WO2022242298A1 - 一种玻纤增强聚丙烯组合物及其制备方法和应用 - Google Patents

一种玻纤增强聚丙烯组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022242298A1
WO2022242298A1 PCT/CN2022/082399 CN2022082399W WO2022242298A1 WO 2022242298 A1 WO2022242298 A1 WO 2022242298A1 CN 2022082399 W CN2022082399 W CN 2022082399W WO 2022242298 A1 WO2022242298 A1 WO 2022242298A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
polypropylene
polypropylene composition
resin
blow molding
Prior art date
Application number
PCT/CN2022/082399
Other languages
English (en)
French (fr)
Inventor
钱志军
陈平绪
黄险波
叶南飚
陈嘉杰
唐宇航
郭唐华
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022242298A1 publication Critical patent/WO2022242298A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the invention relates to the field of polymer materials and their molding processing, in particular to a glass fiber reinforced polypropylene composition and its preparation method and application.
  • Polypropylene is a general-purpose thermoplastic with excellent comprehensive performance. It has the characteristics of low price, light weight, solvent resistance, easy recycling, and non-toxicity. It is the most important lightweight material for automobiles. It can reduce the weight of auto parts by about 40%. Quality, has been widely used in automotive trim.
  • the application of functionalized polypropylene materials in automobiles is also increasing, such as high heat resistance, weather resistance, high rigidity and metallic texture have gradually become the mainstream.
  • the current automobile pedal material uses the traditional LFT reinforced PP material.
  • LFT reinforced PP material In order to further reduce the weight of automobile pedals and achieve further lightweight, automobile companies will gradually adopt blow molding technology to manufacture automobile pedals.
  • ordinary glass fiber-reinforced polypropylene material is easy to break during the three-dimensional blow molding process, with serious floating fibers on the surface and insufficient strength.
  • Patent CN108047552A uses low-fluidity polypropylene, high-density polyethylene resin, compatibilizer and chopped glass fiber to prepare a blown glass fiber reinforced polypropylene composite material for automobile pipes, which has high rigidity and heat resistance , aging resistance and three-dimensional blow molding; but under the premise of high rigidity and heat resistance, the product still has a slight fiber leakage phenomenon, which cannot guarantee the high rigidity, heat resistance and three-dimensional blow molding of the material at the same time performance.
  • the object of the present invention is to provide a glass fiber reinforced polypropylene composition.
  • the glass fiber reinforced polypropylene composition is capable of three-dimensional blowing by using polypropylene resin, polyethylene resin, chopped glass fiber, and a blow molding stabilizer compounded by hyperbranched epoxy resin and nano-calcium carbonate. In addition to plasticity, it has high rigidity and heat resistance.
  • Another object of the present invention is to provide a preparation method of the above-mentioned glass fiber reinforced polypropylene composition.
  • Another object of the present invention is to provide the application of the above-mentioned glass fiber reinforced polypropylene composition in the preparation of automobile pedal materials.
  • a glass fiber reinforced polypropylene composition comprising the following components in parts by weight: 70-80 parts of polypropylene resin, 5-10 parts of polyethylene resin, 3-10 parts of compatibilizer, and 10-20 parts of chopped glass fiber 0.5-2 parts of blow molding stabilizer, 0.1-0.8 parts of light stabilizer, 0-5 parts of toughening agent;
  • the melt flow rate of the polypropylene resin is 1.8-5.0g/10min under the conditions of 230°C and 2.16kg;
  • the polyethylene resin has a melt flow rate of 0.5-1.5g/10min under the conditions of 190°C and 2.16kg;
  • the blow molding stabilizer includes hyperbranched epoxy resin and nano-calcium carbonate; the mass ratio of the hyper-branched epoxy resin to nano-calcium carbonate is 1:(1-5).
  • hyperbranched epoxy resin and nano-calcium carbonate as blow molding stabilizers can effectively improve the three-dimensional blow molding performance of polypropylene materials, and simultaneously improve the rigidity and heat resistance of polypropylene materials.
  • the reason may be: hyperbranched epoxy resin has low viscosity and high epoxy value, which can significantly strengthen and toughen the resin of the blend system, reduce viscosity, increase bond strength, etc., and is beneficial to increase the flow of the blend system It can speed up the melting state during processing; it can also reduce the shear strength of glass fiber material, while retaining the strength of glass fiber and improving the bonding performance of polypropylene and glass fiber material.
  • Nano-calcium carbonate has the effect of absorbing acid, which can inhibit the degradation reaction of polypropylene resin during processing, and ensure the stability of the melt flow rate of granulation, thereby improving the stability of blow molding. At the same time, nano-calcium carbonate also plays a role in promoting crystallization. Function, reduce the deformation that occurs during the blow molding process.
  • the use of low fluidity polypropylene and polyethylene resins can effectively improve the rheological behavior of polypropylene composites, and effectively improve the rheological behavior of polypropylene composites while maintaining the requirements of blow molding. Improve the appearance of the parts, so that the glass fiber will not be exposed obviously.
  • the glass fiber reinforced polypropylene composition is prepared, which has good rigidity, heat resistance and three-dimensional blow molding performance, and can be applied to automobile pedal materials.
  • the glass fiber reinforced polypropylene composition comprises the following components in parts by weight: 75-80 parts of polypropylene resin, 5-8 parts of polyethylene resin, 3-6 parts of compatibilizer, 10 parts of chopped glass fiber ⁇ 14 parts, blow molding stabilizer 0.5 ⁇ 1 part, light stabilizer 0.5 ⁇ 0.8 part, toughening agent 3 ⁇ 5 parts;
  • the polypropylene resin is one or more of homopolypropylene and/or copolymerized polypropylene, and its melt flow rate is 2.0-4.0 g/10 min at 230° C. and 2.16 kg.
  • the polyethylene resin has a melt flow rate of 0.8-1.2 g/10 min under the conditions of 190° C. and 2.16 kg.
  • the mass ratio of the hyperbranched epoxy resin to nano-calcium carbonate is 1:(2-3).
  • the relative molecular mass of the hyperbranched epoxy resin is 2000-5000.
  • the average particle diameter of the nano-calcium carbonate is 20-60 nm.
  • the compatibilizer is one of grafted maleic anhydride polypropylene or grafted maleic anhydride polyethylene; the chopped glass fibers are alkali-free chopped glass fibers.
  • the blow molding stabilizer also includes one or more of silicone powder, zinc oxide masterbatch or silane coupling agent.
  • the silicone powder has an amount of 0.05-0.2 parts by weight.
  • the parts by weight of the zinc oxide masterbatch are 0.05-0.2 parts.
  • the silane coupling agent has an amount of 0.05-0.2 parts by weight.
  • the toughening agent is one or more of ethylene-butene copolymers and/or ethylene-octene copolymers;
  • the light stabilizer is one or more of hindered amines or ultraviolet absorbers Several kinds.
  • the present invention also provides a kind of preparation method of above-mentioned polypropylene composite material, comprises the following steps:
  • the present invention has the following beneficial effects:
  • the present invention uses low fluidity polypropylene and polyethylene resin, with hyperbranched epoxy resin and nano-calcium carbonate of appropriate proportion as blow molding stabilizer, the glass fiber reinforced polypropylene composition that prepares has good stability It has three-dimensional blow molding performance, and has high rigidity and heat resistance at the same time, so it can be effectively used as a material for automobile pedals.
  • melt flow rate (230°C/2.16kg) is 4.8g/10min
  • HyPerE50 molecular weight 6000
  • Wuhan Hyperbranched Resin Technology Co., Ltd.
  • Ethylene-butylene copolymer Model DOW 8150 Manufacturer: American Dow;
  • This embodiment provides a series of polypropylene compositions, the formulations of which are shown in Table 1.
  • This comparative example provides a series of polypropylene compositions, the formulations of which are shown in Table 2.
  • the polypropylene compositions prepared in Examples 1 to 9 of the present invention all have good rigidity, heat resistance and three-dimensional blow molding properties.
  • the molecular weight of hyperbranched epoxy resin is too large among the embodiment 4, and the particle size of the nano-calcium carbonate is too large among the embodiment 5, can affect the fluidity of reaction system, all can make the rigidity (tensile strength) of prepared material Slightly worse.
  • the mass ratio of hyperbranched epoxy resin and nano-calcium carbonate in the blow molding stabilizer in embodiment 6 to be 1:1, its three-dimensional blow molding performance is good, but it will make the prepared polypropylene composition rigid (tensile Tensile strength, flexural modulus) and heat resistance are slightly worse.

Abstract

本发明公开了一种玻纤增强聚丙烯组合物及其制备方法和应用,该聚丙烯组合物包括以下重量份数的组分:聚丙烯树脂70~80份,聚乙烯树脂5~10份,相容剂3~10份,短切玻璃纤维10~20份,吹塑稳定剂0.5~2份,光稳定剂0.1~0.8份,增韧剂0~5份;其中,所述吹塑稳定剂包括超支化环氧树脂和纳米碳酸钙。本发明通过使用聚丙烯和聚乙烯树脂,配合吹塑稳定剂可以使得所制备的玻纤增强聚丙烯组合物具有良好的三维可吹塑性能,并且同时具备高刚性和耐热性,从而可有效用做汽车脚踏板材料。

Description

一种玻纤增强聚丙烯组合物及其制备方法和应用 技术领域
本发明涉及高分子材料及其成型加工领域,具体涉及一种玻纤增强聚丙烯组合物及其制备方法和应用。
背景技术
近年来随着汽车工业的飞速发展,轻量化、品质化、节能环保、功能化等已成为当前汽车工业的主要目标。聚丙烯是一种综合性能优良的通用热塑性塑料,具有价格低廉,质量轻、耐溶性、易回收、无毒等特点,是最重要的汽车轻质材料,它可减轻汽车零部件约40%的质量,已广泛应用在汽车装饰件上。而功能化的聚丙烯材料在汽车上的运用也越来越多,如高耐热性、耐候性、高刚性和金属质感性也逐渐成为主流。
现行汽车脚踏板材料使用的是传统LFT增强PP材料。为了进一步减轻汽车脚踏板的重量,实现进一步的轻量化,汽车企业将逐渐采用吹塑工艺制造汽车脚踏板。但是玻纤增强后的聚丙烯普通材料三维吹塑过程中容易破裂,表面浮纤严重,强度严重不足,不适合三维吹塑,不能满足汽车脚踏板材料三维吹塑成型工艺的需求。专利CN108047552A采用低流动性聚丙烯、高密度聚乙烯树脂、相容剂和短切玻璃纤维制备得到了一种用于汽车管道的吹塑玻纤增强聚丙烯复合材料,具有高刚性、耐热性、耐老化以及可三维吹塑成型;但其具有较高刚性和耐热性的前提下,产物仍出现了轻微漏纤的现象,无法同时保证材料的高刚性、耐热性和可三维吹塑性能。
因此,开发一种高刚性、耐热性且可三维吹塑成型的汽车脚踏板材料具有重要的研究意义和经济价值。
发明内容
为了克服现有技术中,无法同时保证汽车脚踏板材料可三维吹塑成型和高刚性、耐热性性能的综合性能问题,本发明的目的在于提供一种玻纤增强聚丙烯组合物。该玻纤增强聚丙烯组合物通过使用聚丙烯树脂、聚乙烯树脂和短切玻璃纤维,以及由超支化环氧树脂和纳米碳酸钙复配而成的吹塑稳定剂,使其具备可三维吹塑性能的同时,具备高刚性和耐热性。
本发明的另一目的在于提供上述玻纤增强聚丙烯组合物的制备方法。
本发明的另一目的在于提供上述玻纤增强聚丙烯组合物在制备汽车脚踏板材料中的应用。
为实现上述发明目的,本发明采用如下技术方案:
一种玻纤增强聚丙烯组合物,包括以下重量份数的组分:聚丙烯树脂70~80份,聚乙烯树脂5~10份,相容剂3~10份,短切玻璃纤维10~20份,吹塑稳定剂0.5~2份,光稳定剂0.1~0.8份,增韧剂0~5份;
所述聚丙烯树脂在230℃、2.16kg条件下,熔体流动速率为1.8~5.0g/10min;
所述聚乙烯树脂在190℃、2.16kg条件下,熔体流动速率为0.5~1.5g/10min;
所述吹塑稳定剂包括超支化环氧树脂和纳米碳酸钙;所述超支化环氧树脂和纳米碳酸钙的质量比为1:(1~5)。
本发明研究发现,以超支化环氧树脂和纳米碳酸钙为吹塑稳定剂可有效提高聚丙烯材料的三维可吹塑性能,并同时提高聚丙烯材料的刚性和耐热性。其原因可能为:超支化环氧树脂具备低粘度、高环氧值,对共混体系的树脂具有显著的增强增韧、降低粘度、增加粘结强度等作用,有利于增加共混体系的流动性,加工过程中加快熔融状态;并能减小玻纤材料的剪切强度,而保留玻纤的强度,提高聚丙烯和玻纤材料的结合性能。纳米碳酸钙起到吸酸作用,能够在加工过程中抑制聚丙烯树脂的降解反应,保证造粒的熔体流动速率稳定,从而提高吹塑的稳定性,同时纳米碳酸钙还起到促进结晶的作用,减少吹塑过程中发生的变形。
另外,在配合适当比例的吹塑稳定剂的基础上,使用低流动性的聚丙烯和聚乙烯树脂,可有效改善聚丙烯复合材料的流变行为,在保持吹塑成型的要求下,有效改善制件外观,使玻纤不会出现明显的外露。最终制备得到玻纤增强聚丙烯组合物,同时具备良好的刚性、耐热性和可三维吹塑成型性能,可应用于汽车脚踏板材料。
优选地,所述玻纤增强聚丙烯组合物包括以下重量份数的组分:聚丙烯树脂75~80份,聚乙烯树脂5~8份,相容剂3~6份,短切玻璃纤维10~14份,吹塑稳定剂0.5~1份,光稳定剂0.5~0.8份,增韧剂3~5份;
优选地,所述聚丙烯树脂为均聚聚丙烯和/或共聚聚丙烯中的一种或几种,其熔体流动速率在230℃、2.16kg条件下为2.0~4.0g/10min。
优选地,所述聚乙烯树脂在190℃、2.16kg条件下,熔体流动速率为0.8~ 1.2g/10min。
优选地,所述超支化环氧树脂和纳米碳酸钙的质量比为1:(2~3)。
优选地,所述超支化环氧树脂的相对分子质量为2000~5000。
优选地,所述纳米碳酸钙的平均粒径为20~60nm。
优选地,所述相容剂为接枝马来酸酐聚丙烯或接枝马来酸酐聚乙烯中的一种;所述短切玻璃纤维为无碱短切玻璃纤维。
优选地,所述吹塑稳定剂还包括硅酮粉、氧化锌母粒或硅烷偶联剂中的一种或几种。
进一步优选地,所述硅酮粉的重量份数为0.05~0.2份。
进一步优选地,所述氧化锌母粒的重量份数为0.05~0.2份。
进一步优选地,所述硅烷偶联剂的重量份数为0.05~0.2份。
优选地,所述增韧剂为乙烯-丁烯共聚物和/或乙烯-辛烯共聚物中的一种或几种;所述光稳定剂为受阻胺类或紫外线吸收剂中的一种或几种。
本发明还提供一种上述聚丙烯复合材料的制备方法,包括以下步骤:
称取聚丙烯树脂、聚乙烯树脂、相容剂和增韧剂进行混合;接着加入吹塑稳定剂和光稳定剂混合均匀;将混合物置于双螺杆挤出机的主喂料口中,从侧喂料口加入短切玻璃纤维,温度控制在190℃~230℃,螺杆转速400~450转/分钟的条件下熔融共混,挤出造粒、干燥即得所述聚丙烯组合物。
上述聚丙烯组合物在制备汽车脚踏板材料中的应用也在本发明的保护范围内。
与现有技术相比,本发明具有如下有益效果:
(1)本发明使用低流动性的聚丙烯和聚乙烯树脂,以适当比例的超支化环氧树脂和纳米碳酸钙作为吹塑稳定剂,制备得到的玻纤增强聚丙烯组合物具有良好的可三维吹塑性能,并且同时具备高刚性和耐热性,从而可有效用做汽车脚踏板材料。
(2)本发明提供的一种玻纤增强聚丙烯组合物的制备方法简单易行,且生产工艺简单、适合大批量生产。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于 限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
本发明各实施例及对比例选用的部分试剂说明如下:
聚丙烯树脂:
1.共聚PP,熔体流动速率(230℃/2.16kg)为3.0g/10min
型号:PPH-T03 厂家:北海炼化;
2.共聚PP,熔体流动速率(230℃/2.16kg)为23.0g/10min
型号:Z30S 厂家:北海炼化;
3.均聚PP,熔体流动速率(230℃/2.16kg)为4.8g/10min
型号:T30S 厂家:兰州石化;
聚乙烯树脂:
1.熔体流动速率(190℃/2.16kg)为0.8g/10min
型号:Q50100 厂家:卡塔尔石化;
2.熔体流动速率(190℃/2.16kg)为0.6g/10min
型号:2420F 厂家:中海壳牌;
3.熔体流动速率(190℃/2.16kg)为1.7g/10min
型号:7042 厂家:大庆石化;
短切玻璃纤维:
型号:ER13-2000-988A 厂家:广东巨石;
相容剂:
型号:B2 厂家:科艾斯;
超支化环氧树脂:
1.型号:HyPerE10(分子量2500)厂家:武汉超支化树脂科技有限公司;
2.型号:HyPerE50(分子量6000)厂家:武汉超支化树脂科技有限公司;
纳米碳酸钙:
1.型号:TN-3(粒径30nm)厂家:天使纳米科技;
2.型号:TN-10(粒径100nm)厂家:天使纳米科技;
硅酮粉:
型号:JS-1065 厂家:上海兼善环保科技;
增韧剂:
乙烯-丁烯共聚物 型号:DOW 8150 厂家:美国陶氏;
光稳定剂:
型号:944 厂家:巴斯夫。
本发明各实施例及对比例的聚丙烯组合物通过如下过程制备得到:
称取聚丙烯树脂、聚乙烯树脂、相容剂和增韧剂,在高混机里混合3min,得到第一预混料;称取吹塑稳定剂和光稳定剂,加入到第一预混料中,在高混机里混合2min,得到第二预混料;将第二预混料置于双螺杆挤出机的主喂料口中,从侧喂料口加入短切玻璃纤维,温度控制在210℃,螺杆转速450转/分钟的条件下熔融共混,挤出造粒,即得玻纤增强聚丙烯组合物。
本发明各实施例及对比例的玻纤增强聚丙烯组合物的性能测试方法和标准如下:
(1)热变形温度:采用GB/T 1633-2000标准进行测试;
(2)拉伸强度:按照ISO 527-2-2016进行测试,拉伸速度为50mm/min;
(3)弯曲性能:将样品注塑成力学样条,按照ISO 178-2010进行测试,弯曲速度2mm/min;
(4)悬臂梁缺口冲击强度:按照ISO 180-2000标准进行测试;
(5)三维吹塑成型外观:将产品注塑成外观平整样板,平放于桌面,通过目测判断。当产品出现破裂时,记录为“破裂”;当产品表面与桌面角度明显不平行时,记录为翘曲变形;当产品表面出现的放射状白痕分布超过总面积的1/3,记录为“漏纤”;当产品表面出现的明显放射状白痕分布面积不超过1/10时,记录为“轻微漏纤”;当产品表面出现的明显放射状白痕不超过10条时,记录为“良好”;当产品表面没有出现明显放射状白痕时,记录为“好”。
实施例1~9
本实施例提供一系列的聚丙烯组合物,其配方如表1。
表1实施例1~9的配方(份)
Figure PCTCN2022082399-appb-000001
Figure PCTCN2022082399-appb-000002
对比例1~6
本对比例提供一系列聚丙烯组合物,其配方如表2。
表2对比例1~6的配方(份)
Figure PCTCN2022082399-appb-000003
Figure PCTCN2022082399-appb-000004
按照上述提及的方法对各实施例和对比例的聚丙烯组合物的性能进行测定,结果如表3。
表3各实施例和对比例的性能测试结果
Figure PCTCN2022082399-appb-000005
从表3可以看出,本发明实施例1~9所制备得到的聚丙烯组合物均具有较好的刚性、耐热性和可三维吹塑性能。其中,实施例4中超支化环氧树脂的分子量过大,和实施例5中纳米碳酸钙粒径过大,会影响反应体系的流动性,均会使得所制备材料的刚性(拉伸强度)略变差。实施例6中调节吹塑稳定剂中超支化环氧树脂和纳米碳酸钙的质量比为1:1时,其三维可吹塑性能良好,但会使所制备得到的聚丙烯组合物刚性(拉伸强度、弯曲模量)和耐热性稍微变差。
将实施例1与对比例1~6比较,对比例1中选用流动性更大的聚丙烯树脂,力学性能有明显下降,而且由于聚丙烯流动过快,剪切效果差,三维吹塑产品会有明显的浮纤;对比例2中选用流动性更大的聚乙烯树脂,力学性能有少许下降,而且由于流动不均匀,在三维吹塑产品表面会有少量的浮纤;对比例3使用的吹塑稳定剂中,超支化环氧树脂和纳米碳酸钙的质量比为1:9,这导致体系的流动性会变差,三维吹塑成型时外观破裂。
对比例4中不加入吹塑稳定剂,在三维吹塑过程中发生破裂,且弯曲模量和悬臂梁缺口冲击强度明显降低,刚性变差;对比例5中仅加入纳米碳酸钙作为吹塑稳定剂,在三维吹塑过程中发生破裂,且拉伸强度明显降低;对比例6中仅加入超支化环氧树脂作为吹塑稳定剂,其悬臂梁缺口冲击强度明显降低,且在三维吹塑过程中发生翘曲变形。
可知,本申请中采用适当比例的超支化环氧树脂和纳米碳酸钙作为吹塑稳定剂,结合低流动性聚丙烯树脂和聚乙烯树脂以及短切玻璃纤维等制备得到的玻纤增强聚丙烯组合物同时具有较好的耐热性、高刚性和可三维吹塑性能,能够有效地用作汽车脚踏板材料
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种玻纤增强聚丙烯组合物,其特征在于,包括以下重量份数的组分:聚丙烯树脂70~80份,聚乙烯树脂5~10份,相容剂3~10份,短切玻璃纤维10~20份,吹塑稳定剂0.5~2份,光稳定剂0.1~0.8份,增韧剂0~5份;
    所述聚丙烯树脂在230℃、2.16kg条件下,熔体流动速率为1.8~5.0g/10min;
    所述聚乙烯树脂在190℃、2.16kg条件下,熔体流动速率为0.5~1.5g/10min;
    所述吹塑稳定剂包括超支化环氧树脂和纳米碳酸钙;所述超支化环氧树脂和纳米碳酸钙的质量比为1:(1~5)。
  2. 根据权利要求1所述聚丙烯组合物,其特征在于,所述聚丙烯树脂为均聚聚丙烯和/或共聚聚丙烯中的一种或几种,其熔体流动速率在230℃、2.16kg条件下为2.0~4.0g/10min。
  3. 根据权利要求1所述聚丙烯组合物,其特征在于,所述聚乙烯树脂在190℃、2.16kg条件下,熔体流动速率为0.8~1.2g/10min。
  4. 根据权利要求1所述聚丙烯组合物,其特征在于,所述超支化环氧树脂和纳米碳酸钙的质量比为1:(2~3)。
  5. 根据权利要求1所述聚丙烯组合物,其特征在于,所述超支化环氧树脂的相对分子质量为2000~5000。
  6. 根据权利要求1所述聚丙烯组合物,其特征在于,所述纳米碳酸钙的平均粒径为20~60nm。
  7. 根据权利要求1所述聚丙烯组合物,其特征在于,所述相容剂为接枝马来酸酐聚丙烯或接枝马来酸酐聚乙烯中的一种;所述短切玻璃纤维为无碱短切玻璃纤维;所述吹塑稳定剂还包括硅酮粉、氧化锌母粒或硅烷偶联剂中的一种或几种。
  8. 根据权利要求1所述聚丙烯组合物,其特征在于,所述增韧剂为乙烯-丁烯共聚物和/或乙烯-辛烯共聚物中的一种或几种;所述光稳定剂为受阻胺类或紫外线吸收剂中的一种或几种。
  9. 权利要求1~8中任一所述聚丙烯组合物的制备方法,其特征在于,包括以下步骤:将聚丙烯树脂、聚乙烯树脂、相容剂和增韧剂混合;加入吹塑稳定剂和光稳定剂混合均匀;将混合物置于主喂料口中,从侧喂料口加入短切玻璃纤维,进行熔融共混,挤出造粒、干燥,即得所述聚丙烯组合物。
  10. 权利要求1~8中任一所述聚丙烯组合物在制备汽车脚踏板材料中的应用。
PCT/CN2022/082399 2021-05-18 2022-03-23 一种玻纤增强聚丙烯组合物及其制备方法和应用 WO2022242298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110542318.2A CN113388194B (zh) 2021-05-18 2021-05-18 一种玻纤增强聚丙烯组合物及其制备方法和应用
CN202110542318.2 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022242298A1 true WO2022242298A1 (zh) 2022-11-24

Family

ID=77618001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082399 WO2022242298A1 (zh) 2021-05-18 2022-03-23 一种玻纤增强聚丙烯组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113388194B (zh)
WO (1) WO2022242298A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388194B (zh) * 2021-05-18 2022-03-22 金发科技股份有限公司 一种玻纤增强聚丙烯组合物及其制备方法和应用
CN114539673A (zh) * 2022-03-28 2022-05-27 金发科技股份有限公司 一种玻璃纤维增强聚丙烯复合材料及其制备方法与应用
CN115612204B (zh) * 2022-09-27 2023-09-26 天津金发新材料有限公司 一种用于改善聚丙烯熔接痕强度保持率的母粒及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212173A1 (en) * 2002-05-13 2003-11-13 The Procter & Gamble Company Compositions of polyolefins and hyperbranched polymers with improved tensile properties
CN101007885A (zh) * 2006-01-23 2007-08-01 贵州省材料技术创新基地 一种复合填充的聚丙烯树脂组合物及其制备方法
CN105670114A (zh) * 2016-02-26 2016-06-15 浙江森川家具有限公司 一种低成本无翘曲高阻燃聚丙烯家具料及其制备方法
CN108276682A (zh) * 2017-12-26 2018-07-13 上海普利特复合材料股份有限公司 一种高流动性高强高韧聚丙烯复合材料及其制备方法
CN109370041A (zh) * 2018-08-09 2019-02-22 河南工程学院 一种兼具良好刚性和高断裂伸长率的聚丙烯改性材料及其制备方法
CN110760126A (zh) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 一种耐热抗冲击聚丙烯组合物及其制备方法
CN111073151A (zh) * 2020-01-10 2020-04-28 山东道恩高分子材料股份有限公司 一种低光泽柔触感改性热塑性树脂及其制备方法
CN113388194A (zh) * 2021-05-18 2021-09-14 金发科技股份有限公司 一种玻纤增强聚丙烯组合物及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137146A (ja) * 1989-10-24 1991-06-11 Ube Ind Ltd ポリプロピレン系樹脂組成物
JPH03263445A (ja) * 1990-03-13 1991-11-22 Mitsubishi Petrochem Co Ltd 中空成形用プロピレン系樹脂組成物
CN1204198C (zh) * 2001-11-02 2005-06-01 上海杰事杰新材料股份有限公司 吹塑级玻璃纤维增强尼龙
CN102993560A (zh) * 2012-10-10 2013-03-27 天津金发新材料有限公司 用于汽车空滤进气管的吹塑玻纤增强聚丙烯复合物及其制备方法
US20140163154A1 (en) * 2012-12-12 2014-06-12 Asahi Kasei Plastics North America Inc. Polypropylene compounds with enhanced haptics and methods of making same
CN108047552A (zh) * 2017-12-12 2018-05-18 天津金发新材料有限公司 用于汽车管道的吹塑玻纤增强聚丙烯复合材料及制备方法
CN110684282A (zh) * 2019-10-30 2020-01-14 南京聚隆科技股份有限公司 一种3d中空吹塑微发泡聚烯烃材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212173A1 (en) * 2002-05-13 2003-11-13 The Procter & Gamble Company Compositions of polyolefins and hyperbranched polymers with improved tensile properties
CN101007885A (zh) * 2006-01-23 2007-08-01 贵州省材料技术创新基地 一种复合填充的聚丙烯树脂组合物及其制备方法
CN105670114A (zh) * 2016-02-26 2016-06-15 浙江森川家具有限公司 一种低成本无翘曲高阻燃聚丙烯家具料及其制备方法
CN108276682A (zh) * 2017-12-26 2018-07-13 上海普利特复合材料股份有限公司 一种高流动性高强高韧聚丙烯复合材料及其制备方法
CN110760126A (zh) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 一种耐热抗冲击聚丙烯组合物及其制备方法
CN109370041A (zh) * 2018-08-09 2019-02-22 河南工程学院 一种兼具良好刚性和高断裂伸长率的聚丙烯改性材料及其制备方法
CN111073151A (zh) * 2020-01-10 2020-04-28 山东道恩高分子材料股份有限公司 一种低光泽柔触感改性热塑性树脂及其制备方法
CN113388194A (zh) * 2021-05-18 2021-09-14 金发科技股份有限公司 一种玻纤增强聚丙烯组合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO XIN, SUN ZHANYING: "Effect of Hyperbranched Polymer on Properties of Polypropylene/Sisal Fiber Composites", ENGINEERING PLASTICS APPLICATION, JINAN CITY,CN, vol. 49, no. 1, 10 January 2021 (2021-01-10), Jinan City,CN, pages 120 - 124, XP093005726, ISSN: 1001-3539, DOI: 10.3969/j.issn.1001-3539.2021.01.023 *

Also Published As

Publication number Publication date
CN113388194A (zh) 2021-09-14
CN113388194B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2022242298A1 (zh) 一种玻纤增强聚丙烯组合物及其制备方法和应用
CN105504803B (zh) 一种高流动性纤维增强尼龙复合材料及其制备方法
CN111500009A (zh) 一种增强聚丙烯材料及其制备方法
CN105219074A (zh) 同质异构交联法增韧增强回收尼龙及其制备方法
CN108264749A (zh) 一种高流动良表面碳纤维增强聚碳酸酯复合材料及其制备方法
CN111534099B (zh) 低成本低浮纤高玻纤含量的增强聚苯硫醚复合材料及其制备方法
CN109401302A (zh) 良表面高冲击尼龙/pok合金及其制备方法
CN109897347B (zh) 一种军工电连接器绝缘体及其制备方法
CN111073273A (zh) 一种改善浮纤、高表面光洁度的玻纤增强pa6复合材料及其制备方法
CN111171424B (zh) 一种pa工程塑料用高流动黑色母及其制备方法
CN107541049B (zh) 一种石墨烯协同连续玻纤增强无卤阻燃耐候ppo/hips合金材料及其制备方法
CN111534037A (zh) 一种增强聚丙烯材料及其制备方法
CN110655708A (zh) 一种综合性能优异的低密度聚丙烯复合材料及其制备方法
CN111732838B (zh) 一种仿木家具用耐老化木塑复合材料及其制备方法
CN112552684B (zh) 微弧氧化专用低线性膨胀系数聚苯硫醚复合材料及其制备和应用
CN109486156B (zh) 一种阻燃挤出级pc/abs复合材料
WO2023160155A1 (zh) 一种pbt/pet合金及其制备方法和应用
CN109504048B (zh) 一种热致可逆交联组合物改性聚乳酸3d打印线材及其制备方法
CN114316434A (zh) 一种低翘曲、耐刮擦软触感改性聚丙烯复合材料及其制备方法
CN109467814B (zh) 一种复合矿物纤维填充聚丙烯复合材料及其制备方法
CN113831642A (zh) 玄武岩纤维在免喷涂聚丙烯材料中的应用及其组合物、组合物的制备方法
CN112694670A (zh) 一种玻纤增强废旧pp/pet膜复合材料及其制备方法
CN112795161B (zh) 一种用于改善数码产品壳体熔接痕的pc/abs聚合物合金及其制备方法和应用
CN114196116B (zh) 一种高耐候耐热聚丙烯材料及其制备方法
CN116199975B (zh) 一种聚丙烯改性材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE