WO2022065452A1 - ジルコニア焼結体の製造方法 - Google Patents

ジルコニア焼結体の製造方法 Download PDF

Info

Publication number
WO2022065452A1
WO2022065452A1 PCT/JP2021/035176 JP2021035176W WO2022065452A1 WO 2022065452 A1 WO2022065452 A1 WO 2022065452A1 JP 2021035176 W JP2021035176 W JP 2021035176W WO 2022065452 A1 WO2022065452 A1 WO 2022065452A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
temperature
firing
layers
Prior art date
Application number
PCT/JP2021/035176
Other languages
English (en)
French (fr)
Inventor
篤 松浦
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to CN202180065597.6A priority Critical patent/CN116209409A/zh
Priority to EP21872581.0A priority patent/EP4219425A1/en
Priority to JP2021574762A priority patent/JP7026295B1/ja
Priority to KR1020237005295A priority patent/KR20230070446A/ko
Priority to US18/027,680 priority patent/US20230382808A1/en
Priority to JP2022020194A priority patent/JP2022068261A/ja
Publication of WO2022065452A1 publication Critical patent/WO2022065452A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles

Definitions

  • the present invention relates to a method for producing a zirconia sintered body.
  • metal has often been used as a dental product (for example, a typical covering crown, crown, prosthesis such as an insert tooth, orthodontic product, dental implant product).
  • a dental product for example, a typical covering crown, crown, prosthesis such as an insert tooth, orthodontic product, dental implant product.
  • the color of metal is clearly different from that of natural teeth, and it has the disadvantage of lacking aesthetics, and it may cause allergies due to the elution of metal. Therefore, in order to solve the problems associated with the use of metal, ceramic materials such as aluminum oxide (alumina) and zirconium oxide (zirconia) have been used in dental products as alternative materials for metals.
  • zirconia has excellent strength and relatively excellent aesthetics, so demand is increasing due to the low price.
  • Patent Documents 1 to 3 disclose a firing furnace for firing ceramics containing zirconia in a short time and schedule conditions.
  • itria which is a stabilizer
  • itria can obtain the ideal color tone and strength of the dental prosthesis in the obtained sintered body. It was found that there was a problem that stripes were generated between layers having different contents.
  • a zirconia molded product or a zirconia calcined product having a plurality of layers having different amounts of stabilizers is sintered in a short time, and zirconia firing in which stripes are inconspicuous between layers having different amounts of stabilizers. It is an object of the present invention to provide a method for producing a body. In addition, zirconia can reproduce the ideal color tone and strength of a dental prosthesis to the same extent as when it is fired under normal conditions, even though the zirconia molded body or zirconia calcined body is sintered in a short time. It is an object of the present invention to provide a method for producing a sintered body.
  • the present inventor has applied a specific short-time firing schedule to a zirconia molded body or a zirconia calcined body having a plurality of layers having different amounts of stabilizers. It was found that a zirconia sintered body in which stripes are not conspicuous between the layers can be obtained even by firing for a short time, and further research is carried out based on the finding, and the present invention has been completed.
  • the present invention includes the following inventions.
  • It has a firing step of firing a zirconia molded product or a zirconia calcined product.
  • the zirconia molded product or zirconia calcined product comprises a plurality of layers containing a stabilizer.
  • the plurality of layers include layers having different contents of stabilizers.
  • the firing step includes at least three steps of a heating step of a first heating step (H1), a second heating step (H2), and a third heating step (H3).
  • the temperature rise rate in the second temperature rise step (H2) is HR2,
  • the starting temperature in each heating step is 1000 ° C or less in H1, In H2, above 1250 ° C and below 1450 ° C, In H3, it is 1450 ° C or higher and 1550 ° C or lower.
  • the reached temperature in each heating process is In H1, above 1250 ° C and below 1450 ° C, In H2, 1450 ° C or higher and 1550 ° C or lower, In H3, it is 1500 ° C or higher and 1750 ° C or lower.
  • a method for manufacturing a zirconia sintered body [2] The method for producing a zirconia sintered body according to [1], wherein the HR1 is 40 to 500 ° C./min when the heating rate in the first heating step (H1) is HR1. [3] The method for producing a zirconia sintered body according to [1] or [2], wherein the difference in the content of the stabilizer between the layers having different contents of the stabilizer is 0.1 mol% or more.
  • [4] The method for producing a zirconia sintered body according to any one of [1] to [3], wherein the stabilizer is yttria.
  • [5] The zirconia sintering according to [4], wherein the content of yttria in all the layers of the plurality of layers is 2.5 mol% or more and 7.5 mol% or less with respect to the total mol of zirconia and yttria. How to make a body.
  • [6] The method for producing a zirconia sintered body according to any one of [1] to [5], wherein HR2 is 2 to 30 ° C./min.
  • the production of the zirconia sintered body according to [9], which further comprises a temperature lowering step, and in the temperature lowering step, the temperature lowering rate from the maximum firing temperature in the temperature raising step to 800 ° C. is 10 ° C./min or more.
  • Method. [11] Of [1] to [10], the total firing time from the start of heating in the first heating step (H1) in the firing step to the end of the mooring time at the maximum firing temperature is within 120 minutes.
  • a zirconia molded product or a zirconia calcined product having a plurality of layers having different amounts of stabilizers is sintered in a short time, and layers having different amounts of stabilizers. It is possible to provide a method for producing a zirconia sintered body in which stripes are inconspicuous between the two. In addition, despite sintering in a short time, the ideal color tone and intensity of the dental prosthesis can be reproduced to the same extent as when firing under normal firing conditions (total firing time: 6 to 12 hours). A method for producing a zirconia sintered body can be provided.
  • FIG. 1 shows a schematic view of a zirconia calcined body according to the present invention.
  • a zirconia molded body or a zirconia calcined body is sintered in a short time (for example, a total firing time of 120 minutes or less), and layers having different amounts of stabilizers.
  • a zirconia sintered body in which no streaks are generated can be obtained, the present inventor presumes as follows.
  • the difference in translucency hereinafter, may be referred to as ⁇ L (WB)
  • WB difference in translucency
  • the present inventor is studying the countermeasures, and when firing for a short time, the rate of increase of ⁇ L (WB) changes as the temperature rises according to the amount of the stabilizer contained in the layer. I discovered the phenomenon that the temperature range is different. From this phenomenon, ⁇ L (WB) between layers having different amounts of adjacent stabilizers rises to the same extent (that is, the difference in ⁇ L (WB) between layers is difficult to appear) at a specific temperature. By slowing down the temperature rise rate in the range and increasing the ⁇ L (WB) of the entire zirconia molded body or zirconia calcined body to be heated, the temperature range in which the difference in ⁇ L (WB) is likely to appear is increased.
  • the difference in ⁇ L (WB) of layers with different amounts of stabilizer is prevented from widening as much as possible in short-time firing, so that the stabilizer is comprehensively stabilized.
  • the firing furnace used for firing of the present invention is an atmospheric furnace, which may be a box-type furnace, a rutsubo furnace, a tubular furnace, a bottom elevating furnace, a continuous furnace, a rotary kiln, a resistance heating furnace, an induction heating furnace, a direct energization type electric furnace, etc.
  • An IH furnace, a high frequency furnace, a microwave furnace may be used, a metal heating element, silicon carbide, molybdenum disilicate, lantern chromite, molybdenum, carbon, tungsten, etc. are used as the heating element, and SiC is used as the heating element susceptor. You may.
  • a firing furnace in which any two or more of these are combined may be used. Further, the smaller the volume in the firing furnace having a zirconia molded body having a predetermined shape such as a crown or a pedestal on which the zirconia calcined body is placed, the better the thermal efficiency and the maintenance of the amount of heat in the furnace during firing. Can be facilitated.
  • the zirconia molded product in the present invention is a molded product made of unfired, that is, unsintered zirconia.
  • the zirconia molded product in the present invention may be partially stabilized zirconia or fully stabilized zirconia.
  • “not sintered” refers to a state in which the contacting portions of the zirconia powder particles do not react with each other.
  • the zirconia calcined product of the present invention can be a precursor (intermediate product) of the zirconia sintered body.
  • the zirconia calcined body means, for example, a zirconia particle (powder) blocked in a state where it is not completely sintered.
  • the upper limit value and the lower limit value of the numerical range can be appropriately combined. be.
  • the method for producing a zirconia sintered body of the present invention includes at least three steps of raising the temperature.
  • the first heating step is H1
  • the second heating step is H2
  • the third heating step is H3
  • each heating step has a different heating rate.
  • the temperature raising step may be only three steps, or may include other heating temperature steps.
  • First heating step (H1) In the first temperature raising step (H1) in the method for producing a zirconia sintered body of the present invention, the temperature rises at once to the temperature reached in the first temperature raising step (H1) in a firing furnace heated to room temperature or above room temperature of 1000 ° C. or lower.
  • the zirconia molded product or the zirconia calcined product is heated by warming.
  • those having a predetermined shape of the dental product are preferable.
  • dental products include typical dental prostheses such as crowns, crowns, and inserts; orthodontic products; and dental implant products.
  • the zirconia molded body or the zirconia calcined body before heating may be processed by using a dental CAD / CAM device, or may be produced by a dental technician by cutting or the like.
  • the zirconia molded body or zirconia calcined body before heating may be placed directly on the muffle member of the firing furnace at the time of firing, or may be statically placed in the furnace using a tray, pedestal, or pin made of ceramic or refractory metal. It may be placed, or it may be placed statically using ceramic beads.
  • the starting temperature of the first temperature raising step (H1) is not particularly limited as long as it is 1000 ° C. or lower, but is preferably room temperature to 1000 ° C., more preferably room temperature to 450 ° C., and further preferably room temperature to 400 ° C. It is particularly preferably room temperature to 300 ° C.
  • the reached temperature in the first temperature raising step (H1) is 1250 to 1450 ° C., which is preferably 1300 ° C. or higher from the viewpoint of further shortening the working time, and the layers having different contents of the stabilizer Ittria are used. Since the difference in transparency can be reduced, it is more preferably 1350 ° C. or higher, and further preferably 1400 ° C. or higher.
  • the HR1 is preferably 40 ° C./min or more, more preferably 50 ° C./min or more, from the viewpoint that the working time can be further shortened. It is more preferably 60 ° C./min or more, and particularly preferably 70 ° C./min or more. Further, HR1 is preferably 500 ° C./min or less, more preferably 450 ° C./min or less, still more preferably 400 ° C./min or less, and particularly preferably 350 ° C./min or less. If HR1 exceeds 500 ° C./min, cracks and cracks may be induced during firing.
  • the zirconia molded product or zirconia calcined product to be subjected to the first temperature raising step (H1) contains the moisture used during processing and the color liquid for coloring, it is preferably 1 minute or more and 20 minutes or less at 300 ° C. or lower. May start the first temperature raising step (H1) after passing through a drying step of 5 minutes or more and 15 minutes or less. Further, as a preferred embodiment, there is a method for producing a zirconia sintered body in which HR1 / HR3> 1. HR1 / HR3> 1.5 is more preferable, and HR1 / HR3> 2 is even more preferable.
  • HR2 is more than 0 ° C./min, and the working time can be further shortened. It is preferably 1 ° C./min or more, more preferably 2 ° C./min or more, still more preferably 3 ° C./min or more, and particularly preferably 4 ° C./min or more. Further, HR2 is preferably less than 50 ° C./min, is excellent in brightness and translucency of the obtained zirconia sintered body, and suppresses the generation of stripes between layers having different yttria contents. It is less than 40 ° C./min, more preferably 35 ° C./min or less, still more preferably 30 ° C./min or less, and particularly preferably 20 ° C./min or less.
  • the starting temperature of the second temperature raising step (H2) is 1250 to 1450 ° C., which is preferably 1300 ° C. or higher from the viewpoint of further shortening the working time, and the layers having different contents of the stabilizer Ittria are used. Since the difference in transparency can be reduced, the temperature is more preferably 1350 ° C. or higher, and even more preferably 1400 ° C. or higher.
  • the reached temperature in the second temperature raising step (H2) is 1450 to 1550 ° C., and is preferably 1470 ° C. or higher, more preferably 1490 ° C. or higher, and further preferably 1500 ° C. from the viewpoint of further shortening the working time. That is all.
  • the ultimate temperature of H2 is excellent in the brightness, translucency and saturation of the obtained zirconia sintered body, and when the zirconia molded body or the zirconia calcined body contains the composite oxide, the color development property of the composite oxide is excellent. Moreover, it is preferably 1540 ° C. or lower, more preferably 1530 ° C. or lower, still more preferably 1520 ° C. or lower, from the viewpoint of suppressing the generation of stripes between layers having different contents of itria.
  • HR3 / HR2> 1.2 is preferable, HR3 / HR2> 1.5 is more preferable, and HR3 / HR2> 2 is more preferable.
  • HR3 is preferably 5 ° C./min or more, and is preferably 8 ° C./min or more from the viewpoint that the working time can be further shortened and the generation of stripes is suppressed between layers having different contents of ytria. It is more preferably 9 ° C./min or higher, and even more preferably 10 ° C./min or higher.
  • HR3 is superior in the saturation of the obtained zirconia sintered body, and when the zirconia molded product or the zirconia calcined product contains the composite oxide, the color development property of the composite oxide is excellent and the generation of streaks is suppressed.
  • 150 ° C./min or less preferably 100 ° C./min or less, and more preferably 50 ° C./min or less.
  • the starting temperature of the third temperature raising step (H3) is 1450 to 1550 ° C., which is preferably 1470 ° C. from the viewpoint of further shortening the working time and suppressing the generation of stripes between layers having different yttrium contents.
  • the above is more preferably 1490 ° C. or higher, and even more preferably 1500 ° C. or higher.
  • the starting temperature of H3 is excellent in the brightness, translucency and saturation of the obtained zirconia sintered body, and when the zirconia molded body or the zirconia calcined body contains the composite oxide, the color development property of the composite oxide is excellent. From the point of view, it is preferably 1540 ° C. or lower, more preferably 1530 ° C. or lower, still more preferably 1520 ° C. or lower.
  • the reached temperature in the third temperature raising step (H3) is 1500 to 1750 ° C.
  • the obtained zirconia sintered body is excellent in brightness, translucency and saturation, and the zirconia molded body or zirconia calcined body forms a composite oxide.
  • it is preferably 1510 ° C. or higher, more preferably 1530 ° C. or higher, and further preferably 1550 ° C. or higher from the viewpoint of excellent color development of the composite oxide.
  • the reaching temperature of H3 can further shorten the working time, and the obtained zirconia sintered body is excellent in brightness, translucency and saturation, and when the zirconia molded body or the zirconia calcined body contains a composite oxide, the composite oxidation is performed. It is preferably 1700 ° C. or lower, more preferably 1650 ° C. or lower, still more preferably 1600 ° C. or lower, from the viewpoint of excellent color development of the substance and suppressing the generation of stripes between layers having different contents of itria. Is.
  • the zirconia molded product or zirconia calcined product used in the method for producing a zirconia sintered body of the present invention preferably contains, in addition to zirconia, a stabilizer capable of suppressing the phase transition of zirconia.
  • a stabilizer capable of suppressing the phase transition of zirconia.
  • the stabilizer is preferably one capable of forming partially stabilized zirconia.
  • the zirconia molded product or zirconia calcined product used in the method for producing a zirconia sintered body of the present invention includes a plurality of layers containing a stabilizer, and the plurality of layers are used with respect to the total mol of the zirconia and the stabilizer. It is provided with layers having different contents of stabilizers.
  • the number of layers having different stabilizer contents is not particularly limited as long as it is two or more layers, and may be three layers, four layers, five layers, or six layers. It may be a layer.
  • the zirconia molded product or the zirconia calcined product may have layers having different contents of the stabilizer, and even if the zirconia molded product or the zirconia calcined product contains two or more layers having the same stabilizer content. good.
  • a zirconia molded product or a zirconia calcined product having layers having different contents of stabilizers is required for a zirconia sintered body obtained by short-time firing depending on the site (layer) in one material. It is possible to set the translucency and intensity appropriately.
  • the difference in the content of the stabilizer between the layers having different contents of the stabilizer is preferably 0.1 mol% or more, and from the viewpoint of achieving the translucency and strength suitable for dentistry.
  • the difference in the content of the stabilizer between the layers having different contents of the stabilizer is preferably 3 mol% or less, and from the viewpoint of achieving the translucency and strength suitable for dentistry, 2. It is more preferably 5 mol% or less, and further preferably 2 mol% or less.
  • the zirconia molded body or zirconia calcined body used in the method for producing a zirconia sintered body of the present invention is from one end to the other end of the zirconia calcined body from the viewpoint of achieving translucency and strength suitable for dentistry. It is preferable that the increasing / decreasing tendency of the content of the stabilizer (preferably yttrium) with respect to the total mol of the zirconia and the stabilizer does not change from one end to the other end on the straight line extending in the first direction. .. In other words, it is preferable that the content of the stabilizer (preferably ytria) monotonically increases or decreases.
  • the increasing or decreasing tendency of the content of the stabilizer does not change in the opposite direction on the straight line extending in the first direction Y from one end P to the other end Q of the zirconia calcined body 10 of FIG. .. That is, when the content of the stabilizer tends to decrease on the straight line from one end P to the other end Q, it is preferable that there is no section in which the content of the stabilizer substantially increases.
  • the stabilizer examples include calcium oxide (CaO), magnesium oxide (MgO), itria, cerium oxide (CeO 2 ), scandium oxide (Sc 2 O 3 ), niobium oxide (Nb 2 O 5 ), and lanthanum oxide. (La 2 O 3 ), Erbium Oxide (Er 2 O 3 ), Plaseodium Oxide (Pr 6 O 11 ), Samalium Oxide (Sm 2 O 3 ), Europium Oxide (Eu 2 O 3 ) and Thulium Oxide (Tm 2 O 3 ) ) And other oxides.
  • the stabilizer one type may be used alone, or two or more types may be used in combination.
  • the content of the stabilizer in the zirconia calcined body and its sintered body of the present invention can be measured by, for example, inductively coupled plasma (ICP) emission spectroscopic analysis, fluorescent X-ray analysis, or the like.
  • ICP inductively coupled plasma
  • the content of the stabilizer is preferably 0.1 to 18 mol%, more preferably 1 to 15 mol%, based on the total mol of the zirconia and the stabilizer. It is preferable, 2 to 8 mol% is more preferable.
  • the zirconia molded product or the zirconia calcined product preferably contains yttrium as a stabilizer.
  • the content of yttrium is preferably 2.5 mol% or more, more preferably 3 mol% or more, based on the total mol of zirconia and yttrium. , 3.5 mol% or more is more preferable, and 3.8 mol% or more is particularly preferable.
  • the yttria content is 2.5 mol% or more, the translucency of the zirconia sintered body can be enhanced.
  • the content of yttrium is preferably 7.5 mol% or less, more preferably 7.0 mol% or less, and 6.5 mol% or less, based on the total mol of zirconia and yttrium. Is more preferable, and 6.0 mol% or less is particularly preferable.
  • the yttria content is 7.5 mol% or less, it is possible to suppress a decrease in the strength of the obtained zirconia sintered body.
  • a plurality of layers containing yttria as a stabilizer contained in the zirconia molded product or the zirconia calcined product are provided, and the plurality of layers have different contents of yttria.
  • the yttria content is 3.5 mol% or more and 7.5 mol% or less in the layer (Y H ) having the highest yttria content, and the yttria content is the lowest (Y L) . ),
  • the yttria content is 2.5 mol% or more and 7.0 mol% or less, and the yttria content in the layer (Y H ) / yttria content in the layer (Y L )> 1 is satisfied.
  • the manufacturing method of is mentioned.
  • the yttrium content in the layer ( YH ) having the highest yttrium content is 3.8 mol% or more and 7.5 mol% or less, and the yttrium content is high.
  • the yttrium content in the lowest layer (Y L ) is 3.0 mol% or more and 6.5 mol% or less
  • the yttrium content in the layer with the highest yttrium content (Y H ) is It is more preferably 3.8 mol% or more and 7.0 mol% or less
  • the yttrium content in the layer ( YL ) having the lowest yttrium content is 3.0 mol% or more and 6.0 mol% or less.
  • the zirconia molded product or zirconia calcined product of the present invention it is preferable that at least a part of the stabilizer is not dissolved in zirconia. It can be confirmed, for example, by the XRD pattern that a part of the stabilizer is not dissolved in zirconia. If a peak derived from the stabilizer is confirmed in the XRD pattern of the zirconia calcined product, it means that a stabilizer that is not solid-solved in zirconia is present in the zirconia molded product or the zirconia calcined product. become. When the entire amount of the stabilizer is dissolved, basically no peak derived from the stabilizer is confirmed in the XRD pattern.
  • the stabilizer may not be dissolved in zirconia even when the peak of the stabilizer does not exist in the XRD pattern. If the main crystal system of zirconia is tetragonal and / or cubic and there is no stabilizer peak in the XRD pattern, most, basically all of the stabilizers will be zirconia. It is considered that it is solidly dissolved. In the zirconia molded product or zirconia calcined product of the present invention, not all of the stabilizers may be dissolved in zirconia. In the present invention, the solid solution of the stabilizer means, for example, that the element (atom) contained in the stabilizer is solid-solved in zirconia.
  • the abundance rate fy of ittria that is not solid-solved in zirconia (hereinafter, may be referred to as “unsolid-dissolved ittria”) is based on the following mathematical formula (1). Can be calculated.
  • the abundance rate fy of the undissolved yttrium is preferably larger than 0%, more preferably 1% or more, further preferably 2% or more, and particularly preferably 3% or more.
  • the upper limit of the abundance rate fy of the undissolved yttrium may be, for example, 15% or less, but preferably depends on the content of yttrium in the zirconia molded product or the zirconia calcined product.
  • yttrium When the content of yttrium is 2.5 mol% or more and less than 4.5 mol%, phy can be 7% or less.
  • ytria When the content of ytria is 4.5 mol% or more and less than 5.8 mol%, fy can be 11% or less.
  • fy When the content of ytria is 5.8 mol% or more and less than 7.5 mol%, fy can be 15% or less.
  • the phy when the content of itria is 2.5 mol% or more and less than 4.5 mol%, the phy is preferably 0.5% or more, more preferably 1.0% or more. It is preferable, and more preferably 2.0% or more.
  • the abundance rate phy of the undissolved yttrium is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more.
  • the phy is preferably 2% or more, more preferably 3% or more, still more preferably 4% or more.
  • f m / f y is preferably 20 to 200, more preferably 25 to 100, and 30 to 60. Is even more preferable.
  • the fm / phy is preferably 5 to 45, more preferably 10 to 40, still more preferably 15 to 35.
  • the fm / f y is preferably 2 to 40, more preferably 5 to 35, and even more preferably 10 to 30.
  • Im (111) and Im (11-1) indicate the peak intensities of the (111) and (11-1) planes of the zirconia monoclinic system.
  • It (111) indicates the peak intensity of the (111) plane of the zirconia tetragonal system.
  • Ic (111) indicates the peak intensity of the (111) plane of the cubic crystal system of zirconia.
  • the above formula (1) can also be applied to the calculation of the undissolved abundance of stabilizers other than yttrium by substituting another peak instead of I y (111).
  • the main crystal system of zirconia in the zirconia molded product or the zirconia calcined product of the present invention is preferably a monoclinic crystal system.
  • the main crystal system is a monoclinic system means the following formula (2) with respect to the total amount of all crystal systems (monoclinic system, square system and cubic system) in zirconia. ), The ratio fm of the monoclinic system in zirconia occupies a ratio of 50% or more.
  • the ratio fm of the monoclinic system in the zirconia calculated by the following formula (2) is the total amount of the monoclinic system, the tetragonal system and the cubic system. 55% or more is preferable, 60% or more is more preferable, 70% or more is further preferable, 75% or more is further preferable, 80% or more is particularly preferable, 85% or more is further particularly preferable, and 90% or more is more preferable. Most preferred.
  • the ratio fm of the monoclinic system can be calculated from the following mathematical formula (2) based on the peak of the X-ray diffraction (XRD; X-Ray Diffraction) pattern by CuK ⁇ rays.
  • the main crystal system in the zirconia molded product or the zirconia calcined product may contribute to raising the shrinkage temperature and shortening the firing time.
  • the ratio fm of the monoclinic system can be 100%.
  • Im (111) and Im (11-1) indicate the peak intensities of the (111) and (11-1) planes of the zirconia monoclinic system, respectively. It (111) indicates the peak intensity of the (111) plane of the zirconia tetragonal system. Ic (111) indicates the peak intensity of the (111) plane of the cubic crystal system of zirconia.
  • the zirconia molded product or the zirconia calcined product may contain an additive, if necessary.
  • the additive include binders, colorants (including pigments, composite pigments and fluorescent agents), alumina (Al 2 O 3 ), titanium oxide (TIO 2 ), silica (SiO 2 ) and the like.
  • the additive may be used alone or in combination of two or more.
  • binder examples include polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, acrylic binder, wax binder (paraffin wax, etc.), polyvinyl butyral, methyl polymethacrylate, ethyl cellulose, polyethylene, polypropylene, ethylene vinyl acetate copolymer, and polystyrene. , Atactic polypropylene, methacrylic resin, stearic acid and the like.
  • the pigment includes, for example, a group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Sb, Bi, Ce, Pr, Sm, Eu, Gd, Tb and Er.
  • Oxides of at least one element selected include Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Oxides of at least one element selected from the group consisting of Sb, Bi, Ce, Pr, Sm, Eu, Gd, and Tb are preferred, with Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y.
  • the zirconia molded product or the zirconia calcined product of the present invention may not contain erbium oxide (Er 2 O 3 ).
  • the composite pigment include (Zr, V) O 2 , Fe (Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 ⁇ ZrSiO 4 , (Co, Zn).
  • Examples thereof include composite oxides such as Al 2 O 4 .
  • Examples of the fluorescent agent include Y 2 SiO 5 : Ce, Y 2 SiO 5 : Tb, (Y, Gd, Eu) BO 3 , Y 2 O 3 : Eu, YAG: Ce, ZnGa 2 O 4 : Zn, BaMgAl. 10 O 17 : Eu and the like can be mentioned.
  • the method for producing the zirconia molded product used in the present invention is not particularly limited, and for example, a mixed powder composed of zirconia (preferably zirconia powder whose main crystal system is monoclinic) and the stabilizer is 175 MPa.
  • a manufacturing method including a step of obtaining a zirconia molded product by press molding with the above pressure.
  • the pressure of 175 MPa or more means the maximum pressure at the time of press molding.
  • the method for producing the zirconia calcined product used in the present invention is not particularly limited, but is, for example, a raw material powder containing zirconia particles (preferably zirconia particles whose main crystal system is a monoclinic system) and a stabilizer. Examples thereof include a manufacturing method in which a zirconia molded product formed from zirconia is fired (that is, calcined) at a temperature at which the zirconia particles do not sinter.
  • the method for producing the zirconia molded product is as described above. An example of the method for producing the zirconia calcined body of the present invention will be described. First, the raw material powder of the zirconia molded product is produced.
  • a monoclinic zirconia powder and a stabilizer powder are used to make a mixture with a desired stabilizer (eg, itria) content.
  • this mixture is added to water to prepare a slurry, which is wet-ground and mixed with a ball mill until the desired particle size is obtained.
  • the crushed slurry is dried with a spray dryer to granulate.
  • the obtained powder is fired at a temperature at which the zirconia particles do not sinter (for example, 800 to 1200 ° C.) to prepare a powder (primary powder). Pigments may be added to the primary powder.
  • the primary powder is added to water to prepare a slurry, which is wet-ground and mixed with a ball mill until the desired particle size is obtained.
  • Additives such as binders are added to the pulverized slurry as needed, and then dried with a spray dryer to prepare a mixed powder (secondary powder).
  • the secondary powder is filled in a predetermined mold, the upper surface is ground to flatten the upper surface, the upper mold is set, and the secondary powder is press-molded by a uniaxial press molding machine to form zirconia. Get the body.
  • the pressure at the time of press molding the mixed powder is preferably 175 MPa or more.
  • the obtained zirconia molded product may or may not be further CIP (Cold Isostatic Press) molded.
  • the zirconia molded product or the zirconia calcined product may have a multi-layer structure.
  • the primary powder may be divided into at least two (preferably four) in the above-mentioned production method in order to form the zirconia molded product into a multi-layer structure.
  • the density of the zirconia calcined body is preferably 2.7 g / cm 3 or more.
  • the density of the zirconia calcined body is preferably 4.0 g / cm 3 or less, more preferably 3.8 g / cm 3 or less, and even more preferably 3.6 g / cm 3 or less. Within this density range, molding can be easily performed.
  • the density can be calculated, for example, as (mass of calcined body) / (volume of calcined body).
  • the three-point bending strength of the zirconia calcined body is preferably 15 to 70 MPa, more preferably 18 to 60 MPa, further preferably 20 to 50 MPa, and particularly preferably 20 to 40 MPa.
  • the flexural strength can be measured in accordance with ISO 6872: 2015, but the measurement is performed using a test piece having a size of 5 mm ⁇ 10 mm ⁇ 50 mm by changing only the condition of the size of the test piece. ..
  • the surface and C surface of the test piece are surface-finished in the longitudinal direction with No. 600 sandpaper.
  • the test piece is arranged so that the widest surface faces the vertical direction (load direction). In the bending test measurement, the span is 30 mm and the crosshead speed is 0.5 mm / min.
  • the zirconia molded product obtained as described above is calcined to obtain a zirconia calcined product.
  • the calcination temperature is, for example, preferably 800 ° C. or higher, more preferably 900 ° C. or higher, and even more preferably 950 ° C. or higher. Further, the calcining temperature is preferably 1200 ° C. or lower, more preferably 1150 ° C. or lower, and further preferably 1100 ° C. or lower in order to improve dimensional accuracy. At such a calcining temperature, it is considered that the solid solution of the stabilizer does not proceed.
  • the temperature rise of each temperature rise step described above is satisfied.
  • the speed may be a constant speed, or may be changed in the middle to be multi-step.
  • the temperature in the second temperature raising step, the temperature may be raised at 50 ° C./min for 30 seconds from the start temperature, and may be raised at 10 ° C./min after 30 seconds.
  • the temperature in the third temperature raising step, the temperature may be raised at 50 ° C./min for 30 seconds from the start temperature, and may be raised at 10 ° C./min after 30 seconds.
  • the mooring time at the maximum reaching temperature is preferably 30 minutes or less, and 10 to 25 minutes from the viewpoint of further shortening the working time. Is more preferable, and 15 to 20 minutes is even more preferable.
  • the maximum firing temperature is preferably 1400 to 1750 ° C., which is excellent in brightness, translucency and saturation of the obtained zirconia sintered body, and is composite when the zirconia molded body or the zirconia calcined body contains a composite oxide. From the viewpoint of excellent color development of the oxide, it is preferably 1510 ° C. or higher, more preferably 1530 ° C.
  • the maximum firing temperature can further shorten the working time, is excellent in the brightness, translucency and saturation of the obtained zirconia sintered body, and is a composite oxide when the zirconia molded body or the zirconia calcined body contains a composite oxide. It is preferably 1750 ° C. or lower, more preferably 1650 ° C. or lower, still more preferably 1600 ° C. or lower, from the viewpoint of excellent color development and suppressing the generation of stripes between layers having different contents of itria. be.
  • the mooring step is preferably immediately after the third temperature raising step, but as long as the effect of the present invention is obtained, there may be another temperature raising step between the third temperature raising step and the mooring step.
  • the ultimate temperature of H3 is the maximum firing temperature.
  • the total firing time from the start of temperature rise in the first heating step in the firing step to the end of the mooring time at the maximum firing temperature is preferably 120 minutes or less from the viewpoint of further shortening the working time. It is more preferably within minutes, and even more preferably within 75 minutes.
  • the method for producing a zirconia sintered body of the present invention preferably includes a step of holding the zirconia sintered body at the maximum firing temperature for a predetermined time and then cooling the zirconia sintered body.
  • the temperature lowering rate from the maximum firing temperature in the temperature raising step to 800 ° C. is preferably 10 ° C./min or more, more preferably 30 ° C./min or more, and further preferably 50 ° C./min or more. preferable.
  • any one or a combination of outside air introduction cooling, water cooling, air cooling, slow cooling, and air cooling can be used.
  • the temperature reached in the cooling step varies depending on the type and performance of the firing furnace, and may be 950 ° C, 750 ° C, or 1000 ° C.
  • the color difference ⁇ E * ab of the zirconia sintered body obtained by the production method of the present invention is preferably 2.7 or less, more preferably 2.0 or less, and 1.6 or less because it is suitable as a dental product.
  • the following is more preferable, and 0.8 or less is particularly preferable.
  • the target of comparative measurement of the color difference ⁇ E * ab is the chromaticity of the zirconia sintered body in the case of normal firing (total firing time: 6 to 12 hours).
  • the method for evaluating the chromaticity is as described in Examples described later.
  • the "total firing time" (also referred to as total firing time) is from the start of temperature rise in the first temperature raising step in the firing step to the end of the mooring time at the maximum firing temperature. Means time.
  • the difference between the brightness index L * of the zirconia sintered body obtained by the production method of the present invention and the brightness index L * of the zirconia sintered body in the case of normal firing (total firing time: 6 to 12 hours) is dental. Since it is suitable as a commercial product, it is preferably 2.0 or less, more preferably 1.5 or less, and even more preferably 1.0 or less.
  • the L *, a *, and b * of the zirconia sintered body obtained by the production method of the present invention are selected according to the target site such as servical (cervical portion), body, and incisal (cut edge portion). Can be set.
  • the present invention includes embodiments in which the above configurations are variously combined within the scope of the technical idea of the present invention as long as the effects of the present invention are exhibited.
  • Example 1 [Preparation of raw material powder used for production of zirconia calcined body] A method for producing a raw material powder used for producing the zirconia calcined body used in Example 1 will be described. First, using monoclinic zirconia powder and yttrium powder, a mixture was prepared so as to have the composition shown in Table 1 except for the coloring component. Next, this mixture was added to water to prepare a slurry, which was wet-ground and mixed with a ball mill until the average particle size was 0.13 ⁇ m or less. The pulverized slurry was dried with a spray dryer, and the obtained powder was calcined at a calcining temperature of 950 ° C.
  • the average particle size can be obtained by a laser diffraction / scattering method.
  • the laser diffraction / scattering method is specifically measured on a volume basis by using, for example, a laser diffraction type particle size distribution measuring device (SALD-2300: manufactured by Shimadzu Corporation) using a 0.2% sodium hexametaphosphate aqueous solution as a dispersion medium. can do.
  • SALD-2300 manufactured by Shimadzu Corporation
  • the yttrium content in Table 1 means the yttrium content with respect to the total mol of zirconia and yttrium.
  • a coloring component was added to the obtained primary powder with the composition shown in Table 1. Then, the powder to which the coloring component was added was added to water to prepare a slurry, and the slurry was wet-ground and mixed with a ball mill until the average particle size became 0.13 ⁇ m or less. After adding a binder to the pulverized slurry, it was dried with a spray dryer to prepare a powder (secondary powder). The prepared secondary powder was used as a raw material powder for the production of a zirconia calcined body described later.
  • Examples 2 to 5 Comparative Example 1 and Reference Example 1
  • a secondary powder was prepared in the same manner as in Example 1, and a block of a zirconia calcined body was prepared. Further, a zirconia sintered body was prepared in the same manner as in Example 1 except that the firing schedule was changed as shown in Tables 2 and 3, and each characteristic was evaluated.
  • ⁇ L (WB) (L 1 *)-(L 2 *) (1)
  • a molded body made of raw material powder in each layer was produced by adjusting the size in advance and performing press molding so that a zirconia sintered body having a thickness of 1.2 mm could be obtained.
  • the molded product was fired at 1000 ° C. for 2 hours to prepare a zirconia calcined product.
  • the obtained zirconia calcined body after cutting was fired using InFire HTC speed (manufactured by DENTSPLY-Sirona Co., Ltd.) as a firing furnace according to the firing schedules in Tables 2 and 3, and the zirconia firing of each example and comparative example was performed. I got a unity.
  • the obtained zirconia sintered body was visually evaluated by four people according to the following criteria. If it is judged that 3 or more out of 4 people meet a certain standard, it is judged that the standard is satisfied. The results are shown in Tables 2 and 3.
  • ⁇ Evaluation criteria> No stripes are seen between layers with different yttrium content, and there is no problem in dental clinical evaluation.
  • There are slight stripes between layers with different yttrium content, but it is acceptable in dental clinical evaluation. Within the possible range
  • Stripes are conspicuous between layers with different yttrium content, which is unacceptable in clinical evaluation.
  • the fired zirconia sintered body was polished with # 1000 abrasive paper using a rotary polishing machine to obtain a 1.2 mm ⁇ 4 mm ⁇ 14 mm rectangular parallelepiped sintered body sample.
  • the obtained zirconia calcined body after cutting was fired with samples having the same shape according to the firing schedules shown in Tables 2 and 3 using InFire HTC speed as a firing furnace.
  • the sintered sample after firing is color-measured using a dental colorimetric device (7band LED light source, "Crystal Eye” manufactured by Olympus Co., Ltd.), and L * a * b * color system (JIS Z 8781).
  • -4 2013
  • the color difference ⁇ E * ab is a sintered body sample obtained by the firing schedule shown in Tables 2 and 3 using the brightness index L *, the color coordinates a *, and b * in the CIE 1976 L * a * b * color space.
  • the two samples of are obtained by the following formula (2).
  • ⁇ E * ⁇ (L 1 * -L 2 *) 2 + (a 1 * -a 2 *) 2 + (b 1 * -b 2 *) 2 ⁇ 1/2 (2)
  • Example 2 the difference in ⁇ L (WB) values between the layers of the zirconia sintered body is 1.45, and the yttria content is different between the layers in the evaluation of the aesthetics of the crown-shaped zirconia sintered body. Although there were slight stripes, it was within the acceptable range in the dental clinical evaluation.
  • the three-point bending strength of the sintered body sample showed a value equivalent to that in the case of firing in a normal firing schedule, and was a strength that was not a problem for dentistry.
  • the zirconia sintered body obtained by the production method of the present invention is used for dentistry because the generation of stripes is suppressed between layers having different yttria content even if the firing time is short. It was confirmed that it is suitable as a product (for example, a dental prosthesis). Further, although the zirconia sintered body obtained by the production method of the present invention is sintered in a short time, it is comparable to the case where it is fired under normal firing conditions (total firing time: 6 to 12 hours). It was confirmed that the color tone and intensity of the dental prosthesis could be reproduced.
  • a zirconia molded body or a zirconia calcined body is sintered in a short time, and the obtained zirconia sintered body has streaks generated between layers having different yttria content. It is useful for manufacturing dental products (dental prostheses, etc.) because it can suppress the above. Furthermore, the resulting zirconia sintered body, despite being sintered in a short period of time, has the same ideal aesthetic requirements (color tone and translucency) for dental prostheses as when fired under normal firing conditions.
  • the strength can be reproduced, the color tone is excellent, and the translucency is similar to that of the incisal edge of the anterior tooth of a natural tooth, it is useful as a method for manufacturing a dental prosthesis such as an insert tooth for an anterior tooth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)

Abstract

本発明は、安定化剤の量が異なる複数の層を有するジルコニア成形体又はジルコニア仮焼体を短時間で焼結させ、イットリアの含有率が異なる層の間に縞が目立たないジルコニア焼結体の製造方法を提供する。本発明は、ジルコニア成形体又はジルコニア仮焼体を焼成する焼成工程を有し、ジルコニア成形体又はジルコニア仮焼体が安定化剤を含有する複数の層を備え、複数の層は安定化剤の含有率が異なる層を含み、焼成工程が、第1昇温工程(H1)、第2昇温工程(H2)及び第3昇温工程(H3)の少なくとも3段階の昇温工程を含み、H2の昇温速度をHR2、H3の昇温速度をHR3とし、HR2=0℃/min超50℃/min未満、HR3=5~150℃/min、HR3/HR2>1で、各昇温工程での開始温度は、H1で1000℃以下、H2で1250℃超1450℃以下、H3で1450℃以上1550℃以下であり、各昇温工程での到達温度は、H1で1250℃超1450℃以下、H2で1450℃以上1550℃以下、H3で1500℃以上1750℃以下である、ジルコニア焼結体の製造方法に関する。

Description

ジルコニア焼結体の製造方法
 本発明はジルコニア焼結体の製造方法に関する。
 従来、歯科用製品(例えば、代表的な被覆冠、歯冠、差し歯等の補綴物や歯列矯正用製品、歯科インプラント用製品)としては、金属がよく用いられていた。しかしながら、金属は天然歯と色が明確に異なり、審美性に欠けるという欠点を有すると共に、金属の溶出によるアレルギーを発症することもあった。そこで、金属の使用に伴う問題を解決するため、金属の代替材料として、酸化アルミニウム(アルミナ)や酸化ジルコニウム(ジルコニア)等のセラミックス材料が歯科用製品に用いられてきている。特に、ジルコニアは、強度に優れ、審美性も比較的優れるため、低価格化も相まって需要が高まっている。
 一方、ジルコニアを用いて歯科補綴物を作製するためには、理想的な焼結体が得られる温度より400℃から700℃程度低い温度で仮焼結させたブロック体もしくは円盤形状の切削加工用ワーク(被切削加工物)から、CAD/CAM設備を用いて歯科補綴物形状を削り出し、削り出された未焼結ジルコニア加工体を最高温度1400℃から1650℃で係留し、焼結させるため、通常は昇温、係留、降温までの合計時間として6時間から12時間を必要とする。この時間について、近年は短時間焼成の需要が高まっており、特許文献1、2に記載されるような短時間での焼成を可能にする焼成炉も製造されている。
 さらに近年では、ジルコニアを用いた歯科補綴物の強度と審美性とを両立させるため、安定化剤(例えば、イットリア)の含有率が異なる複数の層を有する切削加工用ワーク、所謂イットリアマルチジルコニアブランクが増えてきている(例えば、特許文献3などを参照)。
特表2015-531048号公報 特表2019-524298号公報 国際公開第2020/138316号
 特許文献1~3にはジルコニアを含むセラミックスを短時間で焼成させるための焼成炉及びスケジュール条件について開示されている。しかしながら、本発明者が検討したところ、従来の短時間焼成スケジュールを用いた場合、得られた焼結体において理想的な歯科補綴物の色調と強度は得られる一方で、安定化剤であるイットリアの含有率が異なる層の間に縞が発生する、という問題があることがわかった。
 そこで本発明は、安定化剤の量が異なる複数の層を有するジルコニア成形体又はジルコニア仮焼体を短時間で焼結させ、安定化剤の量が異なる層の間に縞が目立たないジルコニア焼結体の製造方法を提供することを目的とする。また、ジルコニア成形体又はジルコニア仮焼体を短時間で焼結させるにもかかわらず、通常の条件下で焼成させた場合と同程度に理想的な歯科補綴物の色調と強度を再現できる、ジルコニア焼結体の製造方法を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の短時間焼成スケジュールを安定化剤の量が異なる複数の層を有するジルコニア成形体又はジルコニア仮焼体に用いることにより、短時間焼成であっても当該層の間に縞が目立たないジルコニア焼結体が得られることを見出し、その知見に基づいてさらに研究を進め、本発明を完成するに至った。
 すなわち、本発明は以下の発明を包含する。
[1]ジルコニア成形体又はジルコニア仮焼体を焼成する焼成工程を有し、
 前記ジルコニア成形体又はジルコニア仮焼体が安定化剤を含有する複数の層を備え、
 前記複数の層は安定化剤の含有率が異なる層を含み、
 前記焼成工程が、第1昇温工程(H1)、第2昇温工程(H2)及び第3昇温工程(H3)の少なくとも3段階の昇温工程を含み、
 第2昇温工程(H2)の昇温速度をHR2、
 第3昇温工程(H3)の昇温速度をHR3としたとき、
 HR2=0℃/min超50℃/min未満、
 HR3=5℃/min以上150℃/min以下、
 HR3/HR2>1であり、
各昇温工程での開始温度は
 H1において1000℃以下、
 H2において1250℃超1450℃以下、
 H3において1450℃以上1550℃以下であり、
各昇温工程での到達温度は    
 H1において1250℃超1450℃以下、
 H2において1450℃以上1550℃以下、
 H3において1500℃以上1750℃以下である、
ジルコニア焼結体の製造方法。
[2]前記第1昇温工程(H1)の昇温速度をHR1としたとき、HR1が40~500℃/minである、[1]に記載のジルコニア焼結体の製造方法。
[3]前記安定化剤の含有率が異なる層同士における安定化剤の含有率の差が0.1mol%以上である、[1]又は[2]に記載のジルコニア焼結体の製造方法。
[4]前記安定化剤がイットリアである、[1]~[3]のいずれかに記載のジルコニア焼結体の製造方法。
[5]前記複数の層のすべての層における前記イットリアの含有率が、ジルコニアとイットリアの合計molに対して2.5mol%以上7.5mol%以下である、[4]に記載のジルコニア焼結体の製造方法。
[6]HR2が2~30℃/minである、[1]~[5]のいずれかに記載のジルコニア焼結体の製造方法。
[7]HR3が10~100℃/minである、[1]~[6]のいずれかに記載のジルコニア焼結体の製造方法。
[8]HR3/HR2>1.5である、[1]~[7]のいずれかに記載のジルコニア焼結体の製造方法。
[9]前記昇温工程における最高焼成温度が1400~1750℃であり、該最高焼成温度での係留時間が30分以内である、[1]~[8]のいずれかに記載のジルコニア焼結体の製造方法。
[10]さらに降温工程を含み、該降温工程において、前記昇温工程における最高焼成温度から800℃までの降温速度が10℃/min以上である、[9]に記載のジルコニア焼結体の製造方法。
[11]前記焼成工程における前記第1昇温工程(H1)の昇温開始から最高焼成温度での係留時間の終了までの総焼成時間が120分以内である、[1]~[10]のいずれかに記載のジルコニア焼結体の製造方法。
[12]前記ジルコニア成形体又はジルコニア仮焼体の55%以上が単斜晶系である、[1]~[11]のいずれかに記載のジルコニア焼結体の製造方法。
[13]前記ジルコニア成形体又はジルコニア仮焼体において、前記安定化剤の少なくとも一部がジルコニアに固溶していない、[1]~[12]のいずれかに記載のジルコニア焼結体の製造方法。
[14]前記ジルコニア成形体又はジルコニア仮焼体が、歯科用製品の所定形状を備える、[1]~[13]のいずれかに記載のジルコニア焼結体の製造方法。
[15]前記歯科用製品が歯科補綴物である、[14]に記載のジルコニア焼結体の製造方法。
 本発明のジルコニア焼結体の製造方法によれば、安定化剤の量が異なる複数の層を有するジルコニア成形体又はジルコニア仮焼体を短時間で焼結させ、安定化剤の量が異なる層の間に縞が目立たないジルコニア焼結体の製造方法を提供することができる。また、短時間で焼結させるにもかかわらず、通常の焼成条件(焼成の合計時間:6~12時間)で焼成した場合と同程度に理想的な歯科補綴物の色調と強度を再現できる、ジルコニア焼結体の製造方法を提供することができる。
図1は本発明に係るジルコニア仮焼体の模式図を示す。
 本発明のジルコニア焼結体の製造方法を用いることにより、ジルコニア成形体又はジルコニア仮焼体を短時間(例えば、総焼成時間が120分以下)で焼結させ、安定化剤の量が異なる層の間に縞が発生しないジルコニア焼結体が得られる理由は定かではないが、本発明者は以下のように推定している。まず、得られるジルコニア焼結体において、隣接する安定化剤の量が異なる層の間の透光性(以下、△L(W-B)と記載することがある)の差が大きいほど短時間焼成によって縞がはっきりと目立ち、逆に△L(W-B)の差が小さければ縞が目立ちにくくなると考えられる。
 本発明者は、その対策を検討する中で、短時間焼成を行う場合、層に含まれる安定化剤の量に応じて昇温していく際にΔL(W-B)の上昇速度が変化する温度範囲が異なるという現象を発見した。この現象から、隣接する安定化剤の量が異なる層同士のΔL(W-B)が共に同程度に上昇する(すなわち、層同士のΔL(W-B)の差が出にくい)特定の温度範囲の昇温速度を遅くして、加熱対象であるジルコニア成形体又はジルコニア仮焼体全体のΔL(W-B)を上昇させつつ、ΔL(W-B)の差が出やすい温度範囲の昇温速度を早くして高速で焼成することで、短時間焼成において安定化剤の量が異なる層のΔL(W-B)の差ができるだけ広がらないようにすることで、総合的に安定化剤の量の異なる層の間のΔL(W-B)の差を抑えるため、焼結時間が短いにもかかわらず、縞が目立たない、すなわち、積層界面が明確にわかる状態ではない、ジルコニア焼結体が得られたものと考えられる。
 以下、本発明について詳細に説明する。
 本発明の焼成に用いる焼成炉は大気炉であり、箱型炉、ルツボ炉、管状炉、炉底昇降炉、連続炉、ロータリーキルンでもよく、抵抗加熱炉、誘導加熱炉、直通電型電気炉、IH炉,高周波炉、マイクロ波炉を用いてもよく、発熱体に金属発熱体、炭化ケイ素、二ケイ化モリブデン、ランタンクロマイト、モリブデン、カーボン、タングステン等が用いられ、SiCを発熱体サセプターとして用いてもよい。これらの何れか2つ以上を組み合わせた焼成炉でもよい。また、焼成炉の、歯冠等の所定の形状を備えるジルコニア成形体又はジルコニア仮焼体を静置する台座をもつ焼成炉室内体積は小さい方が、熱効率がよく、焼成に際し炉内の熱量維持を容易にすることができる。
 本発明におけるジルコニア成形体は、未焼成、すなわち焼結されていないジルコニアからなる成形体である。本発明におけるジルコニア成形体は、部分安定化ジルコニア、又は完全安定化ジルコニアであってもよい。本発明において「焼結されていない」とは、ジルコニア粉末の粒子同士の接触している部分が互いに反応していない状態を指す。本発明のジルコニア仮焼体は、ジルコニア焼結体の前駆体(中間製品)となり得るものである。ジルコニア仮焼体とは、例えば、ジルコニア粒子(粉末)が完全には焼結していない状態でブロック化したものを意味する。なお、本明細書において、数値範囲(昇温速度、降温速度、焼成時間、温度、速度比、各成分(例えば、安定化剤)の含有率等)の上限値及び下限値は適宜組み合わせ可能である。
 本発明のジルコニア焼結体の製造方法においては、少なくとも3段階の昇温工程を含む。各昇温工程について、第1昇温工程をH1とし、第2昇温工程をH2とし、第3昇温工程をH3とし、各昇温工程はそれぞれ異なる昇温速度をもつ。また、昇温工程は3段階のみでもよく、他の昇温工程を含んでもよい。
[第1昇温工程(H1)]
 本発明のジルコニア焼結体の製造方法における第1昇温工程(H1)では、室温もしくは室温超1000℃以下まで加熱された焼成炉で、第1昇温工程(H1)の到達温度まで一気に昇温させて、ジルコニア成形体又はジルコニア仮焼体を加熱する。第1昇温工程(H1)における焼成前のジルコニア成形体又はジルコニア仮焼体としては、歯科用製品の所定形状を備えるものが好ましい。歯科用製品としては、例えば、代表的な被覆冠、歯冠、差し歯等の歯科補綴物;歯列矯正用製品;歯科インプラント用製品等が挙げられる。加熱前のジルコニア成形体又はジルコニア仮焼体は、歯科用CAD/CAM装置を用いて加工されていてもよく、歯科技工士が切削加工等により作製していてもよい。
 加熱前のジルコニア成形体又はジルコニア仮焼体は、焼成の際に焼成炉のマッフル部材に直接静置してもよく、セラミック又は高融点金属からなるトレイや台座、ピンを用いて炉内で静置してもよく、セラミックビーズを用いて静置してもよい。
 第1昇温工程(H1)の開始温度は、1000℃以下であれば特に限定されないが、好ましくは室温~1000℃であり、より好ましくは室温~450℃であり、さらに好ましくは室温~400℃であり、特に好ましくは室温~300℃である。第1昇温工程(H1)の到達温度は1250~1450℃であり、より作業時間を短縮できる点から、好ましくは1300℃以上であり、安定化剤であるイットリアの含有率の異なる層同士の透明性差を小さくできることから、より好ましくは1350℃以上であり、さらに好ましくは1400℃以上である。
 また、第1昇温工程(H1)の昇温速度をHR1としたとき、HR1は、より作業時間を短縮できる点から、好ましくは40℃/min以上であり、より好ましくは50℃/min以上であり、さらに好ましくは60℃/min以上であり、特に好ましくは70℃/min以上である。また、HR1は、好ましくは500℃/min以下であり、より好ましくは450℃/min以下であり、さらに好ましくは400℃/minであり、特に好ましくは350℃/min以下である。HR1が500℃/minを超える場合、焼成中に割れやクラックの発生を誘発するおそれがある。第1昇温工程(H1)に供するジルコニア成形体又はジルコニア仮焼体に、加工時に用いた水分や、着色用カラーリキッドが含まれている場合、300℃以下で1分以上20分以下、好ましくは5分以上15分以下の乾燥工程を経てから、第1昇温工程(H1)を開始してもよい。また、ある好適な実施形態としては、HR1/HR3>1である、ジルコニア焼結体の製造方法が挙げられる。HR1/HR3>1.5がより好ましく、HR1/HR3>2がさらに好ましい。
[第2昇温工程(H2)]
 本発明のジルコニア焼結体の製造方法では、第2昇温工程(H2)の昇温速度をHR2としたとき、HR2は、0℃/min超であり、より作業時間を短縮できる点から、好ましくは1℃/min以上であり、より好ましくは2℃/min以上であり、さらに好ましくは3℃/min以上であり、特に好ましくは4℃/min以上である。また、HR2は、50℃/min未満であり、得られるジルコニア焼結体の明度及び透光性により優れ、且つイットリアの含有率が異なる層の間に縞の発生を抑制する点から、好ましくは40℃/min未満であり、より好ましくは35℃/min以下であり、さらに好ましくは30℃/min以下であり、特に好ましくは20℃/min以下である。
 第2昇温工程(H2)の開始温度は1250~1450℃であり、より作業時間を短縮できる点から、好ましくは1300℃以上であり、安定化剤であるイットリアの含有率の異なる層同士の透明性差を小さくできることから、より好ましくは1350℃以上であり、さらに好ましくは1400℃以上である。第2昇温工程(H2)の到達温度は1450~1550℃であり、より作業時間を短縮できる点から、好ましくは1470℃以上であり、より好ましくは1490℃以上であり、さらに好ましくは1500℃以上である。また、H2の到達温度は得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れ、且つイットリアの含有率が異なる層の間に縞の発生を抑制する点から、好ましくは1540℃以下であり、より好ましくは1530℃以下であり、さらに好ましくは1520℃以下である。
[第3昇温工程(H3)]
 第3昇温工程(H3)の昇温速度をHR3としたとき、安定化剤の量が異なる層を有するジルコニア成形体又はジルコニア仮焼体を短時間焼成に用いた場合において、安定化剤であるイットリアの含有率の異なる層同士の透明性差を小さくでき、イットリアの含有率が異なる層の間に縞の発生を抑制できる点から、HR3/HR2>1であり、得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れ、且つイットリアの含有率が異なる層の間に縞の発生をより抑制できる点から、好ましくはHR3/HR2>1.2であり、より好ましくはHR3/HR2>1.5であり、さらに好ましくはHR3/HR2>2である。また、HR3は、5℃/min以上であり、より作業時間を短縮でき、且つイットリアの含有率が異なる層の間に縞の発生を抑制する点から、好ましくは8℃/min以上であり、より好ましくは9℃/min以上であり、さらに好ましくは10℃/min以上である。また、HR3は、得られるジルコニア焼結体の彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れる点および縞の発生抑制の点から、150℃/min以下であり、好ましくは100℃/min以下であり、より好ましくは50℃/min以下である。
 第3昇温工程(H3)の開始温度は1450~1550℃であり、より作業時間を短縮でき、且つイットリアの含有率が異なる層の間に縞の発生を抑制する点から、好ましくは1470℃以上であり、より好ましくは1490℃以上であり、さらに好ましくは1500℃以上である。また、H3の開始温度は、得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れる点から、好ましくは1540℃以下であり、より好ましくは1530℃以下であり、さらに好ましくは1520℃以下である。
 第3昇温工程(H3)の到達温度は1500~1750℃であり、得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れる点から、好ましくは1510℃以上であり、より好ましくは1530℃以上であり、さらに好ましくは1550℃以上である。また、H3の到達温度はより作業時間を短縮でき、得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れ、且つイットリアの含有率が異なる層の間に縞の発生を抑制する点から、好ましくは1700℃以下であり、より好ましくは1650℃以下であり、さらに好ましくは1600℃以下である。
 本発明のジルコニア焼結体の製造方法に用いるジルコニア成形体又はジルコニア仮焼体としては、ジルコニアに加えて、ジルコニアの相転移を抑制可能な安定化剤を含むものが好ましい。ジルコニア成形体又はジルコニア仮焼体としては、前記安定化剤の少なくとも一部はジルコニアに固溶していない、ジルコニア成形体又はジルコニア仮焼体が好ましい。該安定化剤は、部分安定化ジルコニアを形成可能なものが好ましい。
 本発明のジルコニア焼結体の製造方法に用いるジルコニア成形体又はジルコニア仮焼体としては、安定化剤を含有する複数の層を備え、前記複数の層は、ジルコニアと安定化剤の合計molに対する安定化剤の含有率が異なる層を備える。安定化剤の含有率が異なる層の数は、2層以上であれば、特に限定されず、3層であってもよく、4層であってもよく、5層であってもよく、6層であってもよい。また、ジルコニア成形体又はジルコニア仮焼体としては、安定化剤の含有率が異なる層を有していればよく、さらに安定化剤の含有率が同じ層を2層以上含むものであってもよい。ジルコニア成形体又はジルコニア仮焼体が安定化剤の含有率が異なる層を持つことにより、短時間焼成によって得られるジルコニア焼結体について、一つの材料の中で部位(層)により必要とされる透光性や強度をそれぞれ適正に設定することが可能となる。また、安定化剤の含有率が異なる層同士における安定化剤の含有率の差は、0.1mol%以上であることが好ましく、歯科用として好適な透光性と強度を達成する観点から、0.3mol%以上であることがより好ましく、0.5mol%以上であることがさらに好ましい。さらに、安定化剤の含有率が異なる層同士における安定化剤の含有率の差は、3mol%以下であることが好ましく、歯科用として好適な透光性と強度を達成する観点から、2.5mol%以下であることがより好ましく、2mol%以下であることがさらに好ましい。
 本発明のジルコニア焼結体の製造方法に用いるジルコニア成形体又はジルコニア仮焼体としては、歯科用として好適な透光性と強度を達成する観点から、前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、前記一端から他端に向かってジルコニアと安定化剤の合計molに対する安定化剤(好適にはイットリア)の含有率の増減傾向が変化しないことが好ましい。いいかえると、安定化剤(好適にはイットリア)の含有率が単調に増加又は減少することが好ましい。以下、ジルコニア仮焼体の模式図として図1を用いて説明する。図1のジルコニア仮焼体10の一端Pから他端Qに向かう第1方向Yに延在する直線上において、安定化剤の含有率の増加傾向又は減少傾向は逆方向に変化しないことが好ましい。すなわち、一端Pから他端Qに向かう直線上において安定化剤の含有率が減少傾向にある場合、安定化剤の含有率が実質的に増加する区間が存在しないことが好ましい。
 前記安定化剤としては、例えば、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、イットリア、酸化セリウム(CeO)、酸化スカンジウム(Sc)、酸化ニオブ(Nb)、酸化ランタン(La)、酸化エルビウム(Er)、酸化プラセオジム(Pr11)、酸化サマリウム(Sm)、酸化ユウロピウム(Eu)及び酸化ツリウム(Tm)等の酸化物が挙げられる。安定化剤は、1種を単独で使用してもよく、2種以上を併用してもよい。本発明のジルコニア仮焼体及びその焼結体中の安定化剤の含有率は、例えば、誘導結合プラズマ(ICP;Inductively Coupled Plasma)発光分光分析、蛍光X線分析等によって測定することができる。本発明のジルコニア仮焼体及びその焼結体において、該安定化剤の含有率は、ジルコニアと安定化剤の合計molに対して、0.1~18mol%が好ましく、1~15mol%がより好ましく、2~8mol%がさらに好ましい。得られるジルコニア焼結体の強度及び透光性の観点から、ジルコニア成形体又はジルコニア仮焼体は、安定化剤としてイットリアを含むことが好ましい。ジルコニア成形体又はジルコニア仮焼体が有する前記複数の層のすべての層において、イットリアの含有率は、ジルコニアとイットリアの合計molに対して、2.5mol%以上が好ましく、3mol%以上がより好ましく、3.5mol%以上がさらに好ましく、3.8mol%以上が特に好ましい。イットリアの含有率が2.5mol%以上の場合、ジルコニア焼結体の透光性を高めることができる。また、前記複数の層のすべての層において、イットリアの含有率は、ジルコニアとイットリアの合計molに対して、7.5mol%以下が好ましく、7.0mol%以下がより好ましく、6.5mol%以下がさらに好ましく、6.0mol%以下が特に好ましい。イットリアの含有率が7.5mol%以下の場合、得られるジルコニア焼結体の強度低下を抑制することができる。ある好適な実施形態(X-1)では、ジルコニア成形体又はジルコニア仮焼体が含有する安定化剤としてイットリアを含有する複数の層を備え、前記複数の層は、イットリアの含有率が異なる層を2層以上含み、イットリアの含有率が一番高い層(Y)におけるイットリアの含有率が3.5mol%以上7.5mol%以下であり、イットリアの含有率が一番低い層(YL)におけるイットリアの含有率が2.5mol%以上7.0mol%以下であり、層(Y)におけるイットリアの含有率/層(YL)におけるイットリアの含有率>1を満たす、ジルコニア焼結体の製造方法が挙げられる。前記好適な実施形態(X-1)において、イットリアの含有率が一番高い層(Y)におけるイットリアの含有率が3.8mol%以上7.5mol%以下であり、かつイットリアの含有率が一番低い層(YL)におけるイットリアの含有率が3.0mol%以上6.5mol%以下であるものがより好ましく、イットリアの含有率が一番高い層(Y)におけるイットリアの含有率が3.8mol%以上7.0mol%以下であり、かつイットリアの含有率が一番低い層(YL)におけるイットリアの含有率が3.0mol%以上6.0mol%以下であるものがさらに好ましい。
 本発明のジルコニア成形体又はジルコニア仮焼体において、前記安定化剤の少なくとも一部がジルコニアに固溶されていないことが好ましい。安定化剤の一部がジルコニアに固溶されていないことは、例えば、XRDパターンによって確認することができる。ジルコニア仮焼体のXRDパターンにおいて、安定化剤に由来するピークが確認された場合には、ジルコニア成形体又はジルコニア仮焼体中においてジルコニアに固溶されていない安定化剤が存在していることになる。安定化剤の全量が固溶された場合には、基本的に、XRDパターンにおいて安定化剤に由来するピークは確認されない。ただし、安定化剤の結晶状態等の条件によっては、XRDパターンに安定化剤のピークが存在していない場合であっても、安定化剤がジルコニアに固溶されていないこともあり得る。ジルコニアの主たる結晶系が正方晶系及び/又は立方晶系であり、XRDパターンに安定化剤のピークが存在していない場合には、安定化剤の大部分、基本的に全部、はジルコニアに固溶しているものと考えられる。本発明のジルコニア成形体又はジルコニア仮焼体においては、該安定化剤の全部がジルコニアに固溶されていなくてもよい。なお、本発明において、安定化剤が固溶するとは、例えば、安定化剤に含まれる元素(原子)がジルコニアに固溶することをいう。
 本発明のジルコニア成形体又はジルコニア仮焼体において、ジルコニアに固溶されていないイットリア(以下において「未固溶イットリア」ということがある)の存在率fは、以下の数式(1)に基づいて算出することができる。未固溶イットリアの存在率fは、0%より大きいと好ましく、1%以上がより好ましく、2%以上がさらに好ましく、3%以上が特に好ましい。未固溶イットリアの存在率fの上限は、例えば15%以下であってもよいが、好適にはジルコニア成形体又はジルコニア仮焼体におけるイットリアの含有率に依存する。イットリアの含有率が2.5mol%以上4.5mol%未満であるとき、fは7%以下とすることができる。イットリアの含有率が4.5mol%以上5.8mol%未満であるとき、fは11%以下とすることができる。イットリアの含有率が5.8mol%以上7.5mol%未満であるとき、fは15%以下とすることができる。
 本発明のジルコニア成形体又はジルコニア仮焼体において、イットリアの含有率が2.5mol%以上4.5mol%未満であるとき、fは0.5%以上が好ましく、1.0%以上がより好ましく、2.0%以上がさらに好ましい。イットリアの含有率が4.5mol%以上5.8mol%未満であるとき、未固溶イットリアの存在率fは1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。イットリアの含有率が5.8mol%以上7.5mol%以下であるとき、fは2%以上が好ましく、3%以上がより好ましく、4%以上がさらに好ましい。本発明のジルコニア仮焼体において、イットリアの含有率が2.5mol%以上4.5mol%未満であるとき、f/fは20~200が好ましく、25~100がより好ましく、30~60がさらに好ましい。イットリアの含有率が4.5mol%以上5.8mol%未満であるとき、f/fは5~45が好ましく、10~40がより好ましく、15~35がさらに好ましい。イットリアの含有率が5.8mol%以上7.5mol%以下であるとき、f/fは2~40が好ましく、5~35がより好ましく、10~30がさらに好ましい。
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、I(111)は、CuKα線によるXRDパターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示す。I(111)及びI(11-1)は、ジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示す。I(111)は、ジルコニアの正方晶系の(111)面のピーク強度を示す。I(111)は、ジルコニアの立方晶系の(111)面のピーク強度を示す。
 上記数式(1)は、I(111)の代わりに他のピークを代入することによって、イットリア以外の安定化剤の未固溶存在率の算出にも適用することができる。
 本発明のジルコニア成形体又はジルコニア仮焼体におけるジルコニアの主たる結晶系は単斜晶系であることが好ましい。本発明において、「主たる結晶系が単斜晶系である」とは、ジルコニア中のすべての結晶系(単斜晶系、正方晶系及び立方晶系)の総量に対して以下の数式(2)で算出されるジルコニア中の単斜晶系の割合fが50%以上の割合を占めるものを指す。本発明のジルコニア成形体又はルコニア仮焼体において、以下の数式(2)で算出されるジルコニア中の単斜晶系の割合fは、単斜晶系、正方晶系及び立方晶系の総量に対して55%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましく、75%以上がよりさらに好ましく、80%以上が特に好ましく、85%以上がさらに特に好ましく、90%以上が最も好ましい。単斜晶系の割合fは、CuKα線によるX線回折(XRD;X-Ray Diffraction)パターンのピークに基づいて以下の数式(2)から算出することができる。なお、ジルコニア成形体又はジルコニア仮焼体における主たる結晶系は、収縮温度の高温化及び焼成時間の短縮化に寄与している可能性がある。
 本発明のジルコニア成形体又はジルコニア仮焼体においては、正方晶系及び立方晶系のピークが実質的に検出されなくてもよい。すなわち、単斜晶系の割合fが100%とすることができる。
Figure JPOXMLDOC01-appb-M000002
 数式(2)において、I(111)及びI(11-1)は、それぞれジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示す。I(111)は、ジルコニアの正方晶系の(111)面のピーク強度を示す。I(111)は、ジルコニアの立方晶系の(111)面のピーク強度を示す。
 ジルコニア成形体又はジルコニア仮焼体は、必要に応じて添加剤を含んでいてもよい。添加剤としては、バインダ、着色剤(顔料、複合顔料及び蛍光剤を含む)、アルミナ(Al)、酸化チタン(TiO)、シリカ(SiO)等が挙げられる。添加剤は、1種単独で使用してもよく、2種以上を混合して用いてもよい。
 前記バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、アクリル系バインダ、ワックス系バインダ(パラフィンワックス等)、ポリビニルブチラール、ポリメタクリル酸メチル、エチルセルロース、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、ポリスチレン、アタクチックポリプロピレン、メタクリル樹脂、ステアリン酸等が挙げられる。
 前記顔料としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Pr、Sm、Eu、Gd、Tb及びErからなる群から選択される少なくとも1つの元素の酸化物(具体的には、NiO、Cr等)が挙げられ、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Pr、Sm、Eu、Gd、及びTbからなる群から選択される少なくとも1つの元素の酸化物が好ましく、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Sm、Eu、Gd、及びTbからなる群から選択される少なくとも1つの元素の酸化物がより好ましい。また、本発明のジルコニア成形体又はジルコニア仮焼体は、酸化エルビウム(Er)を含まないものであってもよい。前記複合顔料としては、例えば、(Zr,V)O、Fe(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・ZrSiO、(Co,Zn)Al等の複合酸化物が挙げられる。蛍光剤としては、例えば、YSiO:Ce、YSiO:Tb、(Y,Gd,Eu)BO、Y:Eu、YAG:Ce、ZnGa:Zn、BaMgAl1017:Eu等が挙げられる。
 本発明に用いるジルコニア成形体の製造方法としては、特に限定されないが、例えば、ジルコニア(好適には、主たる結晶系が単斜晶系であるジルコニア粉末)と前記安定化剤からなる混合粉末を175MPa以上の圧力でプレス成形して、ジルコニア成形体を得る工程を含む製造方法等が挙げられる。前記圧力でプレス成形することにより、厚さによらずジルコニア成形体(ひいては得られるジルコニア焼結体)の嵩密度を高めることができる。なお、本明細書において、前記175MPa以上の圧力はプレス成形時の最大圧力を意味する。
 本発明に用いるジルコニア仮焼体の製造方法としては、特に限定されないが、例えば、ジルコニア粒子(好適には、主たる結晶系が単斜晶系であるジルコニア粒子)と安定化剤とを含む原料粉末から形成されたジルコニア成形体をジルコニア粒子が焼結に至らない温度で焼成(すなわち仮焼)する製造方法等が挙げられる。ジルコニア成形体の製造方法は、上述したとおりである。本発明のジルコニア仮焼体の製造方法の一例を説明する。まず、ジルコニア成形体の原料粉末を製造する。単斜晶系のジルコニア粉末と安定化剤の粉末(例えば、イットリア粉末)とを用いて、所望の安定化剤(例えば、イットリア)の含有率となるように混合物を作製する。次に、この混合物を水に添加してスラリーを作製し、所望の粒径になるまでボールミルで湿式粉砕混合する。粉砕後のスラリーをスプレードライヤで乾燥させて造粒する。得られた粉末をジルコニア粒子が焼結に至らない温度(例えば、800~1200℃)で焼成して、粉末(一次粉末)を作製する。一次粉末には顔料を添加してもよい。その後、一次粉末を水に添加してスラリーを作製し、所望の粒径になるまでボールミルで湿式粉砕混合する。粉砕後のスラリーに必要に応じてバインダ等の添加剤を添加した後、スプレードライヤで乾燥させて、混合粉末(二次粉末)を作製する。所定の金型に、前記二次粉末を充填し、上面をすりきって上面を平坦にならし、上型をセットし、一軸プレス成形機によって、前記二次粉末をプレス成形して、ジルコニア成形体を得る。前記したように前記混合粉末をプレス成形する際の圧力は、175MPa以上が好ましい。なお、得られたジルコニア成形体をさらにCIP(Cold Isostatic Press)成形をしてもよく、しなくてもよい。
 ジルコニア成形体又はジルコニア仮焼体は、複層構造のものであってもよい。複層構造のジルコニア仮焼体を製造する場合には、ジルコニア成形体を複層構造とするために、前記製造方法において一次粉末を少なくとも2つ(好適には4つ)に分ければよい。
 ジルコニア仮焼体の密度は2.7g/cm以上が好ましい。また、ジルコニア仮焼体の密度は4.0g/cm以下が好ましく、3.8g/cm以下がより好ましく、3.6g/cm以下がさらに好ましい。この密度範囲にあると成形加工を容易に行うことができる。密度は、例えば、(仮焼体の質量)/(仮焼体の体積)として算出することができる。
 また、ジルコニア仮焼体の3点曲げ強さは、15~70MPaが好ましく、18~60MPaがより好ましく、20~50MPaがさらに好ましく、20~40MPaが特に好ましい。前記曲げ強さは、ISO 6872:2015に準拠して測定することができるが、試験片の大きさの条件のみを変えて、5mm×10mm×50mmの大きさの試験片を用いて測定を行う。該試験片の面及びC面は、600番のサンドペーパーで長手方向に面仕上げする。該試験片は、最も広い面が鉛直方向(荷重方向)を向くように配置する。曲げ試験測定において、スパンは30mm、クロスヘッドスピードは0.5mm/分とする。
 次いで、上記のようにして得られたジルコニア成形体を仮焼して、ジルコニア仮焼体を得る。仮焼温度は、例えば、800℃以上が好ましく、900℃以上がより好ましく、950℃以上がさらに好ましい。また、仮焼温度は、寸法精度を高めるため、例えば、1200℃以下が好ましく、1150℃以下がより好ましく、1100℃以下がさらに好ましい。このような仮焼温度であれば、安定化剤の固溶は進行しないと考えられる。
 本発明のジルコニア焼結体の製造方法では、上記した各昇温工程の開始温度、到達温度、昇温速度範囲、HR3/HR2>1の関係を満たす限り、上記した各昇温工程の昇温速度は、定速であってもよく、途中で変更して多段階としてもよい。例えば、ある実施形態では、第2昇温工程について、開始温度からの昇温30秒間は50℃/minで昇温し、30秒経過後は、10℃/minで昇温してもよい。他の実施形態では、第3昇温工程について、開始温度からの昇温30秒間は、50℃/minとし、30秒経過後は、10℃/minで昇温してもよい。
[係留工程]
 本発明のジルコニア焼結体の製造方法では、最高到達温度(最高焼成温度)での係留時間が30分以内であることが好ましく、より作業時間を短縮できる点から、10~25分であることがより好ましく、15~20分であることがさらに好ましい。また、最高焼成温度は好ましくは1400~1750℃であり、得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れる点から、好ましくは1510℃以上であり、より好ましくは1530℃以上であり、さらに好ましくは1550℃以上である。また、最高焼成温度はより作業時間を短縮でき、得られるジルコニア焼結体の明度、透光性及び彩度により優れ、ジルコニア成形体又はジルコニア仮焼体が複合酸化物を含む場合に複合酸化物の発色性が優れ、且つイットリアの含有率が異なる層の間に縞の発生を抑制する点から、好ましくは1750℃以下であり、より好ましくは1650℃以下であり、さらに好ましくは1600℃以下である。係留工程は第3昇温工程の直後にあることが好ましいが、本発明の効果を奏する限り第3昇温工程と係留工程の間にさらに別の昇温工程があってもよい。上記以外の昇温工程を含まない実施形態では、H3の到達温度が最高焼成温度となる。
 焼成工程における前記第1昇温工程の昇温開始から前記最高焼成温度での係留時間の終了までの総焼成時間は、より作業時間を短縮できる点から、120分以内であることが好ましく、90分以内であることがより好ましく、75分以内であることがさらに好ましい。
[冷却工程(降温工程)]
 本発明のジルコニア焼結体の製造方法では、前記最高焼成温度で所定時間保持した後、冷却する工程を含むことが好ましい。冷却工程において、前記昇温工程における最高焼成温度から800℃までの降温速度は10℃/min以上であると好ましく、30℃/min以上であるとより好ましく、50℃/min以上であるとさらに好ましい。降温方法は、外気導入冷却や水冷、空冷、徐冷、放冷のいずれかもしくは組み合わせを用いることができる。冷却工程の到達温度は、焼成炉の種類、性能等によって異なり、950℃であってもよく、750℃であってもよく、1000℃であってもよい。
 本発明の製造方法によって得られるジルコニア焼結体の色差ΔE*abは、歯科用製品として好適であることから、2.7以下であることが好ましく、2.0以下がより好ましく、1.6以下がさらに好ましく、0.8以下が特に好ましい。色差ΔE*abの比較測定対象は、通常焼成した場合(焼成の合計時間:6~12時間)のジルコニア焼結体の色度である。色度の評価方法は後記する実施例に記載のとおりである。また、本明細書において、前記「焼成の合計時間」(総焼成時間ともいう。)は、焼成工程における前記第1昇温工程の昇温開始から前記最高焼成温度での係留時間の終了までの時間を意味する。
 本発明の製造方法によって得られるジルコニア焼結体の明度指数L*と、通常焼成した場合(焼成の合計時間:6~12時間)のジルコニア焼結体の明度指数L*との差は、歯科用製品として好適であることから、2.0以下であることが好ましく、1.5以下であることがより好ましく、1.0以下であることがさらに好ましい。本発明の製造方法によって得られるジルコニア焼結体のL*、a*、及びb*は、サービカル(歯頸部)、ボディ、インサイザル(切縁部)等の目的の部位に応じて選択、設定することができる。
 本発明は、本発明の効果を奏する限り、本発明の技術的思想の範囲内において、上記の構成を種々組み合わせた実施形態を含む。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、本発明の技術的思想の範囲内で多くの変形が当分野において通常の知識を有する者により可能である。
[実施例1]
[ジルコニア仮焼体の作製に使用する原料粉末の作製]
 実施例1に使用するジルコニア仮焼体を作製するために使用する原料粉末の作製方法について説明する。まず、単斜晶系のジルコニア粉末とイットリア粉末を用いて、着色成分以外は表1に記載の組成となるように混合物を作製した。次に、この混合物を水に添加してスラリーを作製し、平均粒径0.13μm以下になるまでボールミルで湿式粉砕混合した。粉砕後のスラリーをスプレードライヤで乾燥させ、得られた粉末を仮焼温度950℃で2時間焼成して、粉末(一次粉末)を作製した。なお、前記平均粒径は、レーザー回折散乱法により求めることができる。レーザー回折散乱法は、具体的に例えば、レーザー回折式粒子径分布測定装置(SALD-2300:株式会社島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて体積基準で測定することができる。なお、表1におけるイットリアの含有率は、ジルコニアとイットリアの合計molに対するイットリアの含有率を意味する。
 得られた一次粉末に対して、表1に記載の組成で着色成分を添加した。その後、着色成分を添加した粉末を水に添加してスラリーを作製し、平均粒径0.13μm以下になるまでボールミルで湿式粉砕混合した。粉砕後のスラリーにバインダを添加した後、スプレードライヤで乾燥させて、粉末(二次粉末)を作製した。作製した二次粉末を原料粉末として、後述のジルコニア仮焼体の製造に用いた。
[ジルコニア仮焼体のブロックの作製]
 次に歯冠形状のジルコニア焼結体を作製するために使用するジルコニア仮焼体のブロックの製造方法について説明する。まず、内寸20mm×25mmの金型に、前記原料粉末を表1に記載された1層目の原料粉末、次いでに2層目の原料粉末の順に15gずつ充填し、一軸プレス成形機によって、面圧300kg/cmで90秒間、1次プレス成形した。得られた1次プレス成形体(ジルコニア成形体)を1700kg/cmで5分間、CIP成形して、積層構造の成形体を作製した。得られた成形体を1000℃で2時間焼成してジルコニア仮焼体のブロックを作製した。
 得られたジルコニア仮焼体のブロックを用いて後記する各特性の評価に記載された形状に切削加工し、表2に記載の焼成スケジュールで焼成を行った。各特性評価の結果は後記するとおりである。なお、ジルコニア焼結体のΔL(W-B)の評価については、後記するとおり各層単独のジルコニア焼結体を作製して、評価した。
[実施例2~5、比較例1及び参考例1]
 実施例1と同様にして、二次粉末を作製し、ジルコニア仮焼体のブロックを作製した。また、焼成スケジュールを表2及び表3に記載のとおりに変更する以外は、実施例1と同様にしてジルコニア焼結体を作製し、各特性を評価した。
[ジルコニア焼結体の各層のΔL(W-B)の評価]
 各実施例1~5、比較例1及び参考例1のジルコニア焼結体について、以下の方法によって表1に記載された1層目と2層目それぞれ単独のジルコニア焼結体を作製し、L*a*b*表色系(JIS Z 8781-4:2013 測色-第4部:CIE 1976 L*a*b*色空間)による(L*,a*,b*)を測定した。また、ジルコニア焼結体の各(L*,a*,b*)から得られるΔL(W-B)を算出した。ΔL(W-B)は白背景で測定した場合のジルコニア焼結体のL値(L*)と、黒背景で測定した場合のジルコニア焼結体のL値(L*)を用い、下記式(1)によって求められる。
 ΔL(W-B)=(L*)-(L*)  (1)
 まず、厚さ1.2mmのジルコニア焼結体が得られるように、予めサイズを調整してプレス成形を行うことで、各層における原料粉末からなる成形体を作製した。次に、該成形体を1000℃で2時間焼成してジルコニア仮焼体を作製した。焼成炉としてInFire HTC speed(デンツプライシロナ株式会社製)を用いて表2及び表3に示した焼成スケジュールにて該ジルコニア仮焼体を焼成してジルコニア焼結体を作製した。得られたジルコニア焼結体の両面を#600の研磨紙で研磨加工し、厚さ1.2mmのジルコニア焼結体とした後、歯科用測色装置(7band LED光源、クリスタルアイ)(オリンパス株式会社製)を用いて、各層における白背景及び黒背景に測定した(n=3)。n=3の平均値を評価結果として表2及び表3に示す。
[歯冠形状のジルコニア焼結体の審美性の評価]
 各実施例1~5、比較例1及び参考例1のジルコニア焼結体について、以下の方法にて、天然歯の外観との比較の観点で、目視により審美性を評価した。評価にあたっては、天然歯と同等の外観を有する市販のシェードガイドを使用することができる。市販のシェードガイドは、具体的に例えば、VITA社製シェードガイドVITA Classical(商品名)が挙げられる。まず、得られたジルコニア仮焼体のブロックから、加工機としてDWX-52DC(Roland D.G社製)を用いて前歯歯冠形状に切削加工した。得られた切削加工後のジルコニア仮焼体を、焼成炉としてInFire HTC speed(デンツプライシロナ株式会社製)を用いて表2及び表3の焼成スケジュールに従って焼成し、各実施例及び比較例のジルコニア焼結体を得た。
 得られたジルコニア焼結体について、以下の基準で4名の目視により評価した。4名中3名以上がある基準を満たすと判断した場合、当該基準を満たすものと判断した。表2及び表3に結果を示す。
 <評価基準>
 〇:イットリアの含有率が異なる層の間に縞が見られず、歯科臨床評価上、問題ない
 △:イットリアの含有率が異なる層の間に縞はわずかにあるが、歯科臨床評価上、許容可能な範囲内である
 ×:イットリアの含有率が異なる層の間に縞が目立ち、臨床評価上、許容できない
[ジルコニア焼結体の強度の評価]
 各実施例1~5、比較例1及び参考例1のジルコニア焼結体について、以下の方法にて、強度を確認した。まず、得られたジルコニア仮焼体ブロックから、加工機としてDWX-52DC(Roland D.G社製)を用いて、1.7mm×5.2mm×20.2mmの直方体形状のサンプルを10本切削加工した。得られた切削加工後のジルコニア仮焼体を、焼成炉としてInFire HTC speed(デンツプライシロナ株式会社製)を用いて、表2及び表3で示した焼成スケジュールの条件で焼成した。焼成後のジルコニア焼結体を、回転研磨盤を用いて#1000の研磨紙にて研磨し、1.2mm×4mm×14mmの直方体形状の焼結体サンプルとした。該焼結体サンプルを用いて、ISO 6872:2015に準拠したクロスヘッドスピード0.5mm/min、支点間距離(スパン)は12mmの条件で3点曲げ強さを測定した(n=10)。n=10の平均値を評価結果として表2及び表3に示す。
[歯冠形状のジルコニア焼結体のΔE*abの評価]
 各実施例1~5及び比較例1のジルコニア焼結体について、以下の方法にて、通常の焼成スケジュールである参考例1に記載の焼成スケジュールで焼成したジルコニア焼結体との色差ΔE*ab(以下、「ΔE*」ともいう。)を算出し、色調の差を確認した。まず、得られたジルコニア仮焼体ブロックから、加工機としてDWX-52DC(Roland D.G社製)を用いて前歯歯冠形状に切削加工した。得られた切削加工後のジルコニア仮焼体を、焼成炉としてInFire HTC speedを用いた表2及び表3に記載の焼成スケジュールで、それぞれ同一形状のサンプルを焼成した。焼成後の焼結体サンプルについて、歯科用測色装置(オリンパス株式会社製、7band LED光源、「クリスタルアイ」)を用いて測色を行い、L*a*b*表色系(JIS Z 8781-4:2013 測色-第4部:CIE 1976 L*a*b*色空間)における、明度、彩度、色差ΔE*abをサービカル、ボディ、及びインサイザルの各測定部位において評価した(n=5)。n=5の平均値を評価結果として表4に示す。色差ΔE*abは、CIE 1976 L*a*b*色空間における明度指数L*、色座標a*、b*を用いて、表2及び表3に記載の焼成スケジュールで得た焼結体サンプルの2つのサンプルについて、下記式(2)によって求められる。
ΔE*={(L*-L*)+(a*-a*)+(b*-b*)1/2 (2)
[各物性値の評価]
 実施例1、3~5及び参考例1ではジルコニア焼結体の各層におけるΔL(W-B)の値の差が0.79~1.03となり、歯冠形状のジルコニア焼結体の審美性の評価においてイットリアの含有率が異なる層の間に縞が目立たず、歯科臨床評価上、問題ないことが確認できた。また、ジルコニア焼結体の強度の評価において焼結体サンプルの3点曲げ強さは、通常の焼成スケジュールで焼成した場合(参考例1)と同等の値を示し、歯科用として問題ない強度であった。歯冠形状のジルコニア焼結体のΔE*abの評価において、通常の焼成スケジュールで焼成した焼成サンプルに対する色差ΔE*abが2.7以下であった。
 実施例2ではジルコニア焼結体の各層におけるΔL(W-B)の値の差が1.45となり、歯冠形状のジルコニア焼結体の審美性の評価においてイットリアの含有率が異なる層の間に縞はわずかにあるが、歯科臨床評価上、許容可能な範囲内であった。ジルコニア焼結体の強度の評価において焼結体サンプルの3点曲げ強さは、通常の焼成スケジュールで焼成した場合と同等の値を示し、歯科用として問題ない強度であった。歯冠形状のジルコニア焼結体のΔE*abの評価において、通常の焼成スケジュールで焼成した焼成サンプルに対する色差ΔE*abが2.7以下であった。
 一方、比較例1では、歯科用として問題ない3点曲げ強さとΔE*値を示したものの、ジルコニア焼結体の各層におけるΔL(W-B)の値の差が2.7となり、歯冠形状のジルコニア焼結体の審美性の評価においてイットリアの含有率が異なる層の間に縞が目立ち、臨床評価上、許容できない結果となった。比較例1のようにΔL(W-B)の値の差が大きくなる原因として、透光性及び色調に影響を与える温度帯が一定の速度で上昇していく焼成スケジュールとなっていることが考えられる。特許文献2(特表2019-524298号公報)においても図3に示されるように、1000℃以降の焼成プロファイルが1段階、すなわち定速で上昇していく焼成スケジュールとなっているため、比較例1と同様の結果になるものと考えられる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記結果から、本発明の製造方法によって得られるジルコニア焼結体は、焼成時間が短時間であってもイットリアの含有率が異なる層の間において縞の発生が抑制されていることから、歯科用製品(例えば、歯科補綴物)として好適であることが確認できた。さらに、本発明の製造方法によって得られるジルコニア焼結体は、短時間で焼結させるにもかかわらず、通常の焼成条件(焼成の合計時間:6~12時間)で焼成した場合と同程度に歯科補綴物の色調と強度を再現できることが確認できた。
 本発明のジルコニア焼結体の製造方法は、短時間でジルコニア成形体又はジルコニア仮焼体を焼結させ、かつ得られるジルコニア焼結体は、イットリアの含有率が異なる層の間において縞の発生を抑制可能なため、歯科用製品(歯科補綴物等)の製造に有用である。さらに、得られるジルコニア焼結体は、短時間で焼結させるにもかかわらず、通常の焼成条件で焼成した場合と同程度に理想的な歯科補綴物の審美要求(色調と透光性)と強度を再現でき、且つ特に、色調に優れ、天然歯の前歯の切縁部のような透光性を有するため、前歯用の差し歯等の歯科補綴物を製造する方法として有用である。
 10  ジルコニア仮焼体
 P   一端
 Q   他端
 L   全長
 Y   第1方向

Claims (15)

  1.  ジルコニア成形体又はジルコニア仮焼体を焼成する焼成工程を有し、
     前記ジルコニア成形体又はジルコニア仮焼体が安定化剤を含有する複数の層を備え、
     前記複数の層は安定化剤の含有率が異なる層を含み、
     前記焼成工程が、第1昇温工程(H1)、第2昇温工程(H2)及び第3昇温工程(H3)の少なくとも3段階の昇温工程を含み、
     第2昇温工程(H2)の昇温速度をHR2、
     第3昇温工程(H3)の昇温速度をHR3としたとき、
     HR2=0℃/min超50℃/min未満、
     HR3=5℃/min以上150℃/min以下、
     HR3/HR2>1であり、
    各昇温工程での開始温度は
     H1において1000℃以下、
     H2において1250℃超1450℃以下、
     H3において1450℃以上1550℃以下であり、
    各昇温工程での到達温度は    
     H1において1250℃超1450℃以下、
     H2において1450℃以上1550℃以下、
     H3において1500℃以上1750℃以下である、
    ジルコニア焼結体の製造方法。
  2.  前記第1昇温工程(H1)の昇温速度をHR1としたとき、HR1が40~500℃/minである、請求項1に記載のジルコニア焼結体の製造方法。
  3.  前記安定化剤の含有率が異なる層同士における安定化剤の含有率の差が0.1mol%以上である、請求項1又は2に記載のジルコニア焼結体の製造方法。
  4.  前記安定化剤がイットリアである、請求項1~3のいずれか一項に記載のジルコニア焼結体の製造方法。
  5.  前記複数の層のすべての層における前記イットリアの含有率が、ジルコニアとイットリアの合計molに対して2.5mol%以上7.5mol%以下である、請求項4に記載のジルコニア焼結体の製造方法。
  6.  HR2が2~30℃/minである、請求項1~5のいずれか一項に記載のジルコニア焼結体の製造方法。
  7.  HR3が10~100℃/minである、請求項1~6のいずれか一項に記載のジルコニア焼結体の製造方法。
  8.  HR3/HR2>1.5である、請求項1~7のいずれか一項に記載のジルコニア焼結体の製造方法。
  9.  前記昇温工程における最高焼成温度が1400~1750℃であり、該最高焼成温度での係留時間が30分以内である、請求項1~8のいずれか一項に記載のジルコニア焼結体の製造方法。
  10.  さらに降温工程を含み、該降温工程において、前記昇温工程における最高焼成温度から800℃までの降温速度が10℃/min以上である、請求項9に記載のジルコニア焼結体の製造方法。
  11.  前記焼成工程における前記第1昇温工程(H1)の昇温開始から最高焼成温度での係留時間の終了までの総焼成時間が120分以内である、請求項1~10のいずれか一項に記載のジルコニア焼結体の製造方法。
  12.  前記ジルコニア成形体又はジルコニア仮焼体の55%以上が単斜晶系である、請求項1~11のいずれか一項に記載のジルコニア焼結体の製造方法。
  13.  前記ジルコニア成形体又はジルコニア仮焼体において、前記安定化剤の少なくとも一部がジルコニアに固溶していない、請求項1~12のいずれか一項に記載のジルコニア焼結体の製造方法。
  14.  前記ジルコニア成形体又はジルコニア仮焼体が、歯科用製品の所定形状を備える、請求項1~13のいずれか一項に記載のジルコニア焼結体の製造方法。
  15.  前記歯科用製品が歯科補綴物である、請求項14に記載のジルコニア焼結体の製造方法。
PCT/JP2021/035176 2020-09-25 2021-09-24 ジルコニア焼結体の製造方法 WO2022065452A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180065597.6A CN116209409A (zh) 2020-09-25 2021-09-24 氧化锆烧结体的制造方法
EP21872581.0A EP4219425A1 (en) 2020-09-25 2021-09-24 Method for producing zirconia sintered compact
JP2021574762A JP7026295B1 (ja) 2020-09-25 2021-09-24 ジルコニア焼結体の製造方法
KR1020237005295A KR20230070446A (ko) 2020-09-25 2021-09-24 지르코니아 소결체의 제조 방법
US18/027,680 US20230382808A1 (en) 2020-09-25 2021-09-24 Method for producing zirconia sintered body
JP2022020194A JP2022068261A (ja) 2020-09-25 2022-02-14 ジルコニア焼結体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-161531 2020-09-25
JP2020161531 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065452A1 true WO2022065452A1 (ja) 2022-03-31

Family

ID=80846668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035176 WO2022065452A1 (ja) 2020-09-25 2021-09-24 ジルコニア焼結体の製造方法

Country Status (6)

Country Link
US (1) US20230382808A1 (ja)
EP (1) EP4219425A1 (ja)
JP (2) JP7026295B1 (ja)
KR (1) KR20230070446A (ja)
CN (1) CN116209409A (ja)
WO (1) WO2022065452A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238861A1 (ja) * 2022-06-10 2023-12-14 共立マテリアル株式会社 ジルコニア焼結体とその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452742B2 (ja) 2022-07-01 2024-03-19 東ソー株式会社 焼結体の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531048A (ja) 2012-07-27 2015-10-29 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 焼結材料から成る部材、特にデンタル部材のための焼結炉及びこのような部材の焼結方法
WO2016104724A1 (ja) * 2014-12-26 2016-06-30 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びに歯科用製品
JP2017128466A (ja) * 2016-01-19 2017-07-27 クラレノリタケデンタル株式会社 ジルコニア焼結体及び歯科用製品、並びにそれらの製造方法
JP2018080160A (ja) * 2016-11-07 2018-05-24 株式会社松風 高い相対密度を有する多層の歯科用ジルコニアブランク
WO2018155459A1 (ja) * 2017-02-21 2018-08-30 株式会社 松風 歯科切削加工用ジルコニア被切削体及びその製造方法並びに歯科切削加工用ジルコニア被切削体用透明性向上液及びその使用方法
JP2019524298A (ja) 2016-08-09 2019-09-05 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 歯牙交換部品を製造するためのブランクおよび方法
JP2019163246A (ja) * 2018-03-20 2019-09-26 株式会社松風 イットリア含有量の異なる多層構造ジルコニア
JP2020075858A (ja) * 2019-11-05 2020-05-21 クラレノリタケデンタル株式会社 ジルコニア仮焼体及びジルコニア焼結体並びに積層体
WO2020138316A1 (ja) 2018-12-27 2020-07-02 クラレノリタケデンタル株式会社 歯科用に好適なジルコニア仮焼体
WO2021020582A1 (ja) * 2019-08-01 2021-02-04 クラレノリタケデンタル株式会社 ジルコニア焼結体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844100B2 (ja) * 1989-12-26 1999-01-06 東海カーボン株式会社 ジルコニア耐火物とその製造方法
CN101723667B (zh) * 2009-11-18 2012-09-05 北京航空航天大学 带有网状裂纹结构的多元稀土氧化物掺杂氧化锆热障涂层及其制备方法
CN102167586A (zh) * 2011-01-20 2011-08-31 中南大学 一种低温活化烧结8ysz基陶瓷及制备方法
WO2018214808A1 (zh) * 2017-05-22 2018-11-29 杭州而然科技有限公司 一种具有生物活性的纳米氧化物陶瓷薄膜
CN107056258B (zh) * 2017-05-22 2019-11-05 杭州而然科技有限公司 一种有机先驱体溶液镀膜制备的具有生物活性的纳米氧化物陶瓷薄膜
JP2020147495A (ja) * 2019-03-07 2020-09-17 東ソー株式会社 ジルコニア仮焼体
JP2020147494A (ja) * 2019-03-07 2020-09-17 東ソー株式会社 ジルコニア焼結体
CN110227033B (zh) * 2019-04-26 2020-09-18 北京航空航天大学 一种通过包覆金属氧化物致密层修复受损牙釉质的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531048A (ja) 2012-07-27 2015-10-29 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 焼結材料から成る部材、特にデンタル部材のための焼結炉及びこのような部材の焼結方法
WO2016104724A1 (ja) * 2014-12-26 2016-06-30 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びに歯科用製品
JP2017128466A (ja) * 2016-01-19 2017-07-27 クラレノリタケデンタル株式会社 ジルコニア焼結体及び歯科用製品、並びにそれらの製造方法
JP2019524298A (ja) 2016-08-09 2019-09-05 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 歯牙交換部品を製造するためのブランクおよび方法
JP2018080160A (ja) * 2016-11-07 2018-05-24 株式会社松風 高い相対密度を有する多層の歯科用ジルコニアブランク
WO2018155459A1 (ja) * 2017-02-21 2018-08-30 株式会社 松風 歯科切削加工用ジルコニア被切削体及びその製造方法並びに歯科切削加工用ジルコニア被切削体用透明性向上液及びその使用方法
JP2019163246A (ja) * 2018-03-20 2019-09-26 株式会社松風 イットリア含有量の異なる多層構造ジルコニア
WO2020138316A1 (ja) 2018-12-27 2020-07-02 クラレノリタケデンタル株式会社 歯科用に好適なジルコニア仮焼体
WO2021020582A1 (ja) * 2019-08-01 2021-02-04 クラレノリタケデンタル株式会社 ジルコニア焼結体の製造方法
JP2020075858A (ja) * 2019-11-05 2020-05-21 クラレノリタケデンタル株式会社 ジルコニア仮焼体及びジルコニア焼結体並びに積層体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238861A1 (ja) * 2022-06-10 2023-12-14 共立マテリアル株式会社 ジルコニア焼結体とその製造方法

Also Published As

Publication number Publication date
US20230382808A1 (en) 2023-11-30
JP2022068261A (ja) 2022-05-09
EP4219425A1 (en) 2023-08-02
CN116209409A (zh) 2023-06-02
JPWO2022065452A1 (ja) 2022-03-31
JP7026295B1 (ja) 2022-02-25
KR20230070446A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
JP7005819B2 (ja) ジルコニア焼結体の製造方法
JP6357145B2 (ja) ジルコニア焼結体、並びにジルコニアの組成物及び仮焼体
CN111511702B (zh) 适合于牙科用途的氧化锆预煅烧体
JP7213268B2 (ja) 歯科用に好適なジルコニア仮焼体
JP7026295B1 (ja) ジルコニア焼結体の製造方法
JP7001310B1 (ja) 歯科用に好適なジルコニア仮焼体
WO2020218541A1 (ja) 歯科用に好適なジルコニア仮焼体及びその製造方法
WO2021125351A1 (ja) ジルコニア焼結体の製造方法
WO2023127945A1 (ja) 歯科用に好適なジルコニア仮焼体
JP2023051409A (ja) ジルコニア仮焼体の焼成による変形の評価方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021574762

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872581

Country of ref document: EP

Effective date: 20230425