役ジエン系重合体組成物のベールを、シリカ系無機充填剤を含む加硫物として使用する際、共役ジエン系重合体を含有するゴム成分100質量部に対し、シリカ系無機充填剤を5〜150質量部を含むものとすることが好ましい。
シリカ系無機充填剤としては、特に限定されず、公知のものを用いることができるが、SiO2、又はSi3Alを構成単位として含む固体粒子が好ましく、SiO2、又はSi3Alを構成単位の主成分とすることがより好ましい。ここで、主成分とは、シリカ系無機充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
シリカ系無機充填剤としては、具体的には、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質等が挙げられる。
また、表面を疎水化したシリカ系無機充填剤や、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も用いることができる。強度や耐摩耗性等の観点からは、シリカ及びガラス繊維が好ましく、シリカがより好ましい。例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカ等が挙げられる。これらの中でも、加硫物とした際の破壊特性果並びにウェットスキッド抵抗性のバランスの観点から、湿式シリカが好ましい。ここでシリカ系無機充填剤は、表面改質されているものを用いてもよい。
シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積としては、好ましくは100〜300m2/gであり、より好ましくは130〜280m2/gであり、さらに好ましくは150〜250m2/gである。
また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m2/g未満のシリカ)と、比較的比表面積の大きい(例えば、200m2/g以上のシリカ)と、を組み合わせて、窒素吸着比表面積が前記範囲となるように調整したシリカ系無機充填剤を用いることができる。これにより、良好な耐摩耗性、破断強度及び低発熱性を高度にバランスさせることができる。
シリカ系無機充填剤の一次粒径としては3〜100nmであることが好ましく、より好ましくは5〜50nm、さらに好ましくは10〜30nmである。3nm以上とすることにより、本実施形態の共役ジエン系重合体組成物のベールと混練する際にハンドリングが良好になる傾向にあり、100nm以下とすることにより良好な補強効果が発揮される傾向にある。
シリカ系無機充填剤の形状は特に限定されず、目標とする物性に応じて球状、真球状、無定形の粒状、針状、繊維状、板状のもの等を使用できるが、本実施形態の共役ジエン系重合体組成物のベールをタイヤ用に加工する場合、異方性が出にくい球状又は真球状のものを使用することが、応力集中の偏在が起きにくく好ましい。
シリカ系無機充填剤の配合比率(質量比)は、本実施形態の共役ジエン系重合体組成物のベールに由来する共役ジエン系重合体成分を含むゴム成分100質量部に対し、5〜300質量部含むものとすることが好ましく、10〜250質量部含むものがより好ましく、20〜200質量部含むものがさらに好ましい。シリカ系無機充填剤の添加効果が発現する観点から、シリカ系無機充填剤の合計量は5質量部以上とすることが好ましく、共役ジエン系重合体組成物の加工性や機械強度を実用的に十分なものとする観点からが300質量部以下とすることが好ましい。
<カーボンブラック>
カーボンブラックとしては特に限定されず、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが使用できる。これらの中でも、窒素吸着比表面積が50m2/g以上、ジブチルフタレート(DBP)吸油量が80mL/100gのカーボンブラックが好ましい。
カーボンブラックの含有量は、本実施形態の共役ジエン系重合体組成物のベールに由来する共役ジエン系重合体成分を含むゴム成分100質量部に対し、0.5〜100質量部が好ましく、3〜100質量部がより好ましく、5〜50質量部がさらに好ましい。
カーボンブラックの含有量は、ドライグリップ性能や導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
<その他の充填剤>
本実施形態の共役ジエン系重合体組成物のベールには、シリカ系無機充填剤やカーボンブラック以外に、金属酸化物や金属水酸化物をその他の充填剤として配合してもよい。
金属酸化物とは、化学式MxOy(Mは金属原子を表し、x及びyは各々1〜6の整数を表す。)を構成単位の主成分とする固体粒子のことをいい、例えばアルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等を用いることができる。
また金属酸化物と金属酸化物以外の無機充填剤の混合物も用いることができる。金属水酸化物としては、特に限定されず、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム等が挙げられる。
<シランカップリング剤>
シランカップリング剤は、ゴム成分とシリカ系無機充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、一般的には、硫黄結合部分とアルコキシシリル基、シラノール基部分を一分子中に有する化合物が用いられる。具体的には、ビス−[3−(トリエトキシシリル)−プロピル]−テトラスルフィド、ビス−[3−(トリエトキシシリル)−プロピル]−ジスルフィド、ビス−[2−(トリエトキシシリル)−エチル]−テトラスルフィド等が挙げられる。
シランカップリング剤の含有量は、シリカ系無機充填剤の合計100質量部に対して、0.1〜30質量部が好ましく、0.5〜20質量部がより好ましく、1〜15質量部がさらに好ましい。シランカップリング剤の配合量が上記範囲であると、シランカップリング剤による上記添加効果を一層顕著なものにできる。
<ゴム用軟化剤>
本実施形態における共役ジエン系重合体組成物のベールを用いて加工する際、加工性の改良を図るために、ゴム用軟化剤をさらに含有させてもよい。
ゴム用軟化剤としては、鉱物油、又は液状若しくは低分子量の合成軟化剤が好適である。ゴムの軟化、増容、加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30〜45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。本実施形態に用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。また、イオン性界面活性剤との相溶性に優れるものが、得られる配合物の物性改良効果を最大化できることから好ましい。
ゴム用軟化剤の配合量は、本実施形態の共役ジエン系重合体組成物のベールに由来する共役ジエン系重合体を含有するゴム成分100質量部に対して、0〜100質量部が好ましく、5〜80質量部がより好ましく、10〜50質量部がさらに好ましい。
本実施形態の共役ジエン系重合体組成物のベールの製造工程において、ゴム用軟化剤を添加した場合は、それに由来するゴム用軟化剤との合計量が上記範囲内にあることが好ましい。ゴム用軟化剤の含有量がゴム成分100質量部に対して100質量部以下であることにより、ブリードアウトを生じることを防止でき、共役ジエン系重合体組成物表面にベタツキを生ずることを防止できる。
(混練方法)
本実施形態の共役ジエン系重合体組成物のベールと、その他のゴム状重合体、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤とを混合する方法については特に限定されるものではない。
例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法等が挙げられる。また、共役ジエン系重合体組成物と各種配合剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
ここでイオン性界面活性剤は、本実施形態においては予めベール内に均一分散した状態にあるが、一方で上記混練工程で加えることも可能ではある。しかしこの場合、混和機内では共役ジエン系重合体は溶融した高粘度状態であり、イオン性界面活性剤は溶融した低粘度状態であることが多く、一般的に粘度が大きく異なる2相を均一混合するのは困難であることが知られている上、通常、イオン性界面活性剤以外にも、上述した様々な薬品類を同時に混練することから、シリカ系無機充填剤に対する吸着反応が阻害されやすい傾向にあり、得られる混練組成物中においてその均一性が劣り、得られる組成物の物性改良効果が劣る傾向にある。
同様に、イオン性界面活性剤を予め、シリカ系無機充填剤に被覆させた状態で混和機内に投入し、混練する方法も考えられるが、上記同様に得られる混練組成物中においてその均一性が劣り、得られる組成物の物性改良効果が劣る傾向にある上、シリカ系無機充填剤の表面官能基がすべてイオン性界面活性剤で被覆された状態にあるため、共役ジエン系重合体やシランカップリング剤と結合する点が失われてしまい、補強性に劣り引張特性や耐摩耗性が低下してしまう傾向にある。
〔加硫組成物〕
本実施形態の共役ジエン系重合体組成物のベールは、加硫剤により加硫処理を施した加硫組成物としてもよい。
加硫剤としては、以下に限定されるものではないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が使用できる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。
加硫剤の使用量は、通常は、本実施形態の共役ジエン系重合体組成物のベールに由来する共役ジエン系重合体を含むゴム成分100質量部に対して0.01〜20質量部であり、0.1〜15質量部が好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、通常120〜200℃であり、好ましくは140〜180℃である。
また、加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、以下に限定されるものではないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系等の加硫促進剤が挙げられる。
また、加硫助剤としては、亜鉛華、ステアリン酸等を使用できる。加硫促進剤の使用量は、通常、本実施形態の共役ジエン系重合体組成物のベールに由来する共役ジエン系重合体を含有するゴム成分100質量部に対して0.01〜20質量部であり、0.1〜15質量部が好ましい。
本実施形態の共役ジエン系重合体組成物のベールには、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤や充填剤、さらに、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、具体的には、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウム等が挙げられる。上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
以下、具体的な実施例及び比較例を挙げて、本実施形態をさらに詳細に説明するが、本実施形態は以下の実施例により何ら限定されるものではない。
なお、実施例及び比較例において、各種特性の評価方法は以下のとおりである。
(評価1)ブタジエン部分のミクロ構造(1,2−ビニル結合量)
後述する試料A〜Vの共役ジエン系重合体50mgを10mLの二硫化炭素に溶解して測定サンプルとした。
溶液セルを用いて、赤外線スペクトルを600〜1000cm-1の範囲で測定して所定の波数における吸光度により、全てハンプトンの方法の計算式に従いブタジエン部分のミクロ構造を求めた(日本分光社製、フーリエ変換赤外分光光度計「FT−IR230」)。
下記表中、測定結果を「Vinyl(% in Bd)」として示す。
(評価2)結合スチレン量
後述する試料A〜Vの共役ジエン系重合体をクロロホルムで100mLにメスアップ、溶解して測定サンプルとした。
スチレンのフェニル基によるUV254nmの吸収により結合スチレン量(質量%)を測定した(島津製作所社製、分光光度計「UV−2450」)。
下記表中、測定結果を「St (wt%)」として示す。
(評価3)ムーニー粘度
ムーニー粘度計(上島製作所社製、「VR1132」)を用い、JIS K6300(ISO289−1)に準拠し、後述する実施例及び比較例における試料A〜Vのムーニー粘度を測定した。
まず、試料を1分間予熱した後、2rpmでローターを回転させ、4分後のトルクを測定してムーニー粘度(ML1+4)とした。
試料のムーニー粘度は、試料生産時及び生産30日後の2種類を測定した。
(評価4)変性率
後述する試料A〜Vを試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、測定した。試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、変性率を求めた。具体的には、以下に示すとおりとした。
試料溶液の調製:試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
ポリスチレン系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC−8320GPC」を使用して、THFを溶離液として用い、試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。
カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ−H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)−H」を接続して使用した。THFを溶離液として用い、試料溶液200μLを装置に注入して測定した。
カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH−H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。カラムオーブン温度40℃、THF流量1.0mL/分の条件で、RI検出器(東ソー社製 HLC8020)を用いて測定しクロマトグラムを得た。
シリカ系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC−8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5ml/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、商品名「Zorbax PSM−1000S」、「PSM−300S」、「PSM−60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
変性率の計算方法:ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式より変性率(%)を求めた。
変性率(%)=[1−(P2×P3)/(P1×P4)]×100
(ここで、P1+P2=P3+P4=100である。)
(イオン性界面活性剤)
イオン性界面活性剤として、以下の3種類を使用した。
アニオン性界面活性剤1:ヘキサデシル硫酸ナトリウム
アニオン性界面活性剤2:ステアリン酸リチウム
カチオン性界面活性剤1:ヘキサデシルトリメチルアンモニウムブロミド
カチオン性界面活性剤2:ヘキサデシルピリジニウムブロミド
(シランカップリング剤)
シランカップリング剤として、エボニック デグサ社製の商品名「Si69」(ビス(トリエトキシシリルプロピル)テトラスルフィド)を使用した。
〔実施例1〜11、比較例1〜2〕
(実施例1)
内容積10Lで、内部の高さと直径の比(L/D)が4であり、底部に入り口、頂部に出口を有し、撹拌機及び温度調整用のジャケットを有するオートクレーブを2基直列に連結し、1基目を重合反応器として、2基目を変性反応器とした。
予め、水分等の不純物を除去した、1,3−ブタジエンを15.6g/分、スチレンを8.4g/分、n−ヘキサンを136.0g/分の条件で混合した。この混合溶液が1基目の反応器に入る直前で、不純物不活性化処理用のn−ブチルリチウムを0.056mmol/分でスタティックミキサーで混合した後、1基目反応器の底部に連続的に供給した。更に、重合開始剤としてn−ブチルリチウムを0.195mmol/分の速度で、1基目反応器の底部へ供給し、反応器出口の内温を80℃となるように重合反応を継続させた。
2基目の反応器の温度を85℃に保ち、変性剤としてテトラグリシジル−1,3−ビスアミノメチルシクロヘキサン(TGAMH)を0.035mmol/分の速度で2基目反応器の底部から添加し、変性(カップリング)反応を実施した。
2基目反応器の頂部から流出した重合体溶液に酸化防止剤(BHT)をポリマー100gあたり0.2gとなるように0.048g/分(n−ヘキサン溶液)で連続的に添加し、変性反応を終了させ、変性共役ジエン系重合体の15質量%溶液を得た。
更に、オイルとしてS−RAE(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)をポリマー100gあたり23.0g、アニオン性界面活性剤1を、ポリマー100gあたり2.0gとなるように混合した後、ジャケットを具備した二軸の脱揮押出機により溶媒を除去して、ベール状に成形し、変性共役ジエン系重合体の組成物(試料A)を得た。
試料Aの性状を表1に示す。
(実施例2)
添加するイオン性界面活性剤の種類を、アニオン性界面活性剤2とした以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料B)を得た。
試料Bの性状を表1に示す。
(実施例3)
添加するイオン性界面活性剤の種類を、カチオン性界面活性剤1とした以外の条件は(実施例3)と同様にして、変性共役ジエン系重合体の組成物(試料C)を得た。
試料Cの性状を表1に示す。
(実施例4)
添加するイオン性界面活性剤の種類を、カチオン性界面活性剤2とした以外の条件は(実施例3)と同様にして、変性共役ジエン系重合体の組成物(試料D)を得た。
試料Dの性状を表1に示す。
(実施例5)
変性剤としてテトラグリシジル−1,3−ビスアミノメチルシクロヘキサン(TGAMH)の代わりに2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン(AS−1)とした以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料E)を得た。
試料Eの性状を表1に示す。
(実施例6)
変性剤としてテトラグリシジル−1,3−ビスアミノメチルシクロヘキサン(TGAMH)の代わりにテトラクロロシラン(SiCl4)とした以外の条件は(実施例1)と同様にして、非変性共役ジエン系重合体の組成物(試料F)を得た。
なお、この例の場合、反応後のポリマーはシリカとの結合点を持たず、ポリマーはカップリング(分岐)するのみであるため、非変性共役ジエン系重合体であった。
試料Fの性状を表1に示す。
(実施例7)
添加するアニオン界面活性剤1の量を、ポリマー100gあたり5.0g、更に添加するオイル(S−RAE)の量を、ポリマー100gあたり20.0gとなるように混合した以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料G)を得た。
試料Gの性状を表1に示す。
(実施例8)
添加するアニオン界面活性剤1の量を、ポリマー100gあたり8.0g、更に添加するオイル(S−RAE)の量を、ポリマー100gあたり17.0gとなるように混合した以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料H)を得た。
試料Hの性状を表1に示す。
(実施例9)
溶媒の除去を、ジャケットを具備した二軸の脱揮押出機の代わりにスチームストリッピングとした以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料I)を得た。
試料Iの性状を表1に示す。
(実施例10)
変性共役ジエン系重合体の15質量%溶液を得るまでの条件は(実施例1)と同様にして、アニオン性界面活性剤1を加えない状態で、ジャケットを具備した二軸の脱揮押出機で溶媒の除去を行ったあと、単軸の押出機内に、得られた変性共役ジエン系重合体とアニオン性界面活性剤1とを、質量比で、変性共役ジエン系重合体:アニオン性界面活性剤1=100:2となるよう連続的に供給して、変性共役ジエン系重合体の組成物(試料J)を得た。
試料Jの性状を表1に示す。
(実施例11)
溶媒の除去を、ジャケットを具備した二軸の脱揮押出機の代わりにスチームストリッピングとした以外の条件は(実施例10)と同様にして、変性共役ジエン系重合体の組成物(試料K)を得た。
試料Kの性状を表1に示す。
(比較例1)
アニオン性界面活性剤1を加えなかった以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料L)を得た。
試料Lの性状を表1に示す。
(比較例2)
アニオン性界面活性剤1の代わりにシランカップリング剤(エボニック デグサ社製の商品名「Si69」)を使用した以外の条件は(実施例1)と同様にして、変性共役ジエン系重合体の組成物(試料M)を得た。試料Mの性状を表1に示す。
表1に示すとおり、イオン性界面活性剤を含む実施例1〜11のベールは、シランカップリング剤を含む比較例2のベールに比べ、生産時から30日間のムーニー粘度変化が小さく、貯蔵安定性に優れることが確認された。
〔実施例12〜22、比較例3〜7〕
以下に示すベール試料及び試薬を用いて、表2に示す配合組成に従い、それぞれの試料を含有するゴム組成物を得た。
なお、すべての実施例及び比較例において、ポリマーとシリカ系無機充填剤含有量の比率を統一するため、試料A〜L由来のポリマー量100質量部に対し、シリカ系無機充填剤が75質量部、オイルとイオン性界面活性剤の合計が42質量部となるよう決定した。
シリカ(エボニック デグサ社製の商品名「Ultrasil 7000Gr」窒素吸着比表面積170m2/g)
表面処理シリカ1、2:Ultrasil 7000Grを予め以下のイオン性界面活性剤で表面処理したもの。ここで、表面処理に使用したイオン性界面活性剤量は、シリカ75質量部に対し2質量部とした。
表面処理シリカ1:ヘキサデシル硫酸ナトリウム
表面処理シリカ2:ヘキサデシルトリメチルアンモニウムブロミド
オイル:S−RAE(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)
(上述の試料A〜Mにて使用したもの)
アニオン性界面活性剤1:上述の試料A、E〜Kにて使用したもの
カチオン性界面活性剤1:上述の試料Cにて使用したもの
また、表2に示す組成に加えて、下記の材料を添加した。
シランカップリング剤:エボニック デグサ社製の商品名「Si75」(ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
カーボンブラック(東海カーボン社製、シーストKH(N339)):5.0質量部
亜鉛華:2.5質量部
ステアリン酸:1.0質量部
老化防止剤(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン):2.0質量部
硫黄:2.2質量部
加硫促進剤1(N−シクロヘキシル−2−ベンゾチアジルスルフィンアミド):1.7質量部
加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:239.4質量部
上記した材料を下記の方法により混練してゴム組成物を得た。
温度制御装置を具備する密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数50/57rpmの条件で、(変性)共役ジエン系重合体組成物(試料A〜L)、シリカ系無機充填剤、イオン性界面活性剤、オイル(S−RAE)、カーボンブラック、シランカップリング剤、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155〜160℃でゴム組成物(配合物)を得た。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155〜160℃に調整した。
冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。
加硫後、ゴム組成物の物性を測定した。
物性測定結果を表2に示す。
ゴム組成物の物性は、下記の方法により測定した。
((1)配合物ムーニー粘度)
硫黄及び加硫促進剤を加えて混練した後の試料を測定対象とし、ムーニー粘度計を使用し、JIS K6300−1に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
各々の測定値は、比較例7の値を100として指数化してあり、値が小さいほど加工性に優れることを示す。
((2)粘弾性パラメーター)
加硫後のゴム組成物を測定試料とし、レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメーターを測定した。
各々の測定値は、比較例7の値を100として指数化した。
50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費特性の指標(表2中、50℃ tanδ (歪み 3%)と表記した。)とした。
値が小さいほど省燃費性能が良好であることを示す。
更に、50℃、周波数10Hzの条件下で、ひずみ0.1%で測定したG’の値と、ひずみ10%で測定したG’の値の差分(ペイン効果)をシリカの分散性の指標(表2中、ペイン効果ΔG’と表記した。)とした。値が小さいほど、シリカの分散性が良好であることを示す。
((3)引張強度)
JIS K6251の引張試験法に準拠し引張強度を測定し、比較例7の結果を100として指数化した。指数が大きいほど引張強度が良好であることを示す。
((4)耐摩耗性)
アクロン摩耗試験機(安田精機製作所社製)を使用し、JIS K6264−2に準拠して、荷重44.4N、3000回転の摩耗量を測定し、比較例7の結果を100として指数化した。指数が大きいほど耐摩耗性が良好であることを示す。
表2に示す通り、実施例12〜22のゴム組成物は、比較例7のゴム組成物と比較して、配合物ムーニー粘度が良好であり加工性に優れる上、50℃のtanδが低く、タイヤの低転がり抵抗性が実現されているとともに、50℃のペイン効果ΔG’が低く、シリカの分散性に優れ、さらに、引張特性や耐摩耗性にも優れることが判った。
また表2に示す通り、イオン性界面活性剤を含むベールとした実施例12及び実施例14と、イオン性界面活性剤を溶融混練時に添加した比較例3〜4とを比べることにより、イオン性界面活性剤は予め(変性)共役ジエン系共重合体組成物としておいた方が、上記物性のバランスが優れることが確認された。
さらに表2に示す通り、イオン性界面活性剤を含むベールとした実施例12及び実施例14と、イオン性界面活性剤によりシリカ表面を被覆した状態で溶融混練した比較例5〜6とを比べることにより、イオン性界面活性剤は予め(変性)共役ジエン系共重合体組成物としておいた方が、上記物性のバランスが優れることが確認された。
〔実施例23〜28、比較例8〜10〕
(実施例23)
内容積5Lで、撹拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3−ブタジエン265g、スチレン93g、ノルマルヘキサン1633g、極性物質として2,2−ビス(2−オキソラニル)プロパン0.85gを反応器へ入れ、反応器内温を55℃に保持した。
重合開始剤として、n−ブチルリチウム5.2mmolを含むシクロヘキサン溶液を反応器に供給した。
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は82℃に達した。反応温度のピーク到達2分後、反応器に変性剤としてテトラグリシジル−1,3−ビスアミノメチルシクロヘキサン(TGAMH)1.3mmolを含むシクロヘキサン溶液を添加し、75℃で5分間変性反応を実施した。
この重合体溶液に、酸化防止剤(BHT)をポリマー100gあたり0.2gとなるように添加し、変性共役ジエン系重合体の15質量%溶液を得た。さらに、オイルとしてS−RAEをポリマー100gあたり23.0g、アニオン性界面活性剤1を、ポリマー100gあたり2.0gとなるように混合した後、ジャケットを具備した二軸の脱揮押出機により溶媒を除去して、ベール状に成形し、変性共役ジエン系重合体の組成物(試料N)を得た。
試料Nの性状を表3に示す。
(実施例24)
オイルを添加しなかった以外は(実施例23)と同様にして、変性共役ジエン系重合体の組成物(試料O)を得た。
試料Oの性状を表3に示す。
(実施例25)
反応器に供給するn−ブチルリチウムを2.0mmolとし、変性剤を添加しなかった以外は(実施例23)と同様にして、非変性共役ジエン系重合体の組成物(試料P)を得た。
試料Pの性状を表3に示す。
(実施例26)
オイルを添加しなかった以外は(実施例25)と同様にして、非変性共役ジエン系重合体の組成物(試料Q)を得た。
試料Qの性状を表3に示す。
(実施例27)
添加するイオン性界面活性剤の種類を、カチオン性界面活性剤1とした以外の条件は(実施例23)と同様にして、変性共役ジエン系重合体の組成物(試料R)を得た。
試料Rの性状を表3に示す。
(実施例28)
オイルを添加しなかった以外は(実施例27)と同様にして、変性共役ジエン系重合体の組成物(試料S)を得た。
試料Sの性状を表3に示す。
(比較例8)
イオン性界面活性剤を添加しなかった以外は(実施例23)と同様にして、変性共役ジエン系重合体の組成物(試料T)を得た。
試料Tの性状を表3に示す。
(比較例9)
アニオン性界面活性剤1の代わりにシランカップリング剤(エボニック デグサ社製の商品名「Si69」)を使用した以外の条件は(実施例23)と同様にして、変性共役ジエン系重合体の組成物(試料U)を得た。
試料Uの性状を表3に示す。
(比較例10)
オイルを添加しなかった以外は(比較例9)と同様にして、変性共役ジエン系重合体の組成物(試料V)を得た。
試料Vの性状を表3に示す。
表3に示すとおり、イオン性界面活性剤を含む実施例23〜28のベールは、シランカップリング剤を含む比較例9〜10のベールに比べ、生産時から30日間のムーニー粘度変化が小さく、貯蔵安定性に優れることが確認された。
〔実施例29〜34、比較例11〜13〕
以下に示すベール試料及び試薬を用いて、表4に示す配合組成に従い、それぞれの試料を含有するゴム組成物を得た。
なお、すべての実施例及び比較例において、ポリマーとシリカ系無機充填剤含有量の比率を統一するため、試料N〜T由来のポリマー量100質量部に対し、シリカ系無機充填剤が75質量部、オイルとイオン性界面活性剤の合計が30質量部となるよう決定した。
シリカ(エボニック デグサ社製の商品名「Ultrasil 7000Gr」窒素吸着比表面積170m2/g)
オイル:S−RAE(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)
アニオン性界面活性剤1:ヘキサデシル硫酸ナトリウム
カチオン性界面活性剤1:ヘキサデシルトリメチルアンモニウムブロミド
また、表4に示す組成に加えて、下記の材料を添加した。
シランカップリング剤:エボニック デグサ社製の商品名「Si75」(ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
カーボンブラック(東海カーボン社製、シーストKH(N339)):5.0質量部
亜鉛華:2.5質量部
ステアリン酸:2.0質量部
老化防止剤(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン):2.0質量部
硫黄:1.7質量部
加硫促進剤1(N−シクロヘキシル−2−ベンゾチアジルスルフィンアミド):1.7質量部
加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:229.4質量部
上記した材料を,実施例12〜22及び比較例3〜7と同様の方法により混練してゴム組成物を得、物性測定を行った。
物性測定結果を表4に示す。
表4に示す通り、実施例29〜34のゴム組成物は、比較例13のゴム組成物と比較して、配合物ムーニー粘度が良好であり加工性に優れる上、50℃のtanδが低く、タイヤの低転がり抵抗性が実現されているとともに、50℃のペイン効果ΔG’が低く、シリカの分散性に優れ、さらに引張特性や耐摩耗性にも優れ、非変性や非油展の共役ジエン系重合体ベールにも効果があることが判った。
〔実施例35〜38、比較例14〜15〕
以下に示すベール試料及び試薬を用いて、表5に示す配合組成に従い、それぞれの試料を含有するゴム組成物を得た。
なお、すべての実施例及び比較例において、ポリマーとシリカ系無機充填剤含有量の比率を統一するため、試料N,R,T由来のポリマー量100質量部に対し、シリカ系無機充填剤が75質量部、オイルとイオン性界面活性剤の合計が30質量部となるよう決定した。
シリカ(エボニック デグサ社製の商品名「Ultrasil 7000Gr」窒素吸着比表面積170m2/g)
オイル:S−RAE(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)
(上述の試料N,R,Tにて使用したもの)
また、表5に示す組成に加えて、下記の材料を添加した。
シランカップリング剤:エボニック デグサ社製の商品名「Si75」(ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
カーボンブラック(東海カーボン社製、シーストKH(N339)):5.0質量部
亜鉛華:2.5質量部
ステアリン酸:1.0質量部
老化防止剤(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン):2.0質量部
合計:221.5質量部
上記した材料を下記の方法により混練してゴム組成物を得た。
温度制御装置を具備する密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数50/57rpmの条件で、(変性)共役ジエン系重合体組成物(試料N,R,T)、シリカ系無機充填剤、オイル(S−RAE)、カーボンブラック、シランカップリング剤、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155〜160℃でゴム組成物(配合物)を得た。
ここで、第一段の混練開始から終了までの時間を、実施例35、実施例37、比較例14については10分、実施例36、実施例38、比較例15については7分とした。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155〜160℃に調整した。
冷却後、ゴム組成物の物性を測定した。
物性測定結果を表5に示す。
ゴム組成物の物性は、下記の方法により測定した。
((1)配合物ムーニー粘度)
第二段または第三段の混練を終え冷却した後のゴム組成物を測定対象とし、ムーニー粘度計を使用し、JIS K6300−1に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
各々の測定値は、比較例15の値を100として指数化してあり、値が小さいほど加工性に優れることを示す。
((2)ペイン効果ΔG’)
第二段または第三段の混練を終え冷却した後のゴム組成物を測定対象とし、アルファ・テクノロジーズ社製の粘弾性試験機「RPA2000」を使用し、100℃、周波数0.5Hzの条件下で、ひずみ0.1%で測定したG’の値と、ひずみ100%で測定したG’の値の差分(ペイン効果)をシリカの分散性の指標(表5中、ペイン効果ΔG’と表記した。)とした。値が小さいほど、シリカの分散性が良好であることを示す。
表5に示す通り、比較例14と比較例15とを比較し、第一段の混練時間を7分から10分と長くすることにより配合物ムーニー粘度が良化し、ペイン効果ΔG’が低くシリカ分散が進行していることから、第一弾の混練時間7分のみではシリカ分散の進行が不十分であることが分かる一方で、実施例35と実施例36、実施例37と実施例38とを比較した場合、第一段の混練時間の違いによる配合物ムーニー粘度とペイン効果ΔG’への影響は小さく、即ち第一弾の混練時間7分のみで十分にシリカ分散が進行していることが分かった。
よって実施例35〜38のゴム組成物は、シリカの分散進行が早く、混練時間を短縮できるため、生産性が向上していることが分かった。
本発明の共役ジエン系重合体組成物は、タイヤ用ベーストレッド及びタイヤの材料として、産業上の利用可能性を有している。

Claims (7)

  1. 共役ジエン系重合体を含むゴム成分100質量部と、
    イオン性界面活性剤0.1〜10質量部と、
    を、含有する、共役ジエン系重合体組成物のベール。
  2. 前記共役ジエン系重合体が変性されている、請求項1に記載の共役ジエン系重合体組成物のベール。
  3. 請求項1又は2に記載の共役ジエン系重合体組成物のベールは、タイヤトレッド用であって、
    前記共役ジエン系重合体組成物を含有するタイヤトレッドを具備する空気入りタイヤ。
  4. 共役ジエン系重合体を含むゴム成分100質量部と、イオン性界面活性剤0.1〜10質量部とを含むベールの製造方法であって、
    共役ジエン系重合体を含むゴム成分が溶剤に溶解した溶液に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し0.1〜10質量部添加し、混合液を得る工程(A)と、
    前記工程(A)で得られた混合液を脱溶剤する工程(B)と、
    を、有する共役ジエン系重合体組成物のベールの製造方法。
  5. 前記脱溶剤する工程(B)において、前記工程(A)で得られた混合液を、水に接触させずに脱溶剤する、
    請求項4に記載の共役ジエン系重合体組成物のベールの製造方法。
  6. 共役ジエン系重合体を含むゴム成分100質量部と、イオン性界面活性剤0.1〜10質量部とを含むベールの製造方法であって、
    共役ジエン系重合体を含むゴム成分に、イオン性界面活性剤を、共役ジエン系重合体を含むゴム成分100質量部に対し0.1〜10質量部混合する工程(C)
    を、有する、共役ジエン系重合体組成物のベールの製造方法。
  7. 前記共役ジエン系重合体が変性されている、請求項4乃至6のいずれか一項に記載の共役ジエン系重合体組成物のベールの製造方法。
JP2018075200A 2018-04-10 2018-04-10 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法 Pending JP2019182990A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018075200A JP2019182990A (ja) 2018-04-10 2018-04-10 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018075200A JP2019182990A (ja) 2018-04-10 2018-04-10 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法

Publications (1)

Publication Number Publication Date
JP2019182990A true JP2019182990A (ja) 2019-10-24

Family

ID=68339767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018075200A Pending JP2019182990A (ja) 2018-04-10 2018-04-10 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法

Country Status (1)

Country Link
JP (1) JP2019182990A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080450A1 (ja) * 2020-10-16 2022-04-21 Jsr株式会社 ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080450A1 (ja) * 2020-10-16 2022-04-21 Jsr株式会社 ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ

Similar Documents

Publication Publication Date Title
TWI648294B (zh) Modified conjugated diene polymer, rubber composition, and tire
JP5911524B2 (ja) 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP5898212B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ
JP5348763B2 (ja) 変性共役ジエン−芳香族ビニル共重合体、その製造方法、及びその共重合体組成物
TW201815833A (zh) 改性共軛二烯系聚合物、其製造方法、橡膠組合物、輪胎
JP5964571B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP5964570B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ
TWI648293B (zh) 改性共軛二烯系聚合物及其橡膠組合物、與輪胎
JP6158480B2 (ja) ゴム組成物、ゴム組成物の製造方法
JP2016079217A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2018028018A (ja) 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
JP2013129693A (ja) 変性共役ジエン重合体の製造方法及び変性共役ジエン重合体の組成物
JP7381725B2 (ja) 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法
JP2018002986A (ja) 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ
JP5971915B2 (ja) 変性共役ジエン系重合体組成物及びその製造方法
JP2008248203A (ja) 無機充填剤との親和性に優れた変性重合体及びその製造方法ならびにその組成物
JP6278691B2 (ja) 変性共役ジエン系重合体組成物
JP2013082794A (ja) 変性共役ジエン系重合体組成物
JP5971912B2 (ja) 変性共役ジエン系重合体組成物
JP2013082778A (ja) 変性共役ジエン系重合体組成物
JP6487220B2 (ja) 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物
TWI673288B (zh) 改質共軛二烯系聚合物、聚合物組合物及橡膠組合物
JP2019182996A (ja) 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法
JP2020045449A (ja) 変性共役ジエン系重合体組成物のベール、及び変性共役ジエン系重合体組成物のベールの製造方法
JP2019182990A (ja) 共役ジエン系重合体組成物のベール、タイヤ、及び共役ジエン系重合体組成物のベールの製造方法