WO2022068143A1 - 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用 - Google Patents

一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022068143A1
WO2022068143A1 PCT/CN2021/077797 CN2021077797W WO2022068143A1 WO 2022068143 A1 WO2022068143 A1 WO 2022068143A1 CN 2021077797 W CN2021077797 W CN 2021077797W WO 2022068143 A1 WO2022068143 A1 WO 2022068143A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyamide composition
glass fiber
parts
composition according
Prior art date
Application number
PCT/CN2021/077797
Other languages
English (en)
French (fr)
Inventor
冯德才
黄险波
叶南飚
叶坤豪
许鸿基
戴剑
王丰
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022068143A1 publication Critical patent/WO2022068143A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a polyamide composition with high wear resistance and high weather resistance, and a preparation method and application thereof.
  • Polyamide materials are widely used in rail transit, power tools and other industries. With the continuous development and progress of science and technology, various industries have continuously improved the performance of materials, especially for the rail transit industry. With the continuous advancement and deepening of new infrastructure, rail transit The construction involves a wider area and faces more complex climatic conditions, so the requirements for the comprehensive performance of materials are higher. Especially in some high-cold or high-altitude areas, such as the Sichuan-Tibet line, high altitude and large temperature difference between day and night put forward higher requirements for the wear resistance and weather resistance of polyamide materials, and traditional polyamide materials can no longer meet the relevant needs.
  • Irradiation cross-linking is a technical means that uses various radiations to initiate cross-linking reactions between polymer long chains.
  • the irradiation source can be selected from electron beam, gamma ray, and neutron beam. , particle beam, etc.
  • the radiation crosslinking agents that can be used for polyamides include triallyl cyanurate (TAC) and triallyl isocyanurate (TAIC).
  • the research on radiation cross-linked polyamide in the prior art mainly focuses on the polyamide material of the flame retardant system, and improves the flame retardant performance and heat distortion temperature of the polyamide material.
  • adding a flame retardant to the polyamide composition will cause the mechanical properties and weather resistance of the polyamide material to decrease, and it cannot be applied to wear-resistant and weather-resistant polyamide products.
  • Chinese patent application CN105153690A discloses a polyamide composition resistant to chloride salt stress corrosion cracking.
  • the polyamide composition is a non-flame retardant system, and is treated with irradiation by adding glass fibers, cross-linking agents and radiation stabilizers.
  • the ability of the polyamide composition to resist salt stress corrosion cracking is improved, so as to realize the cracking protection when the polyamide auto parts are in contact with the chloride salt snow melting agent.
  • the present invention provides a polyamide composition with high wear resistance and high weather resistance.
  • the polyamide composition has excellent wear resistance and weather resistance, and can Used in complex and severe working conditions.
  • Another object of the present invention is to provide a method for preparing the above-mentioned polyamide composition.
  • Another object of the present invention is to provide the application of the above-mentioned polyamide composition in the preparation of polyamide products for the automobile industry or the rail transportation field.
  • the technical scheme adopted in the present invention is:
  • a polyamide composition with high wear resistance and high weather resistance comprising the following components by weight:
  • TMAIC methyl triallyl isocyanurate
  • TAC triallyl cyanurate
  • triene triene
  • TMAIC Propyl isocyanurate
  • TMAIC has good thermal stability. Under the appropriate dosage, it can maintain structural stability in the polyamide system through high temperature melt extrusion and injection molding, so that the polyamide material can obtain good thermal stability after irradiation treatment. cross-linked structure. TAC and TAIC are easily decomposed at high temperature.
  • TAC or TAIC is used as a co-crosslinking agent under the same dosage and irradiation conditions. After irradiation treatment, the crosslinking amount of the polyamide composition is small, and the final polyamide obtained The products have poor wear resistance and weather resistance and cannot meet the actual needs.
  • the methyl triallyl isocyanurate is preferably 4 to 8 parts.
  • the toughening agent is preferably one or more of maleic anhydride grafted polyolefin, ethylene propylene terpolymer and ethylene methyl acrylate.
  • the toughening agent and the co-crosslinking agent can effectively improve the wear resistance and weather resistance of the polyamide composition through the synergistic effect.
  • the toughening agent can effectively improve the compatibility and dispersibility of each component in the polyamide system, enhance the interface between polyamide and glass fiber, and at the same time, obtain polyamide with lower wear amount and better anti-aging performance. combination.
  • the toughening agent is more preferably maleic anhydride grafted polyolefin.
  • the maleic anhydride grafted polyolefin is DuPont N493D, Energy Light N406, Baichen PC-28 and the like.
  • the weight part of the maleic anhydride grafted polyolefin is most preferably 2-5 parts.
  • An appropriate amount of toughening agent will improve the wear resistance of the material and promote the cross-linking of the polyamide system; when the content of the toughening agent is small, the cross-linking promotion effect of the polyamide system is difficult to manifest, and the wear resistance of the polyamide composition is will deteriorate; when the toughening agent is too much, it will greatly affect the weather resistance of polyamide materials.
  • the polyamide resin is preferably one of PA6, PA 46, PA 66, and PA56.
  • the glass fiber is preferably one or more of E glass fiber, H glass fiber, R, S glass fiber, D glass fiber, C glass fiber, and quartz glass fiber.
  • the glass fibers are most preferably E glass fibers.
  • the diameter of the glass fiber is preferably 7-13 ⁇ m.
  • the adjuvants include antioxidants, lubricants and the like.
  • the antioxidant may be an antioxidant commonly used in polyamides.
  • the antioxidant is preferably a hindered phenolic antioxidant.
  • the lubricant may be a lubricant commonly used in polyamides.
  • the lubricant is preferably a montan lubricant.
  • the present invention also protects the preparation method of the above-mentioned polyamide composition, which comprises the following steps:
  • the polyamide resin, toughening agent, methyl triallyl isocyanurate, glass fiber and auxiliary agent are mixed, added to an extruder, and melted and granulated to obtain a polyamide composition with high wear resistance and high weather resistance.
  • the extruder is a twin-screw extruder
  • the screw length-diameter ratio of the twin-screw extruder is 40-48:1
  • the screw barrel temperature is 240-300°C
  • the screw speed is 200-550 rpm.
  • the present invention also protects the application of the above-mentioned polyamide composition in the preparation of polyamide articles for the automobile industry or the rail transportation field.
  • the present invention also protects a polyamide product, which is prepared from the above-mentioned polyamide composition by radiation crosslinking.
  • an electron beam is used as the radiation source for the radiation crosslinking, and the radiation dose is 15-25 Mrad.
  • the ⁇ -carbon next to the amino group in the polyamide segment will be chain-severed to form new chemical bonds with other molecular chains, thereby forming a cross-linked network structure.
  • various components such as polyamide resin, toughening agent, glass fiber and methyl triallyl isocyanurate are matched with each other to prepare a polyamide composition with high wear resistance and high weather resistance.
  • Methyltriallyl isocyanurate acts as a co-crosslinking agent to promote efficient intermolecular crosslinking of polyamide materials under irradiation, and the synergistic effect of toughening agent and glass fiber improves the synthesis of polyamide compositions. performance.
  • the polyamide composition has excellent abrasion resistance and weather resistance, and the polyamide article prepared by irradiation cross-linking treatment is suitable for being used as a wear-resistant part in the automobile industry or rail transit under severe environment with large temperature difference.
  • the raw materials in the embodiment and the comparative example can be obtained through commercially available, and the details are as follows:
  • Polyamide resin A Type 6 polyamide, Haiyang Chemical Fiber HY-2800A;
  • Polyamide resin B 66 type polyamide, Huafon Group PA66 EP-158;
  • Toughening agent A maleic anhydride grafted ethylene-octene copolymer, Ningbo Nengzhiguang N406;
  • Toughening agent B ethylene methyl acrylate, AC1125;
  • Toughening agent C ethylene propylene terpolymer, grade 3072EPM;
  • Co-crosslinking agent A TMAIC, FARIDA H-2 from Fangruida Chemicals Co., Ltd.;
  • Co-crosslinking agent B TAC, Evonik Degussa Investment Co., Ltd.;
  • Co-crosslinking agent C TAIC, Evonik Degussa Investment Co., Ltd.;
  • Glass fiber E glass fiber, China Jushi ECS11-4.5-560A, diameter 11 ⁇ m;
  • Antioxidants hindered phenolic antioxidants, IRGANOX 1098, BASF;
  • Lubricants long chain fatty acid esters, LOXIOL G32, Emery.
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • Table 1 shows the content of each component in the high wear-resistant and high-weather-resistant polyamide compositions of Examples 1-14.
  • the preparation method is as follows: according to Table 1, the components are mixed uniformly, and then the mixture is added to a twin-screw extruder for melt blending, extrusion granulation, and a polyamide composition with high wear resistance and high weather resistance is obtained.
  • the screw length-diameter ratio of the twin-screw extruder is 40:1, the temperature of the screw barrel is 240-300° C., and the rotational speed of the screw is 200-550 rpm.
  • the preparation method is as follows: according to Table 2, the components are mixed uniformly, and then the mixture is added to a twin-screw extruder for melt blending, extrusion granulation, and a polyamide composition with high wear resistance and high weather resistance is obtained.
  • the screw length-diameter ratio of the twin-screw extruder is 40:1, the temperature of the screw barrel is 240-300° C., and the rotational speed of the screw is 200-550 rpm.
  • Comparative Example 4 The difference between Comparative Example 4 and Example 1 is that the co-crosslinking agent is TAIC;
  • Comparative Example 6 The difference between Comparative Example 6 and Example 1 is that the co-crosslinking agent A is 12 parts.
  • polyamide compositions prepared in the above examples and comparative examples are injection-molded and cross-linked by irradiation to prepare polyamide products.
  • the injection molding temperature of injection molding is 270-300 °C, and the injection pressure is 55-100 MPa; the irradiation cross-linking treatment adopts electron beam as the radiation source, and the radiation dose is 20 Mrad.
  • the test method is as follows:
  • Wear amount GB/T 5478-2008 "Plastic Rolling Wear Test Method", the type of grinding wheel used is H22, the load is 1kg, and the unit of wear amount is mg;
  • Pulverization time ISO 4892-2-1994 cycle 1
  • the test sample is a flat plate, record the time when the surface of the sample begins to pulverize, and the unit of pulverization time is h;
  • Tensile strength decay time UL 746B-2011 "Long-term performance evaluation of standard polymer materials UL standard", the aging temperature is 170 °C, the ISO 527-2-1993 1BA sample is used as the test sample, the thickness is 0.8mm, and the tensile strength is recorded The time required to decay to 50% of the initial performance, the unit of tensile strength decay time is h;
  • the abrasion resistance of the polyamide product is used to reflect the wear resistance of the polyamide composition
  • the pulverization time and tensile strength decay time of the polyamide product are used to reflect the weather resistance of the polyamide composition.
  • Example 1 when the addition amount of maleic anhydride grafted ethylene-octene copolymer is 2-5, the wear amount of the polyamide product is ⁇ 36mg, the pulverization time is ⁇ 2000h, and the tensile strength decay time ⁇ 6600h, the wear resistance and weather resistance of the polyamide composition are relatively better.
  • Example 1 and Examples 5 to 6 select ethylene methyl acrylate or ethylene terpolymer as the polyamide composition prepared by the toughening agent, and its wear resistance and weather resistance are slightly poor, so the preferred toughening agent is maleic acid.
  • Anhydride grafted ethylene-octene copolymer According to the test results of Example 1 and Examples 7-9, when the addition amount of TMAIC is 4-8 parts, the crosslinking degree of the polyamide composition is suitable, and the wear resistance and weather resistance are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用。该聚酰胺组合物包括如下组分:聚酰胺树脂,增韧剂,甲基三烯丙基异氰脲酸酯,玻璃纤维,助剂。甲基三烯丙基异氰脲酸酯作为助交联剂,促使聚酰胺材料在辐照下进行高效的分子间交联,增韧剂与玻璃纤维协同作用,提高了聚酰胺组合物的综合性能。该聚酰胺组合物具有优异的耐磨性和耐候性,经过辐照交联处理制备的聚酰胺制品适用于在温差大的苛刻环境下用作汽车行业或轨道交通的耐磨部件。

Description

一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,具体涉及一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用。
背景技术
聚酰胺材料广泛地应用于轨道交通、电动工具等行业,随着科技的不断发展和进步,各行业对于材料性能不断提升,尤其对于轨道交通行业,随着新基建的不断推进和深入,轨道交通建设所涉及的地域更广,面对的气候条件更复杂,因此对于材料综合性能要求更高。尤其在一些高寒或高海拔地区,例如川藏线上,海拔高、昼夜温差大,对于聚酰胺材料的耐磨、耐候性能提出更高的要求,而传统的聚酰胺材料已经无法满足相关需求。
辐照交联是一种利用各种辐射引发聚合物高分子长链之间的交联反应的技术手段,根据聚合物类别和性能需求,辐照源可以选择电子束、γ射线、中子束、粒子束等。对于聚酰胺材料而言,由于分子链间存在较强的氢键作用,简单的辐照处理难于引发聚酰胺的交联,因此,需要通过引入助交联剂的方式促进体系的交联反应,从而得到辐照交联材料。一般聚酰胺能够使用的辐照交联剂有三聚氰酸三烯丙酯(TAC)、三烯丙基异氰脲酸酯(TAIC)。
现有技术中对于辐照交联聚酰胺的研究主要是着眼于阻燃体系的聚酰胺材料,提升聚酰胺材料的阻燃性能、热变形温度。但在聚酰胺组合物中添加阻燃剂,会造成聚酰胺材料的力学性能、耐候性能下降,无法适用于耐磨、耐候的聚酰胺制品中。中国专利申请CN105153690A公开了一种耐氯化盐应力腐蚀开裂的聚酰胺组合物,该聚酰胺组合物为非阻燃体系,通过玻璃纤维、交联剂、辐射稳定剂的添加,利用辐照处理提高了聚酰胺组合物的耐盐应力腐蚀开裂的能力,以实现聚酰胺类汽车零部件与氯化盐类融雪剂接触时的开裂保护。但其并未关注聚酰胺材料的耐磨、耐候性能,尤其是在大温差的恶劣环境下的耐磨、耐候性能。
因此,需要开发出一种具有高耐磨、高耐候性能的聚酰胺组合物。
发明内容
本发明为克服上述现有技术所述的耐磨、耐候性能较差的缺陷,提供一种高 耐磨高耐候的聚酰胺组合物,该聚酰胺组合物具有优异的耐磨、耐候性,能够应用于复杂严苛的工况中。
本发明的另一目的在于提供上述聚酰胺组合物的制备方法。
本发明的另一目的在于提供上述聚酰胺组合物在制备汽车工业或轨道交通领域用聚酰胺制品中的应用。
为解决上述技术问题,本发明采用的技术方案是:
一种高耐磨高耐候的聚酰胺组合物,包括如下重量份的组分:
聚酰胺树脂30~80份,
增韧剂1~10份,
甲基三烯丙基异氰脲酸酯2~10份,
玻璃纤维10~50份,
助剂0~10份。
发明人通过大量的研究发现,除甲基三烯丙基异氰脲酸酯(TMAIC)外,使用市面上常用的助交联剂,如三聚氰酸三烯丙酯(TAC)和三烯丙基异氰脲酸酯(TAIC),对聚酰胺组合物难以达到满意的促交联效果。相比而言,TMAIC具有良好的热稳定性,在合适的添加量下,在聚酰胺体系中经过高温熔融挤出、注塑均可保持结构稳定,使得聚酰胺材料经过辐照处理后获得良好的交联结构。TAC和TAIC在高温下自身易分解,在同等添加量、同等辐照条件下使用TAC或TAIC作为助交联剂,经过辐照处理,聚酰胺组合物的交联量小,最终获得的聚酰胺制品耐磨、耐候性能较差,无法满足实际需求。
优选地,所述甲基三烯丙基异氰脲酸酯优选为4~8份。
当TMAIC添加量过低,聚酰胺组合物的交联结构形成较少,交联度不够,难以达到满意的耐磨耐候性能;当TMAIC过高,聚酰胺组合物经辐照后的交联结构过多,导致材料刚性太强而韧性变差,加工稳定性下降,综合性能差。
优选地,所述增韧剂优选为马来酸酐接枝聚烯烃、乙烯丙烯三元共聚物和乙烯丙烯酸甲酯中的一种或几种。
增韧剂与助交联剂通过协效作用,能够有效提升聚酰胺组合物的耐磨、耐候性能。同时,增韧剂能够有效改善聚酰胺体系中各组分的相容性与分散性,增强聚酰胺与玻璃纤维间的界面作用,同时,获得磨耗量更低、抗老化性能更好的聚酰胺组合物。
更优选地,所述增韧剂更优选为马来酸酐接枝聚烯烃。可选地,所述马来酸酐接枝聚烯烃为杜邦N493D、能之光N406、柏晨PC-28等。
最优选地,所述马来酸酐接枝聚烯烃的重量份最优选为2~5份。
适量增韧剂会提升材料的耐磨性能,并促进聚酰胺体系的交联;当增韧剂含量较少时,对聚酰胺体系的交联促进作用难以体现,聚酰胺组合物的耐磨性能会变差;当增韧剂过多时,会大幅度影响聚酰胺材料耐候性能。
优选地,所述聚酰胺树脂优选为PA6、PA 46、PA 66、PA56中的一种。
优选地,所述玻璃纤维优选为E玻璃纤维、H玻璃纤维、R,S玻璃纤维、D玻璃纤维、C玻璃纤维、石英玻璃纤维中的一种或几种。
最优选地,所述玻璃纤维最优选为E玻璃纤维。
优选地,所述玻璃纤维的直径优选为7~13μm。
所述助剂包括抗氧剂、润滑剂等。
所述抗氧剂可以是聚酰胺中常用的抗氧剂。优选地,所述抗氧剂优选为受阻酚类抗氧剂。
所述润滑剂可以是聚酰胺中常用的润滑剂。优选地,所述润滑剂优选为蒙旦类润滑剂。
本发明还保护上述聚酰胺组合物的制备方法,所述包括如下步骤:
将聚酰胺树脂、增韧剂、甲基三烯丙基异氰脲酸酯、玻璃纤维和助剂混合,加入挤出机,经熔融造粒,得到高耐磨高耐候的聚酰胺组合物。
优选地,所述挤出机为双螺杆挤出机,所述双螺杆挤出机的螺杆长径比为40~48:1,螺筒温度为240~300℃,螺杆转速为200~550rpm。
本发明还保护上述聚酰胺组合物在制备汽车工业或轨道交通领域用聚酰胺制品中的应用。
本发明还保护一种聚酰胺制品,该聚酰胺制品由上述聚酰胺组合物采用辐照交联加工制备得到。
优选地,所述辐照交联采用电子束作为辐射源,辐照剂量为15~25Mrad。
所述聚酰胺组合物经辐照处理后,聚酰胺链段中氨基旁的α-碳会断链,与其他分子链形成新的化学键,进而形成交联网络结构。
与现有技术相比,本发明的有益效果是:
本发明将聚酰胺树脂、增韧剂、玻璃纤维和甲基三烯丙基异氰脲酸酯等各组 分互相配合,制备得到了具有高耐磨、高耐候性能的聚酰胺组合物。甲基三烯丙基异氰脲酸酯作为助交联剂,促使聚酰胺材料在辐照下进行高效的分子间交联,增韧剂与玻璃纤维协同作用,提高了聚酰胺组合物的综合性能。该聚酰胺组合物具有优异的耐磨性和耐候性,经过辐照交联处理制备的聚酰胺制品适用于在温差大的苛刻环境下用作汽车行业或轨道交通的耐磨部件。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例及对比例中的原料均可通过市售得到,具体如下:
聚酰胺树脂A:6型聚酰胺,海阳化纤HY-2800A;
聚酰胺树脂B:66型聚酰胺,华峰集团PA66 EP-158;
增韧剂A:马来酸酐接枝乙烯-辛烯共聚物,宁波能之光N406;
增韧剂B:乙烯丙烯酸甲酯,
Figure PCTCN2021077797-appb-000001
AC1125;
增韧剂C:乙烯丙烯三元共聚物,牌号3072EPM;
助交联剂A:TMAIC,方锐达化学品有限公司FARIDA H-2;
助交联剂B:TAC,赢创德固赛投资有限公司;
助交联剂C:TAIC,赢创德固赛投资有限公司;
玻璃纤维:E玻璃纤维,中国巨石ECS11-4.5-560A,直径11μm;
抗氧剂:受阻酚类抗氧剂,IRGANOX 1098,BASF;
润滑剂:长链脂肪酸酯类,LOXIOL G32,Emery。
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1~14
实施例1~14的高耐磨高耐候的聚酰胺组合物中各组分的含量如表1所示。
其制备方法为:根据表1将各组分混合均匀,随后将混合物加入双螺杆挤出机熔融共混、挤出造粒,得到高耐磨高耐候的聚酰胺组合物。
其中双螺杆挤出机的螺杆长径比为40:1,螺筒温度为240~300℃,螺杆转速为200~550rpm。
表1实施例1~14的聚酰胺组合物的组分含量(重量份)
Figure PCTCN2021077797-appb-000002
Figure PCTCN2021077797-appb-000003
对比例1~6
对比例1~6的聚酰胺组合物中各组分的含量如表2所示。
其制备方法为:根据表2将各组分混合均匀,随后将混合物加入双螺杆挤出机熔融共混、挤出造粒,得到高耐磨高耐候的聚酰胺组合物。
其中双螺杆挤出机的螺杆长径比为40:1,螺筒温度为240~300℃,螺杆转速为200~550rpm。
表1对比例1~6的聚酰胺组合物的组分含量(重量份)
Figure PCTCN2021077797-appb-000004
对比例1与实施例1的区别在于,增韧剂A为0.5份;
对比例2与实施例1的区别在于,增韧剂A为12份;
对比例3与实施例1的区别在于,助交联剂为TAC;
对比例4与实施例1的区别在于,助交联剂为TAIC;
对比例5与实施例1的区别在于,助交联剂A为1份;
对比例6与实施例1的区别在于,助交联剂A为12份。
性能测试
将上述实施例及对比例制备的聚酰胺组合物进行注塑成型,并采用辐照交联处理,制备得到聚酰胺制品。
其中注塑成型的注塑温度为270~300℃,注塑压力为55~100MPa;辐照交联处理采用电子束作为辐射源,辐照剂量为20Mrad。
对上述聚酰胺制品进行性能测试。
测试方法具体如下:
磨耗量:GB/T 5478-2008《塑料滚动磨损试验方法》,采用的砂轮类型为H22,负载为1kg,磨耗量单位为mg;
粉化时间:ISO 4892-2-1994 cycle 1,测试样品为平板制件,记录样品表面开始粉化的时间,粉化时间单位为h;
拉伸强度衰减时间:UL 746B-2011《标准聚合物材料长期性能评估UL标准》,老化温度为170℃,采用ISO 527-2-1993 1BA样品作为测试样品,厚度为0.8mm,记录拉伸强度衰减至初始性能的50%时所需要的时间,拉伸强度衰减时间单位为h;
本发明采用聚酰胺制品的磨耗量体现聚酰胺组合物的耐磨性能,聚酰胺制品的粉化时间和拉伸强度衰减时间体现聚酰胺组合物的耐候性能。
实施例1~14的测试结果见表3。
表3实施例1~14性能测试结果
Figure PCTCN2021077797-appb-000005
由表3可以看出,实施例1~14制备的聚酰胺组合物均具有较高交联度,耐磨性能、耐候性能优异,其中聚酰胺制品的磨耗量≤65mg,粉化时间≥1770h,拉升强度衰减时间≥5440h。
根据实施例1~4的测试结果,当马来酸酐接枝乙烯-辛烯共聚物添加量为2~5时,聚酰胺制品的磨耗量≤36mg,粉化时间≥2000h,拉升强度衰减时间≥6600h,聚酰胺组合物的耐磨性能、耐候性能相对更好。比较实施例1和实施例5~6,选用乙烯丙烯酸甲酯或乙烯三元共聚物做增韧剂制备的聚酰胺组合物,其耐磨和耐候性能稍差,因此优选增韧剂为马来酸酐接枝乙烯-辛烯共聚物。根据实施例1和实施例7~9的测试结果,当TMAIC添加量为4~8份时,聚酰胺组合物的交联度合适,耐磨、耐候性能优异。
对比例1~6的测试结果见表4。
表4对比例1~6性能测试结果
Figure PCTCN2021077797-appb-000006
由表4可以看出,当增韧剂添加量过多或过少,聚酰胺制品的磨耗量≥80mg,聚酰胺组合物耐磨性能较差,粉化时间和拉升强度衰减时间也无法满足要求。当使用的助交联剂为TAC或TAIC时,磨耗量分别为72mg、70mg,粉化时间均为1000h左右,拉伸强度衰减时间也较短,这表示其制备的聚酰胺组合物的耐磨、耐候性能均较差。当助交联剂A(TAMIC)的添加量过少,经辐照处理难以形成足够的交联结构,聚酰胺组合物耐磨耐候性能都较差。当助交联剂A添加量过多,经过剪切后,材料体系依然会出现由于热稳定不足所导致的结构缺陷,反而导致材料整体性能下降。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种高耐磨高耐候的聚酰胺组合物,其特征在于,包括如下重量份的组分:聚酰胺树脂30~80份,增韧剂1~10份,甲基三烯丙基异氰脲酸酯2~10份,玻璃纤维10~50份,助剂0~10份。
  2. 根据权利要求1所述聚酰胺组合物,其特征在于,所述甲基三烯丙基异氰脲酸酯为4~8份。
  3. 根据权利要求1所述聚酰胺组合物,其特征在于,所述增韧剂为马来酸酐接枝聚烯烃、乙烯三元共聚物或乙烯丙烯酸甲酯中的一种或几种。
  4. 根据权利要求1或3所述聚酰胺组合物,其特征在于,所述增韧剂为马来酸酐接枝聚烯烃。
  5. 根据权利要求4所述聚酰胺组合物,其特征在于,所述马来酸酐接枝聚烯烃的重量份为2~5份。
  6. 根据权利要求1所述聚酰胺组合物,其特征在于,所述聚酰胺树脂为PA6、PA46、PA66或PA56中的一种。
  7. 根据权利要求1所述聚酰胺组合物,其特征在于,所述玻璃纤维为E玻璃纤维、H玻璃纤维、R,S玻璃纤维、D玻璃纤维、C玻璃纤维或石英玻璃纤维中的一种或几种。
  8. 权利要求1~7任一项所述聚酰胺组合物的制备方法,其特征在于,包括如下步骤:
    将聚酰胺树脂、增韧剂、甲基三烯丙基异氰脲酸酯、玻璃纤维和助剂混合,加入挤出机,经熔融造粒,得到高耐磨高耐候的聚酰胺组合物。
  9. 权利要求1~7任一项所述聚酰胺组合物在制备汽车工业或轨道交通领域用聚酰胺制品中的应用。
  10. 一种聚酰胺制品,其特征在于由权利要求1~7任一项所述聚酰胺组合物采用辐照交联加工制备得到。
PCT/CN2021/077797 2020-09-29 2021-02-25 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用 WO2022068143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011048419.6 2020-09-29
CN202011048419.6A CN112266606A (zh) 2020-09-29 2020-09-29 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022068143A1 true WO2022068143A1 (zh) 2022-04-07

Family

ID=74349842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077797 WO2022068143A1 (zh) 2020-09-29 2021-02-25 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112266606A (zh)
WO (1) WO2022068143A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584125A (zh) * 2022-09-19 2023-01-10 金发科技股份有限公司 一种耐润滑酯pa组合物及其制备方法和应用
CN115403922B (zh) * 2022-08-11 2023-10-31 天津金发新材料有限公司 一种聚酰胺复合材料及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266606A (zh) * 2020-09-29 2021-01-26 金发科技股份有限公司 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用
CN113017195B (zh) * 2021-04-13 2022-07-12 温州市三盟鞋业有限公司 一种耐撕裂鞋跟钉及其制备工艺
CN113652062B (zh) * 2021-07-09 2022-08-19 金发科技股份有限公司 一种力学性能稳定的pbt/pc合金及其制备方法和制品
CN115746547A (zh) * 2022-11-18 2023-03-07 中广核高新核材科技(苏州)有限公司 一种辐照交联长玻纤增强耐高温尼龙复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444816A (en) * 1980-12-03 1984-04-24 Raychem Corporation Radiation cross-linking of polyamides
CN102660108A (zh) * 2012-04-11 2012-09-12 才塑高分子材料(上海)有限公司 一种耐候性辐照交联电缆料
JP2014234503A (ja) * 2013-06-05 2014-12-15 日立化成株式会社 熱可塑性樹脂組成物及びその製造方法
CN105153690A (zh) * 2015-07-24 2015-12-16 中广核俊尔新材料有限公司 一种耐氯化盐应力腐蚀开裂的聚酰胺组合物及其制备方法和应用
CN111138850A (zh) * 2019-12-12 2020-05-12 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法
CN112266606A (zh) * 2020-09-29 2021-01-26 金发科技股份有限公司 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350536A (ja) * 2004-06-09 2005-12-22 Toyobo Co Ltd 耐熱性ポリアミド系フィルム及び電子部品、銅張積層板用離型フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444816A (en) * 1980-12-03 1984-04-24 Raychem Corporation Radiation cross-linking of polyamides
CN102660108A (zh) * 2012-04-11 2012-09-12 才塑高分子材料(上海)有限公司 一种耐候性辐照交联电缆料
JP2014234503A (ja) * 2013-06-05 2014-12-15 日立化成株式会社 熱可塑性樹脂組成物及びその製造方法
CN105153690A (zh) * 2015-07-24 2015-12-16 中广核俊尔新材料有限公司 一种耐氯化盐应力腐蚀开裂的聚酰胺组合物及其制备方法和应用
CN111138850A (zh) * 2019-12-12 2020-05-12 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法
CN112266606A (zh) * 2020-09-29 2021-01-26 金发科技股份有限公司 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403922B (zh) * 2022-08-11 2023-10-31 天津金发新材料有限公司 一种聚酰胺复合材料及其制备方法和应用
CN115584125A (zh) * 2022-09-19 2023-01-10 金发科技股份有限公司 一种耐润滑酯pa组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN112266606A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022068143A1 (zh) 一种高耐磨高耐候的聚酰胺组合物及其制备方法和应用
CN102850663A (zh) 一种耐低温无规共聚聚丙烯材料、制备方法及其应用
EP2748244B1 (en) Metal carboxylate additives for thermoplastics
CN107057339A (zh) 一种增强增韧尼龙材料及其制备方法和应用
CN113583396B (zh) 一种耐循环注塑的pbt组合物及其制备方法和制品
WO2017088692A1 (zh) 一种玻纤增强阻燃pbt组合物及其制备方法
CN104371162A (zh) 一种阻燃、耐磨的改性聚乙烯材料及其制备方法
WO2022121441A1 (zh) 一种增韧耐磨聚酰胺组合物及其制备方法和应用
CN110776736B (zh) 交联聚酰胺基复合材料、制备方法及在智慧水务领域的应用
WO2022100025A1 (zh) 一种高耐磨低温升的聚酰胺组合物及其制备方法和应用
CN109081894B (zh) 一种高流动性增韧剂及其制备方法
CN111073273A (zh) 一种改善浮纤、高表面光洁度的玻纤增强pa6复合材料及其制备方法
WO2022242298A1 (zh) 一种玻纤增强聚丙烯组合物及其制备方法和应用
WO2022127857A1 (zh) 一种增强聚丙烯材料及其制备方法和应用
CN113861587A (zh) 一种高层建筑雨水排放专用管材及其制备方法与应用
CN101864117B (zh) 表观和机械性能好的玻纤增强苯乙烯树脂共混物及其制备方法
CN110698747B (zh) 一种抗蠕变性耐冲击的pe管材及其生产方法
CN110157137A (zh) 一种汽车充电桩专用阻燃abs材料及其制备方法
CN111440398B (zh) 一种离子交联聚氯乙烯保护管专用料
CN108003479B (zh) 一种无规共聚聚丙烯管材用复合添加剂
FR2739626A1 (fr) Composition reticulable de polymere du fluorure de vinylidene, procede pour reticuler la composition et articles faconnes
CN113717573A (zh) 耐低温耐开裂热熔标线添加剂及其制备方法
CN109280346B (zh) 一种高抗冲玻纤增强无卤阻燃pok/pbt合金及其制备方法
CN109320827B (zh) 适用于制备吹塑托盘的聚乙烯树脂及其制备方法与应用
JP3995795B2 (ja) ガラス繊維強化ポリプロピレン樹脂射出成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21873810

Country of ref document: EP

Kind code of ref document: A1