WO2022073527A2 - 一种提高耐水性能的矿物棉专用无甲醛定型剂 - Google Patents

一种提高耐水性能的矿物棉专用无甲醛定型剂 Download PDF

Info

Publication number
WO2022073527A2
WO2022073527A2 PCT/CN2022/072535 CN2022072535W WO2022073527A2 WO 2022073527 A2 WO2022073527 A2 WO 2022073527A2 CN 2022072535 W CN2022072535 W CN 2022072535W WO 2022073527 A2 WO2022073527 A2 WO 2022073527A2
Authority
WO
WIPO (PCT)
Prior art keywords
parts
setting agent
formaldehyde
acrylate
mineral wool
Prior art date
Application number
PCT/CN2022/072535
Other languages
English (en)
French (fr)
Other versions
WO2022073527A9 (zh
WO2022073527A3 (zh
Inventor
朱玉国
李炳泉
董春生
Original Assignee
江苏艾科赛特新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏艾科赛特新材料有限公司 filed Critical 江苏艾科赛特新材料有限公司
Priority to KR1020247003510A priority Critical patent/KR20240028465A/ko
Priority to JP2022554462A priority patent/JP7269689B2/ja
Publication of WO2022073527A2 publication Critical patent/WO2022073527A2/zh
Publication of WO2022073527A3 publication Critical patent/WO2022073527A3/zh
Publication of WO2022073527A9 publication Critical patent/WO2022073527A9/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Definitions

  • the invention belongs to the field of polymer chemical materials, in particular to a special formaldehyde-free setting agent for mineral wool that improves water resistance.
  • Mineral wool usually includes rock wool, glass wool and slag wool. It has the properties of light capacity, good heat preservation, low thermal conductivity, strong heat resistance, sound insulation, waterproof, stable chemical properties, acid and alkali resistance, non-corrosion and other properties. A new type of lightweight thermal insulation material. Mineral wool and its products are widely used in metallurgy, construction, petroleum, chemical, textile, transportation and national defense and other industrial sectors, especially the application of rock wool in mineral wool in the construction field has only flourished in recent years. There is still a lot of room for improvement in the development of agricultural and other fields. Its outstanding thermal insulation, sound absorption and noise reduction, and fire safety performance have attracted more and more attention from all walks of life.
  • the mineral wool industry usually needs to use a setting agent.
  • the setting agent is generally an oligomeric resin aqueous solution. Through the curing and bonding of the resin, the loose mineral wool is shaped into products such as boards, felts, and cotton, giving mineral wool thermal insulation products good physical properties. , Mechanical properties, play the role of bonding fibers to increase the strength of mineral wool.
  • the traditional phenolic resin rock wool setting agent has been strictly regulated or even stopped production because it will produce a large amount of formaldehyde and phenol sewage pollution. Therefore, more and more enterprises Committed to the development of more environmentally friendly and safe styling agents to replace traditional phenolic resin styling agents.
  • US5661213 patent discloses a curable aqueous composition
  • a curable aqueous composition comprising a polymeric polyacid polyol and a phosphorous-containing accelerator; the composition can be used as a binder in heat-resistant non-woven fabrics such as non-woven fabrics composed of glass fibers,
  • the adhesive prepared by the composition has an unsatisfactory bond strength when bonding cotton boards with high performance requirements, especially in a high temperature and high humidity environment, which makes the cotton boards easy to use and construct.
  • patent CN106795247A discloses an adhesive that can bond glass fibers, the adhesive contains a polymer with hydroxyl groups, but encounters volatile alkali ( Ammonia water) will cause the molecular weight to increase, and there will be an unstable trend. It will be further volatilized into the air during the production process, and there will be environmental pollution problems during production. To sum up, there are still some insurmountable technical problems in the existing formaldehyde-free polyacrylic acid setting agents. Among them, insufficient storage stability and bonding strength, especially insufficient wet strength and low strength retention rate are an urgent need. solved problem.
  • the invention provides a special formaldehyde-free mineral wool with improved water resistance.
  • Styling agent calculated according to 100% solid content, includes the following components by weight:
  • Water-soluble resin prepolymer 100 parts;
  • Polyol 10 to 70 parts
  • the water-soluble resin prepolymer is obtained from monomer raw materials through copolymerization reaction, and the monomer raw materials include the following components in terms of the amount of substances:
  • the special formaldehyde-free setting agent for mineral wool of the present invention is calculated according to 100% solid content, and includes the following components by weight:
  • Water-soluble resin prepolymer 100 parts;
  • Polyol 12 to 50 parts
  • the water-soluble resin prepolymer is prepared from monomer raw materials through copolymerization reaction, and the monomer raw materials include the following components in terms of the amount of substances:
  • the number-average molecular weight of the water-soluble resin prepolymer is 500-30,000, preferably 800-10,000, more preferably 1,000-5,000, and the number-average molecular weight of the present invention uses gel permeation chromatography (GPC). technology is tested.
  • the solid content can be 1-99%, preferably 20-60%, and the pH is 1.0-4.0.
  • the ethylenically unsaturated carboxylic acid monomer of the present invention can be acrylic acid (AA), methacrylic acid (MA), crotonic acid, fumaric acid, maleic acid (MLA), 2-methylmaleic acid, Itaconic acid, 2-methylitaconic acid, ⁇ - ⁇ -methyleneglutaric acid, monoalkyl maleate, monoalkyl fumarate, maleic anhydride, acrylic anhydride, methacrylic anhydride , one or more of isooctyl acrylic anhydride, crotonic anhydride or fumaric anhydride, preferably one or more of acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid or maleic acid .
  • the ethylenically unsaturated hydroxyl functional monomers of the present invention can be 2-hydroxyethyl methacrylate (HEMA), 2-hydroxy acrylate Ethyl ethyl ester (HEA), 2-hydroxypropyl methacrylate (HPMA), 1-methyl-2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 1-methyl-2 acrylate - one or more of hydroxyethyl ester, 2-hydroxybutyl methacrylate or 2-hydroxybutyl acrylate, preferably 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate one or more of them.
  • HEMA 2-hydroxyethyl methacrylate
  • HSA 2-hydroxy acrylate Ethyl ethyl ester
  • HPMA 2-hydroxypropyl methacrylate
  • 1-methyl-2-hydroxyethyl methacrylate 2-hydroxypropyl acrylate
  • 2-hydroxypropyl acrylate 1-methyl-2 acrylate - one or more of
  • the ethylenically unsaturated hydroxyl functional monomer can effectively improve the bond strength of the styling agent, especially the dry bond strength. It is found through research in this application that when the addition amount of the ethylenically unsaturated hydroxyl functional monomer is less than 0.5% by mole, the effect of improving the strength cannot be significantly improved. Viscosity becomes more unstable and tends to increase gradually over time.
  • the hydrophobic ethylenically unsaturated monomer mentioned in the present invention refers to the hydrophobic ethylenically unsaturated monomer that does not contain a carboxyl group or a hydroxyl functional group, which can further effectively improve the water resistance of the styling agent, and can effectively improve the water resistance of the styling agent.
  • the hydrophilic functional group of the agent can play a certain shielding effect, which can effectively improve the wet strength and strength retention rate of the styling agent.
  • the hydrophobic unsaturated monomers described in the present invention include, but are not limited to, such as acrylate monomers, which can be (meth)acrylate monomers, including methyl acrylate, ethyl acrylate, butyl acrylate, acrylic acid- 2-ethylhexyl, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate or lauryl methacrylate; also vinyl aromatic monomers , such as styrene, alpha-methylstyrene, p-methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylene or vinyltoluene; vinyl acetate monomers such as vinyl acetate or vinyl butyrate; vinyl monomers such as vinyl alcohol, vinyl chloride, vinyl toluene, vinyl benzophenone or vinylidene chloride; other monomers that can participate in the polymer
  • the hydrophobic unsaturated monomer described in the present invention is preferably a hydrophobic unsaturated monomer with a water solubility of 0-1.5g/100g, which can be ethyl acrylate, n-butyl acrylate (BA), isobutyl acrylate ( i-BA), sec-butyl acrylate, tert-butyl acrylate, n-propyl acrylate (PA), cyclohexyl acrylate (CHA), lauryl acrylate, 2-ethylhexyl acrylate (2-EHMA), methyl acrylate Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate (n-BMA), lauryl methacrylate (LMA), 2-ethylhexyl methacrylate (2-EHMA), methyl methacrylate
  • LMA isobornyl acrylate
  • i-BA isobutyl acrylate
  • the applicant has further found that, when using the above-mentioned hydrophobic monomers, if a type of monomer (so-called soft monomer) whose homopolymer has a lower glass transition temperature (Tg) is used in the synthesis, the obtained The strength and strength retention rate of the sizing agent have been further improved.
  • the Tg of the homopolymer of the monomer described in the present invention is abbreviated as the Tg of the monomer, and the Tg of the present invention can be determined by GB/T29611- 2013 "Determination of glass transition temperature of raw rubber, differential scanning calorimetry (DSC)" test, the test conditions are heating rate 10 °C/min, nitrogen atmosphere.
  • the possible reason is that the styling agent applied for in the present invention itself is a product with high crosslinking density, and the introduction of an appropriate amount of hydrophobic soft elastomer can improve the toughness of the styling agent itself to a certain extent, Thereby ultimately improving the bond strength of the setting agent.
  • the preferred low-Tg monomer and low-solubility hydrophobic monomer in the present invention refers to a hydrophobic unsaturated monomer with a monomer Tg between -15°C to -80°C and a water solubility of 0 to 0.5g/100g, preferably acrylic acid
  • a hydrophobic unsaturated monomer with a monomer Tg between -15°C to -80°C and a water solubility of 0 to 0.5g/100g, preferably acrylic acid
  • n-butyl acrylate (BA) lauryl acrylate
  • n-propyl acrylate (n-BA) isobutyl acrylate
  • 2-ethylhexyl acrylate 2-EHA lauryl methacrylate
  • the amount of the hydrophobic unsaturated monomer added in the present invention is 0.5-5% by mole, preferably 1.5-4.5% by mole, more preferably 3.0-4.5% by mole. If the addition amount is less than 0.5% by mole, the added unsaturated hydrophobic monomer cannot significantly improve the water resistance. If the addition amount is more than 5% by mole, the crosslinking density and bonding strength of the styling agent will be reduced. greatly reduced.
  • the applicant found that when the molar ratio of ethylenically unsaturated hydroxyl functional monomer b:hydrophobic ethylenically unsaturated monomer c 1:1.5 ⁇ 1.5:1 and the content of monomer b is 3.0%- At 4.5% mole, the dry strength of the setting agent is >5.0MPa, the wet strength is >3.5MPa, the strength retention rate is >70%, and its viscosity growth rate is not higher than 20%, which has the best performance.
  • the polyol described in the present invention is a compound with at least two hydroxyl groups, which can be 1,2-ethylene glycol, 1,3-propanediol, diethylene glycol, 1,4-butanediol, 1,2 ,3-cyclohexanetriol, 1,2,4-butanetriol, 1,2,3-butanetriol, 1,2,5-pentanetriol, glycerin, glycerol polyether polyol, 2,2- Dimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-2,4 -Butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, 1,4 -cyclohexan
  • alkanolamine polyol such as ethanolamine, isopropanolamine, diethanolamine, diisopropanolamine or triethanolamine
  • it can also be an addition polymer containing at least two hydroxyl groups, such as polyvinyl alcohol, partially hydrolyzed Polyvinyl acetate, homopolymer or copolymer of hydroxyethyl (meth)acrylate or hydroxypropyl (meth)acrylate
  • preferred polyols of the present invention are ethylene glycol, propylene glycol, glycerin, trimethylol
  • propane, diethanolamine, isopropanolamine, triethanolamine or polyvinyl alcohol are examples of propane, diethanolamine, isopropanolamine, triethanolamine or polyvinyl alcohol.
  • the catalyst described in the present invention refers to a catalyst that can promote the reaction between carboxylic acid and hydroxyl group, such as a phosphorus-containing catalyst, such as hypophosphorous acid, hypophosphite, alkali metal hypophosphite, alkali metal phosphite, alkali metal polyphosphate, Alkali metal dihydrogen phosphates, polyphosphoric acids, alkyl phosphinic acids or Lewis acids; hypophosphites such as sodium hypophosphite, zinc hypophosphite, potassium hypophosphite, calcium hypophosphite or magnesium hypophosphite; also metals which are inorganic acids Salts such as sodium (pyro)bisulfite or sulfites; Lewis acid catalysts may be sulfates, nitrates, halides, citrates, emulsions of zinc, aluminum, zirconium, iron, magnesium, tin, titanium or boron salt or gluconate.
  • the preferred catalyst of the present invention is hypophosphite, and the preferred hypophosphite is one or more of sodium hypophosphite, zinc hypophosphite, potassium hypophosphite, calcium hypophosphite or magnesium hypophosphite.
  • the coupling agent can set up a "molecular bridge" between the interface of inorganic substances and organic substances, firmly combine the two materials with different properties, improve the wetting and anti-wetting strength of the setting agent, and increase the adhesion of the interface.
  • the coupling agent of the present invention is preferably epoxy siloxane coupling agent and aminosilane coupling agent, furthermore, the preferred amino coupling agent or epoxy-based coupling agent in the present invention
  • the coupling agent is selected from 3-(2,3-glycidoxy)propyltrimethoxysilane (KH560), 3-aminopropyltriethoxysilane (KH550), 3-(2,3-epoxy One or more of propoxy)propyltriethoxysilane (KH561) or 3-(2,3-glycidoxy)propyldimethoxysilane; water repellent can effectively prevent the adsorption of water molecules On the surface of glass fiber, the hydrophobicity of mineral wool is improved; the use of dust-proof oil in mineral wool can effectively reduce a large amount of flying dust during production, cutting, processing and handling.
  • the formaldehyde-free setting agent, coupling agent, water repellent and dust-proof oil for mineral wool are all calculated according to 100% solid content, and the
  • Formaldehyde-free setting agent for mineral wool 100 copies
  • Coupling agent 0.1-5 parts; more preferably 0.2-1.0 parts;
  • Dust-proof oil 0 to 10 parts.
  • the styling agent of the present invention can also be appropriately added with water as required, and adding an appropriate amount of water can reduce the viscosity, which is beneficial to the transportation and use of the styling agent.
  • water can be selected from pure water, tap water or Other circulating water that does not affect the performance of the setting agent.
  • the formaldehyde-free setting agent for mineral wool is calculated on the basis of 100% solid content, and the amount of water added in every 100 parts by mass of the formaldehyde-free setting agent for mineral wool is 0-200 parts by mass.
  • the styling agent composition of the present invention is preferably a formaldehyde-free copolymer composition.
  • "Formaldehyde-free” means that the composition is free of formaldehyde, does not release formaldehyde during curing, and that the additives used, such as polyols and other auxiliaries, are also free of formaldehyde, do not generate formaldehyde during polymerization, and are Formaldehyde is also not generated or released during the treatment of the substrate.
  • the present invention characterizes its stability by testing the viscosity growth rate (%) before and after the high temperature curing of the sample in a high temperature oven at 60°C/4 weeks, This method can effectively observe the stability of the setting agent.
  • the preferred setting agent of the present invention is under the curing condition of 60°C/4 weeks, and the viscosity growth rate is not higher than 20%, and the viscosity growth rate is more preferably not higher than 15%.
  • the growth rate (%) is not higher than 10%.
  • the test method for the bonding strength of the setting agent of the present invention is tested according to Appendix C of the standard GB/T 34181-2017, the difference is that the solid content of the setting agent of the present invention is used to replace the premixed phenolic resin in Appendix C, The drying time is changed from the original 180°C/20min to 180°C/30min, and other steps remain unchanged. The resin content in the test is uniformly tested at 5%.
  • the dry bond strength is required by the standard appendix C at 23°C at room temperature
  • the mineral wool-specific styling agent described in this application cannot be fully evaluated using the performance standards of traditional composite materials or matrix binders in the adhesive industry.
  • the key consideration is the dry-wet bond strength
  • the use process of the styling agent described in the present invention is to coat the surface of the fiber as uniformly as possible in the form of liquid spray, and mainly through the point contact between the fiber and the fiber A weak bond in the form to achieve the setting and performance of mineral wool.
  • the effect maintained by the force of this weak bond is related to the dry strength, wet strength and strength retention rate of the styling agent. Therefore, from this point of view, the dry strength, wet strength and strength retention rate of the styling agent are equally important.
  • a major innovation of the present invention is to comprehensively balance the dry strength, wet strength and strength retention rate.
  • the dry strength of the setting agent is required to be >4.0MPa, the wet strength is >3.0MPa, and the strength retention rate is >60%; the dry strength of the setting agent is preferably >5.0MPa, the wet strength is >3.5MPa, and the strength retention rate is >70% %, through the optimization of these three indicators, the performance of the prepared mineral wool product is much better than that of the traditional acrylic acid homopolymer product, and has good effect and construction performance in high temperature and high humidity environment.
  • the formaldehyde-free mineral wool setting agent made by the present invention has no free formaldehyde release, no addition of volatile alkali, and meets the standard requirements of green environmental protection, no VOC and no formaldehyde;
  • the mineral wool setting agent of the present invention has good stability, the viscosity still does not change significantly under high temperature environment, and its viscosity growth rate is within 10%, which can be stored stably for a long time and is convenient for industrial use;
  • the formaldehyde-free mineral wool setting agent prepared by the present invention can have good dry and wet strength and water resistance at the same time, and the best comprehensive performance of the mineral wool setting agent prepared by the scheme of the present invention can reach dry strength> 5.0MPa, Wet strength>3.5MPa, strength retention>70%, much better than traditional acrylic homopolymer products;
  • the hardness of the mineral wool board produced by the fixing agent product proposed by the present invention is better than that of the traditional acrylic homopolymer product, and has good water resistance and aging resistance and construction performance.
  • test method for the formaldehyde content of the setting agent is tested according to the appendix D of the standard GB/T 34181-2017 "Styling Agent for Mineral Wool Thermal Insulation Products".
  • the test method for the performance of mineral wool refers to the following standards:
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 98.0:1.0:1.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 97.5:1.0:1.5; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 96.0:1.0:3.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.5:1.0:4.5; the number-average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 97.5:1.5:1.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 97.0:1.5:1.5; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 95.5:1.5:3.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.0:1.5:4.5; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 96.0:3.0:1.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 95.5:3.0:1.5; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.0:3.0:3.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 92.5:3.0:4.5; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.5:4.5:1.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.0:4.5:1.5; the number-average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 92.5:4.5:3.0; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 91.0:4.5:4.5; the number average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, and uniformly configured to a solid content of 50%, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid:butyl acrylate is 95.5:4.5; the number-average molecular weight Mn of the resin prepolymer is 2500, without hydroxyethyl acrylate; in terms of solid content, 100 parts of the above resin prepolymer Compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite and 0.3 parts of KH560 coupling agent were mixed together, mixed evenly by adding an appropriate amount of water, uniformly configured to a solid content of 50%, and then cured at a high temperature of 60 ° C The viscosity change was tested for 4 weeks, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate is 95.5:4.5; the number-average molecular weight Mn of the resin prepolymer is 2500, without butyl acrylate; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, and uniformly configured to a solid content of 50%, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate is 95.5:5.5; the number-average molecular weight Mn of the resin prepolymer is 2500, without butyl acrylate; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, and uniformly configured to a solid content of 50%, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 99.0:0.5:0.5; the number-average molecular weight Mn of the resin prepolymer is 2500; in terms of solid content, 100 parts of the above resin prepolymer compound, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding an appropriate amount of water, and uniformly configured to a solid content of 50%, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change , and another part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer is all acrylic acid; the number-average molecular weight Mn of the polymer is 2500, and does not contain butyl acrylate and hydroxyethyl acrylate; in terms of solid content, 100 parts of the above resin prepolymer, 34.5 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed evenly by adding appropriate amount of water, uniformly configured to a solid content of 50%, and then a part of the sample was used for curing at a high temperature of 60 ° C for 4 weeks to test its viscosity change, in addition A part of the sample was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard.
  • the composition of the resin prepolymer is all acrylic acid; the number-average molecular weight Mn of the polymer is 2500, and does not contain butyl acrylate and hydroxyethyl acrylate; in terms of solid content, 100 parts of the above resin prepolymer, 38.8 parts of triethanolamine, 5 parts of catalyst sodium hypophosphite, mixed uniformly by adding appropriate amount of water, uniformly configured to 50% solid content, and then a part of the sample was used for curing at high temperature 60 °C environment for 4 weeks to test its viscosity change, in addition A part of the samples was mixed with 0.3 parts of KH560 coupling agent, and the dry-wet bond strength, strength retention rate and formaldehyde content of the setting agent were tested according to the national standard; the addition of triethanolamine in this comparative example 6 was taken into account.
  • Comparative Example 5 Compared with Comparative Example 3, the content of carboxyl group in Comparative Example 5 is about 12% higher than that in Comparative Example 3. Therefore, this Comparative Example is used to compare the effect of the same carboxyl/hydroxyl content as in Comparative Example 3 on the bond strength. , the proportion of triethanolamine is increased by 12%, which is convenient to compare with Comparative Example 3.
  • Table 1 shows the proportions of the styling agents prepared in the above examples and comparative examples.
  • Table 2 shows the performance test results of the styling agents prepared in the above examples and comparative examples.
  • Example 11 Example 12
  • Example 15 Example 16
  • the dry strength of the styling agent is >5.0MPa
  • the wet strength is >3.5MPa
  • the strength retention rate is >70%
  • its viscosity growth rate is not higher than 20%, with best performance.
  • Example 17 is based on Example 11, except that lauryl acrylate is used instead of BA, and other conditions remain unchanged.
  • Example 18 is based on Example 11, except that 2-EHA is used instead of BA, and other conditions remain unchanged.
  • Comparative Example 7 is based on Example 11, except that MA is used instead of BA, and other conditions remain unchanged.
  • Comparative Example 8 is based on Example 11, except that MMA is used instead of BA, and other conditions remain unchanged.
  • Table 4 shows the performance test results of the styling agents prepared in the above examples and comparative examples.
  • Example 19 based on Example 6, differs in that different raw materials and proportions are used, and the specific raw materials and proportions are shown in Table 5.
  • Example 20 based on Example 6, differs in that different raw materials and proportions are used, and the specific raw materials and proportions are shown in Table 5.
  • Example 21 based on Example 6, differs in that different raw materials and proportions are used, and the specific raw materials and proportions are shown in Table 5.
  • Example 22 based on Example 6, differs in that different raw materials and proportions are used, and the specific raw materials and proportions are shown in Table 5.
  • Table 6 shows the performance test results of the styling agents prepared in the above examples and comparative examples.
  • test examples of this application use the formulations of the setting agent in Example 11 and Comparative Example 6 in this application to prepare the mineral wool board, and at the same time, 100 parts of the formaldehyde-free setting agent are based on the 100% solid content of the special formaldehyde-free setting agent for mineral wool. In addition, 3 parts of hydrophobic agent and 6 parts of dust-proof oil were further added; appropriate amount of water was added according to the needs of the process.
  • Test Example 1 and Comparative Example 1 were both used for testing rock wool boards; Test Example 2 and Comparative Example 2 The same, both are used for testing slag wool boards; Test Example 3 is the same as Comparative Example 3, both are used for testing glass wool boards, and the specific parameters are shown in Table 7 below.
  • the mineral wool samples prepared in the above table 7 were cut into two groups according to the requirements of the national standard, one group was used as the sample before aging and curing, and the strength was tested according to the requirements of the national standard, and the other group was used as the sample after aging and curing, which was put into a constant temperature and humidity chamber. , aged and cured for 7 days under the conditions of 50 ⁇ 2°C, 95 ⁇ 3% temperature and humidity, and then tested the strength according to the requirements of the national standard, and then recorded the strength and strength retention rate before and after aging respectively.
  • the data are shown in Table 8 and Table 9.
  • the mineral wool board prepared by using the setting agent of the formula of the present invention is superior to the traditional acrylic acid homopolymer setting agent in terms of strength and strength retention rate before and after aging, especially organic matter When the content is low, the difference in the comparative test results is especially obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种提高耐水性能的矿物棉专用无甲醛定型剂,按100%固含量计算,包括以下重量配比的组分:可水溶性树脂预聚物:100份;多元醇:10~70份;催化剂:2~15份。其中,可水溶性树脂预聚物由单体原料通过共聚反应制得,单体原料按物质的量计包括如下组分:烯键式不饱和羧酸单体:90.0~99.0%;烯键式不饱和羟基功能单体:0.5~5.0%;疏水性烯键式不饱和单体:0.5~5.0%。本发明提供的定型剂无游离甲醛释放,达到绿色环保无VOC和无甲醛的标准要求,具有良好的稳定性,可长期稳定储存,方便工业使用,同时所生产的矿棉板硬度优于传统的丙烯酸均聚物产品,具有良好的耐水耐老化性能和施工性能。

Description

一种提高耐水性能的矿物棉专用无甲醛定型剂 技术领域
本发明属于高分子化工材料领域,具体涉及一种提高耐水性能的矿物棉专用无甲醛定型剂。
背景技术
矿物棉通常包括岩棉、玻璃棉和矿渣棉,具有容量轻、保温性好、热导率小、耐热性强、隔音、防水、化学性能稳定、抗酸碱、不腐蚀等性能,是一种新型的轻质保温材料。矿物棉及其制品广泛用于冶金、建筑、石油、化工、轻纺、交通及国防等工业部门,特别是矿物棉中的岩棉在建筑领域的应用更是近几年才得到蓬勃发展,在农用等领域的发展还有很大的上升空间,其出众的保温隔热、吸音降噪、防火安全性能已经得到各行各业越来越多的关注。
矿物棉行业中通常需要使用定型剂,定型剂一般为低聚态树脂水溶液,通过树脂的固化粘结作用将松散的矿物棉定型成板、毡、棉等产品,赋予矿物棉绝热制品良好的物理、力学性能,起到粘结纤维增加矿物棉强度的作用。近年来,随着国家对绝热保温行业的环保监管进一步趋严,传统的酚醛树脂岩棉定型剂因为会产生大量的甲醛和苯酚污水污染而受到严格的管制甚至停产,因此越来越多的企业致力于研发更环保安全的定型剂用于替代传统的酚醛树脂定型剂。
US5661213专利公开了一种可固化含水组合物,包含聚合多酸多元醇和含亚磷促进剂;该组合物可在耐热无纺织物如由玻璃纤维构成的无纺织物中用作粘结剂,然而该组合物制备得到的粘合剂在粘结对性能要求较高的棉板时其粘结强度不够理想,特别是高温高湿环境下的强度较差,从而导致棉板在使用施工时容易下垂,存在诸多不方便,降低了施工效率;专利CN106795247A公开了一种可以粘结玻璃纤维的粘合剂,该粘合剂包含具有羟基的聚合物,然而在使用时遇到挥发性的碱(氨水)会导致分子量会增高,有不稳定的趋势,在生产过程中会进一步挥发到空气中,生产时存在环境污染问题。综上所述,现有的无甲醛聚丙烯酸定型剂中仍然存在着一些难以克服的技术问题,其中,储存稳定性和粘结强度不足,特别是湿强度不足和强度保留率偏低是一个亟待解决的问题。
发明内容
本发明针对现有的无甲醛定型剂强度不足,特别是湿强度较低,导致生产的矿物棉在高温高湿条件下性能容易衰减的问题,提供了一种提高耐水性能的矿物棉专用无甲醛定型剂,按100%固含量计算,包括以下重量配比的组分:
可水溶性树脂预聚物:100份;
多元醇:10~70份;
催化剂:2~15份。
其中,可水溶性树脂预聚物由单体原料通过共聚反应制得,单体原料按物质的量计包括如下组分:
a,烯键式不饱和羧酸单体:90.0~99.0%;
b,烯键式不饱和羟基功能单体:0.5~5.0%;
c,疏水性烯键式不饱和单体:0.5~5.0%。
优选地,本发明的矿物棉专用无甲醛定型剂按100%固含量计算,包括以下重量配比的组分:
可水溶性树脂预聚物:100份;
多元醇:12~50份;
催化剂:5~10份。
其中,所述可水溶性树脂预聚物由单体原料通过共聚反应制得,所述单体原料按物质的量计包括如下组分:
a,烯键式不饱和羧酸单体:92.5~96.0%;
b,烯键式不饱和羟基功能单体:3.0~4.5%;
c,疏水性烯键式不饱和单体:1.0~3.0%。
优选地,可水溶性树脂预聚物的数均分子量为500~30000,优选为800-10000,更优选为1000-5000,本发明所述的数均分子量系用使用凝胶渗透色谱(GPC)技术进行测试得到。其固含量可以为1~99%,优选为20~60%,pH值为1.0~4.0。
本发明所述的烯键式不饱和羧酸单体可以是丙烯酸(AA)、甲基丙烯酸(MA)、巴豆酸、富马酸、马来酸(MLA)、2-甲基马来酸、衣康酸、2-甲基衣康酸、α-β-亚甲基戊二酸、马来酸单烷基酯、富马酸单烷基酯、马来酸酐、丙烯酸酐、甲基丙烯酸酐、异辛基丙烯酸酐、巴豆酸酐或富马酸酐中的一种或几种,优选为丙烯酸、甲基丙烯酸、巴豆酸、富马酸、衣康酸或马来酸中的一种或者几种。
本发明所述的烯键式不饱和羟基功能单体,包括但不限于(甲基)丙烯酸羟烷酯单体,可以为甲基丙烯酸-2-羟乙酯(HEMA)、丙烯酸-2-羟乙酯(HEA)、甲基丙烯酸-2-羟丙酯(HPMA)、甲基丙烯酸-1-甲基-2-羟乙酯、丙烯酸-2-羟基丙酯、丙烯酸-1-甲基-2-羟乙酯、甲基丙烯酸-2-羟丁酯或丙烯酸-2-羟丁酯中的一种或几种,优选为丙烯酸-2-羟乙酯或甲基丙烯酸-2-羟乙酯中的一种或几种。
烯键式不饱和羟基功能单体可以有效提高定型剂的粘结强度特别是干粘结强度。本申请经研究发现,当烯键式不饱和羟基功能单体的添加量小于0.5%摩尔份时,不能起到明显改善的提高强度的作用,如果添加量大于5%摩尔份,那么定型剂的粘度会变得较为不稳定,会有随着时间的延长而逐渐提高的趋势。
本发明中所述的疏水性烯键式不饱和单体,是指不包含羧基或者羟基功能基团的疏水性烯键式不饱和单体,它可以进一步有效提高定型剂的耐水性,对定型剂的亲水功能基团起到一定的屏蔽效应,从而可有效提高定型剂的湿强度和强度保留率。本发明所述的疏水性不饱和单体包括但不限制于如丙烯酸酯类单体,可以是(甲基)丙烯酸酯单体,其包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸-2-乙基己酯、丙烯酸癸酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲基丙烯酸异癸酯或甲基丙烯酸月桂酯;还可以是乙烯基类芳香族单体,例如苯乙烯、α-甲基苯乙烯、p-甲基苯乙烯、乙基乙烯基苯、乙烯基萘、乙烯基二甲苯或乙烯基甲苯;乙酸乙烯酯类单体,如乙酸乙烯酯或丁酸乙烯酯;乙烯基单体,例如乙烯醇、氯乙烯、乙烯基甲苯、乙烯基二苯甲酮或偏二氯乙烯;还可以是其 它可参与聚合反应的单体如丙烯腈或(甲基)丙烯酸缩水甘油酯。
进一步,本发明所述的疏水性不饱和单体优选水溶解度为0~1.5g/100g的疏水性不饱和单体,可以是丙烯酸乙酯、丙烯酸正丁酯(BA)、丙烯酸异丁酯(i-BA)、丙烯酸仲丁酯、丙烯酸叔丁酯、丙烯酸正丙酯(PA)、丙烯酸环己酯(CHA)、丙烯酸月桂酯,丙烯酸-2-乙基己酯(2-EHMA)、甲基丙烯酸甲酯、甲基丙烯酸乙酯,甲基丙烯酸正丁酯(n-BMA)、甲基丙烯酸月桂酯(LMA),甲基丙烯酸-2-乙基己酯(2-EHMA)、甲基丙烯酸异冰片酯(LMA)苯乙烯、α-甲基苯乙烯、p-甲基苯乙烯、乙基乙烯基苯、乙烯基萘、乙烯基二甲苯、乙烯基甲苯或氯乙烯基甲苯中的一种或几种。
本申请人进一步发现,使用以上所述的疏水性单体时,如果采用其均聚物的玻璃化转变温度(Tg)较低的一类单体(所谓的软单体)参与合成,所得到的定型剂的强度和强度保留率有进一步提高,为了简称,本发明文中所述的单体的均聚物的Tg简称为单体的Tg,同时本发明所述的Tg可以由GB/T29611-2013《生橡胶玻璃化转变温度的测定,差示扫描量热法(DSC)》测试得到,测试条件是升温速率10℃/min,氮气氛围。不限制于任何理论,可能的原因是本发明申请的定型剂本身即是一个交联密度较高的产品,适量的憎水性软弹体的引入,可以在一定程度上提高定型剂本身的韧性,从而最终提高定型剂的粘结强度。本发明优选的低Tg单体低溶解度疏水性单体,是指单体Tg在-15℃~-80℃之间、水溶解度0~0.5g/100g的疏水性不饱和单体,优选为丙烯酸正丁酯(BA)、丙烯酸月桂酯、丙烯酸正丙酯(n-BA)、丙烯酸异丁酯、丙烯酸-2-乙基己酯2-EHA或甲基丙烯酸月桂酯中的一种或几种。
本发明所述的疏水性不饱和单体的添加量为0.5~5%摩尔份,优选为1.5~4.5%摩尔份,更优选3.0~4.5%摩尔份。如果添加量小于0.5%摩尔份,则所添加的不饱和憎水性单体不能起到明显的改善耐水性作用,如果添加量大于5%摩尔份,那么定型剂的交联密度和粘结强度会有较大程度降低。
进一步,本申请人发现,当烯键式不饱和羟基功能单体b:疏水性烯键式不饱和单体c的摩尔比=1:1.5~1.5:1并且单体b的含量在3.0%-4.5%摩尔时,定型剂的干强度>5.0MPa,湿强度>3.5MPa,强度保留率>70%,并且其粘度增长率不高于20%,具有最佳的性能。
本发明所述的多元醇为带至少两个羟基的化合物,可以是1,2-乙二醇、1,3-丙二醇、一缩二乙二醇、1,4-丁二醇、1,2,3-环已三醇、1,2,4-丁三醇、1,2,3-丁三醇、1,2,5-戊三醇、甘油、甘油聚醚多元醇、2,2-二甲基-1,3-丙二醇、2-丁基-2-乙基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、2-甲基-2,4-丁二醇、1,5-戊二醇、3-甲基-1,5-戊二醇、2-甲基-2,4-戊二醇、1,6-己二醇、1,4-环己二醇、2-乙基-1,3-己二醇、2-羟甲基-2-甲基-1,3-丙二醇、2-乙基-2-羟甲基-2-甲基-1,3-丙二醇、1,2,6-己三醇、2,2-二羟甲基-2,3-丙二醇、季戊四醇、三羟甲基丙烷、葡萄糖、果糖、山梨醇、蔗糖、甘露糖醇、麦芽糖、麦芽糖醇、葡萄糖、间苯二酚、邻苯二酚、连苯三酚、1,2-乙二醇二聚体、1,2-乙二醇三聚体、1,2-丙二醇、1,2-丙二醇二聚体或者1,2-丙二醇三聚体等。也可以是烷醇胺多元醇,如乙醇胺、异丙醇胺、二乙醇胺、二异丙醇胺或三乙醇胺;也可以是包含至少两个羟基的加聚物,如聚乙烯醇、部分水解的聚乙酸乙烯酯,(甲基)丙烯酸羟乙酯或(甲基)丙烯酸羟丙酯的均聚物或共聚物;进一步,本发明优选的多元醇为乙二醇、丙二醇、甘油、三羟甲基丙烷、二乙醇胺、异丙醇胺、三乙醇胺或聚乙烯醇中的一种或几种。
本发明所述的催化剂是指可以促进羧酸与羟基反应的催化剂,如含磷的催化剂,例如次磷酸、次磷酸盐、碱金属次磷酸盐、碱金属亚磷酸盐、碱金属聚磷酸盐、碱金属磷酸二氢盐、聚磷酸、烷基次膦酸或路易斯酸;次磷酸盐如次磷酸钠、次磷酸锌、次磷酸钾、次磷酸钙或次磷酸镁;还可以是无机酸的金属盐,例如(焦)亚硫酸氢钠或亚硫酸盐;路易斯酸催化剂可以是锌、铝、锆、铁、镁、锡、钛或硼的硫酸盐、硝酸盐、卤化物、柠檬酸盐、乳酸盐或葡糖酸盐。本发明优选的催化剂是次磷酸盐,优选的次磷酸盐是次磷酸钠、次磷酸锌、次磷酸钾、次磷酸钙或次磷酸镁中的一种或几种。
对于本发明来说,还可以添加偶联剂、憎水剂、防尘油中的一种或几种组合。偶联剂可在无机物质和有机物质的界面之间架起“分子桥”,把两种性质悬殊的材料牢固的结合在一起,改善了定型剂的润湿和抗湿强度,增加了界面的粘结性能,消除了内应力,提高使用寿命,本发明的偶联剂优选环氧硅氧烷偶联剂和氨基硅烷偶联剂,进一步,本发明中优选的氨基偶联剂或者环氧基的偶联剂选自3-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)、3-氨丙基三乙氧基硅烷(KH550)、3-(2,3-环氧丙氧)丙基三乙氧基硅烷(KH561)或3-(2,3-环氧丙氧)丙基二甲氧基硅烷中的一种或几种;憎水剂可有效阻止水分子吸附在玻璃纤维表面,提高矿物棉的憎水性能;防尘油用于矿物棉中可有效减少生产和切割、加工、搬运的过程中产生大量飞扬的粉尘。矿物棉专用无甲醛定型剂、偶联剂、憎水剂和防尘油均按100%固含量计算,偶联剂、憎水剂和防尘油按以下重量配比添加:
矿物棉专用无甲醛定型剂:100份;
偶联剂:0.1~5份;更优选为0.2-1.0份;
憎水剂:0~5份;
防尘油:0~10份。
进一步地,在上述组分的基础上,本发明的定型剂还可以根据需要适当加入水,加入适量的水可以降低粘度,有利于定型剂的输送和使用,通常水可以选择纯净水、自来水或者其它不影响定型剂性能的循环水。优选地,矿物棉专用无甲醛定型剂按100%固含量计算,每100质量份矿物棉专用无甲醛定型剂中水的加入量为0~200质量份。
本发明的定型剂组合物优选为无甲醛的共聚物组合物。“无甲醛”表示所述组合物不含甲醛,在固化过程中也不释放甲醛,所使用的添加剂,如多元醇和其它助剂等本身亦不含甲醛,聚合过程中不会产生甲醛,而且在处理基材的过程中也不会产生或释放甲醛。
为了考察本发明所述的定型剂的储存稳定性,本发明通过测试样品在放入高温烘箱中于60℃/4周的条件下高温养护的前后粘度增长率(%)来表征其稳定性,此方法可有效观察定型剂的稳定性,本发明优选定型剂在于60℃/4周的养护条件下,粘度增长率不高于20%,进一步优选粘度增长率不高于15%,更进一步粘度增长率(%)不高于10%。
本发明所述的定型剂的粘结强度的测试方法,按标准GB/T 34181-2017的附录C进行测试,区别是用本发明的定型剂等固含量替代附录C中的预混酚醛树脂,干燥时间由原来的180℃/20min改为180℃/30min,其它步骤不变,测试中树脂含量统一按5%进行测试,所述的干粘结强度按标准的附录C要求在常温下23℃/50%的条件进行测试,同时,本发明为了进一步考察定型剂的耐水性能,使用了湿强度和强度保留率的概念,也就是湿强度定义为制备的样品的在湿度90%、温度40度下养护24h然后再进行测试,测试结束后用强度保留率%=湿强度/干强度的概念来进一步观察定型剂的耐水耐湿能力。
本申请人发现,本申请中所述的矿物棉专用的定型剂不能完全使用传统的复合材料或者胶黏剂行业中的基体粘结剂的性能标准进行评估,在复合材料或者胶黏剂行业中,重点考虑的是干-湿粘结强度,然而本发明所述的定型剂的使用工艺是通过液体喷洒的形式尽可能均匀地涂覆于纤维表面,并且主要通过纤维与纤维之间的点接触形式的一种弱粘结来实现矿物棉的定型与性能,在矿物棉的持续使用过程中,这一种弱粘结的力所维持的效果与定型剂的干强度、湿强度和强度保留率都有较大关系,因此从这个角度看,定型剂的干强度、湿强度和强度保留率这几个指标同等重要,本发明的一大创新是综合平衡了干强度、湿强度和强度保留率三个指标,要求定型剂的干强度>4.0MPa,湿强度>3.0MPa,且强度保留率>60%;优选定型剂的干强度>5.0MPa,湿强度>3.5MPa,且强度保留率>70%,通过这三个指标的优化,所制备得到的矿物棉产品性能大大优于传统的丙烯酸均聚物产品,具有良好的耐高温高湿环境的效果和施工性能。
有益效果:
1、本发明制得的无甲醛矿物棉定型剂,无游离甲醛释放,无挥发性碱的添加,达到绿色环保无VOC和无甲醛的标准要求;
2、本发明的矿物棉定型剂具有良好的稳定性,在高温环境下粘度仍然没有明显改变,其粘度增长率在10%以内,可以做到长期稳定储存,方便工业使用;
3、本发明制得的无甲醛矿物棉定型剂,能够同时具有良好的干湿强度和耐水性能,通过本发明的方案制得的矿物棉定型剂最佳综合性能可以达到干强度>5.0MPa,湿强度>3.5MPa,强度保留率>70%,大大优于传统的丙烯酸均聚物产品;
4、最后,本发明所提出的定型剂产品所生产的矿棉板硬度优于传统的丙烯酸均聚物产品,具有良好的耐水耐老化性能和施工性能。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本申请中所列举的相关实验参照的国家现行的标准及规范如下:
定型剂的甲醛含量的测试方法,按标准GB/T 34181-2017《矿物棉绝热制品用定型剂》的附录D进行测试,矿物棉性能的测试方法,参考以下标准:
GB/T 13350-2017《绝热用玻璃棉及其制品》
GB/T 19686-2015《建筑用岩棉绝热制品》
一、定型剂的稳定性测试和粘结强度试验
实施例1
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为98.0:1.0:1.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率 和甲醛含量。
实施例2
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为97.5:1.0:1.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例3
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为96.0:1.0:3.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例4
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为94.5:1.0:4.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例5
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为97.5:1.5:1.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例6
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为97.0:1.5:1.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例7
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为95.5:1.5:3.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份 三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例8
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为94.0:1.5:4.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例9
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为96.0:3.0:1.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例10
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为95.5:3.0:1.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例11
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为94.0:3.0:3.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例12
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为92.5:3.0:4.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例13
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为94.5:4.5:1.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例14
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为94.0:4.5:1.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例15
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为92.5:4.5:3.0;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
实施例16
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为91.0:4.5:4.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
对比例1
树脂预聚物的组成:丙烯酸:丙烯酸丁酯摩尔比为95.5:4.5;树脂预聚物的数均分子量Mn为2500,不含丙烯酸羟乙酯;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠和0.3份KH560偶联剂混合在一起,通过添加适量的水混合均匀,统一配置成50%的固含量,然后在高温60℃的环境下养护4周测试其粘度变化,同时根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
对比例2
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯摩尔比为95.5:4.5;树脂预聚物的数均分子量Mn为2500,不含丙烯酸丁酯;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入 0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
对比例3
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯摩尔比为95.5:5.5;树脂预聚物的数均分子量Mn为2500,不含丙烯酸丁酯;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
对比例4
树脂预聚物的组成:丙烯酸:丙烯酸羟乙酯:丙烯酸丁酯摩尔比为99.0:0.5:0.5;树脂预聚物的数均分子量Mn为2500;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
对比例5
树脂预聚物的组成:单体的组成全部为丙烯酸;聚合物的数均分子量Mn为2500,不含丙烯酸丁酯和丙烯酸羟乙酯;以固体含量计,将100份上述树脂预聚物、34.5份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量。
对比例6
树脂预聚物的组成:单体的组成全部为丙烯酸;聚合物的数均分子量Mn为2500,不含丙烯酸丁酯和丙烯酸羟乙酯;以固体含量计,将100份上述树脂预聚物、38.8份三乙醇胺,5份催化剂次磷酸钠,通过添加适量的水混合均匀,统一配置成50%的固含量,然后一部分样品用于在高温60℃的环境下养护4周测试其粘度变化,另外一部分样品加入0.3份KH560偶联剂混合在一起,根据国标分别测试定型剂的干-湿粘结强度、强度保留率和甲醛含量;本对比例6中增加三乙醇胺的添加量是考虑到对比例5与对比例3相比,对比例5的羧基的含量比对比例3大约高12%的量,因此,本对比例为了对比和对比例3一样的羧基/羟基含量时对粘结强度的影响,按12%的比例提高了三乙醇胺的比例,方便和对比例3做对比。
以上实施例和对比例制备的定型剂的配比如表1所示。
表1定型剂的配比组成
Figure PCTCN2022072535-appb-000001
以上实施例和对比例制备的定型剂性能测试结果如表2所示。
表2定型剂性能测试结果
Figure PCTCN2022072535-appb-000002
从上述表1和表2的结果可以看出,当HEA和BA的添加量在0.5-4.5%摩尔份时,定型剂的粘度增长率不高于20%,干强度>4.0MPa,湿强度>3.0MPa,强度保留率>60%。进一步统计实施例11、实施例12、实施例15和实施例16数据发现,当烯键式不饱和羟基功能单体b:疏水性烯键式不饱和单体c的摩尔比=1:1.5~1.5:1并且b的含量在3.0%-4.5%摩尔时,定型剂的干强度>5.0MPa,湿强度>3.5MPa,强度保留率>70%,并且其粘度增长率不高于20%,具有最佳的性能。
二、不同溶解度和Tg的单体对定型剂的性能的影响
实施例17,以实施例11为基础,区别在于使用丙烯酸月桂酯替代BA,其它条件不变。
实施例18,以实施例11为基础,区别在于使用2-EHA替代BA,其它条件不变。
对比例7,以实施例11为基础,区别在于使用MA替代BA,其它条件不变。
对比例8,以实施例11为基础,区别在于使用MMA替代BA,其它条件不变。
上述实施例和对比例中使用的单体性能如表3所示。
表3单体的基本性能
Figure PCTCN2022072535-appb-000003
上述实施例和对比例制备的定型剂性能测试结果如表4所示。
表4定型剂性能测试结果
Figure PCTCN2022072535-appb-000004
从上述表3和表4的结果可以看出,使用不同性质的单体对定型剂的性能有较大的影响,当单体的Tg过低和水溶性较高时,不利于提高定型剂的强度和耐水性能。
三、不同单体种类对定型剂的性能的影响
实施例19,以实施例6为基础,区别在于使用不同的的原料和配比,具体原料和配比见表5。
实施例20,以实施例6为基础,区别在于使用不同的的原料和配比,具体原料和配比见表5。
实施例21,以实施例6为基础,区别在于使用不同的的原料和配比,具体原料和配比见表5。
实施例22,以实施例6为基础,区别在于使用不同的的原料和配比,具体原料和配比见表5。
表5定型剂的配比组成
Figure PCTCN2022072535-appb-000005
上述实施例和对比例制备的定型剂性能测试结果如表6所示。
表6定型剂性能测试结果
Figure PCTCN2022072535-appb-000006
从上述表5和表6的结果可以看出,在本说明书支持的范围内,使用本发明方案中提供的其它单体原料和配比,同样具有较好的性能,定型剂的综合性能可以达到粘度增长率不高于20%,干强度>4.0MPa,湿强度>3.0MPa,强度保留率>60%的性能指标。
四、使用不同配方对比试验矿棉板的耐水性能
本申请试验例分别使用本申请中的实施例11和对比例6的定型剂配方用于制备矿物棉板,同时按矿物棉专用无甲醛定型剂为100%固含量计,100份无甲醛定型剂中再进一步添加憎水剂3份;防尘油6份;根据工艺需要添加适量的水,工艺方面试验例1与对比例1相同均为用于试验岩棉板;试验例2与对比例2相同,均为用于试验矿渣棉板;试验例3与对比例3相同,均为用于试验玻璃棉板,具体参数如下表7所示。
表7矿棉板的耐水性能试验参数
Figure PCTCN2022072535-appb-000007
将上述表7制备得到的矿物棉样品按国标要求分别裁切成两组,一组作为老化养护前样品,根据国标规定测试强度,另外一组作为老化养护后样品,放入恒温恒湿箱中,在50±2℃,95±3%的温湿度条件下老化养护7天,再按照国标要求测试强度,然后分别记录老化前后的强度和强度保留率,数据如表8和表9所示。
表8矿棉板的压缩强度测试结果
Figure PCTCN2022072535-appb-000008
表9矿棉板的弯曲破坏载荷测试结果
Figure PCTCN2022072535-appb-000009
从表8和表9中可以看出,使用本发明配方的定型剂制备的矿物棉板,在老化前后的强度和强度保留率等方面均优于传统的丙烯酸均聚物定型剂,特别是有机物含量较低时,对比测试结果的差别尤为明显。

Claims (12)

  1. 一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,按100%固含量计算,包括以下重量配比的组分:
    可水溶性树脂预聚物:100份;
    多元醇:10~70份;
    催化剂:2~15份;
    其中,所述可水溶性树脂预聚物由单体原料通过共聚反应制得,所述单体原料按物质的量计包括如下组分:
    a,烯键式不饱和羧酸单体:90.0~99.0%;
    b,烯键式不饱和羟基功能单体:0.5~5.0%;
    c,疏水性烯键式不饱和单体:0.5~5.0%。
  2. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述的可水溶性树脂预聚物的数均分子量为500~30000。
  3. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述烯键式不饱和羧酸单体选自丙烯酸、甲基丙烯酸、巴豆酸、富马酸、马来酸、2-甲基马来酸、衣康酸、2-甲基衣康酸、α-β-亚甲基戊二酸、马来酸单烷基酯、富马酸单烷基酯、马来酸酐、丙烯酸酐、甲基丙烯酸酐、异辛基丙烯酸酐、巴豆酸酐或富马酸酐中的一种或几种。
  4. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述烯键式不饱和羟基功能单体选自甲基丙烯酸-2-羟乙酯、丙烯酸-2-羟乙酯、甲基丙烯酸-2-羟丙酯、甲基丙烯酸-1-甲基-2-羟乙酯、丙烯酸-2-羟基丙酯、丙烯酸-1-甲基-2-羟乙酯、甲基丙烯酸-2-羟丁酯和丙烯酸-2-羟丁酯。
  5. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述疏水性烯键式不饱和单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸仲丁酯、丙烯酸叔丁酯、丙烯酸正丙酯、丙烯酸环己酯、丙烯酸月桂酯,丙烯酸-2-乙基己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸月桂酯、甲基丙烯酸-2-乙基己酯、甲基丙烯酸异冰片酯、苯乙烯、α-甲基苯乙烯、p-甲基苯乙烯、乙基乙烯基苯、乙烯基萘、乙烯基二甲苯、乙烯基甲苯或氯乙烯基甲苯中的一种或几种。
  6. 根据权利要求5所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述疏水性烯键式不饱和单体的水溶解度为0~1.5g/100g,其均聚物的玻璃化转变温度为-15℃~-80℃。
  7. 根据权利要求6所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述疏水性烯键式不饱和单体选自丙烯酸正丁酯、丙烯酸月桂酯、丙烯酸正丙酯、丙烯酸异丁酯、丙烯酸-2-乙基己酯或甲基丙烯酸月桂酯中的一种或几种。
  8. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述多元醇选自乙二醇、丙二醇、甘油、三羟甲基丙烷、二乙醇胺、异丙醇胺、三乙醇胺或聚乙烯醇中的一种或几种;所述催化剂选自次磷酸钠、次磷酸锌、次磷酸钾、次磷酸钙或次磷酸镁中的一种或几种。
  9. 根据权利要求1-8任一所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,按100%固含量计算,包括以下重量配比的组分:
    可水溶性树脂预聚物:100份;
    多元醇:12~50份;
    催化剂:5~10份;
    其中,所述可水溶性树脂预聚物由单体原料通过共聚反应制得,所述单体原料按物质的量计包括如下组分:
    a,烯键式不饱和羧酸单体:92.5~96.0%;
    b,烯键式不饱和羟基功能单体:3.0~4.5%;
    c,疏水性烯键式不饱和单体:1.0~3.0%。
  10. 根据权利要求9所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述烯键式不饱和羟基功能单体和疏水性烯键式不饱和单体的摩尔比范围为1:1.5~1.5:1。
  11. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,按100%固含量计算,包括以下重量配比的组分:
    矿物棉专用无甲醛定型剂:100份;
    偶联剂:0.1~5份;
    憎水剂:0~5份;
    防尘油:0~10份;
    水:0~200份;
    其中,所述偶联剂选自3-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)、3-氨丙基三乙氧基硅烷(KH550)、3-(2,3-环氧丙氧)丙基三乙氧基硅烷(KH561)或3-(2,3-环氧丙氧)丙基二甲氧基硅烷中的一种或几种。
  12. 根据权利要求1所述的一种提高耐水性能的矿物棉专用无甲醛定型剂,其特征在于,所述定型剂的干强度>4.0MPa,湿强度>3.0MPa,且强度保留率>60%。
PCT/CN2022/072535 2021-12-30 2022-01-18 一种提高耐水性能的矿物棉专用无甲醛定型剂 WO2022073527A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247003510A KR20240028465A (ko) 2021-12-30 2022-01-18 내수성을 향상시키는 광물면 전용 무포름알데히드 정형화제
JP2022554462A JP7269689B2 (ja) 2021-12-30 2022-01-18 耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111654376.0 2021-12-30
CN202111654376.0A CN114380938B (zh) 2021-12-30 2021-12-30 一种提高耐水性能的矿物棉专用无甲醛定型剂

Publications (3)

Publication Number Publication Date
WO2022073527A2 true WO2022073527A2 (zh) 2022-04-14
WO2022073527A3 WO2022073527A3 (zh) 2022-11-10
WO2022073527A9 WO2022073527A9 (zh) 2022-12-08

Family

ID=81127142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072535 WO2022073527A2 (zh) 2021-12-30 2022-01-18 一种提高耐水性能的矿物棉专用无甲醛定型剂

Country Status (4)

Country Link
JP (1) JP7269689B2 (zh)
KR (1) KR20240028465A (zh)
CN (1) CN114380938B (zh)
WO (1) WO2022073527A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353296A (zh) * 2022-08-30 2022-11-18 武汉思越新材料有限公司 一种憎水剂组合物及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0792250T3 (da) * 1994-11-14 1999-09-20 Owens Corning Fiberglass Corp Bindemidler til glasfibre
DE19535792A1 (de) * 1995-09-26 1997-03-27 Basf Ag Verfahren zur Herstellung wiederverwertbarer Faserverbundwerkstoffe
US7384881B2 (en) 2002-08-16 2008-06-10 H.B. Fuller Licensing & Financing, Inc. Aqueous formaldehyde-free composition and fiberglass insulation including the same
JP4157853B2 (ja) * 2003-08-13 2008-10-01 ローム アンド ハース カンパニー 硬化性組成物およびバインダーとしての使用
AU2004201002B2 (en) * 2003-08-26 2009-08-06 Rohm And Haas Company Curable aqueous composition and use as heat-resistant nonwoven binder
EP1510618B1 (en) * 2003-08-26 2007-02-28 Rohm And Haas Company Curable aqueous composition and use as heat-resistant nonwoven binder
US20050214534A1 (en) * 2004-03-29 2005-09-29 Adamo Joseph R Extended curable compositions for use as binders
BRPI0611449A2 (pt) * 2005-05-06 2010-09-08 Dynea Oy composição aquosa curável livre de formaldeìdo baseada em álcool polivinìlico
JP5118306B2 (ja) * 2006-02-10 2013-01-16 旭ファイバーグラス株式会社 無機繊維断熱吸音材用水性バインダー及び無機繊維断熱吸音材
CN102533168B (zh) 2011-12-27 2014-02-12 华南理工大学 一种水性零甲醛玻璃棉粘合剂及其制备方法
US20210292609A1 (en) * 2018-07-24 2021-09-23 Sanyo Chemical Industries, Ltd. Moisture resistance improver for water-based adhesive for inorganic materials, and water-based adhesive for inorganic materials
CN110066359B (zh) * 2019-03-27 2021-04-20 华南理工大学 一种水溶热固性丙烯酸树脂及其制备方法和应用
CN111849392B (zh) * 2019-04-30 2022-02-25 江苏艾科赛特新材料有限公司 一种矿物棉专用无甲醛定型剂及其测试方法
BR112021026784A2 (pt) 2019-07-12 2022-02-15 Dow Global Technologies Llc Composição, e, método para aglutinar fibras
US20230357608A1 (en) 2020-03-03 2023-11-09 Nippon Shokubai Co., Ltd. Binder and Bonded Object
CN211800562U (zh) * 2020-03-11 2020-10-30 江苏艾科赛特新材料有限公司 一种可用于矿物棉连续生产的无甲醛定型剂回收系统
CN112521871B (zh) 2020-12-29 2023-02-17 太尔胶粘剂(广东)有限公司 一种保温棉用水性胶粘剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353296A (zh) * 2022-08-30 2022-11-18 武汉思越新材料有限公司 一种憎水剂组合物及其制备方法
CN115353296B (zh) * 2022-08-30 2024-03-01 武汉思越新材料有限公司 一种憎水剂组合物及其制备方法

Also Published As

Publication number Publication date
WO2022073527A9 (zh) 2022-12-08
CN114380938A (zh) 2022-04-22
JP7269689B2 (ja) 2023-05-09
WO2022073527A3 (zh) 2022-11-10
JP2023516211A (ja) 2023-04-18
CN114380938B (zh) 2022-08-16
KR20240028465A (ko) 2024-03-05

Similar Documents

Publication Publication Date Title
TWI354001B (en) Curable composition
TWI486414B (zh) Adhesive composition
AU2006202621A1 (en) A curable composition
AU2004201002A1 (en) Curable aqueous composition and use as heat-resistant nonwoven binder
KR20150005991A (ko) 경화성 수성 조성물
KR101148762B1 (ko) 점착성과 방염성이 개선된 아크릴계 에멀젼 점착제 조성물 및 이의 제조 방법
TW200912055A (en) Organic-inorganic electrospun fibers
CN106752964B (zh) 一种石墨烯耐磨阻燃防腐粉末涂料及其制备方法
AU2006200880B2 (en) Curable composition and its uses
JP2008515761A (ja) フッ素化ポリマーを含む撥水性ガラス繊維バインダー
WO2022073527A2 (zh) 一种提高耐水性能的矿物棉专用无甲醛定型剂
TW200838924A (en) Curable composition
CN106118173A (zh) 光热双重固化的亲水防雾涂料组合物及其制备方法
CN110997833A (zh) 水性涂料组合物
US9127159B2 (en) Unsaturated ester resin composition, unsaturated ester-cured product, and manufacturing method therefor
CN114621709B (zh) 一种专用于矿物棉的高耐水生物基无甲醛定型剂
JPH0778153B2 (ja) 耐久性外装塗料用合成樹脂水性エマルジョン
JP3602180B2 (ja) 窯業セメント系外装材仕上げ塗料用エマルジョン
KR20150004869A (ko) 경화성 에폭사이드 함유 포름알데히드­무함유 조성물,이를 포함하는 물품,및 이의 사용 방법
CN111849392B (zh) 一种矿物棉专用无甲醛定型剂及其测试方法
JPS62241901A (ja) 自己分散型水性樹脂の製造法
JP4272305B2 (ja) 水性樹脂分散液
JP4850483B2 (ja) 塗工用ポリマーエマルジョン組成物
KR101542290B1 (ko) 점착제 조성물
JP4347987B2 (ja) 農業用ポリオレフィン系樹脂フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022554462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247003510

Country of ref document: KR

Kind code of ref document: A