WO2022075393A1 - 熱可塑性樹脂組成物及びその製造方法 - Google Patents

熱可塑性樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2022075393A1
WO2022075393A1 PCT/JP2021/037084 JP2021037084W WO2022075393A1 WO 2022075393 A1 WO2022075393 A1 WO 2022075393A1 JP 2021037084 W JP2021037084 W JP 2021037084W WO 2022075393 A1 WO2022075393 A1 WO 2022075393A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
masterbatch
thermoplastic resin
polyamide resin
hlb value
Prior art date
Application number
PCT/JP2021/037084
Other languages
English (en)
French (fr)
Inventor
悠太 山岡
将馬 水谷
陽介 都留
恭平 高山
敏樹 木村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022555550A priority Critical patent/JP7439945B2/ja
Publication of WO2022075393A1 publication Critical patent/WO2022075393A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides

Definitions

  • the present invention relates to a thermoplastic resin composition and a method for producing a thermoplastic resin composition.
  • Metal oxides are used for various purposes due to their high activity. However, when a metal oxide is used as a polymer composite material, it is known that it is difficult to disperse the metal oxide because of its high cohesiveness.
  • pellet-shaped, flake-shaped, or bead-shaped master batches in which oxides are dispersed are used properly depending on the intended use, taking advantage of their characteristics.
  • the masterbatch is preferably used from the viewpoint of ease of handling and preservation of the working environment at the time of use.
  • stearic acid zinc stearate, magnesium stearate, aluminum stearate, calcium stearate, ethylene bisamide, polyethylene wax, polypropylene wax, and One or more of these derivatives, such as waxes made of acid-modified products, are used.
  • a high-speed pigment dispersion such as spinning a thermoplastic resin at a diameter of 20 ⁇ m or less at high speed or forming a film
  • the above dispersant may not be satisfied. That is, yarn breakage during spinning due to poor dispersion, clogging of the filter of the melt spinning machine, molding failure in the film, and the like occur.
  • efforts have been made to improve the dispersibility by improving the processing method of the masterbatch and using a powerful kneader, but the dispersibility has not been sufficiently exhibited.
  • a method for producing a colored resin composition comprising the step (D) of removing a solvent and water from the mixture after flushing obtained in C) has been proposed (Patent Document 2).
  • C n H 2n + 1 (OCH 2 CH 2 ) m OH ... (1) In the formula, n is an integer of 1 to 100, and m is an integer of 1 to 100.
  • the pigment-containing aqueous slurry and the heat-meltable resin are mixed to prepare a mixture of water, the pigment and the heat-meltable resin, and the mixture is dehydrated so that the water content in the mixture is 4 to 25% by mass.
  • the mixture was continuously charged into an extrusion kneader having at least one vent port and kneaded at a temperature equal to or higher than the melting temperature of the heat-meltable resin, so that the separated water content and the remaining water content were separated.
  • Patent Document 3 A method for producing a resin composition has been proposed (Patent Document 3).
  • An object of the present invention is to provide a thermoplastic resin composition and a method for producing a thermoplastic resin composition, which can realize high dispersion of an inorganic compound and improve the processability, mechanical properties, and appearance quality of a molded product. There is something in it.
  • the inventors focused on the TG 5% weight loss temperature of the dispersant, and water dispersion containing a nonionic surfactant having a TG 5% weight loss temperature of 250 ° C. or higher.
  • a master batch is produced using the body, and the obtained master batch and the base resin are mixed to obtain a thermoplastic resin composition or a thermoplastic resin molded product in an aqueous dispersion as an inorganic compound slurry. It has been found that the aggregation of the inorganic compound is prevented, and as a result, the inorganic compound is highly dispersed in the master batch, and the processability, mechanical properties, and appearance quality of the thermoplastic resin molded product can be improved.
  • the present invention provides the following means.
  • the content of the nonionic surfactant in the master batch is 100% by mass when the total mass of the polyamide resin (A), the inorganic compound and the nonionic surfactant is 100% by mass.
  • the nonionic surfactant is selected from glycerin fatty acid ester, polyglycerin fatty acid ester, propylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl amine, and polyoxyethylene alkyl amide.
  • nonionic surfactant comprises one or more selected from polyglycerin fatty acid ester, sorbitan fatty acid ester, and polyoxyethylene alkyl ether. batch.
  • thermoplastic resin composition comprising the masterbatch according to any one of the above [1] to [5] and the polyamide resin (B).
  • thermoplastic resin composition When the total mass of the masterbatch and the polyamide resin (B) in the thermoplastic resin composition is 100% by mass, the content of the masterbatch is 1% by mass or more and 90% by mass or less.
  • thermoplastic resin composition according to the above [6] or [7], wherein the polyamide resin (B) comprises one or two selected from nylon-6 and nylon-66.
  • thermoplastic resin molded product obtained by melt-molding the thermoplastic resin composition according to any one of the above [6] to [8].
  • thermoplastic resin molded product obtained by blending the masterbatch according to any one of the above [1] to [5] with the polyamide resin (B).
  • thermoplastic resin molded product When the total mass of the masterbatch and the polyamide resin (B) in the thermoplastic resin molded product is 100% by mass, the content of the masterbatch is 1% by mass or more and 90% by mass or less.
  • thermoplastic resin molded product according to the above [10] or [11], wherein the polyamide resin (B) comprises one or two selected from nylon-6 and nylon-66.
  • thermoplastic resin molded product according to any one of [9] to [12] above, wherein the thermoplastic resin molded product is selected from filaments, staples, non-woven fabrics, hollow threads, and films.
  • thermoplastic resin composition comprising a step of melting and mixing the masterbatch obtained by the production method according to the above [16] and the polyamide resin (B).
  • the content of the masterbatch is 1% by mass or more and 90% by mass or less when the total mass of the masterbatch and the polyamide resin (B) is 100% by mass.
  • thermoplastic resin molded product which comprises a step of melt-molding the thermoplastic resin composition obtained by the production method according to the above [17] or [18].
  • thermoplastic resin molded product which comprises a step of melting and mixing the masterbatch obtained by the production method according to the above [16] and the polyamide resin (B).
  • the content of the masterbatch is 1% by mass or more and 90% by mass or less when the total mass of the masterbatch and the polyamide resin (B) is 100% by mass.
  • the present invention it is possible to realize high dispersion of the inorganic compound and improve the processability, mechanical properties, and appearance quality of the molded product.
  • the master batch (also referred to as a thermoplastic resin composition) of the present embodiment contains a polyamide resin (A), an inorganic compound containing a metal oxide as a main component, and a 5% weight loss temperature by thermogravimetric analysis (TGA). Contains a nonionic surfactant having a temperature of 250 ° C. or higher.
  • the content of the polyamide resin (A) is preferably 30% by mass or more. It may be more preferably in the range of 40% by mass or more, further preferably in the range of 50% by mass or more, and more preferably in the range of 99% by mass or less.
  • the content of the polyamide resin (A) is 30% by mass or more, the content of the polyamide resin (A) as a matrix resin with respect to the inorganic compound becomes an appropriate amount, and the inorganic compound can be more easily dispersed in the master batch.
  • it is 99% by mass or less the amount of the inorganic compound becomes appropriate, and it becomes easier to express the desired characteristics of the inorganic compound. Therefore, the content of the polyamide resin (A) is set to a value within the above range.
  • the polyamide resin (A) is not particularly limited, but for example, polyamide-6 (nylon-6), nylon-46, polyamide-66 (nylon-66), nylon-7, nylon-8, nylon-9, Nylon-10, Nylon-11, Nylon-12, Nylon-610, Nylon-612, Polyhexamethylene terephthalamide, Polyhexamethyleneisophthalamide, Polymethoxylen adipamide, Polyxylensebacamide, Nylon 6 / 66 Copolymer, Nylon 6/612, Nylon MXD (m-xylylene diamine) 6, Nylon 9T, Nylon 10T, Nylon 6T / 66 Copolymer, Nylon 6T / 6I Copolymer, Nylon 6T / M5T Copolymer, Nylon 6T / 12 Copolymer, Nylon Examples thereof include 66 / 6T / 6I copolymer, nylon 6T / 6 copolymer, nylon 66 / 6I copolymer, nylon 66 / 6
  • polyamide resin (A) is preferably composed of one or two selected from polyamide-6 and polyamide-66 from the viewpoint of molding into yarn or film.
  • the inorganic compound contains a metal oxide as a main component.
  • the main component means that the metal oxide is larger than 50% by mass when the total mass of the inorganic compound is 100% by mass.
  • the inorganic compound may be composed of one kind or two or more kinds of metal oxides.
  • the content of the inorganic compound may be preferably in the range of 1% by mass or more. Further, it may be preferably in the range of 70% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
  • the content of the inorganic compound is 1% by mass or more, the desired characteristics of the inorganic compound are easily exhibited, and when the content is 70% by mass or less, the inorganic compound is easily uniformly dispersed in the masterbatch.
  • the metal compound is not particularly limited, and is, for example, titanium (Ti), silicon (Si), zinc (Zn), aluminum (Al), copper (Cu), iron (Fe), molybdenum (Mo), and zirconia (Zr). ) And other metal oxides. Further, one selected from these inorganic compounds may be used alone, or two or more thereof may be used in combination. Further, it may be a solid solution of the above metal, an inorganic substance stable to water, or the like.
  • Nonionic surfactant examples include the following compounds. Glycerin fatty acid esters such as glyceryl monostearate (HLB value 4.0), self-emulsifying glyceryl monostearate (HLB value 6.0), glyceryl monooleate (HLB value 2.5); -Polyglyceryl-6 (HLB value 3.9), diglyceryl monostearate (HLB value 5.0), diglyceryl monooleate (HLB value 6.5), diglyceryl dioleate (HLB value 7.).
  • Glycerin fatty acid esters such as glyceryl monostearate (HLB value 4.0), self-emulsifying glyceryl monostearate (HLB value 6.0), glyceryl monooleate (HLB value 2.5); -Polyglyceryl-6 (HLB value 3.9), diglyceryl monostearate (HLB value 5.0), diglyceryl monooleate (HLB value 6.5), diglyceryl dio
  • Decaglyceryl monostearate (HLB value 12.0), decaglyceryl monoisostearate (HLB value 12.0), decaglyceryl monooleate (HLB value 12.0), decaglyceryl diisostearate (HLB value 10.0) )
  • HLB value 12.0 decaglyceryl monostearate
  • HLB value 12.0 decaglyceryl monooleate
  • HLB value 10.0 decaglyceryl diisostearate
  • B polyglycerin fatty acid esters
  • -Sorbitan monopalmitate (HLB value 6.7), sorbitan monostearate (HLB value 4.7), sorbitan sesquistearate (HLB value 4.2), sorbitan tristearate (HLB value 2.1), mono.
  • Polysorbate fatty acids such as sorbitan isostearate (HLB value 5.0), sorbitan sesquiisostearate (HLB value 4.5), sorbitan monooleate (HLB value 4.3), sorbitan sesquioleate (HLB value 3.7).
  • the nonionic surfactant having a 5% weight loss temperature (hereinafter, also referred to as TG 5% weight loss temperature) by thermogravimetric analysis of 250 ° C. or higher is selected. Will be done.
  • the 5% weight loss temperature by thermogravimetric analysis of the nonionic surfactant may be preferably in the range of 250 ° C. or higher, more preferably 260 ° C. or higher.
  • the TG 5% weight loss temperature of the nonionic surfactant is 250 ° C. or higher, the thermal stability at the time of melt mixing of the masterbatch is improved, and the inorganic compound is highly dispersed while being compatible with the polyamide resin (A). Can be done.
  • a nonionic surfactant other than the above-exemplified compound may be used.
  • the 5% weight loss temperature by thermogravimetric analysis can be measured under the conditions of a heating rate of 10 ° C./min and a nitrogen atmosphere, for example, using a thermogravimetric analyzer.
  • nonionic surfactants may be used alone, or two or more thereof may be used in combination.
  • nonionic surfactants from the viewpoint of high heat resistance, one or more selected from polyglycerin fatty acid ester, sorbitan fatty acid ester and polyoxyethylene alkyl ether is preferable, and polyglycerin fatty acid ester and polyglycerin fatty acid ester and One or two selected from polyoxyethylene alkyl ethers are more preferred.
  • the content of the nonionic surfactant is preferably 0.01 mass. It may be in the range of% or more, preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • the content of the nonionic surfactant is 0.01% by mass or more and 40% by mass or less, the thermal stability at the time of melt mixing of the masterbatch is further improved, and the inorganic compound in the polyamide resin (A) The dispersion can be made more stable.
  • nonionic surfactant (A) and the nonionic surfactant (B) in the master batch are used.
  • nonionic surfactant (A): nonionic surfactant (B) 90 to 10:10 to 90, and is preferably 20 to 80:80 to 20. More preferred.
  • the masterbatch may contain components other than the above-mentioned polyamide resin (A), the inorganic compound and the nonionic surfactant, as long as the purpose of the masterbatch is not deviated.
  • Specific examples of other components include antioxidants, ultraviolet absorbers, colorants, pigments, dyes, foaming agents, lubricants, flame retardants, fillers and the like.
  • thermoplastic resin composition and the molded product of the present embodiment are made by blending a masterbatch and a polyamide resin (B).
  • the thermoplastic resin composition or molded product is a cured product of a mixture of the masterbatch and the polyamide resin (B) (a state of being softened and fluidized by heating and solidified by cooling).
  • the thermoplastic resin composition is not particularly limited, but is, for example, an intermediate molded product for obtaining a thermoplastic resin molded product from a masterbatch, and means a material having a predetermined form such as pellets or powder.
  • the content of the masterbatch may be preferably in the range of 1% by mass or more. Further, it may be preferably in the range of 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the polyamide resin (B) is not particularly limited, but for example, polyamide-6 (nylon-6), nylon-46, polyamide-66 (nylon-66), nylon-7, nylon-8, nylon-9, Nylon-10, Nylon-11, Nylon-12, Nylon-610, Nylon-612, Polyhexamethylene terephthalamide, Polyhexamethyleneisophthalamide, Polymethoxylen adipamide, Polyxylensebacamide, Nylon 6 / 66 Copolymer, Nylon 6/612, Nylon MXD (m-xylylene diamine) 6, Nylon 9T, Nylon 10T, Nylon 6T / 66 Copolymer, Nylon 6T / 6I Copolymer, Nylon 6T / M5T Copolymer, Nylon 6T / 12 Copolymer, Nylon Examples thereof include 66 / 6T / 6I copolymer, nylon 6T / 6 copolymer, nylon 66 / 6I copolymer, nylon 66 / 6
  • polyamide resin (B) is preferably composed of one or more selected from polyamide-6 and polyamide-66 from the viewpoint of molding threads and films.
  • the polyamide resin (B) in the thermoplastic resin composition or the molded product may be the same type as or different from the above-mentioned polyamide resin (A), but the same type of resin should be used from the viewpoint of compatibility. Is preferable.
  • Nonionic surfactant when the total mass of the master batch and the polyamide resin (B) in the thermoplastic resin composition or the molded body is 100% by mass, the content of the nonionic surfactant is preferably 0.01 mass by mass. It may be in the range of% or more, preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • the nonionic surfactant (A) in the thermoplastic resin composition or the molded product is used.
  • the mass ratio of the nonionic surfactant (B) is preferably 20 to 80, preferably 20 to 90: 90 to 10 of the nonionic surfactant (A): the nonionic surfactant (B). : 80 to 20 is more preferable.
  • thermoplastic resin composition or molded body contains components other than the above-mentioned polyamide resin (A), inorganic compound, amphipathic molecule (A) and amphipathic molecule (B) as long as the purpose of the function is not deviated. May be included. Specific examples of other components include antioxidants, ultraviolet absorbers, colorants, pigments, dyes, foaming agents, lubricants, flame retardants, fillers and the like.
  • the form of the thermoplastic resin molded product is not limited, but may be selected from, for example, filaments (long fibers), staples (short fibers), non-woven fabrics, and hollow fibers.
  • the filament may be a multifilament in which several tens of single yarns (single fibers) are twisted together, or may be a monofilament having one single yarn.
  • the thermoplastic resin molded product may be a film.
  • an inorganic compound containing a metal oxide as a main component and a nonionic surfactant having a 5% weight loss temperature of 250 ° C. or higher by thermal weight analysis are mixed.
  • the content of the inorganic compound is 1 part by mass or more and 80% by mass. It may be in the range of 1 part by mass or more, preferably 70% by mass or less, and more preferably 1% by mass or more and 60% by mass or less. If the content of the inorganic compound is less than 1% by mass, it becomes difficult to obtain the desired properties of the inorganic compound in the thermoplastic resin composition or the molded product, and if it is more than 80% by mass, it becomes difficult to obtain high dispersion of the inorganic compound. , Deterioration of mechanical properties and poor appearance are likely to occur. Therefore, the content of the inorganic compound in the aqueous dispersion is set to a value within the above range.
  • the content of the nonionic surfactant is preferably 0.01% by mass or more.
  • the range may be preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less.
  • the content of the nonionic surfactant is 0.01% by mass or more and 40% by mass or less, the inorganic compound can be more compatible with the polyamide resin (A).
  • an aqueous dispersion may be prepared by further mixing a water-soluble alcohol with an inorganic compound containing a metal oxide as a main component and a nonionic surfactant.
  • the content of the inorganic compound in the aqueous dispersion used in the step (I) is 100% by mass when the total mass of the inorganic compound, the nonionic surfactant, the water-soluble alcohol and water is 100% by mass.
  • the content of the inorganic compound may be preferably in the range of 1% by mass or more and 80% by mass or less, more preferably 1% by mass or more and 70% by mass or less, and further preferably 1% by mass or more and 60% by mass or less.
  • the content of the inorganic compound is less than 1% by mass, it becomes difficult to obtain the desired properties of the inorganic compound in the thermoplastic resin composition or the molded product, and if it is more than 80% by mass, it becomes difficult to obtain high dispersion of the inorganic compound. , Deterioration of mechanical properties and poor appearance are likely to occur. Therefore, the content of the inorganic compound in the aqueous dispersion is set to a value within the above range.
  • the content of the nonionic surfactant is preferably 0.01 when the total mass of the inorganic compound, the nonionic surfactant, the water-soluble alcohol and water in the aqueous dispersion is 100% by mass. It may be in the range of mass% or more, preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. When the content of the nonionic surfactant is 0.01% by mass or more and 40% by mass or less, the inorganic compound can be more compatible with the polyamide resin (A).
  • the content of the water-soluble alcohol is preferably 0.01% by mass or more. It may be in the range of 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. When the content of the water-soluble alcohol is 0.01% by mass or more and 40% by mass or less, the stability of the system can be improved.
  • the aqueous dispersion may contain other components other than the above-mentioned inorganic compound, nonionic surfactant and water-soluble alcohol as long as the purpose of the function is not deviated.
  • specific examples of other components include antioxidants, ultraviolet absorbers, colorants, pigments, dyes, foaming agents, lubricants, flame retardants, fillers and the like.
  • the aqueous dispersion prepared in the step (I) is supplied in an amount of 1 part by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the polyamide resin (A), and melt-mixed to form a masterbatch. obtain.
  • the amount of the aqueous dispersion supplied to the polyamide resin (A) may be preferably in the range of 1 part by mass or more and 200 parts by mass or less. If the supply amount of the aqueous dispersion is larger than 300 parts by mass, it becomes difficult to inject it into the apparatus for melting and mixing, and it is difficult to raise the temperature to the melting temperature of the polyamide resin (A), which makes melting and mixing difficult.
  • the supply amount of the aqueous dispersion with respect to the polyamide resin (A) is 1 part by mass or more and 300 parts by mass or less, secondary aggregation of the inorganic compound is prevented during dehydration drying of the melt mixture, and metal oxidation in the master batch. Objects can be uniformly dispersed. Therefore, the supply amount of the aqueous dispersion is set to a value within the above range.
  • a kneader such as an extruder (single-screw extruder, twin-screw extruder), kneader, or Banbury mixer can be used.
  • the kneading extruder is capable of continuous kneading. Is preferable.
  • the heating temperature in the melting and mixing step is determined according to the ease of melting of the polyamide resin which is the matrix resin, but is preferably in the range of 230 ° C. or higher, more preferably 240 ° C. or higher, still more preferably 250 ° C. or higher. It may be well, preferably 290 ° C. or lower, more preferably 280 ° C.
  • the heating temperature is 230 ° C. or higher, the polyamide resin is easily melted, and the inorganic compound is easily dispersed in the polyamide resin.
  • the heating temperature is 290 ° C. or lower, thermal deterioration of each component can be suppressed.
  • an aqueous dispersion containing a water-soluble alcohol may be used.
  • the aqueous dispersion prepared in the step (I) is preferably 1 part by mass or more and 300 parts by mass or less, more preferably 1 part by mass or more and 200 parts by mass or less, based on 100 parts by mass of the polyamide resin (A). More preferably, it may be supplied in an amount of 1 part by mass or more and 150 parts by mass or less and melt-mixed.
  • the masterbatch After melt-mixing, the masterbatch can be molded or processed into a shape (for example, pellet form) according to the purpose of use.
  • a shape for example, pellet form
  • the pellet-shaped masterbatch can be used as a material for further molding, for example, as a material for a thermoplastic resin composition or a molded product.
  • the pellet-shaped masterbatch can be molded by a molding machine (for example, an injection molding machine, an extrusion molding machine, etc.).
  • thermoplastic resin composition and molded product In the method for producing a thermoplastic resin composition or a molded product according to the present embodiment, the masterbatch obtained by the above production method and the polyamide resin (B) are melt-mixed. Thereby, the above-mentioned thermoplastic resin molded product can be directly obtained, but once the step of obtaining the pellet-shaped or powder-shaped thermoplastic resin composition is performed, the obtained pellet-shaped or powder-shaped thermoplastic resin is obtained. It is also possible to obtain a desired thermoplastic resin molded product through a step of melt-molding the composition.
  • the inorganic compound can be stably and uniformly dispersed in the thermoplastic resin molded product, and the desired function and characteristics of the inorganic compound can be obtained thermoplastically. It can be sufficiently applied to the resin molded body.
  • the content of the master batch is preferably 1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 80% by mass.
  • the content of the masterbatch is 1% by mass or more and 90% by mass or less, the inorganic compound can be more stably and uniformly dispersed.
  • components other than the masterbatch and the polyamide resin (B) may be further mixed.
  • the antioxidant can be mixed with the masterbatch and the polyamide resin (B).
  • the thermoplastic resin molded product can be molded or processed into a shape (for example, thread-like, non-woven fabric-like, film-like) according to the purpose of use.
  • a shape for example, thread-like, non-woven fabric-like, film-like
  • the thermoplastic resin molded body is in the form of threads (filaments, staples, hollow threads)
  • the molten resin can be discharged from one or a plurality of holes having a predetermined cross-sectional shape to form a thread.
  • the filamentous thermoplastic resin molded product may be further subjected to post-treatment such as stretching, heat treatment, and twisting, or may be mixed with other yarns and spun to form a blended yarn or a blended yarn. good.
  • thermoplastic resin molded body When the thermoplastic resin molded body is made into a nonwoven fabric, it can be made into a nonwoven fabric by accumulating fibers formed from the molten resin on a net after melt-kneading.
  • the non-woven fabric-like thermoplastic resin molded product may be further subjected to post-treatment such as binding the fibers with each other by a binder or entwining the fibers with each other by applying an external force.
  • the thermoplastic resin molded product When the thermoplastic resin molded product is in the form of a film, it can be formed into a film by being melt-kneaded and then ejected (extruded) from the molten resin through a slit-shaped hole.
  • the film-shaped thermoplastic resin molded product may be further molded by a press molding method or a vacuum forming method, or may be formed on a base layer to form a multilayer film.
  • Example 1 Manufacturing of aqueous dispersion
  • Titanium oxide particles (“ST-21” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 20 nm) 30 parts by mass, polyoxyethylene alkyl ether as a nonionic surfactant (“Emalmin NL110” manufactured by Sanyo Kasei Kogyo Co., Ltd., TG 5% weight loss
  • a water dispersion (1) was obtained by adding 68 parts by mass of water to 1 part by mass of temperature 370 ° C., HLB value 14.4) and 1 part by mass of ethanol as a water-soluble alcohol, and using a homogenizer.
  • Polyamide-6 (“UBE Nylon (registered trademark) 1013B” manufactured by Ube Kosan Co., Ltd.) 100 parts by mass is melt-kneaded in a 30 mm ⁇ twin-screw bent extruder (set temperature 260 ° C., trapped particle diameter 40 ⁇ m mesh filter). 30 parts by mass of the aqueous dispersion (1) was injected from the upstream part of the extruder from the liquid addition nozzle, and melt-kneaded while evaporating the water from the vent port. The obtained thermoplastic resin composition was pelletized to obtain a masterbatch (1).
  • Polyamide-6 (“UBE Nylon (registered trademark) 1018I” manufactured by Ube Kosan Co., Ltd.) 90 parts by mass was mixed with 10 parts by mass of the masterbatch (1), vacuum dried at 110 ° C. for 12 hours, and then the spinning machine was used.
  • the filament (1) of 3dtex (fiber diameter of about 15 ⁇ m) was obtained by triple stretching by melt spinning at a spinning temperature of 260 ° C.
  • Example 2 Manufacturing of aqueous dispersion
  • the nonionic surfactant was changed to sorbitan fatty acid ester (“Leodor SP-30V” manufactured by Kao Corporation, TG 5% weight loss temperature 300 ° C., HLB2.1), and the aqueous dispersion was prepared. (2) was obtained.
  • a master batch (2) was obtained in the same manner as in Example 1 except that the aqueous dispersion (1) was changed to the aqueous dispersion (2).
  • Example 3 Manufacturing of aqueous dispersion
  • the nonionic surfactant was changed to a polyglycerin fatty acid ester (“SY Glycer ML-500” manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., TG 5% weight loss temperature 260 ° C., HLB 13.4).
  • SY Glycer ML-500 manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., TG 5% weight loss temperature 260 ° C., HLB 13.4
  • a masterbatch (3) was obtained in the same manner as in Example 1 except that the aqueous dispersion (1) was changed to the aqueous dispersion (3).
  • Nonionic surfactants are polyoxyethylene alkyl ether (“Emulmin NL110” manufactured by Sanyo Chemical Industries, Ltd., TG 5% weight loss temperature 370 ° C, HLB value 14.4) and sorbitan fatty acid ester (“Leodor SP-30V” manufactured by Kao Co., Ltd.). , TG 5% weight loss temperature 300 ° C., HLB2.1), and the same procedure as in Example 1 was carried out to obtain an aqueous dispersion (4).
  • a masterbatch (4) was obtained in the same manner as in Example 1 except that the aqueous dispersion (1) was changed to the aqueous dispersion (4).
  • Example 2 Manufacturing of filament The same procedure as in Example 1 was carried out except that the masterbatch (1) was changed to the masterbatch (4) to obtain a filament (4).
  • Nonionic surfactants include polyoxyethylene alkyl ether (“Emulmin NL110” manufactured by Sanyo Chemical Industries, Ltd., TG 5% weight loss temperature 370 ° C., HLB value 14.4) and polyglycerin fatty acid ester (“SY” manufactured by Sakamoto Pharmaceutical Industries, Ltd. Glyster ML-500 ”, TG 5% weight loss temperature 260 ° C., HLB 13.4) were changed in the same manner as in Example 1 to obtain an aqueous dispersion (5).
  • Polyoxyethylene alkyl ether (“Emulmin NL110” manufactured by Sanyo Chemical Industries, Ltd., TG 5% weight loss temperature 370 ° C., HLB value 14.4)
  • SY manufactured by Sakamoto Pharmaceutical Industries, Ltd. Glyster ML-500 ”, TG 5% weight loss temperature 260 ° C., HLB 13.4
  • a master batch (5) was obtained in the same manner as in Example 1 except that the aqueous dispersion (1) was changed to the aqueous dispersion (5).
  • Example 2 Manufacturing of filament The same procedure as in Example 1 was carried out except that the masterbatch (1) was changed to the masterbatch (5), to obtain a filament (5).
  • Example 6 Manufacturing of aqueous dispersion
  • the titanium oxide particles were changed to silicon oxide particles (“QSG-30” manufactured by Shin-Etsu Chemical Co., Ltd., average particle diameter 30 nm) to obtain an aqueous dispersion (6).
  • a master batch (6) was obtained in the same manner as in Example 1 except that the aqueous dispersion (1) was changed to the aqueous dispersion (6).
  • Example 7 Manufacturing of aqueous dispersion
  • the titanium oxide particles were changed to silicon oxide particles (“QSG-30” manufactured by Shin-Etsu Chemical Co., Ltd., average particle diameter 30 nm) to obtain an aqueous dispersion (7).
  • a masterbatch (7) was obtained in the same manner as in Example 4 except that the aqueous dispersion (1) was changed to the aqueous dispersion (7).
  • Example 8 Manufacturing of aqueous dispersion
  • the same procedure as in Example 4 was carried out except that the titanium oxide particles were changed to zinc oxide particles (“FINEX-30” manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 35 nm) to obtain an aqueous dispersion (8).
  • a master batch (2) was obtained in the same manner as in Example 4 except that the aqueous dispersion (1) was changed to the aqueous dispersion (8).
  • Example 9 Manufacturing of aqueous dispersion
  • the titanium oxide particles were changed to aluminum oxide particles (“AA-04” manufactured by Sumitomo Chemical Co., Ltd., average particle diameter 300 nm) to obtain an aqueous dispersion (9).
  • a master batch (9) was obtained in the same manner as in Example 4 except that the aqueous dispersion (1) was changed to the aqueous dispersion (9).
  • Example 10 Manufacturing of aqueous dispersion
  • the titanium oxide particles were changed to cuprous oxide particles (manufactured by Sigma-Aldrich Co., Ltd., average particle diameter 350 nm) to obtain an aqueous dispersion (10).
  • a master batch (10) was obtained in the same manner as in Example 4 except that the aqueous dispersion (1) was changed to the aqueous dispersion (10).
  • Example 11 Manufacturing of masterbatch
  • Polyamide-6 was changed to polyamide-66 (“A125” manufactured by Unitika Ltd.), and the extrusion processing temperature was changed to 280 ° C. in the same manner as in Example 4 to obtain a masterbatch (11).
  • Example 12 Manufacturing of film
  • Polyamide-6 (“UBE Nylon (registered trademark) 1018I” manufactured by Ube Kosan Co., Ltd.) 90 parts by mass was mixed with 10 parts by mass of the masterbatch (4), vacuum dried at 110 ° C. for 12 hours, and then 100 mm wide.
  • a 20 mm single-screw extruder connected to a T-die was used to perform melt film formation at a film formation temperature of 260 ° C. to obtain a film (1) having a thickness of 10 ⁇ m.
  • Example 1 Manufacturing of aqueous dispersion, masterbatch and filament
  • polyoxyethylene alkyl ether as a nonionic surfactant was not used to obtain an aqueous dispersion (11), a masterbatch (12) and a filament (12).
  • master batches (1) to (11) are produced using any of the aqueous dispersions (1) to (10), and filaments (1) to filaments (1) to using the master batch.
  • (11) was manufactured, the occurrence of yarn breakage was less than 3 times, and the spinnability of the filament was good.
  • master batches (1) to (11) are produced using any of the aqueous dispersions (1) to (10), and filaments (1) to filaments (1) to using the master batch.
  • (11) was produced, it was found that the number of particles having a particle diameter of 20 ⁇ m or more in the filament was 5 or less, secondary aggregation of the metal oxide was prevented during filament molding, and the dispersion stability of the metal oxide was high. ..
  • Examples 4 to 5, 7 to 8 two types of nonionic surfactants, polyoxyethylene alkyl ether (TG 5% weight loss temperature 370 ° C.) and sorbitan fatty acid ester (TG 5% weight loss temperature 300 ° C.), or , Polyoxyethylene alkyl ether (TG 5% weight loss temperature 370 ° C.) and polyglycerin fatty acid ester (TG 5% weight loss temperature 260 ° C.) are used, and titanium oxide particles, silicon oxide particles or zinc oxide particles are used as metal oxides. It was found that the number of particles having a particle diameter of 20 ⁇ m or more in the filament was less than one, the secondary aggregation of the metal oxide was sufficiently prevented during filament molding, and the dispersion stability of the metal oxide was extremely high. ..
  • Example 12 when the masterbatch (4) is produced using the aqueous dispersion (4) and the film (1) is produced using the masterbatch, the film formation is completed without pressurization, and the film is formed. The film property was good. Further, in Example 12, when the masterbatch (4) is manufactured using the aqueous dispersion (4) and the film (1) is manufactured using the masterbatch, 1 to 5 particles having a particle diameter of 20 ⁇ m or more are produced. It was found that the secondary aggregation of the metal oxide was prevented during film molding, and the dispersion stability of the metal oxide was high.
  • Comparative Example 1 when the masterbatch (12) was manufactured using the aqueous dispersion (11) and the filament (12) was manufactured using the masterbatch, the yarn breakage occurred 10 times or more. The spinnability of the filament was slightly poor. Further, in Comparative Example 1, when the masterbatch (12) is manufactured using the aqueous dispersion (11) and the filament (12) is manufactured using the masterbatch, particles having a particle diameter of 20 ⁇ m or more in the filament are produced. The number was 20 or more, and a large number of agglomerated particles were present in the filament as compared with Examples 1 to 11, and the agglomeration prevention property of the metal oxide was inferior.
  • Comparative Example 2 when the masterbatch (13) was produced using the aqueous dispersion (12) containing only the propylene glycol fatty acid ester (TG 5% weight loss temperature 220 ° C.) as the nonionic surfactant, the difference between the masterbatch was obtained.
  • the pressure was in the range of more than 5 MPa and 10 MPa or less, and more agglomerated particles were present in the masterbatch as compared with Examples 1 to 11, and the agglomeration prevention property of the metal oxide was slightly inferior.
  • a masterbatch (13) was produced using an aqueous dispersion (12) containing only a propylene glycol fatty acid ester (TG 5% weight loss temperature 220 ° C.) as a nonionic surfactant, and the masterbatch was produced.
  • the filament (13) was produced using the above, the occurrence of yarn breakage was 3 times or more and less than 10 times, and the spinnability of the filament was slightly poor.
  • the masterbatch (13) is manufactured using the aqueous dispersion (12) and the filament (13) is manufactured using the masterbatch, particles having a particle diameter of 20 ⁇ m or more in the filament are produced. The number was 20 or more, and more agglomerated particles were present in the filament as compared with Examples 1 to 11, and the agglomeration prevention property of the metal oxide was inferior.
  • Comparative Example 3 a master containing both polyoxyethylene alkyl ether (TG 5% weight loss temperature 370 ° C.) and sorbitan fatty acid ester (TG 5% weight loss temperature 300 ° C.) as a nonionic surfactant without using an aqueous dispersion.
  • the master batch did not pass through the sintering filter, a large number of aggregated particles were present in the master batch, and the antiaggregation property of the metal oxide was inferior.
  • Comparative Example 3 when the masterbatch (14) was manufactured without using the aqueous dispersion and the filament (14) was manufactured using the masterbatch, the yarn breakage occurred 10 times or more, and the filament The spinnability was poor. Further, in Comparative Example 3, when the masterbatch (14) was manufactured without using the aqueous dispersion and the filament (14) was manufactured using the masterbatch, 20 particles having a particle diameter of 20 ⁇ m or more in the filament were produced. As described above, a large number of agglomerated particles were present in the filament as compared with Examples 1 to 11, and the agglomeration prevention property of the metal oxide was inferior.
  • Comparative Example 4 when the filament (15) was produced without using both the aqueous dispersion and the masterbatch, the yarn breakage occurred 10 times or more, and the spinnability of the filament was poor. Further, in Comparative Example 4, when the filament (15) was produced without using both the aqueous dispersion and the masterbatch, the number of particles having a particle diameter of 20 ⁇ m or more in the filament was 20 or more, which was compared with Examples 1 to 11. In addition, a large number of aggregated particles were present in the filament, and the antiaggregation property of the metal oxide was inferior.
  • Comparative Example 5 when the masterbatch (14) was manufactured without using the aqueous dispersion and the film (2) was manufactured using the masterbatch, the film could not be formed even if the pressure was increased, and the film was compared with Example 12. Therefore, the film forming property of the film was inferior. Further, in Comparative Example 5, when the masterbatch (14) was manufactured without using the aqueous dispersion and the film (2) was manufactured using the masterbatch, 20 or more particles having a particle diameter of 20 ⁇ m or more in the film were produced. Therefore, a large number of agglomerated particles were present in the film as compared with Example 12, and the agglomeration prevention property of the metal oxide was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

無機化合物の高分散を実現して、成形物の加工性、機械特性、外観品質を向上することができるマスターバッチを提供する。さらに詳しくは、マスターバッチは、ポリアミド樹脂(A)と、金属酸化物を主成分とする無機化合物と、熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤とを含有する。

Description

熱可塑性樹脂組成物及びその製造方法
 本発明は、熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法に関する。
 金属酸化物はその活性の高さから、各種用途として用いられている。しかしながら、金属酸化物を高分子複合材料に利用する場合、その凝集性が高いため金属酸化物の分散が困難なことが知られている。
 これを解決するために、金属酸化物と分散剤とを混合した粉末状のドライカラー、常温で液状の分散剤中に顔料を分散させたリキッドカラーまたはペーストカラー、常温で固体の樹脂中に金属酸化物を分散させたペレット状、フレーク状あるいはビーズ状のマスターバッチなどがある。これらの組成物は、用途によって、その特徴を生かして使い分けられているが、これらのうち、取扱いの容易さ、使用時の作業環境保全の面からマスターバッチが好んで用いられている。マスターバッチにおける金属酸化物に分散性を付与するために、従来、分散剤として、ステアリン酸、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸カルシウム、エチレンビスアマイド、ポリエチレンワックス、ポリプロピレンワックス、およびこれらの誘導体、例えば酸変性体からなるワックス等の1種または2種以上が用いられている。
 しかし、例えば、熱可塑性樹脂を20μm径以下で高速紡糸したり、フィルム化するなど高度な顔料分散が求められる場合には、上記分散剤では満足されないことがある。すなわち、分散不良による紡糸時の糸切れ、溶融紡糸機のフィルターの目詰まり、フィルムでの成形不良などを起こす。これらの問題を解決するため、マスターバッチの加工方法の改良や強力混練機により分散性を向上させる努力が行われてきたが、十分な分散能を発揮するものではなかった。
 これまで、分散性の向上を目的として、例えば合成樹脂水系分散体または水溶液(a)1~80重量%、顔料(b)1~90重量%および熱可塑性樹脂(c)1~90重量%を二軸押出機に供給し、相置換および脱水を行うマスターバッチの製造方法が提案されている(特許文献1)。
 また、下記一般式(1)で表される分散剤を含有する顔料の水スラリーを製造する工程(A)と、下記一般式(1)で表される分散剤および溶剤を含むメタロセン系ポリオレフィンの溶融物を製造する工程(B)と、工程(A)で得られた水スラリーおよび工程(B)で得られた溶融物の混合物を撹拌して顔料をフラッシングせしめる工程(C)と、工程(C)で得られたフラッシング後の混合物から溶剤および水を除去する工程(D)とからなる着色樹脂組成物の製造方法が提案されている(特許文献2)。
2n+1(OCHCHOH    ・・・(1)
(式中、 nは1~100の整数であり、 mは1~100の整数である。)
 更に、顔料含有水性スラリーおよび熱溶融性樹脂を混合して、水分、顔料および熱溶融性樹脂の混合物を調製し、前記混合物を脱水して前記混合物における水分の含有量が4~25質量%となるように調整し、かつ前記混合物を少なくとも1個のベント口を有する押出混練機に連続的に投入し、熱溶融性樹脂の溶融温度以上の温度で混練し、分離した水分および残存した水分の水蒸気をベント口から排出しつつ、熱溶融性樹脂の溶融温度以上の温度で混練して、溶融した前記熱溶融性樹脂中に顔料が分散された顔料・樹脂組成物を得ることを含む顔料・樹脂組成物の製造方法が提案されている(特許文献3)。
特許第3158847号公報 特許第3890985号公報 特開2014-98164号公報
 しかしながら、金属酸化物分散水溶液を脱水乾燥すると金属酸化物の活性面の露出に因る二次凝集が発生し易く、金属酸化物が高分散したマスターバッチを作成することが困難であるため、上記従来の製造方法では金属酸化物の分散性が十分とは言えず、未だ改善の余地がある。また、繊維の更なる小径化やフィルムの更なる薄膜化等のニーズがあることから、繊維径のより小さい糸への加工や、より薄いフィルムへの加工時に、成形物の加工性、機械特性、外観品質の低下などが懸念される。
 本発明の目的は、無機化合物の高分散を実現して、成形物の加工性、機械特性、外観品質を向上することができる熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法を提供することにある。
 上記目的を達成するために、発明者らは鋭意研究を重ねた結果、分散剤のTG5%減量温度に着目し、TG5%減量温度が250℃以上である非イオン性界面活性剤を含む水分散体を用いてマスターバッチを製造し、得られたマスターバッチとベース樹脂とを混合して熱可塑性樹脂組成物又は熱可塑性樹脂成形体を得ることで、無機化合物スラリーとしての水分散体中での無機化合物の凝集が防止され、その結果マスターバッチ中で無機化合物が高分散し、熱可塑性樹脂成形体の加工性、機械特性、外観品質を向上できることを見出した。
 すなわち、本発明は以下の手段を提供する。
[1]ポリアミド樹脂(A)と、
 金属酸化物を主成分とする無機化合物と、
 熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤と、
 を含有するマスターバッチ。
[2]前記マスターバッチ中の前記ポリアミド樹脂(A)、前記無機化合物及び前記非イオン性界面活性剤の合計の質量を100質量%としたときの、前記非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下である、上記[1]に記載のマスターバッチ。
[3]前記非イオン性界面活性剤が、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミドから選択される1種又は2種以上からなる、上記[1]又は[2]に記載のマスターバッチ。
[4]前記非イオン性界面活性剤が、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテルから選択される1種又は2種以上からなる、からなる、上記[3]に記載のマスターバッチ。
[5]前記ポリアミド樹脂(A)が、ナイロン-6及びナイロン-66から選択される1種又は2種からなる、上記[1]に記載のマスターバッチ。
[6]上記[1]~[5]のいずれかに記載のマスターバッチと、ポリアミド樹脂(B)とを配合してなる熱可塑性樹脂組成物。
[7]前記熱可塑性樹脂組成物中の前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下である、上記[6]に記載の熱可塑性樹脂組成物。
[8]前記ポリアミド樹脂(B)が、ナイロン-6及びナイロン-66から選択される1種又は2種からなる、上記[6]又は[7]に記載の熱可塑性樹脂組成物。
[9]上記[6]~[8]のいずれかに記載の熱可塑性樹脂組成物を溶融成形してなる熱可塑性樹脂成形体。
[10]上記[1]~[5]のいずれかに記載のマスターバッチと、ポリアミド樹脂(B)とを配合してなる熱可塑性樹脂成形体。
[11]前記熱可塑性樹脂成形体中の前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下である、上記[10]に記載の熱可塑性樹脂成形体。
[12]前記ポリアミド樹脂(B)が、ナイロン-6及びナイロン-66から選択される1種又は2種からなる、上記[10]又は[11]に記載の熱可塑性樹脂成形体。
[13]前記熱可塑性樹脂成形体が、フィラメント、ステープル、不織布、中空糸及びフィルムから選択されるいずれかである、上記[9]~[12]のいずれかに記載の熱可塑性樹脂成形体。
[14]金属酸化物を主成分とする無機化合物と、
 熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤と、
 を含有する水分散体。
[15]前記水分散体中の前記無機化合物、前記非イオン性界面活性剤及び水の合計の質量を100質量%としたときの、前記非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下である、上記[14]に記載の水分散体。
[16]金属酸化物を主成分とする無機化合物と、熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤とを混合して、前記無機化合物を1質量%以上80質量%以下含有する水分散体を準備する工程(I)と、
 ポリアミド樹脂(A)100質量部に対して、前記水分散体を1質量部以上300質量部以下で供給し、溶融混合する工程(II)と、
 を有する、マスターバッチの製造方法。
[17]上記[16]に記載の製造方法によって得られたマスターバッチと、ポリアミド樹脂(B)とを溶融混合する工程を有する、熱可塑性樹脂組成物の製造方法。
[18]前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下となるように、前記マスターバッチと前記ポリアミド樹脂(B)を溶融混合する、上記[17]に記載の熱可塑性樹脂組成物の製造方法。
[19]上記[17]又は[18]に記載の製造方法によって得られた熱可塑性樹脂組成物を溶融成形する工程を有する、熱可塑性樹脂成形体の製造方法。
[20]上記[16]に記載の製造方法によって得られたマスターバッチと、ポリアミド樹脂(B)とを溶融混合する工程を有する、熱可塑性樹脂成形体の製造方法。
[21]前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下となるように、前記マスターバッチと前記ポリアミド樹脂(B)を溶融混合する、上記[20]に記載の熱可塑性樹脂成形体の製造方法。
[22]前記マスターバッチ及び前記ポリアミド樹脂(B)を用いて、フィラメント、ステープル、不織布、中空糸及びフィルムから選択されるいずれかを成形する、上記[19]~[21]のいずれかに記載の熱可塑性樹脂成形体の製造方法。
 本発明によれば、無機化合物の高分散を実現して、成形物の加工性、機械特性、外観品質を向上することができる。
 以下、本発明の実施形態を説明する。本発明は、以下の実施形態に限定されない。
<マスターバッチ>
 本実施形態のマスターバッチ(熱可塑性樹脂組成物ともいう)は、ポリアミド樹脂(A)と、金属酸化物を主成分とする無機化合物と、熱重量分析(TGA:Thermogravimetric Analysis)による5%減量温度が250℃以上である非イオン性界面活性剤とを含有する。
[ポリアミド樹脂(A)]
 上記マスターバッチ中のポリアミド樹脂(A)、無機化合物及び非イオン性界面活性剤の合計の質量を100質量%としたときの、ポリアミド樹脂(A)の含有量は、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上の範囲としてよく、また、好ましくは99質量%以下の範囲としてよい。ポリアミド樹脂(A)の含有量が30質量%以上であると、無機化合物に対するマトリックス樹脂としてのポリアミド樹脂(A)の含有量が適量となり、マスターバッチ中に上記無機化合物をより高分散し易くなり、99質量%以下であると無機化合物が適量となり、該無機化合物の所望の特性をより発現させ易くなる。したがってポリアミド樹脂(A)の含有量を上記範囲内の値とする。
 上記ポリアミド樹脂(A)としては、特に制限されないが、例えば、ポリアミド-6(ナイロン-6)、ナイロン-46、ポリアミド-66(ナイロン-66)、ナイロン-7、ナイロン-8、ナイロン-9、ナイロン-10、ナイロン-11、ナイロン-12、ナイロン-610、ナイロン-612、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド、ポリメタキシレンアジパミド、ポリキシレンセバカミド、ナイロン6/66コポリマー、ナイロン6/612、ナイロンMXD(m-キシリレンジアミン)6、ナイロン9T、ナイロン10T、ナイロン6T/66コポリマー、ナイロン6T/6Iコポリマー、ナイロン6T/M5Tコポリマー、ナイロン6T/12コポリマー、ナイロン66/6T/6Iコポリマー、ナイロン6T/6コポリマー、ナイロン66/6Iコポリマー、ナイロン66/6I/6コポリマー等が挙げられる。また、これらのポリアミド樹脂のうちから選択される1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、ポリアミド樹脂(A)は、糸やフィルムへの成形の観点からは、ポリアミド-6及びポリアミド-66から選択される1種又は2種からなるのが好ましい。
[無機化合物]
 無機化合物は、上述のように金属酸化物を主成分とする。主成分とは、上記無機化合物全体の質量を100質量%としたときの、金属酸化物が50質量%よりも大きいことを意味する。また、無機化合物は1種又は2種以上の金属酸化物からなるものであってもよい。
 上記マスターバッチ中のポリアミド樹脂(A)、無機化合物及び非イオン性界面活性剤の合計の質量を100質量%としたときの、無機化合物の含有量は、好ましくは1質量%以上の範囲としてよく、また、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下の範囲としてよい。無機化合物の含有量が1質量%以上であると無機化合物の所望の特性を発現し易くなり、70質量%以下であるとマスターバッチ中に無機化合物を均一分散し易くなる。
 上記金属化合物としては、特に制限されないが、例えばチタン(Ti)、ケイ素(Si)、亜鉛(Zn)、アルミニウム(Al)、銅(Cu)、鉄(Fe)、モリブデン(Mo)、ジルコニア(Zr)等の金属酸化物が挙げられる。また、これらの無機化合物のうちから選択される1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、上記金属の固溶体や、水に対して安定な無機物質等であってもよい。
[非イオン性界面活性剤]
 非イオン性界面活性剤としては、例えば以下の化合物が挙げられる。
・モノステアリン酸グリセリル(HLB値4.0)、自己乳化型モノステアリン酸グリセリル(HLB値6.0)、モノオレイン酸グリセリル(HLB値2.5)などのグリセリン脂肪酸エステル類;
・ポリリシノレイン酸ポリグリセリル-6(HLB値3.9)、モノステアリン酸ジグリセリル(HLB値5.0)、モノオレイン酸ジグリセリル(HLB値6.5)、ジオレイン酸ジグリセリル(HLB値7.0)、モノイソステアリン酸ジグリセリル(HLB値5.5)、モノステアリン酸テトラグリセリル(HLB値6.0)、モノオレイン酸テトラグリセリル(HLB値6.0)、トリステアリン酸デカグリセリル(HLB値7.5)、トリオレイン酸デカグリセリル(HLB値7.0)、ペンタステアリン酸デカグリセリル(HLB値3.5)等のポリグリセリン脂肪酸エステル類(A);
・モノラウリン酸ヘキサグリセリル(HLB値14.5)、モノミリスチン酸ヘキサグリセリル(HLB値11.0)、モノラウリン酸デカグリセリル(HLB値15.5)、モノミリスチン酸デカグリセリル(HLB値14.0)、モノステアリン酸デカグリセリル(HLB値12.0)、モノイソステアリン酸デカグリセリル(HLB値12.0)、モノオレイン酸デカグリセリル(HLB値12.0)、ジイソステアリン酸デカグリセリル(HLB値10.0)等のポリグリセリン脂肪酸エステル類(B);
・モノパルミチン酸ソルビタン(HLB値6.7)、モノステアリン酸ソルビタン(HLB値4.7)、セスキステアリン酸ソルビタン(HLB値4.2)、トリステアリン酸ソルビタン(HLB値2.1)、モノイソステアリン酸ソルビタン(HLB値5.0)、セスキイソステアリン酸ソルビタン(HLB値4.5)、モノオレイン酸ソルビタン(HLB値4.3)、セスキオレイン酸ソルビタン(HLB値3.7)等のソルビタン脂肪酸エステル類;
・POE(3)ラウリルエーテル(HLB値8.0)、POE(5)ラウリルエーテル(HLB値1.0)、POE(5)イソセチルエーテル(HLB値8.0)、POE(3)セチルエーテル(HLB値6.0)、POE(5)セチルエーテル(HLB値8.0)、POE(2)ステアリルエーテル(HLB値8.0)、POE(5)ステアリルエーテル(HLB値8.0)、POE(6)ステアリルエーテル(HLB値8.0)、POE(5)イソステアリルエーテル(HLB値8.0)、POE(2)オレイルエーテル(HLB値7.5)、POE(3)オレイルエーテル(HLB値6.0)、POE(5)オレイルエーテル(HLB値8.0)、POE(5)オクチルドデシルエーテル(HLB値7.0)、POE(5)ベヘニルエーテル(HLB値7.0)、POE(5)デシルテトラデシルエーテル(HLB値6.0)、POE(3)2級アルキルエーテル(HLB値8.0)、POE(5)コレステリルエーテル(HLB値7.0)等のポリオキシエチレンアルキルエーテル類(A);
・POE(4.2)ラウリルエーテル(HLB値11.5)、POE(7)ラウリルエーテル(HLB値11.0)、POE(9)ラウリルエーテル(HLB値14.5)、POE(10)ラウリルエーテル(HLB値12.0)、POE(12)ラウリルエーテル(HLB値13.0)、POE(15)ラウリルエーテル(HLB値14.0)、POE(20)ラウリルエーテル(HLB値15.0)、POE(30)ラウリルエーテル(HLB値16.0)、POE(50)ラウリルエーテル(HLB値17.0)、POE(10)イソセチルエーテル(HLB値11.0)、POE(15)イソセチルエーテル(HLB値13.0)、POE(20)イソセチルエーテル(HLB値14.0)、POE(25)イソセチルエーテル(HLB値15.0)、POE(5.5)セチルエーテル(HLB値10.5)、POE(7)セチルエーテル(HLB値11.5)、POE(10)セチルエーテル(HLB値13.5)、POE(12)セチルエーテル(HLB値12.0)、POE(15)セチルエーテル(HLB値15.5)、POE(17)セチルエーテル(HLB値13.0)、POE(20)セチルエーテル(HLB値17.0)、POE(23)セチルエーテル(HLB値18.0)、POE(8)ステアリルエーテル(HLB値10.0)、POE(11)ステアリルエーテル(HLB値11.0)、POE(15)ステアリルエーテル(HLB値12.0)、POE(20)ステアリルエーテル(HLB値18.0)、POE(25)ステアリルエーテル(HLB値14.0)、POE(30)ステアリルエーテル(HLB値15.0)、POE(40)ステアリルエーテル(HLB値16.0)、POE(10)イソステアリルエーテル(HLB値11.0)、POE(15)イソステアリルエーテル(HLB値12.0)、POE(20)イソステアリルエーテル(HLB値13.0)、POE(25)イソステアリルエーテル(HLB値14.0)、POE(3)オレイルエーテル(HLB値6.0)、POE(7)オレイルエーテル(HLB値10.5)、POE(8)オレイルエーテル(HLB値10.0)、POE(10)オレイルエーテル(HLB値14.5)、POE(12)オレイルエーテル(HLB値11.0)、POE(15)オレイルエーテル(HLB値16.0)、POE(20)オレイルエーテル(HLB値17.0)、POE(23)オレイルエーテル(HLB値14.0)、POE(50)オレイルエーテル(HLB値18.0)、POE(10)オクチルドデシルエーテル(HLB値10.0)、POE(16)オクチルドデシルエーテル(HLB値12.0)、POE(20)オクチルドデシルエーテル(HLB値13.0)、POE(25)オクチルドデシルエーテル(HLB値14.0)、POE(25)オクチルドデシルエーテル(HLB値14.0)、POE(10)ベヘニルエーテル(HLB値10.0)、POE(20)ベヘニルエーテル(HLB値16.5)、POE(30)ベヘニルエーテル(HLB値18.0)、POE(15)デシルテトラデシルエーテル(HLB値11.0)、POE(20)デシルテトラデシルエーテル(HLB値12.0)、POE(25)デシルテトラデシルエーテル(HLB値13.0)、POE(4)(C12-15)アルキルエーテル(HLB値10.5)、POE(8)(C9-11)アルキルエーテル(HLB:13.9)、POE(10)(C12-15)アルキルエーテル(HLB値15.5)、POE(5)2級アルキルエーテル(HLB値10.5)、POE(7)2級アルキルエーテル(HLB値12.0)、POE(10)コレステリルエーテル(HLB値10.0)、POE(15)コレステリルエーテル(HLB値11.0)、POE(20)コレステリルエーテル(HLB値12.0)、POE(24)コレステリルエーテル(HLB値13.0)、POE(30)コレステリルエーテル(HLB値14.0)等のポリオキシエチレンアルキルエーテル類(B);
・POE(2)ラウリルアミン(HLB値5.2)、POE(2)ステアリルアミン(HLB値5.1)、POE(3)牛脂プロピレンジアミン(HLB値5.9)、N-ビス-N-シクロへキシルアミン(HLB値4.8)、POE(2)メタキシレンジアミン(HLB値7.9)等のポリオキシエチレンアルキルアミン類(A);
・POE(5)ラウリルアミン(HLB値10.4)、POE(7)ラウリルアミン(HLB値12.1)、POE(10)ラウリルアミン(HLB値13.6)、POE(30)ラウリルアミン(HLB値17.5)、POE(7)エチレン牛脂アミン(HLB値11.0)、POE(8)エチレン牛脂アミン(HLB値11.9)、POE(10)エチレン牛脂アミン(HLB値12.7)、POE(13.5)エチレン牛脂アミン(HLB値11.0)、POE(20)エチレン牛脂アミン(HLB値15.5)、POE(30)エチレン牛脂アミン(HLB値16.7)、POE(40)エチレン牛脂アミン(HLB値17.4)、POE(7)ステアリルアミン(HLB値10.7)、POE(10)ステアリルアミン(HLB値12.8)、POE(15)ステアリルアミン(HLB値14.3)、POE(20)ステアリルアミン(HLB値15.3)、POE(30)ステアリルアミン(HLB値16.7)、POE(45)ステアリルアミン(HLB値17.6)、POE(15)牛脂プロピレンジアミン(HLB値13.4)、POE(50)ステアリルプロピレンジアミン(HLB値17.4)、POE(4)メタキシレンジアミン(HLB値11.3)等のポリオキシエチレンアルキルアミン類(B);
・POE(50)ステアリルアミド(HLB値17.8)等のポリオキシエチレンアルキルアミド類。
 尚、例えば「POE(8)(C9-11)アルキルエーテル」を説明すると、「POE」はポリオキシエチレンを、「(8)」は下記一般式(2)中のmを、「アルキル(C9-11)アルキル」は炭素数9~11のアルキル混合物を意味する。
R-(CHCHO)-H    ・・・(2)
 本実施形態では、上記のような非イオン性界面活性剤のうち、熱重量分析による5%減量温度(以下、TG5%減量温度ともいう)が250℃以上である非イオン性界面活性剤が選択される。非イオン性界面活性剤の熱重量分析による5%減量温度は、好ましくは250℃以上、より好ましくは260℃以上の範囲としてよい。非イオン性界面活性剤のTG5%減量温度が250℃以上であると、マスターバッチの溶融混合時における熱安定性が向上し、ポリアミド樹脂(A)に無機化合物を相溶化させつつ高分散させることができる。尚、熱重量分析による5%減量温度が250℃以上であれば、例示した上記化合物以外の非イオン性界面活性剤を用いてもよい。
 熱重量分析による5%減量温度は、例えば熱重量分析装置を用い、昇温速度10℃/min、窒素雰囲気下の条件で測定することができる。
 また、これらの非イオン性界面活性剤のうちから選択される1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記非イオン性界面活性剤のうち、高耐熱性の観点からは、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル及びポリオキシエチレンアルキルエーテルから選択される1種又は2種以上が好ましく、ポリグリセリン脂肪酸エステル及びポリオキシエチレンアルキルエーテルから選択される1種又は2種がより好ましい。
 上記マスターバッチ中のポリアミド樹脂(A)、無機化合物及び非イオン性界面活性剤の合計の質量を100質量%としたときの、非イオン性界面活性剤の含有量は、好ましくは0.01質量%以上の範囲としてよく、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下の範囲としてよい。非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下であると、マスターバッチの溶融混合時における熱安定性が更に向上し、ポリアミド樹脂(A)中での無機化合物の分散をより安定させることができる。
 上記非イオン性界面活性剤としてタイプ(例えば、HLB)の異なる2種類の非イオン性界面活性剤を用いる場合、マスターバッチにおける非イオン性界面活性剤(A)と非イオン性界面活性剤(B)の質量比は、非イオン性界面活性剤(A):非イオン性界面活性剤(B)=90~10:10~90であるのが好ましく、20~80:80~20であるのがより好ましい。これにより、ポリアミド樹脂(A)に無機化合物を相溶化させる作用と、ポリアミド樹脂(A)中で無機化合物の分散を安定させる作用との双方をバランス良く発現させることができる。
[その他の成分]
 マスターバッチは、その機能の主旨を逸脱しない範囲において、上記ポリアミド樹脂(A)、無機化合物及び非イオン性界面活性剤以外の他の成分が含まれてもよい。
 その他の成分としては、具体的には、酸化防止剤、紫外線吸収剤、着色剤、顔料、染料、発泡剤、滑剤、難燃剤、充填材等が挙げられる。
<熱可塑性樹脂組成物および成形体>
 本実施形態の熱可塑性樹脂組成物および成形体は、マスターバッチと、ポリアミド樹脂(B)とを配合してなる。熱可塑性樹脂組成物または成形体は、上記マスターバッチと、ポリアミド樹脂(B)とを配合させたものの硬化物(加熱により軟化流動した状態が冷却により固化したもの)である。熱可塑性樹脂組成物は、特に制限されないが、例えばマスターバッチから熱可塑性樹脂成形体を得る際の中間成形体であり、ペレット状や粉末状等の所定形態を有する材料を意味する。
[ポリアミド樹脂(B)]
 熱可塑性樹脂組成物または成形体中のマスターバッチ及びポリアミド樹脂(B)の合計の質量を100質量%としたときの、上記マスターバッチの含有量は、好ましくは1質量%以上の範囲としてよく、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下の範囲としてよい。
 上記ポリアミド樹脂(B)としては、特に制限されないが、例えば、ポリアミド-6(ナイロン-6)、ナイロン-46、ポリアミド-66(ナイロン-66)、ナイロン-7、ナイロン-8、ナイロン-9、ナイロン-10、ナイロン-11、ナイロン-12、ナイロン-610、ナイロン-612、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド、ポリメタキシレンアジパミド、ポリキシレンセバカミド、ナイロン6/66コポリマー、ナイロン6/612、ナイロンMXD(m-キシリレンジアミン)6、ナイロン9T、ナイロン10T、ナイロン6T/66コポリマー、ナイロン6T/6Iコポリマー、ナイロン6T/M5Tコポリマー、ナイロン6T/12コポリマー、ナイロン66/6T/6Iコポリマー、ナイロン6T/6コポリマー、ナイロン66/6Iコポリマー、ナイロン66/6I/6コポリマー等が挙げられる。また、これらのポリアミド樹脂のうちから選択される1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、ポリアミド樹脂(B)は、糸やフィルムの成形の観点からは、ポリアミド-6及び及びポリアミド-66から選択される1種又は2種以上からなるのが好ましい。
 熱可塑性樹脂組成物または成形体におけるポリアミド樹脂(B)は、上記ポリアミド樹脂(A)と同種であってもよいし、異種であってもよいが、相溶性の観点から同種の樹脂を用いることが好ましい。
[非イオン性界面活性剤]
 また、熱可塑性樹脂組成物または成形体中のマスターバッチ及びポリアミド樹脂(B)の合計の質量を100質量%としたときの、非イオン性界面活性剤の含有量は、好ましくは0.01質量%以上の範囲としてよく、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下の範囲としてよい。
 また、上記非イオン性界面活性剤としてタイプ(例えば、HLB)の異なる2種類の非イオン性界面活性剤を用いる場合、熱可塑性樹脂組成物または成形体における非イオン性界面活性剤(A)と非イオン性界面活性剤(B)の質量比は、非イオン性界面活性剤(A):非イオン性界面活性剤(B)=10~90:90~10であるのが好ましく、20~80:80~20であるのがより好ましい。
[その他の成分]
 熱可塑性樹脂組成物または成形体は、その機能の主旨を逸脱しない範囲において、上記ポリアミド樹脂(A)、無機化合物、両親媒性分子(A)及び両親媒性分子(B)以外の他の成分が含まれてもよい。
 その他の成分としては、具体的には、酸化防止剤、紫外線吸収剤、着色剤、顔料、染料、発泡剤、滑剤、難燃剤、充填材等が挙げられる。
 熱可塑性樹脂成形体は、その形態に制限は無いが、例えばフィラメント(長繊維)、ステープル(短繊維)、不織布及び中空糸から選択されるいずれかであってもよい。フィラメントは、数十本の単糸(単繊維)が撚り合わされてなるマルチフィラメントであってもよいし、単糸が一本であるモノフィラメントであってもよい。また、熱可塑性樹脂成形体はフィルムであってもよい。
<マスターバッチの製造方法>
 本実施形態に係るマスターバッチの製造方法は、金属酸化物を主成分とする無機化合物と、熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤とを混合して、上記無機化合物を1質量%以上80質量%以下含有する水分散体を準備する工程(I)と、ポリアミド樹脂(A)100質量部に対して、前記水分散体を1質量部以上300質量部以下で供給し、溶融混合する工程(II)とを有する。
 工程(I)で使用される水分散体中の無機化合物、非イオン性界面活性剤及び水の合計の質量を100質量%としたときの、無機化合物の含有量は、1質量部以上80質量部以下であり、好ましくは1質量%以上70質量%以下、より好ましくは1質量%以上60質量%以下の範囲としてもよい。無機化合物の含有量が1質量%未満であると熱可塑性樹脂組成物または成形体において無機化合物による所望の特性が得難くなり、80質量%より大きいと無機化合物の高分散が得難くなり、また、機械特性の低下や外観不良が生じ易くなる。よって水分散体中の無機化合物の含有量を上記範囲内の値とする。
 上記水分散体中の無機化合物、非イオン性界面活性剤及び水の合計の質量を100質量%としたときの、非イオン性界面活性剤の含有量は、好ましくは0.01質量%以上の範囲としてよく、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下の範囲としてよい。非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下であると、ポリアミド樹脂(A)に無機化合物をより相溶化させることができる。
 上記工程(I)において、金属酸化物を主成分とする無機化合物、非イオン性界面活性剤に、更に水溶性アルコールを混合して、水分散体を準備してもよい。
 この場合、工程(I)で使用される水分散体中の無機化合物、非イオン性界面活性剤、水溶性アルコール及び水の合計の質量を100質量%としたときの、無機化合物の含有量は、好ましくは1質量%以上80質量%以下、上記無機化合物の含有量は、より好ましくは1質量%以上70質量%以下、更に好ましくは1質量%以上60質量%以下の範囲としてもよい。無機化合物の含有量が1質量%未満であると熱可塑性樹脂組成物または成形体において無機化合物による所望の特性が得難くなり、80質量%より大きいと無機化合物の高分散が得難くなり、また、機械特性の低下や外観不良が生じ易くなる。よって水分散体中の無機化合物の含有量を上記範囲内の値とする。
 上記水分散体中の無機化合物、非イオン性界面活性剤、水溶性アルコール及び水の合計の質量を100質量%としたときの、非イオン性界面活性剤の含有量は、好ましくは0.01質量%以上の範囲としてよく、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下の範囲としてよい。非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下であると、ポリアミド樹脂(A)に無機化合物をより相溶化させることができる。
 上記水分散体中の無機化合物、非イオン性界面活性剤、水溶性アルコール及び水の合計の質量を100質量%としたときの、水溶性アルコールの含有量は、好ましくは0.01質量%以上の範囲としてよく、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下の範囲としてよい。水溶性アルコールの含有量が0.01質量%以上40質量%以下であると、系の安定性を向上することができる。
[その他の成分]
 水分散体は、その機能の主旨を逸脱しない範囲において、上記無機化合物、非イオン性界面活性剤及び水溶性アルコール以外の他の成分が含まれてもよい。
 その他の成分としては、具体的には、酸化防止剤、紫外線吸収剤、着色剤、顔料、染料、発泡剤、滑剤、難燃剤、充填材等が挙げられる。
 工程(II)では、工程(I)で調整した水分散体を、ポリアミド樹脂(A)100質量部に対して1質量部以上300質量部以下で供給し、溶融混合することにより、マスターバッチを得る。ポリアミド樹脂(A)に対する上記水分散体の供給量は、好ましくは1質量部以上200質量部以下の範囲としてもよい。水分散体の供給量が300質量部よりも大きいと溶融混合する装置内への注入が困難となり、また、ポリアミド樹脂(A)の溶融温度まで昇温し難く溶融混合が困難となる。一方、ポリアミド樹脂(A)に対する上記水分散体の供給量が1質量部以上300質量部以下であると、溶融混合の脱水乾燥時に無機化合物の二次凝集が防止され、マスターバッチ中で金属酸化物を均一分散することができる。よって水分散体の供給量を上記範囲内の値とする。
 溶融混合の際には、押出機(単軸押出機、二軸押出機)、ニーダー、バンバリーミキサー等の混練機を用いることができ、なかでも、連続的に混練できる点で、混錬押出機が好ましい。
 溶融混合工程における加熱温度は、マトリックス樹脂であるポリアミド樹脂の溶融のし易さに応じて決定されるが、好ましくは230℃以上、より好ましくは240℃以上、更に好ましくは250℃以上の範囲としてよく、また、好ましくは290℃以下、より好ましくは280℃以下、更に好ましくは270℃以下の範囲としてよい。加熱温度が230℃以上であると、ポリアミド樹脂を溶融し易くなり、該ポリアミド樹脂中に無機化合物を分散させやすくなり、290℃以下であれば、各成分の熱劣化を抑制することができる。
 上記工程(II)において、水溶性アルコールを含有する水分散体を用いてもよい。この場合、工程(I)で調整した水分散体を、ポリアミド樹脂(A)100質量部に対して、好ましくは1質量部以上300質量部以下、より好ましくは1質量部以上200質量部以下、更に好ましくは1質量部以上150質量部以下で供給し、溶融混合してもよい。水溶性アルコールを含有する水分散体を用いることにより、ポリアミド樹脂(A)中での無機化合物の分散をより安定させることができる。
 溶融混合した後には、マスターバッチの使用目的に応じた形状(例えば、ペレット状)に成形又は加工することができる。
 マスターバッチをペレット状とする場合には、溶融混練後、ストランドを形成し、そのストランドを、ペレタイザを用いて切断してペレット状にする。ペレット状のマスターバッチは、さらなる成形を行うための材料として使用することができ、例えば熱可塑性樹脂組成物または成形体用の材料として用いることができる。ペレット状のマスターバッチは、成形機(例えば、射出成形機、押出成形機等)によって成形することができる。
<熱可塑性樹脂組成物および成形体の製造方法>
 本実施形態に係る熱可塑性樹脂組成物または成形体の製造方法は、上記製造方法によって得られたマスターバッチと、ポリアミド樹脂(B)とを溶融混合する。これにより、直接、上記熱可塑性樹脂成形体を得ることができるが、一旦、ペレット状または粉末状の熱可塑性樹脂組成物を得る工程を経てから、得られたペレット状または粉末状の熱可塑性樹脂組成物を溶融成形する工程を経て目的とする熱可塑性樹脂成形体を得ることもできる。このようにマスターバッチを経由して熱可塑性樹脂成形体を得ることで、熱可塑性樹脂成形体中で無機化合物を安定的に均一分散することができ、無機化合物による所望の機能、特性を熱可塑性樹脂成形体に十分に付与することができる。
 上記マスターバッチ及びポリアミド樹脂(B)の合計の質量を100質量%としたときの上記マスターバッチの含有量が、好ましくは1質量%以上90質量%以下、より好ましくは1質量%以上80質量%以下、更に好ましくは1質量%以上70質量%以下の範囲となるように、上記マスターバッチとポリアミド樹脂(B)を溶融混合するのが好ましい。上記マスターバッチの含有量が1質量%以上90質量%以下であると、無機化合物をより安定的に均一分散することができる。
 溶融混合工程では、マスターバッチ及びポリアミド樹脂(B)以外の他の成分を更に混合してもよい。例えば、混合工程において、マスターバッチ及びポリアミド樹脂(B)と共に、酸化防止剤を混合することができる。
 溶融混合した後には、熱可塑性樹脂成形体の使用目的に応じた形状(例えば、糸状、不織布状、フィルム状)に成形又は加工することができる。
 熱可塑性樹脂成形体を糸状(フィラメント、ステープル、中空糸)とする場合には、溶融混練後、所定断面形状を有する一又は複数の孔から溶融樹脂を吐出させて糸状にすることができる。糸状の熱可塑性樹脂成形体は、更に延伸、熱処理、撚り合わせなどの後処理を経て成形されてもよいし、他の糸と混合して紡績して混紡糸や混繊糸を構成してもよい。
 熱可塑性樹脂成形体を不織布状とする場合には、溶融混練後、溶融樹脂から成形された繊維をネット上で集積することにより不織布状にすることができる。不織布状の熱可塑性樹脂成形体は、更にバインダーによる繊維同士の結合や外力の付与によって繊維同士を絡めるなどの後処理を経て成形されてもよい。
 熱可塑性樹脂成形体をフィルム状とする場合には、溶融混練後、溶融樹脂をスリット状の孔から吐出させる(押出す)ことによりフィルム状にすることができる。フィルム状の熱可塑性樹脂成形体は、更にプレス成形法又は真空成形法によって成形してもよいし、ベース層上に形成されて多層フィルムを構成してもよい。
 以下、本発明の実施例を説明する。本発明は、以下に示す実施例に限定されるものではない。実施例中、特段の記載がない限り、「部」は質量%を示し、表中の数値の単位は質量部である。
[実施例1]
(水分散体の製造)
 酸化チタン粒子(石原産業株式会社製「ST-21」、平均粒子径20nm)30質量部、非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル(三洋化成工業株式会社製「エマルミンNL110」TG5%減量温度370℃、HLB値14.4)1質量部、水溶性アルコールとしてエタノール1質量部に、水68質量部を加え、ホモジナイザーを用い水分散体(1)を得た。
(マスターバッチの製造)
 ポリアミド-6(宇部興産株式会社製「UBE ナイロン(登録商標) 1013B」)100質量部を30mmφの二軸ベント式押出機(設定温度260℃、捕捉粒子径40μmのメッシュフィルター)内で溶融混練し、押出機上流部から水分散体(1)30質量部を液添ノズルから注入し、水分をベント口から蒸発させながら溶融混練した。得られた熱可塑性樹脂組成物をペレット化してマスターバッチ(1)を得た。
(フィラメントの製造)
 ポリアミド-6(宇部興産株式会社製「UBE ナイロン(登録商標) 1018I」)90質量部にマスターバッチ(1)10質量部を混合し、110℃で12時間、真空乾燥し、次いで、紡糸機を用いて紡糸温度260℃で溶融紡糸を行い、3倍延伸により3dtex(繊維径約15μm)のフィラメント(1)を得た。
[実施例2]
(水分散体の製造)
 非イオン性界面活性剤をソルビタン脂肪酸エステル(花王株式会社製「レオドールSP-30V」、TG5%減量温度300℃、HLB2.1)に変更したこと以外は実施例1と同様に行い、水分散体(2)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(2)に変更したこと以外は実施例1と同様に行い、マスターバッチ(2)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(2)に変更したこと以外は実施例1と同様に行い、フィラメント(2)を得た。
[実施例3]
(水分散体の製造)
 非イオン性界面活性剤をポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製「SYグリスターML-500」、TG5%減量温度260℃、HLB13.4)に変更したこと以外は実施例1と同様に行い、水分散体(3)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(3)に変更したこと以外は実施例1と同様に行い、マスターバッチ(3)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(3)に変更したこと以外は実施例1と同様に行い、フィラメント(3)を得た。
[実施例4]
(水分散体の製造)
 非イオン性界面活性剤をポリオキシエチレンアルキルエーテル(三洋化成工業株式会社製「エマルミンNL110」TG5%減量温度370℃、HLB値14.4)及びソルビタン脂肪酸エステル(花王株式会社製「レオドールSP-30V」、TG5%減量温度300℃、HLB2.1)の2種類に変更したこと以外は実施例1と同様に行い、水分散体(4)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(4)に変更したこと以外は実施例1と同様に行い、マスターバッチ(4)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(4)に変更したこと以外は実施例1と同様に行い、フィラメント(4)を得た。
[実施例5]
(水分散体の製造)
 非イオン性界面活性剤をポリオキシエチレンアルキルエーテル(三洋化成工業株式会社製「エマルミンNL110」TG5%減量温度370℃、HLB値14.4)及びポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製「SYグリスターML-500」、TG5%減量温度260℃、HLB13.4)の2種類に変更したこと以外は実施例1と同様に行い、水分散体(5)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(5)に変更したこと以外は実施例1と同様に行い、マスターバッチ(5)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(5)に変更したこと以外は実施例1と同様に行い、フィラメント(5)を得た。
[実施例6]
(水分散体の製造)
 酸化チタン粒子を酸化ケイ素粒子(信越化学工業社株式会社製「QSG-30」、平均粒子径30nm)に変更したこと以外は実施例1と同様に行い、水分散体(6)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(6)に変更したこと以外は実施例1と同様に行い、マスターバッチ(6)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(6)に変更したこと以外は実施例1と同様に行い、フィラメント(6)を得た。
[実施例7]
(水分散体の製造)
 酸化チタン粒子を酸化ケイ素粒子(信越化学工業社株式会社製「QSG-30」、平均粒子径30nm)に変更したこと以外は実施例4と同様に行い、水分散体(7)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(7)に変更したこと以外は実施例4と同様に行い、マスターバッチ(7)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(7)に変更したこと以外は実施例4と同様に行い、フィラメント(7)を得た。
[実施例8]
(水分散体の製造)
 酸化チタン粒子を酸化亜鉛粒子(堺化学工業株式会社製「FINEX-30」、平均粒子径35nm)に変更したこと以外は実施例4と同様に行い、水分散体(8)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(8)に変更したこと以外は実施例4と同様に行い、マスターバッチ(2)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(8)に変更したこと以外は実施例4と同様に行い、フィラメント(8)を得た。
[実施例9]
(水分散体の製造)
 酸化チタン粒子を酸化アルミニウム粒子(住友化学株式会社製「AA-04」、平均粒子径300nm)に変更したこと以外は実施例4と同様に行い、水分散体(9)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(9)に変更したこと以外は実施例4と同様に行い、マスターバッチ(9)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(9)に変更したこと以外は実施例4と同様に行い、フィラメント(9)を得た。
[実施例10]
(水分散体の製造)
 酸化チタン粒子を亜酸化銅粒子(シグマアルドリッチ株式会社製、平均粒子径350nm)に変更したこと以外は実施例4と同様に行い、水分散体(10)を得た。
(マスターバッチの製造)
 水分散体(1)を水分散体(10)に変更したこと以外は実施例4と同様に行い、マスターバッチ(10)を得た。
(フィラメントの製造)
 マスターバッチ(1)をマスターバッチ(10)に変更したこと以外は実施例4と同様に行い、フィラメント(10)を得た。
[実施例11]
(マスターバッチの製造)
 ポリアミド-6をポリアミド-66(ユニチカ株式会社製「A125」)に変更し、更に押出加工温度を280℃に変更したこと以外は実施例4と同様に行い、マスターバッチ(11)を得た。
(フィラメントの製造)
 ポリアミド-6から変更したポリアミド-66(ユニチカ株式会社製「A125」)90質量部にマスターバッチ(11)10質量部を混合し、110℃で12時間、真空乾燥し、次いで、紡糸機を用いて紡糸温度280℃で溶融紡糸を行い、3倍延伸により3dtexのフィラメント(11)を得た。
[実施例12]
(フィルムの製造)
 ポリアミド-6(宇部興産株式会社製「UBE ナイロン(登録商標) 1018I」)90質量部にマスターバッチ(4)10質量部を混合し、110℃で12時間、真空乾燥し、次いで、100mm幅のTダイを接続した20mm単軸押出機を用いて製膜温度260℃で溶融製膜を行い、厚さ10μmのフィルム(1)を得た。
[比較例1]
(水分散体、マスターバッチ及びフィラメントの製造)
 非イオン性界面活性剤としてのポリオキシエチレンアルキルエーテルを不使用としたこと以外は実施例1と同様に行い、水分散体(11)、マスターバッチ(12)、フィラメント(12)を得た。
[比較例2]
(水分散体、マスターバッチ及びフィラメントの製造)
 非イオン性界面活性剤としてポリオキシエチレンアルキルエーテルをプロピレングリコール脂肪酸エステル(花王株式会社製「カオーホモテックスPS-200SV」、TG5%減量温度220℃)に変更したこと以外は実施例1と同様に行い、水分散体(12)、マスターバッチ(13)及びフィラメント(13)を得た。
[比較例3]
(マスターバッチ及びフィラメントの製造)
 水分散体を不使用とし、酸化チタン粒子9質量部、ポリオキシエチレンアルキルエーテル0.3質量部、ポリグリセリン脂肪酸エステル0.3質量部及びエタノール0.3質量部を直接、ポリアミド-6(宇部興産株式会社製「UBE ナイロン(登録商標) 1013B」)90.1質量部と混合し、二軸押出機にて溶融混練して、マスターバッチ(14)を作成し、実施例1と同様の工程を経てフィラメント(14)を得た。
[比較例4]
(フィラメントの製造)
 水分散体及びマスターバッチの双方を不使用とし、酸化チタン粒子0.9質量部、ポリオキシエチレンアルキルエーテル0.03質量部、ポリグリセリン脂肪酸エステル0.03質量部及びエタノール0.03質量部を直接、ポリアミド-6(宇部興産株式会社製「UBE ナイロン(登録商標) 1018I」)99.01質量部と混合し、紡糸機にて溶融混練して、実施例1と同様の工程を経てフィラメント(15)を得た。
[比較例5]
(フィルムの製造)
 ポリアミド-6(宇部興産株式会社製「UBE ナイロン(登録商標) 1018I」)90質量部にマスターバッチ(14)10質量部を混合し、110℃で12時間、真空乾燥し、次いで、100mm幅のTダイを接続した20mm単軸押出機を用いて製膜温度260℃で溶融製膜を行い、厚さ10μmのフィルム(2)を得た。
 次に、実施例1~8及び比較例1~5で得られた各マスターバッチ、フィラメント及びフィルムについて、以下の方法にて測定、評価した。
1.マスターバッチ中の凝集粒子の評価(凝集防止性)
 得られたマスターバッチ(1)~(14)について、25mm単軸押出機のスクリュ先端部位に濾過径25μmの焼結フィルターを設置し、マスターバッチを1kg通過させた際の差圧を計測し、差圧が1MPa以下である場合を非常に良好「◎」、1~5MPa以下を良好「〇」、5MPaを超え10MPa以下をやや不良「△」、通過しなかった場合を不良「×」とした。
2.フィラメント紡糸性の評価
 得られたフィラメント(1)~(15)について、紡糸の際の糸切れ頻度を評価した。これを同一の試料について5回実施し、平均値とした。糸切れの発生が3回未満である場合を良好「○」、3回以上10回未満をやや不良「△」、10回以上を不良「×」とした。
3.フィラメント中の凝集粒子の評価(凝集防止性)
 得られたフィラメント(1)~(15)を0.1g切り取り、プレパラートでフィルム状にプレスした後、光学顕微鏡観察(倍率200倍)により、粒子像を得て、無作為に選んだ少なくとも1000個の粒子(一次粒子であってもよいし、更に二次粒子が含まれていてもよい)それぞれについて粒子径(円相当径)を測定した。粒子径20μm以上の粒子が1個未満である場合を非常に良好「◎」、1~5個を良好「〇」、6~19個をやや不良「△」、20個以上を不良「×」とした。
4.フィルム成膜性の評価
 得られたフィルム(1)~(2)について、製膜時の安定性を評価した。濾過径20μmの焼結フィルターを設置し、原料10kg分を製膜し加工性を評価した。昇圧することなく製膜終了した場合を良好「〇」、昇圧して製膜終了した場合をやや不良「△」、昇圧しても製膜できなかった場合を不良「×」とした。
5.フィルム中の凝集粒子の評価(凝集防止性)
 得られたフィルム(1)~(2)を0.1g切り取り、プレパラートでフィルム状にプレスした後、光学顕微鏡観察(倍率200倍)により、粒子像を得て、無作為に選んだ少なくとも1000個の粒子(一次粒子であっても、さらに二次粒子が含まれていてもよい)それぞれについて粒子径(円相当径)を測定した。粒子径20μm以上の粒子が1個未満である場合を非常に良好「◎」、1~5個を良好「〇」、6~19個をやや不良「△」、20個以上を不良「×」とした。
 上記の方法にて測定、評価した結果を、表1A~表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

 表1A~表1Cの結果から、実施例1~11では、非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル(TG5%減量温度370℃)、ソルビタン脂肪酸エステル(TG5%減量温度300℃)及びポリグリセリン脂肪酸エステル(TG5%減量温度260℃)のうちの1種又は2種を含有する水分散体(1)~(10)を用いてマスターバッチ(1)~(11)を製造すると、マスターバッチの差圧が5MPa以下であり、マスターバッチ成形時に金属酸化物の二次凝集が防止され、金属酸化物の分散安定性が高いことが分かった。特に、実施例4~5,7~11では、非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル(TG5%減量温度370℃)及びソルビタン脂肪酸エステル(TG5%減量温度300℃)の2種、又は、ポリオキシエチレンアルキルエーテル(TG5%減量温度370℃)及びポリグリセリン脂肪酸エステル(TG5%減量温度260℃)の2種を用いると、マスターバッチの差圧が1MPa以下であり、マスターバッチ中で金属酸化物の二次凝集が十分に防止され、金属酸化物の分散安定性が極めて高いことが分かった。
 また、実施例1~11では、水分散体(1)~(10)のいずれかを用いてマスターバッチ(1)~(11)を製造し、且つそのマスターバッチを用いてフィラメント(1)~(11)を製造すると、糸切れの発生が3回未満であり、フィラメントの紡糸性が良好であった。
 更に、実施例1~11では、水分散体(1)~(10)のいずれかを用いてマスターバッチ(1)~(11)を製造し、且つそのマスターバッチを用いてフィラメント(1)~(11)を製造すると、フィラメント中の粒子径20μm以上の粒子が5個以下であり、フィラメント成形時に金属酸化物の二次凝集が防止され、金属酸化物の分散安定性が高いことが分かった。特に、実施例4~5,7~8では、非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル(TG5%減量温度370℃)及びソルビタン脂肪酸エステル(TG5%減量温度300℃)の2種、又は、ポリオキシエチレンアルキルエーテル(TG5%減量温度370℃)及びポリグリセリン脂肪酸エステル(TG5%減量温度260℃)の2種を用い、且つ、金属酸化物として酸化チタン粒子、酸化ケイ素粒子又は酸化亜鉛粒子を用いると、フィラメント中の粒子径20μm以上の粒子が1個未満であり、フィラメント成形時に金属酸化物の二次凝集が十分に防止され、金属酸化物の分散安定性が極めて高いことが分かった。
 実施例12では、水分散体(4)を用いてマスターバッチ(4)を製造し、且つそのマスターバッチを用いてフィルム(1)を製造すると、昇圧することなく製膜終了し、フィルムの成膜性が良好であった。
 また実施例12では、水分散体(4)を用いてマスターバッチ(4)を製造し、且つそのマスターバッチを用いてフィルム(1)を製造すると、粒子径20μm以上の粒子が1~5個であり、フィルム成形時に金属酸化物の二次凝集が防止され、金属酸化物の分散安定性が高いことが分かった。
 一方、表2の結果から、比較例1では、非イオン性界面活性剤を含有しない水分散体(11)を用いてマスターバッチ(12)を製造すると、マスターバッチが焼結フィルターを通過せず、マスターバッチ中に凝集粒子が非常に多く存在しており、金属酸化物の凝集防止性が劣った。
 また比較例1では、水分散体(11)を用いてマスターバッチ(12)を製造し、且つそのマスターバッチを用いてフィラメント(12)を製造すると、糸切れの発生が10回以上であり、フィラメントの紡糸性がやや不良であった。
 更に、比較例1では、水分散体(11)を用いてマスターバッチ(12)を製造し、且つそのマスターバッチを用いてフィラメント(12)を製造すると、フィラメント中の粒子径20μm以上の粒子が20個以上であり、実施例1~11と比較してフィラメント中に凝集粒子が非常に多く存在しており、金属酸化物の凝集防止性が劣った。
 比較例2では、非イオン性界面活性剤としてプロピレングリコール脂肪酸エステル(TG5%減量温度220℃)のみを含有する水分散体(12)を用いてマスターバッチ(13)を製造すると、マスターバッチの差圧が5MPaを超え10MPa以下の範囲となり、実施例1~11と比較してマスターバッチ中に凝集粒子が多く存在しており、金属酸化物の凝集防止性がやや劣った。
 比較例2では、非イオン性界面活性剤としてプロピレングリコール脂肪酸エステル(TG5%減量温度220℃)のみを含有する水分散体(12)を用いてマスターバッチ(13)を製造し、且つそのマスターバッチを用いてフィラメント(13)を製造すると、糸切れの発生が3回以上10回未満であり、フィラメントの紡糸性がやや不良であった。 更に、比較例2では、水分散体(12)を用いてマスターバッチ(13)を製造し、且つそのマスターバッチを用いてフィラメント(13)を製造すると、フィラメント中の粒子径20μm以上の粒子が20個以上であり、実施例1~11と比較してフィラメント中に凝集粒子が多く存在しており、金属酸化物の凝集防止性が劣った。
 比較例3では、水分散体を用いず、非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル(TG5%減量温度370℃)及びソルビタン脂肪酸エステル(TG5%減量温度300℃)の双方を含有するマスターバッチ(14)を製造すると、マスターバッチが焼結フィルターを通過せず、マスターバッチ中に凝集粒子が非常に多く存在しており、金属酸化物の凝集防止性が劣った。
 また比較例3では、水分散体を用いずにマスターバッチ(14)を製造し、且つそのマスターバッチを用いてフィラメント(14)を製造すると、糸切れの発生が10回以上であり、フィラメントの紡糸性が不良であった。
 更に、比較例3では、水分散体を用いずにマスターバッチ(14)を製造し、且つそのマスターバッチを用いてフィラメント(14)を製造すると、フィラメント中の粒子径20μm以上の粒子が20個以上であり、実施例1~11と比較してフィラメント中に凝集粒子が非常に多く存在しており、金属酸化物の凝集防止性が劣った。
 比較例4では、水分散体及びマスターバッチの双方を用いずにフィラメント(15)を製造すると、糸切れの発生が10回以上であり、フィラメントの紡糸性が不良であった。 また比較例4では、水分散体及びマスターバッチの双方を用いずにフィラメント(15)を製造すると、フィラメント中の粒子径20μm以上の粒子が20個以上であり、実施例1~11と比較してフィラメント中に凝集粒子が非常に多く存在しており、金属酸化物の凝集防止性が劣った。
 比較例5では、水分散体を用いずにマスターバッチ(14)を製造し、且つそのマスターバッチを用いてフィルム(2)を製造すると、昇圧しても製膜できず、実施例12と比較してフィルムの成膜性が劣った。
 また比較例5では、水分散体を用いずにマスターバッチ(14)を製造し、且つそのマスターバッチを用いてフィルム(2)を製造すると、フィルム中の粒子径20μm以上の粒子が20個以上であり、実施例12と比較してフィルム中に凝集粒子が非常に多く存在しており、金属酸化物の凝集防止性が劣った。

Claims (22)

  1.  ポリアミド樹脂(A)と、
     金属酸化物を主成分とする無機化合物と、
     熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤と、
     を含有するマスターバッチ。
  2.  前記マスターバッチ中の前記ポリアミド樹脂(A)、前記無機化合物及び前記非イオン性界面活性剤の合計の質量を100質量%としたときの、前記非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下である、請求項1に記載のマスターバッチ。
  3.  前記非イオン性界面活性剤が、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミドから選択される1種又は2種以上からなる、請求項1又は2に記載のマスターバッチ。
  4.  前記非イオン性界面活性剤が、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテルから選択される1種又は2種以上からなる、からなる、請求項3に記載のマスターバッチ。
  5.  前記ポリアミド樹脂(A)が、ナイロン-6及びナイロン-66から選択される1種又は2種からなる、請求項1に記載のマスターバッチ。
  6.  請求項1~5のいずれか1項に記載のマスターバッチと、ポリアミド樹脂(B)とを配合してなる熱可塑性樹脂組成物。
  7.  前記熱可塑性樹脂組成物中の前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下である、請求項6に記載の熱可塑性樹脂組成物。
  8.  前記ポリアミド樹脂(B)が、ナイロン-6及びナイロン-66から選択される1種又は2種からなる、請求項6又は7に記載の熱可塑性樹脂組成物。
  9.  請求項6~8のいずれか1項に記載の熱可塑性樹脂組成物を溶融成形してなる熱可塑性樹脂成形体。
  10.  請求項1~5のいずれか1項に記載のマスターバッチと、ポリアミド樹脂(B)とを配合してなる熱可塑性樹脂成形体。
  11.  前記熱可塑性樹脂成形体中の前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下である、請求項10に記載の熱可塑性樹脂成形体。
  12.  前記ポリアミド樹脂(B)が、ナイロン-6及びナイロン-66から選択される1種又は2種からなる、請求項10又は11に記載の熱可塑性樹脂成形体。
  13.  前記熱可塑性樹脂成形体が、フィラメント、ステープル、不織布、中空糸及びフィルムから選択されるいずれかである、請求項9~12のいずれか1項に記載の熱可塑性樹脂成形体。
  14.  金属酸化物を主成分とする無機化合物と、
     熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤と、
     を含有する水分散体。
  15.  前記水分散体中の前記無機化合物、前記非イオン性界面活性剤及び水の合計の質量を100質量%としたときの、前記非イオン性界面活性剤の含有量が0.01質量%以上40質量%以下である、請求項14に記載の水分散体。
  16.  金属酸化物を主成分とする無機化合物と、熱重量分析による5%減量温度が250℃以上である非イオン性界面活性剤とを混合して、前記無機化合物を1質量%以上80質量%以下含有する水分散体を準備する工程(I)と、
     ポリアミド樹脂(A)100質量部に対して、前記水分散体を1質量部以上300質量部以下で供給し、溶融混合する工程(II)と、
     を有する、マスターバッチの製造方法。
  17.  請求項16に記載の製造方法によって得られたマスターバッチと、ポリアミド樹脂(B)とを溶融混合する工程を有する、熱可塑性樹脂組成物の製造方法。
  18.  前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下となるように、前記マスターバッチと前記ポリアミド樹脂(B)を溶融混合する、請求項17に記載の熱可塑性樹脂組成物の製造方法。
  19.  請求項17又は18に記載の製造方法によって得られた熱可塑性樹脂組成物を溶融成形する工程を有する、熱可塑性樹脂成形体の製造方法。
  20.  請求項16に記載の製造方法によって得られたマスターバッチと、ポリアミド樹脂(B)とを溶融混合する工程を有する、熱可塑性樹脂成形体の製造方法。
  21.  前記マスターバッチ及び前記ポリアミド樹脂(B)の合計の質量を100質量%としたときの、前記マスターバッチの含有量が1質量%以上90質量%以下となるように、前記マスターバッチと前記ポリアミド樹脂(B)を溶融混合する、請求項20に記載の熱可塑性樹脂成形体の製造方法。
  22.  前記マスターバッチ及び前記ポリアミド樹脂(B)を用いて、フィラメント、ステープル、不織布、中空糸及びフィルムから選択されるいずれかを成形する、請求項19~21のいずれか1項に記載の熱可塑性樹脂成形体の製造方法。
PCT/JP2021/037084 2020-10-08 2021-10-07 熱可塑性樹脂組成物及びその製造方法 WO2022075393A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555550A JP7439945B2 (ja) 2020-10-08 2021-10-07 熱可塑性樹脂組成物及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-170560 2020-10-08
JP2020170560 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022075393A1 true WO2022075393A1 (ja) 2022-04-14

Family

ID=81126504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037084 WO2022075393A1 (ja) 2020-10-08 2021-10-07 熱可塑性樹脂組成物及びその製造方法

Country Status (2)

Country Link
JP (1) JP7439945B2 (ja)
WO (1) WO2022075393A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173544A (ja) * 2000-12-05 2002-06-21 Matsumura Sangyo Kk 発泡押出しシート用樹脂組成物、発泡押出しシート及びその製造方法
WO2011145730A1 (ja) * 2010-05-21 2011-11-24 旭化成ケミカルズ株式会社 マスターバッチペレットおよびその製造方法ならびに該マスターバッチペレットを含むポリアミド樹脂組成物
JP2017170386A (ja) * 2016-03-25 2017-09-28 阪本薬品工業株式会社 金属酸化物微粒子の水系分散剤、及びそれを含有する分散体
JP2018016668A (ja) * 2016-07-25 2018-02-01 阪本薬品工業株式会社 熱可塑性樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173544A (ja) * 2000-12-05 2002-06-21 Matsumura Sangyo Kk 発泡押出しシート用樹脂組成物、発泡押出しシート及びその製造方法
WO2011145730A1 (ja) * 2010-05-21 2011-11-24 旭化成ケミカルズ株式会社 マスターバッチペレットおよびその製造方法ならびに該マスターバッチペレットを含むポリアミド樹脂組成物
JP2017170386A (ja) * 2016-03-25 2017-09-28 阪本薬品工業株式会社 金属酸化物微粒子の水系分散剤、及びそれを含有する分散体
JP2018016668A (ja) * 2016-07-25 2018-02-01 阪本薬品工業株式会社 熱可塑性樹脂組成物

Also Published As

Publication number Publication date
JP7439945B2 (ja) 2024-02-28
JPWO2022075393A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
CN107254022B (zh) 一种高光ptfe防滴落剂及其制备方法
CN1160489C (zh) 生产用于合成丝的添加剂和在热塑性成丝聚合物材料中加入这些添加剂的方法
WO2021253720A1 (zh) 口罩用熔喷无纺布专用有机驻极母粒及其制备方法、制成的熔喷无纺布
TWI313695B (en) Melted-spinning grains containing thermal-stable phase-change polymer and preparation method thereof
Plochocki Melt rheology of polymer blends the morphology feedback
JPH05169515A (ja) ポリマー溶融体への添加剤の配合方法
EP1261669A1 (de) Dispergierung von pigmenten in polyolefinen
CN111607222B (zh) 树脂着色用母料、聚酰胺树脂组合物、成形品及它们的制造方法
CN102070918A (zh) 一种碳酸钙母粒的制备方法
JP2019026702A (ja) 熱可塑性複合樹脂、該樹脂を用いた3dプリンタ用フィラメント及びそれらの製造方法
JP7130256B2 (ja) 熱溶解積層法3dプリンターの造形材料用樹脂組成物およびそのフィラメント状成形体
WO2022075393A1 (ja) 熱可塑性樹脂組成物及びその製造方法
US6232371B1 (en) Dispersible additive systems for polymeric materials, and methods of making and incorporating the same in such polymeric materials
JP7439946B2 (ja) 熱可塑性樹脂組成物及びその製造方法
WO2022075395A1 (ja) 熱可塑性樹脂組成物及びその製造方法
JP5565971B2 (ja) ポリ乳酸樹脂とポリエチレンテレフタレート樹脂からなるポリマーアロイおよびその製造方法
WO2022075392A1 (ja) 熱可塑性樹脂組成物及びその製造方法
EP2428597B1 (en) All-polymer fibrillar nanocomposites and method for manufacture thereof
JP2003320528A (ja) 熱可塑性樹脂ペレット
JP4185368B2 (ja) 抗菌性ポリエステル樹脂組成物
JP2003301069A (ja) 多孔体の製造方法
JPH08157713A (ja) ポリアミド原着用マスターバッチ及びそれを用いたポリアミド原着糸
CA2208228C (en) Additive-containing synthetic filaments and yarns and carpets including such filaments
JPH0533211A (ja) 繊維原着用着色組成物
JP2000017518A (ja) ポリフッ化ビニリデン系樹脂製モノフィラメント及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877692

Country of ref document: EP

Kind code of ref document: A1