WO2020138316A1 - 歯科用に好適なジルコニア仮焼体 - Google Patents

歯科用に好適なジルコニア仮焼体 Download PDF

Info

Publication number
WO2020138316A1
WO2020138316A1 PCT/JP2019/051188 JP2019051188W WO2020138316A1 WO 2020138316 A1 WO2020138316 A1 WO 2020138316A1 JP 2019051188 W JP2019051188 W JP 2019051188W WO 2020138316 A1 WO2020138316 A1 WO 2020138316A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
calcined body
yttria
body according
zirconia calcined
Prior art date
Application number
PCT/JP2019/051188
Other languages
English (en)
French (fr)
Inventor
加藤 新一郎
承央 伊藤
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to EP19902009.0A priority Critical patent/EP3903761A4/en
Priority to US17/311,518 priority patent/US20220017423A1/en
Priority to KR1020217021517A priority patent/KR102591180B1/ko
Priority to CN201980086189.1A priority patent/CN113194905B/zh
Priority to JP2020562423A priority patent/JP7213268B2/ja
Publication of WO2020138316A1 publication Critical patent/WO2020138316A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives

Definitions

  • the present invention relates to a zirconia calcined body. Furthermore, the present invention relates to a method for manufacturing a zirconia sintered body made of the zirconia calcined body and a dental product.
  • Zirconia is a compound that undergoes a phase transition between a plurality of crystal systems. Therefore, partially stabilized zirconia (PSZ; Partially-Stabilized Zirconia) in which a stabilizer such as yttria (yttrium oxide; Y 2 O 3 ) is dissolved in zirconia to suppress the phase transition and completely stabilized zirconia are used in various fields. Is used in.
  • PSZ partially stabilized zirconia
  • yttria yttrium oxide
  • Y 2 O 3 yttrium oxide
  • Patent Document 1 discloses a zirconia calcined body which has high translucency even when fired for a short time and is suitable for dental use.
  • Patent Document 2 discloses a zirconia sintered body in which the amount of yttria differs for each layer, and by reducing the amount of yttria from the tooth neck toward the incisal end, the translucency suitable as a dental prosthesis is obtained. Is expressed.
  • Patent Document 2 has layers having different amounts of yttria, and is considered to have appropriate translucency and strength as a dental prosthesis, but when firing, the holding time at the maximum temperature is 2 It takes time, and there is a problem that firing cannot be performed for a short time.
  • the inventors of the present invention have conducted extensive studies to solve the above problems, and the main crystal system is a zirconia calcined body having a monoclinic system, and the content of the stabilizer of each layer is different. It was found that the above-mentioned problems can be solved by using a calcined body, and further research was conducted based on this finding, and the present invention was completed.
  • the present invention includes the following inventions.
  • Zirconia, And a stabilizer capable of suppressing the phase transition of zirconia The main crystal system of zirconia is the monoclinic system, A zirconia calcined body, comprising a plurality of layers having different stabilizer contents with respect to the total mol of zirconia and the stabilizer.
  • the zirconia calcined body according to any one of [1] to [5] which has a density of 2.7 to 4.0 g/cm 3 .
  • a zirconia calcined body in which the increasing or decreasing tendency of the yttria content rate relative to the total mol of zirconia and yttria from the one end to the other end does not change With respect to the total mol of the zirconia and the yttria, The yttria content of the layer including the one end is 4.5 mol% or more and 7.0 mol% or less, The zirconia calcined body according to [8], wherein the yttria content of the layer including the other end is 2.0 mol% or more and less than 4.5 mol%.
  • a zirconia calcined body in which the increasing or decreasing tendency of the yttria content rate relative to the total mol of zirconia and yttria from the one end to the other end does not change With respect to the total mol of the zirconia and the yttria, The zirconia calcined body according to [8] or [9], wherein the difference in yttria content between the layer including the one end and the layer including the other end is 4.0 mol% or less.
  • I m (111) and I m (11-1) represent peak intensities of zirconia monoclinic (111) plane and (11-1) plane in the X-ray diffraction pattern
  • I t (111) represents the peak intensity of the tetragonal (111) plane of zirconia in the X-ray diffraction pattern
  • I c (111) indicates the peak intensity of the cubic (111) plane of zirconia in the X-ray diffraction pattern.
  • a zirconia calcined body in which the increasing or decreasing tendency of the yttria content rate relative to the total mol of zirconia and yttria from the one end to the other end does not change In the layer including the other end, The zirconia calcined body according to any one of [12] to [14], wherein the f y is 0.5% or more.
  • a method for producing a zirconia sintered body which comprises firing the zirconia calcined body according to any one of [1] to [17] at a maximum firing temperature of 1400°C to 1600°C.
  • a method for manufacturing a dental product comprising cutting the zirconia calcined body according to any one of [1] to [17] and then sintering the product.
  • the present invention it is possible to provide a zirconia calcined body in which the sintered body after firing has a light-transmitting property and strength suitable for dental use (particularly in dental clinics) even when fired for a short time. Obviously, it is possible to provide a zirconia calcined body in which the sintered body after firing has a light-transmitting property and strength suitable for dental use (particularly in dental clinics) even when fired for a short time. Become.
  • 3 is an X-ray diffraction pattern of the calcined body produced in the second layer of Example 1.
  • 9 is an X-ray diffraction pattern of the calcined body produced in the first layer of Comparative Example 3.
  • the zirconia calcined body of the present invention contains zirconia and a stabilizer capable of suppressing the phase transition of zirconia, and the main crystal system of zirconia is a monoclinic system, based on the total mol of zirconia and the stabilizer. It is characterized by comprising a plurality of layers having different stabilizer contents.
  • the zirconia calcined body of the present invention will be described.
  • the zirconia calcined body can be a precursor (intermediate product) of a zirconia sintered body.
  • the zirconia calcined body can mean, for example, a zirconia particle (powder) which is blocked in a state where it is not completely sintered.
  • the density of the zirconia calcined body is preferably 2.7 g/cm 3 or more.
  • the density of the zirconia calcined body is preferably 4.0 g / cm 3 or less, more preferably 3.8 g / cm 3 or less, 3.6 g / cm 3 or less is more preferred. Within this density range, molding can be easily performed.
  • the upper limit and the lower limit of the numerical range (content of each component, value calculated from each component, each physical property, etc.) can be appropriately combined.
  • the zirconia calcined body of the present invention contains zirconia and a stabilizer capable of suppressing the phase transition of zirconia.
  • the stabilizer is preferably one capable of forming a partially stabilized zirconia.
  • examples of the stabilizer include calcium oxide (CaO), magnesium oxide (MgO), yttria, cerium oxide (CeO 2 ), scandium oxide (Sc 2 O 3 ), niobium oxide (Nb 2 O 5 ), and lanthanum oxide.
  • the content of the stabilizer in the zirconia calcined body of the present invention and the sintered body thereof can be measured by, for example, inductively coupled plasma (ICP) emission spectroscopy, fluorescent X-ray analysis, or the like.
  • ICP inductively coupled plasma
  • the content of the stabilizer is preferably 0.1 to 18 mol% and more preferably 1 to 15 mol% with respect to the total mol of zirconia and the stabilizer. Preferably, it is 1.5 to 10 mol%, and further preferably.
  • the main crystal system of zirconia in the zirconia calcined body of the present invention needs to be a monoclinic system.
  • “the main crystal system is a monoclinic system” means that the following mathematical formula (2) is used with respect to the total amount of all crystal systems (monoclinic system, tetragonal system and cubic system) in zirconia. ) ratio f m of monoclinic zirconia calculated in refers to those accounts for 50% or more.
  • the ratio f m of monoclinic zirconia calculated by the following equation (2), monoclinic, relative to the total amount of tetragonal and cubic 55 % Or more 60% or more is more preferable, 70% or more is further preferable, and 75% or more is more preferable from the viewpoint of exhibiting a light-transmitting property and excellent strength more suitable for dental use (particularly in dental clinics). More preferred, 80% or more is particularly preferred, 85% or more is still more preferred, and 90% or more is most preferred.
  • Ratio f m of monoclinic system, X-rays diffraction by CuK ⁇ -ray can be calculated from (XRD X-Ray Diffraction) pattern following formula based on the peak of (2). It can be considered that the main crystal system in the zirconia calcined body contributes to a higher shrinkage temperature and a shorter firing time.
  • the tetragonal and cubic peaks may not be substantially detected. That is, the ratio f m of monoclinic can be 100%.
  • I m (111) and I m (11-1) represent peak intensities of zirconia monoclinic (111) plane and (11-1) plane, respectively.
  • I t (111) indicates the peak intensity of the tetragonal (111) plane of zirconia.
  • I c (111) indicates the peak intensity of the cubic (111) plane of zirconia.
  • the stabilizer is preferably present so that at least a part of the zirconia crystals is a monoclinic system. That is, it is preferable that at least a part of the stabilizer is not solid-dissolved in zirconia.
  • the fact that a part of the stabilizer is not dissolved in zirconia can be confirmed by, for example, an XRD pattern. When a peak derived from the stabilizer is confirmed in the XRD pattern of the zirconia calcined body, it means that the stabilizer not solid-dissolved in zirconia is present in the zirconia calcined body.
  • the stabilizer When the whole amount of the stabilizer is dissolved, basically, no peak derived from the stabilizer is confirmed in the XRD pattern. However, depending on conditions such as the crystal state of the stabilizer, the stabilizer may not be solid-dissolved in zirconia even when the stabilizer peak does not exist in the XRD pattern.
  • the main crystal system of zirconia is a tetragonal system and/or a cubic system and there is no stabilizer peak in the XRD pattern, most, basically all, of the stabilizer is zirconia. It is considered to be a solid solution. In the zirconia calcined body of the present invention, all of the stabilizer may not be solid-dissolved in zirconia.
  • the solid solution of the stabilizer means, for example, that the element (atom) contained in the stabilizer is solid solution in zirconia.
  • the zirconia calcined body of the present invention extends from one end to the other end of the zirconia calcined body in the first direction from the viewpoint of achieving a light-transmitting property and strength suitable for dental use (particularly in dental clinics).
  • the tendency of increase or decrease percentage f m of monoclinic zirconia to be calculated by the formula toward the other end (2) from the one end does not change.
  • the ratio f m of monoclinic zirconia increases or decreases monotonically.
  • the increase or decrease of the rate f m of monoclinic zirconia in the reverse direction It is preferably unchanged. That is, if the ratio f m of monoclinic zirconia in a straight line toward the other end Q from one P is decreasing, the ratio f m of monoclinic zirconia is substantially increasing interval Preferably not present.
  • one end P is changed to the other end Q. If a straight line stabilizer content of the heading is decreasing, the ratio f m of monoclinic zirconia in a straight line toward the other end Q from the one end P is preferably in the increasing trend.
  • the zirconia calcined body of the present invention includes a plurality of layers having different stabilizer content rates with respect to the total mol of zirconia and the stabilizer.
  • the zirconia sintered body obtained may be required depending on the site (layer) in one material. It is possible to appropriately set the translucency and the intensity of the light.
  • the thickness of each layer is not particularly limited, but may be about 0.5 mm to 3 cm.
  • the zirconia calcined body of the present invention is, on the straight line extending in the first direction from one end of the zirconia calcined body to the other end, from the viewpoint of achieving a suitable light-transmitting property and strength for dental use, the one end It is preferable that the increasing/decreasing tendency of the content of the stabilizer (preferably yttria) with respect to the total mol of zirconia and the stabilizer does not change from the other end toward the other end. In other words, it is preferable that the content of the stabilizer (preferably yttria) monotonically increases or decreases.
  • FIG. 1 a schematic diagram.
  • the increasing or decreasing tendency of the content of the stabilizer does not change in the opposite direction. .. That is, when the content of the stabilizer tends to decrease on the straight line extending from the one end P to the other end Q, it is preferable that there is no section where the content of the stabilizer substantially increases.
  • yttria is preferable as the stabilizer.
  • the yttria content of the layer including the one end P of the zirconia calcined body 10 in FIG. 1 is preferably 4.5 mol% or more, more preferably 4.7 mol% or more, with respect to the total mol of zirconia and yttria. 8 mol% or more is more preferable, 5.0 mol% or more is particularly preferable, 7.0 mol% or less is preferable, 6.5 mol% or less is more preferable, 6.2 mol% or less is further preferable, 6.0 mol% or less is Particularly preferred.
  • the translucency of the zirconia sintered body can be increased, and the translucency appropriate for the cut end portion of the dental prosthesis can be obtained. be able to.
  • the yttria content of the layer including the other end Q of the zirconia calcined body 10 is preferably 2.0 mol% or more, more preferably 2.5 mol% or more, based on the total mol of zirconia and yttria.
  • a layer having a yttria content different from that of the layer containing the one end P and the layer containing the other end Q is formed between the layer containing one end P and the layer containing the other end Q. It is also possible to include at least one. As a result, the translucency is gradually changed between the tooth neck and the incisal end, and the same translucency as that of the natural tooth can be obtained.
  • the zirconia calcined body of the present invention is a yttria based on the total mol of zirconia and yttria from the one end to the other end on a straight line extending in a first direction from one end to the other end of the zirconia calcined body. It is more preferable that the increasing/decreasing tendency of the content rate does not change, and the yttria content rate of each layer is within a predetermined range.
  • the difference in the yttria content ratio of the layer containing the one end P and the layer containing the other end Q of the zirconia calcined body 10 is 4.0 mol% or less with respect to the total mol of zirconia and yttria. Is preferable, 3.5 mol% or less is more preferable, 3.0 mol% or less is further preferable.
  • the difference in the yttria content rate is preferably 0.3 mol% or more, more preferably 0.5 mol% or more, and further preferably 1.0 mol% or more.
  • the difference in the yttria content between the layer containing one end P and the layer containing the other end Q of the zirconia calcined body 10 is 4.0 mol% or less, the cut end portion of the dental prosthesis produced from the zirconia calcined body 10
  • the difference in light transmission between the tooth and the neck of the tooth does not become too large, and it is possible to obtain appropriate light transmission as a dental prosthesis.
  • the difference in the yttria content rate is 4.0 mol% or less
  • the difference in the firing shrinkage rate between the layer including the one end P and the layer including the other end Q can be 0.5% or less. It becomes possible to prevent cracks and deformation when producing a dental prosthesis from the calcined body 10.
  • adjacent layers include
  • the difference in the yttria content ratio is preferably 3.0 mol% or less, more preferably 2.5 mol% or less, and further preferably 2.0 mol% or less.
  • the difference in the yttria content rate is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and further preferably 0.5 mol% or more.
  • the abundance f y of yttria that is not solid-dissolved in zirconia should be calculated based on the following mathematical formula (1).
  • I m (111) and I m (11-1) represent the peak intensities of the zirconia monoclinic (111) plane and the (11-1) plane.
  • I t (111) indicates the peak intensity of the tetragonal (111) plane of zirconia.
  • I c (111) indicates the peak intensity of the cubic (111) plane of zirconia.
  • the abundance f y of undissolved yttria in the zirconia calcined body of the present invention is more than 0% from the viewpoint of showing a more suitable translucency and excellent strength for dental use (particularly in dental clinics). It is preferably 1% or more, more preferably 2% or more.
  • the upper limit of the undissolved yttria abundance f y may be, for example, 13% or less, but preferably depends on the yttria content in the zirconia calcined body. In the layer including the one end P of the zirconia calcined body 10 of FIG. 1, that is, the yttria content of 4.5 mol% or more and 6.5 mol% or less, f y can be 13% or less.
  • f y can be 7% or less.
  • f y is preferably 1% or more, and more preferably 2% or more. It is preferably 3% or more and more preferably 3% or more.
  • f y is preferably 0.5% or more and 1%. The above is more preferable, and 2% or more is further preferable.
  • the zirconia calcined body of the present invention extends from one end to the other end of the zirconia calcined body in the first direction from the viewpoint of achieving a light-transmitting property and strength suitable for dental use (particularly in dental clinics).
  • the increasing/decreasing tendency of the abundance ratio f y of undissolved yttria in the calcined zirconia body calculated by the above formula (1) does not change from the one end to the other end.
  • the abundance f y of undissolved yttria in the zirconia calcined body monotonically increase or decrease.
  • FIG. 1 a zirconia calcined body will be described with reference to FIG. 1 as a schematic diagram.
  • the abundance ratio f y of undissolved yttria in the zirconia calcined body tends to increase or decrease. Preferably does not change in the opposite direction.
  • the abundance ratio f y of undissolved yttria in the zirconia calcined body tends to decrease on a straight line extending from one end P to the other end Q
  • the abundance ratio f y of undissolved yttria in the zirconia calcined body is f y. It is preferable that there is no section in which is substantially increased.
  • one end P is changed to the other end Q.
  • the ratio f m of the monoclinic system in the zirconia on the straight line from the one end P to the other end Q is It is preferable that there is an increasing tendency.
  • the “one end” and the “other end” are It is preferable to refer to one point of the end portion on the cut end side and one point of the end portion on the root side.
  • the one point may be one point on the end face or one point on the cross section.
  • the above “one end” and “other end” are preferably points on the upper surface and the lower surface (bottom surface).
  • the one point may be one point on the end face or one point on the cross section.
  • the “first direction from one end to the other end” means the direction in which the yttria content rate is changing.
  • the first direction is preferably a direction in which powders are laminated in the manufacturing method described later.
  • the first direction is preferably a direction connecting the incisal end side and the neck side.
  • the bending strength of the zirconia calcined body of the present invention is preferably 15 MPa or more in order to secure the strength that enables mechanical processing. Further, the bending strength of the calcined body is preferably 70 MPa or less, and more preferably 60 MPa or less in order to facilitate mechanical processing.
  • the bending strength can be measured in accordance with ISO 6872:2015, but the measurement is performed using a test piece of 5 mm x 10 mm x 50 mm by changing only the condition of the size of the test piece. ..
  • the surface and C surface of the test piece are surface-finished in the longitudinal direction with No. 600 sandpaper.
  • the test piece is arranged so that the widest surface faces the vertical direction (loading direction).
  • the span is 30 mm and the crosshead speed is 0.5 mm/min.
  • the zirconia calcined body of the present invention may contain additives other than zirconia and a stabilizer as long as the effects of the present invention are exhibited.
  • the additive include a colorant (including a pigment, a composite pigment, and a fluorescent agent), alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), silica (SiO 2 ), and the like.
  • the pigment is selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Sb, Bi, Ce, Pr, Sm, Eu, Gd, Tb and Er.
  • An oxide of at least one element which is Examples of the composite pigment include (Zr,V)O 2 , Fe(Fe,Cr) 2 O 4 , (Ni,Co,Fe)(Fe,Cr) 2 O 4 .ZrSiO 4 , (Co,Zn). al 2 O 4 and the like.
  • Examples of the fluorescent agent include Y 2 SiO 5 :Ce, Y 2 SiO 5 :Tb, (Y,Gd,Eu)BO 3 , Y 2 O 3 :Eu, YAG:Ce, ZnGa 2 O 4 :Zn, BaMgAl. 10 O 17 :Eu and the like can be mentioned.
  • the zirconia calcined body of the present invention may be produced by firing a zirconia compact formed from a raw material powder containing zirconia particles and a stabilizer at a temperature at which the zirconia particles do not reach sintering (ie, calcination). Yes (calcination process).
  • the zirconia molded body is not particularly limited, and can be manufactured using a raw material powder containing zirconia particles and a stabilizer by a known method (for example, press molding).
  • the calcination temperature is, for example, preferably 800° C. or higher, more preferably 900° C. or higher, and further preferably 950° C. or higher in order to ensure blocking. Further, the firing temperature is, for example, preferably 1200° C.
  • the method for producing the calcined zirconia body of the present invention is preferably at 800°C to 1200°C. It is considered that the solid solution of the stabilizer does not proceed at such a firing temperature.
  • the zirconia calcined body of the present invention may be a molded body having a predetermined shape.
  • the zirconia calcined body can have a disk (disc) shape, a rectangular parallelepiped shape, or a dental product shape (for example, a crown shape).
  • the calcined body also includes a dental product (for example, a crown-shaped prosthesis) obtained by processing a calcined zirconia disk with a CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) system.
  • CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing
  • a highly translucent sintered body can be produced even by firing for a short time.
  • a sintered body produced by firing the zirconia calcined body of the present invention at an appropriate firing temperature for a certain period of time is referred to as a first sintered body.
  • a sintered body produced by firing the zirconia calcined body of the present invention at an appropriate firing temperature for 120 minutes is referred to as a second sintered body.
  • the translucency of the first sintered body and the second sintered body is compared with each other by setting the firing time of the first sintered body to 30 minutes, the translucency of the first sintered body is The translucency of the sintered body is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably substantially the same. Furthermore, when the firing time of the first sintered body is set to 15 minutes, the translucency of the first sintered body is preferably 85% or more, more preferably 90% or more of the translucency of the second sintered body. Is more preferable, 95% or more is further preferable, and substantially the same is particularly preferable.
  • the zirconia calcined body of the present invention has the advantages related to the above short-time firing.
  • the suitable baking temperature and translucency in this invention the evaluation method etc. are demonstrated in detail in the below-mentioned Example.
  • the zirconia sintered body of the present invention will be described.
  • the zirconia sintered body can be said to be, for example, zirconia particles (powder) in a sintered state.
  • the zirconia sintered body of the present invention refers to one produced from the zirconia calcined body of the present invention.
  • the relative density of the zirconia sintered body is preferably 99.5% or more. The relative density can be calculated as the ratio of the measured density measured by the Archimedes method to the theoretical density.
  • the zirconia sintered body of the present invention is not limited to a sintered body obtained by sintering the formed zirconia particles under normal pressure or non-pressurization, and may be subjected to HIP (Hot Isostatic Pressing) treatment or the like. Also included are sintered bodies that have been densified by high-temperature pressure treatment.
  • HIP Hot Isostatic Pressing
  • the content of zirconia and the stabilizer in the zirconia sintered body of the present invention is the same as the content of the calcinated body before the production of the sintered body.
  • the crystal system other than the monoclinic system is a tetragonal system and/or a cubic system.
  • the proportion of the solid solution of the stabilizer in the zirconia sintered body of the present invention it is preferable that 95% or more of the contained stabilizer is solid-dissolved in zirconia, and substantially all the stabilizers are contained. Is more preferably a solid solution. That is, the abundance rate f y of undissolved yttria is preferably 5% or less, more preferably 1% or less, and it is further preferable that substantially all are dissolved (0%). In the sintering process described below, the stabilizer (eg, yttria) is considered to be solid-dissolved in zirconia.
  • the zirconia sintered body of the present invention can be produced by firing the zirconia calcined body at a temperature at which the zirconia particles reach sintering (sintering step).
  • the firing temperature in the sintering step is, for example, preferably 1400°C or higher, more preferably 1450°C or higher.
  • the firing temperature is, for example, preferably 1650°C or lower, more preferably 1600°C or lower.
  • the rate of temperature increase and the rate of temperature decrease are preferably 300°C/min or less.
  • the method for producing the zirconia sintered body of the present invention it is preferable to fire the zirconia calcined body at the maximum firing temperature of 1400°C to 1650°C.
  • the appropriate firing temperature of the zirconia calcined body may be the maximum firing temperature.
  • the holding time at a sinterable temperature is preferably less than 120 minutes, more preferably 90 minutes or less, further preferably 75 minutes or less, further preferably 60 minutes or less, 45 Minutes or less are particularly preferable, and 30 minutes or less are most preferable. Further, it may be 25 minutes or less, 20 minutes or less, or 15 minutes or less.
  • the holding time is preferably 1 minute or longer, more preferably 5 minutes or longer, still more preferably 10 minutes or longer. According to the zirconia calcined body of the present invention, it is possible to suppress the decrease in the translucency of the zirconia sintered body to be produced even with such a short firing time. Further, by shortening the firing time, it is possible to improve production efficiency and reduce energy cost.
  • the temperature rising rate can be set so as to reach the maximum firing temperature in the shortest time according to the performance of the firing furnace.
  • the temperature rising rate up to the maximum firing temperature is, for example, 10° C./min or more, 50° C./min or more, 100° C./min or more, 120° C./min or more, 150° C./min or more, or 200° C./min or more. be able to.
  • the sintered body can be allowed to cool at room temperature after heating is completed.
  • the maximum firing temperature means the highest temperature in the sintering process.
  • the zirconia sintered body obtained by firing the zirconia calcined body of the present invention can be suitably used for dental products.
  • dental products include copings, frameworks, crowns, crown bridges, abutments, implants, implant screws, implant fixtures, implant bridges, implant bars, brackets, denture bases, inlays, onlays, orthodontic wires, laminate veneers. Etc.
  • an appropriate method can be selected according to each application, but for example, a dental product can be obtained by sintering the zirconia calcined body of the present invention after cutting. it can. Note that it is preferable to use a CAD/CAM system in the cutting process.
  • the present invention includes embodiments in which the above configurations are variously combined within the scope of the technical idea of the present invention as long as the effects of the present invention are exhibited.
  • a method for producing a raw material powder used for producing the zirconia calcined bodies of Examples 1 to 5 and Comparative Examples 1 and 2 will be described.
  • a monoclinic zirconia powder and a yttria powder were used to prepare a mixture such that the yttria content shown in Table 1 was based on the total mol of zirconia and yttria.
  • this mixture was added to water to prepare a slurry, which was wet pulverized and mixed by a ball mill until the average particle diameter became 0.13 ⁇ m or less.
  • the crushed slurry was dried with a spray dryer, and the obtained powder was fired at 950° C. for 2 hours to prepare a powder (primary powder).
  • the average particle size can be determined by a laser diffraction scattering method.
  • the laser diffraction/scattering method can be specifically measured by, for example, a laser diffraction particle size distribution analyzer (SALD-2300: manufactured by Shimadzu Corporation) using a 0.2% sodium hexametaphosphate aqueous solution as a dispersion medium. ..
  • the obtained primary powder was added to water to prepare a slurry, which was wet pulverized and mixed with a ball mill until the average particle size became 0.13 ⁇ m or less. After adding a binder to the crushed slurry, it was dried by a spray dryer to prepare a powder (secondary powder).
  • the produced secondary powder was used as a raw material powder for producing a zirconia calcined body described later.
  • the raw material powder was filled in a mold having an inner size of 20 mm ⁇ 25 mm in the order shown in Table 1, and primary press-molding was performed by a uniaxial press molding machine at a surface pressure of 300 kg/cm 2 for 90 seconds.
  • the obtained primary press-molded product was CIP-molded at 1700 kg/cm 2 for 5 minutes to prepare a molded product having a laminated structure.
  • the filling amount of each layer is 15 g
  • the filling amount of each layer is 10 g
  • the filling amount was 30 g.
  • the obtained molded body was fired at 1000° C. for 2 hours to prepare a zirconia calcined body.
  • the appropriate firing temperature of the zirconia calcined body refers to the firing temperature designated by the manufacturer when using commercially available zirconia.
  • the specified firing temperature it can be defined as follows. First, the zirconia calcined body was fired at various temperatures for 120 minutes, and then both surfaces were #600 polished to obtain a sample of a zirconia sintered body having a thickness of 0.5 mm. The appearance of the obtained sample was visually observed, and the appropriate firing temperature of each zirconia calcined body was determined according to the following criteria based on the transparency of the sample. As in the sample on the left side of FIG.
  • a state in which the transparency is high and the background is transparent can be regarded as the zirconia calcined body being sufficiently fired.
  • the sample has a low transparency or is cloudy like the sample on the right side of FIG. 2, it can be determined that firing is insufficient.
  • the lowest temperature that can be regarded as being sufficiently fired as in the sample on the left side of FIG. 2 was determined to be the proper firing temperature of the zirconia calcined body.
  • the appropriate firing temperature of the layer having the highest yttria content rate is the appropriate firing temperature of the zirconia calcined article.
  • the appropriate firing temperature of the zirconia calcined body used in each of the Examples and Comparative Examples was 1550° C. in Examples 1 to 5 and Comparative Example 1 and 1500° C. in Comparative Example 2 by the above measurement.
  • Comparative Example 3 using Zpex (registered trademark) and Zpex (registered trademark) Smile manufactured by Tosoh Corporation the firing temperature specified by the manufacturer is 1450°C.
  • a zirconia sintered body was produced by the following method using the zirconia calcined bodies of Examples and Comparative Examples, and the difference in firing shrinkage between the layer containing one end P and the layer containing the other end Q was evaluated.
  • a zirconia calcined body 20 having a rectangular parallelepiped shape having a cross section of 8 mm ⁇ 10 mm and having a cross section of 8 mm ⁇ 10 mm was prepared from the zirconia calcined body 10 of the example and the comparative example manufactured by the method described above.
  • the length of each of the long side WP and the short side LP of the layer including the one end P and the long side WQ and the short side LQ of the layer including the other end Q was measured.
  • the cut zirconia calcined body 20 was fired at an appropriate firing temperature for 120 minutes or 15 minutes to produce a zirconia sintered body.
  • the rate of temperature increase and the rate of temperature decrease were the same under both conditions of firing for 120 minutes and 15 minutes.
  • the lengths of the long side WP, the short side LP of the layer including the one end P and the long side WQ and the short side LQ of the layer including the other end Q were measured to determine the firing shrinkage ratio.
  • the difference was calculated by the following formula.
  • the evaluation results are shown in Table 1.
  • the difference in firing shrinkage is expressed as an absolute value.
  • the difference in firing shrinkage is within 0.5%, and by using the zirconia calcined body, it is possible to manufacture a dental prosthesis without deformation or cracks. The result was.
  • the difference in firing shrinkage was within 0.1%, the deformation was very small, and a dental prosthesis excellent in conformity to an abutment tooth can be manufactured.
  • the difference in firing shrinkage shown in Table 1 indicates the difference in firing shrinkage between the first layer and the third layer, and the firing shrinkage between the first layer and the second layer. The difference in firing shrinkage between the second layer and the third layer was also within 0.5%.
  • a zirconia sintered body was produced by the following method using the zirconia calcined body of each Example and Comparative Example, and the light transmittance was visually evaluated from the viewpoint of comparison with the appearance of natural teeth.
  • CAD/CAM system “Katana (registered trademark) CAD/CAM system”, Kurarenoritake Dental Co., Ltd.) from the zirconia calcined bodies 10 of Examples and Comparative Examples produced by the above-described method, tooth crown shape It was cut.
  • the obtained zirconia calcined body after cutting was fired at an appropriate firing temperature for 120 minutes or 15 minutes to produce a zirconia sintered body.
  • the rate of temperature increase and the rate of temperature decrease were the same for both the 120 minute firing and the 15 minute firing.
  • the length of the zirconia sintered body in the stacking direction was about 8 mm in all cases.
  • the obtained zirconia sintered body was visually evaluated according to the following criteria. The results are shown in Table 2.
  • ⁇ Evaluation criteria> ⁇ : In both 120 minutes baking and 15 minutes baking, the same translucency as natural teeth and formation of gradation in which the light transmitting property gradually decreases is observed.
  • Either 120 minutes baking or 15 minutes baking Only, the formation of a gradation having the same light-transmitting property as that of natural teeth and gradually decreasing the light-transmitting property is observed.
  • A gradation in which the light-transmitting property gradually decreases in both 120-minute baking and 15-minute baking. Formation is not recognized
  • a zirconia sintered body of each layer was prepared by the following method and quantitatively evaluated. First, the size of the zirconia sintered body thus obtained was adjusted by press-molding so that a zirconia sintered body having a thickness of 1.2 mm was obtained after #600 polishing on both sides. A molded body made of the raw material powder in each layer of the comparative example was produced. Next, the molded body was fired at 1000° C. for 2 hours to prepare a zirconia calcined body.
  • the calcined zirconia body was calcined for 120 minutes or 15 minutes at an appropriate calcining temperature to prepare a zirconia sintered body. Both surfaces of the obtained zirconia sintered body were subjected to #600 polishing processing, and a zirconia sintered body having a thickness of 1.2 mm was used for measurement of translucency. Further, with respect to the first layer of Example 1 and the first layer of Comparative Example 3, a sintered body was prepared in which the holding time at the proper firing temperature was 30 minutes and 60 minutes. The translucency of the obtained zirconia sintered body was measured by the method described below. The rate of temperature increase and the rate of temperature decrease were the same as those for the firing for 120 minutes.
  • the light-transmitting property decreases as the holding time at the proper baking temperature becomes shorter, and in the 60-minute baking, the light-transmitting property is 89% and 30% in the 120-minute baking.
  • the partial calcination gave 70% of the translucency after 120 minutes, and the 15 minute calcination had 60% of the translucency after 120 minutes.
  • the first layer of Example 1 even if the holding time at the proper baking temperature was shortened, it was possible to secure the same light-transmitting property as that of baking for 120 minutes. It was possible to obtain almost 100% of the 120-minute firing in the 30-minute firing and 95% or more of the 120-minute firing in the 15-minute firing.
  • the zirconia calcined body of the present invention it is possible to shorten the firing time while maintaining high translucency. Thereby, the production efficiency of the zirconia sintered body can be improved and the energy cost can be reduced. Further, when a dental prosthesis is produced using the zirconia calcined body of the present invention, the time burden on the patient can be reduced.
  • Example 1 [Measurement of bending strength of zirconia sintered body] (Example 1) Using the raw material powder in the second layer of Example 1, a zirconia calcined body was produced according to the method for producing a calcined body, and then firing was performed under the conditions described below to obtain a zirconia sintered body. According to ISO6872, the bending strength was measured under the conditions of sample size 1.2 mm x 4.0 mm x 16.0 mm, distance between fulcrums (span length) 12 mm, and crosshead speed 0.5 mm/min. When the holding time was 120 minutes, it was 1130 MPa, and when the holding time at the maximum firing temperature was 15 minutes, it was 1090 MPa.
  • the holding time at the maximum firing temperature is 1000 MPa or more in both 120 minutes and 15 minutes, and has the strength required as the tooth neck of the dental prosthesis.
  • the translucency ( ⁇ L*) of the first layer of Example 1 was 16.3 when the holding time at the maximum firing temperature was 120 minutes, and When the holding time is 15 minutes, it is 15.7, and in both cases, it has the translucency necessary for the cut end of the dental prosthesis. That is, it was confirmed that, in one sintered body, both the appropriate translucency as the cut end portion and the appropriate strength as the tooth neck portion were simultaneously provided.
  • FIG. 5 shows an XRD pattern of the second-layer zirconia calcined body of Example 1.
  • FIG. 6 shows an XRD pattern of the zirconia calcined body produced in the first layer of Comparative Example 3.
  • the zirconia calcined body and its sintered body of the present invention can be used for dental products such as prostheses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dentistry (AREA)
  • Composite Materials (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Dental Prosthetics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)

Abstract

本発明は、短時間焼成でも、焼成後の焼結体が歯科用(特に歯科医院での使用)として好適な透光性と強度を有するジルコニア仮焼体を提供する。本発明は、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤と、を含有し、ジルコニアの主たる結晶系が単斜晶系であり、ジルコニアと安定化剤の合計molに対する安定化剤の含有率が異なる複数の層を備える、ジルコニア仮焼体に関する。

Description

歯科用に好適なジルコニア仮焼体
 本発明は、ジルコニア仮焼体に関する。さらに、本発明は、該ジルコニア仮焼体からなるジルコニア焼結体及び歯科用製品の製造方法に関する。
 ジルコニアは、複数の結晶系間で相転移が生じる化合物である。そこで、イットリア(酸化イットリウム;Y)等の安定化剤をジルコニアに固溶させて相転移を抑制した部分安定化ジルコニア(PSZ;Partially-Stabilized Zirconia)及び完全安定化ジルコニアが種々の分野において利用されている。
 歯科分野において、ジルコニア材料は高強度である特性により、フレーム用材料として使用されてきた。また、近年はジルコニア材料の透光性向上に伴い、ジルコニアのみで歯科用補綴物を作製することも多くなっている。ジルコニアのみの歯科用補綴物の作製は歯科技工所で行われることが多いが、歯科医院で簡便に作製することも近年増えてきており、それに伴いジルコニアを短時間で焼成することの需要が高まっている。特許文献1には短時間焼成しても透光性が高く歯科用に好適なジルコニア仮焼体が開示されている。
 また、特許文献2には、層ごとにイットリア量が異なるジルコニア焼結体が開示されており、歯頚部から切端部に向かってイットリア量を減らすことにより、歯科用補綴物として適切な透光性を発現している。
国際公開第2018/056330号 米国特許出願公開第2013/0221554号明細書
 上述のように、近年では歯科医院で簡便に作製することも増えてきており、この場合はジルコニアを短時間で焼成する必要がある。また、ジルコニア製歯科用補綴物の審美性(特に切端部での透光性)や強度(特に歯頚部の強度)も併せ持つ必要もある。
 特許文献1に記載のジルコニア仮焼体においては、イットリアの少なくとも一部はジルコニアに固溶しておらず、短時間(例えば最高温度での保持時間30分)での焼成においても、従来の焼成条件(最高温度での保持時間=2時間)と同等の透光性をもつ焼結体が作製できる。ただし、この焼結体の透光性や強度は歯頚部から切端部に渡り一定であり、切端部で要求される透光性と歯頚部で要求される強度を両立することはできないという課題がある。
 特許文献2に記載のジルコニアにおいては、イットリア量が異なる層を持ち、歯科用補綴物として適切な透光性と強度を持つと考えられるが、焼成を行う際、最高温度での保持時間は2時間であり、短時間焼成はできないという課題がある。
 そこで、短時間焼成でも、焼成後の焼結体が歯科用(特に歯科医院での使用)として好適な透光性と強度を有するジルコニア仮焼体が求められている。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、主たる結晶系が単斜晶系であるジルコニア仮焼体とすること及び、各層の安定化剤の含有率が異なるジルコニア仮焼体とすることによって、上記課題を解決できることを見出し、この知見に基づいてさらに研究を進め、本発明を完成するに至った。
 すなわち、本発明は以下の発明を包含する。
[1]ジルコニアと、
ジルコニアの相転移を抑制可能な安定化剤と、を含有し、
 ジルコニアの主たる結晶系が単斜晶系であり、
 ジルコニアと安定化剤の合計molに対する安定化剤の含有率が異なる複数の層を備える、ジルコニア仮焼体。
[2]前記ジルコニアの55%以上が単斜晶系である、[1]に記載のジルコニア仮焼体。
[3]前記ジルコニアの75%以上が単斜晶系である、[1]又は[2]に記載のジルコニア仮焼体。
[4]前記安定化剤の少なくとも一部はジルコニアに固溶されていない、[1]~[3]のいずれかに記載のジルコニア仮焼体。
[5]前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
前記一端から他端に向かってジルコニアと安定化剤の合計molに対する安定化剤の含有率の増減傾向が変化しない、[1]~[4]のいずれかに記載のジルコニア仮焼体。
[6]密度が2.7~4.0g/cmである、[1]~[5]のいずれかに記載のジルコニア仮焼体。
[7]曲げ強さが15~70MPaである、[1]~[6]のいずれかに記載のジルコニア仮焼体。
[8]前記安定化剤がイットリアである、[1]~[7]のいずれかに記載のジルコニア仮焼体。
[9]前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
 前記ジルコニアと前記イットリアの合計molに対して、
前記一端を含む層のイットリアの含有率が4.5mol%以上7.0mol%以下であり、
前記他端を含む層のイットリアの含有率が2.0mol%以上4.5mol%未満である、[8]に記載のジルコニア仮焼体。
[10]前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
 前記ジルコニアと前記イットリアの合計molに対して、
前記一端を含む層と前記他端を含む層のイットリアの含有率の差が4.0mol%以下である、[8]又は[9]に記載のジルコニア仮焼体。
[11]X線回折パターンにおいてイットリアのピークが存在する、[8]~[10]のいずれかに記載のジルコニア仮焼体。
[12]以下の数式(1)に基づいて算出したfが0%超である、[8]~[11]のいずれかに記載のジルコニア仮焼体。
Figure JPOXMLDOC01-appb-M000002
(ただし、I(111)は、CuKα線によるX線回折パターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示し、
 I(111)及びI(11-1)は、前記X線回折パターンにおけるジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示し、
 I(111)は、前記X線回折パターンにおけるジルコニアの正方晶系の(111)面のピーク強度を示し、
 I(111)は、前記X線回折パターンにおけるジルコニアの立方晶系の(111)面のピーク強度を示す。)
[13]前記fが13%以下である、[12]に記載のジルコニア仮焼体。
[14]前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
 前記一端を含む層において、
前記fが1%以上である、[12]又は[13]に記載のジルコニア仮焼体。
[15]前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
 前記他端を含む層において、
前記fが0.5%以上である、[12]~[14]のいずれかに記載のジルコニア仮焼体。
[16]前記ジルコニア仮焼体を適正焼成温度で30分間焼成して作製された第1の焼結体の第1の透光性と、
 前記ジルコニア仮焼体を該適正焼成温度で120分間焼成して作製された第2の焼結体の第2の透光性と、を比較したとき、
 前記第1の透光性が前記第2の透光性の85%以上である、[1]~[15]のいずれかに記載のジルコニア仮焼体。
[17]前記ジルコニア仮焼体を適正焼成温度で15分間焼成して作製された第1の焼結体の第1の透光性と、
 前記ジルコニア仮焼体を該適正焼成温度で120分間焼成して作製された第2の焼結体の第2の透光性と、を比較したとき、
 前記第1の透光性が前記第2の透光性の85%以上である、[1]~[16]のいずれかに記載のジルコニア仮焼体。
[18]ジルコニア粒子と安定化剤とを含む原料粉末から形成されたジルコニア成形体を800℃~1200℃で仮焼する、[1]~[17]のいずれかに記載のジルコニア仮焼体の製造方法。
[19][1]~[17]のいずれかに記載のジルコニア仮焼体を最高焼成温度1400℃~1600℃で焼成する、ジルコニア焼結体の製造方法。
[20]最高焼成温度での保持時間が120分未満である、[19]に記載のジルコニア焼結体の製造方法。
[21][1]~[17]のいずれかに記載のジルコニア仮焼体を切削加工した後に焼結する、歯科用製品の製造方法。
[22]前記切削加工がCAD/CAMシステムを用いた切削加工である、[21]に記載の歯科用製品の製造方法。
 本発明によれば、短時間焼成でも、焼成後の焼結体が歯科用(特に歯科医院での使用)に好適な透光性と強度を有する、ジルコニア仮焼体を提供することが可能となる。
ジルコニア焼結体の模式図である。 適正焼成温度の判断に関するジルコニア焼結体の外観の写真である。 収縮率測定サンプルの模式図である。 ジルコニア仮焼体の模式図である。 適正焼成温度での保持時間に対する透光性保持率の変化を示すグラフである。 実施例1の2層目において作製した仮焼体のX線回折パターンである。 比較例3の1層目において作製した仮焼体のX線回折パターンである。
 本発明のジルコニア仮焼体は、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含有し、ジルコニアの主たる結晶系が単斜晶系であり、ジルコニアと安定化剤の合計molに対する安定化剤の含有率が異なる複数の層を備えることを特徴とする。
 本発明のジルコニア仮焼体について説明する。ジルコニア仮焼体は、ジルコニア焼結体の前駆体(中間製品)となり得るものである。本発明において、ジルコニア仮焼体とは、例えば、ジルコニア粒子(粉末)が完全には焼結していない状態でブロック化したものをいうことができる。ジルコニア仮焼体の密度は2.7g/cm以上が好ましい。また、ジルコニア仮焼体の密度は4.0g/cm以下が好ましく、3.8g/cm以下がより好ましく、3.6g/cm以下がさらに好ましい。この密度範囲にあると成形加工を容易に行うことができる。なお、本明細書において、数値範囲(各成分の含有量、各成分から算出される値及び各物性等)の上限値及び下限値は適宜組み合わせ可能である。
 本発明のジルコニア仮焼体は、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤と、を含有する。該安定化剤は、部分安定化ジルコニアを形成可能なものが好ましい。該安定化剤としては、例えば、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、イットリア、酸化セリウム(CeO)、酸化スカンジウム(Sc)、酸化ニオブ(Nb)、酸化ランタン(La)、酸化エルビウム(Er)、酸化プラセオジム(Pr11)、酸化サマリウム(Sm)、酸化ユウロピウム(Eu)及び酸化ツリウム(Tm)等の酸化物が挙げられ、イットリアが好ましい。本発明のジルコニア仮焼体及びその焼結体中の安定化剤の含有率は、例えば、誘導結合プラズマ(ICP;Inductively Coupled Plasma)発光分光分析、蛍光X線分析等によって測定することができる。本発明のジルコニア仮焼体及びその焼結体において、該安定化剤の含有率は、ジルコニアと安定化剤の合計molに対して、0.1~18mol%が好ましく、1~15mol%がより好ましく、1.5~10mol%がさらに好ましい。
 歯科用(特に歯科医院での使用)として好適な透光性と強度を達成する観点から、本発明のジルコニア仮焼体におけるジルコニアの主たる結晶系は単斜晶系であることが必要である。本発明において、「主たる結晶系が単斜晶系である」とは、ジルコニア中のすべての結晶系(単斜晶系、正方晶系及び立方晶系)の総量に対して以下の数式(2)で算出されるジルコニア中の単斜晶系の割合fが50%以上の割合を占めるものを指す。本発明のジルコニア仮焼体において、以下の数式(2)で算出されるジルコニア中の単斜晶系の割合fは、単斜晶系、正方晶系及び立方晶系の総量に対して55%以上が好ましく、歯科用(特に歯科医院での使用)としてより好適な透光性と優れた強度を示す観点から、60%以上がより好ましく、70%以上がさらに好ましく、75%以上がよりさらに好ましく、80%以上が特に好ましく、85%以上がさらに特に好ましく、90%以上が最も好ましい。単斜晶系の割合fは、CuKα線によるX線回折(XRD;X-Ray Diffraction)パターンのピークに基づいて以下の数式(2)から算出することができる。なお、ジルコニア仮焼体における主たる結晶系は、収縮温度の高温化及び焼成時間の短縮化に寄与していると考えらえる。
 本発明のジルコニア仮焼体においては、正方晶系及び立方晶系のピークが実質的に検出されなくてもよい。すなわち、単斜晶系の割合fを100%とすることができる。
Figure JPOXMLDOC01-appb-M000003
 数式(2)において、I(111)及びI(11-1)は、それぞれジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示す。I(111)は、ジルコニアの正方晶系の(111)面のピーク強度を示す。I(111)は、ジルコニアの立方晶系の(111)面のピーク強度を示す。
 本発明のジルコニア仮焼体において、前記安定化剤は、ジルコニアの結晶のうち少なくとも一部が単斜晶系であるように存在していることが好ましい。すなわち、該安定化剤の少なくとも一部がジルコニアに固溶されていないことが好ましい。安定化剤の一部がジルコニアに固溶されていないことは、例えば、XRDパターンによって確認することができる。ジルコニア仮焼体のXRDパターンにおいて、安定化剤に由来するピークが確認された場合には、ジルコニア仮焼体中においてジルコニアに固溶されていない安定化剤が存在していることになる。安定化剤の全量が固溶された場合には、基本的に、XRDパターンにおいて安定化剤に由来するピークは確認されない。ただし、安定化剤の結晶状態等の条件によっては、XRDパターンに安定化剤のピークが存在していない場合であっても、安定化剤がジルコニアに固溶されていないこともあり得る。ジルコニアの主たる結晶系が正方晶系及び/又は立方晶系であり、XRDパターンに安定化剤のピークが存在していない場合には、安定化剤の大部分、基本的に全部、はジルコニアに固溶しているものと考えられる。本発明のジルコニア仮焼体においては、該安定化剤の全部がジルコニアに固溶されていなくてもよい。なお、本発明において、安定化剤が固溶するとは、例えば、安定化剤に含まれる元素(原子)がジルコニアに固溶することをいう。
 本発明のジルコニア仮焼体は、歯科用(特に歯科医院での使用)として好適な透光性と強度を達成する観点から、前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、前記一端から他端に向かって上記数式(2)で算出されるジルコニア中の単斜晶系の割合fの増減傾向が変化しないことが好ましい。いいかえると、ジルコニア中の単斜晶系の割合fが単調に増加又は減少することが好ましい。以下、ジルコニア仮焼体の模式図として図1を用いて説明する。図1のジルコニア仮焼体10の一端Pから他端Qに向かう第1方向Yに延在する直線上において、ジルコニア中の単斜晶系の割合fの増加傾向又は減少傾向は逆方向に変化しないことが好ましい。すなわち、一端Pから他端Qに向かう直線上においてジルコニア中の単斜晶系の割合fが減少傾向にある場合、ジルコニア中の単斜晶系の割合fが実質的に増加する区間が存在しないことが好ましい。また、ある実施形態においては、安定化剤の含有率との関係において、歯科用(特に歯科医院での使用)として好適な透光性と強度を達成する観点から、一端Pから他端Qに向かう直線上において安定化剤の含有率が減少傾向にある場合、前記一端Pから他端Qに向かう直線上においてジルコニア中の単斜晶系の割合fが増加傾向にあることが好ましい。
 本発明のジルコニア仮焼体はジルコニアと安定化剤の合計molに対する安定化剤の含有率が異なる複数の層を備える。例えば、図3Bに示されるように、ジルコニア仮焼体が安定化剤の含有率が異なる層を持つことにより、得られるジルコニア焼結体について、一つの材料の中で部位(層)により必要とされる透光性や強度をそれぞれ適正に設定することが可能となる。各層の厚さは、特に限定されないが、0.5mm~3cm程度であってもよい。
 本発明のジルコニア仮焼体は、歯科用として好適な透光性と強度を達成する観点から、前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、前記一端から他端に向かってジルコニアと安定化剤の合計molに対する安定化剤(好適にはイットリア)の含有率の増減傾向が変化しないことが好ましい。いいかえると、安定化剤(好適にはイットリア)の含有率が単調に増加又は減少することが好ましい。以下、ジルコニア仮焼体の模式図として図1を用いて説明する。図1のジルコニア仮焼体10の一端Pから他端Qに向かう第1方向Yに延在する直線上において、安定化剤の含有率の増加傾向又は減少傾向は逆方向に変化しないことが好ましい。すなわち、一端Pから他端Qに向かう直線上において安定化剤の含有率が減少傾向にある場合、安定化剤の含有率が実質的に増加する区間が存在しないことが好ましい。
 本発明のジルコニア仮焼体から作製したジルコニア焼結体の強度及び透光性の観点から、安定化剤はイットリアが好ましい。図1のジルコニア仮焼体10の一端Pを含む層のイットリアの含有率は、ジルコニアとイットリアの合計molに対して、4.5mol%以上が好ましく、4.7mol%以上がより好ましく、4.8mol%以上がさらに好ましく、5.0mol%以上が特に好ましく、また、7.0mol%以下が好ましく、6.5mol%以下がより好ましく、6.2mol%以下がさらに好ましく、6.0mol%以下が特に好ましい。前記層におけるイットリアの含有率が4.5mol%以上7.0mol%以下の場合、ジルコニア焼結体の透光性を高めることができ、歯科用補綴物の切端部として適切な透光性を得ることができる。また、ジルコニア仮焼体10の他端Qを含む層のイットリアの含有率は、ジルコニアとイットリアの合計molに対して、2.0mol%以上が好ましく、2.5mol%以上がより好ましく、2.8mol%以上がさらに好ましく、3.0mol%以上が特に好ましく、また、4.5mol%未満が好ましく、4.2mol%以下がより好ましく、4.1mol%以下がさらに好ましく、4.0mol%以下が特に好ましい。前記層におけるイットリアの含有率が2.0mol%以上4.5mol%未満の場合、ジルコニア焼結体の強度を高めることができ、歯科用補綴物の歯頚部として適切な強度を得ることができる。さらに、イットリアの含有率が2.0mol%以上4.5mol%未満の場合、透光性は高くなり過ぎず、歯科用補綴物の歯頚部として適切な透光性を得ることができる。なお、本発明のジルコニア仮焼体は、一端Pを含む層と他端Qを含む層の間に、イットリア含有率が一端Pを含む層及び他端Qを含む層の含有率と異なる層を少なくとも1つ含むこともできる。これにより、歯頚部から切端部の間で、透光性が段階的に移行し、天然歯と同様の透光性を得ることができる。また、本発明のジルコニア仮焼体は、前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないものであって、前記各層のイットリアの含有率がそれぞれ所定の範囲内にあるものがより好ましい。
 ジルコニア仮焼体10は、ジルコニアとイットリアの合計molに対して、ジルコニア仮焼体10の一端Pを含む層と他端Qを含む層のイットリアの含有率の差が4.0mol%以下であると好ましく、3.5mol%以下であるとより好ましく、3.0mol%以下であるとさらに好ましい。また、当該イットリアの含有率の差が0.3mol%以上であると好ましく、0.5mol%以上であるとより好ましく、1.0mol%以上であるとさらに好ましい。ジルコニア仮焼体10の一端Pを含む層と他端Qを含む層のイットリアの含有率の差が4.0mol%以下の場合、ジルコニア仮焼体10から作製される歯科用補綴物の切端部と歯頚部での透光性の差が大きくなり過ぎず、歯科用補綴物として適切な透光性を得ることができる。さらに、該イットリアの含有率の差が4.0mol%以下の場合、一端Pを含む層と他端Qを含む層の焼成収縮率の差を0.5%以内とすることが可能となり、ジルコニア仮焼体10から歯科用補綴物を作製する際にクラックの発生や変形を防ぐことが可能となる。なお、一端Pを含む層と他端Qを含む層の間にイットリア含有率が一端Pを含む層及び他端Qを含む層の含有率と異なる層を少なくとも1つ含む場合、隣接する層でのイットリア含有率の差は、3.0mol%以下であると好ましく、2.5mol%以下であるとより好ましく、2.0mol%以下であるとさらに好ましい。また、当該イットリアの含有率の差が0.1mol%以上であることが好ましく、0.3mol%以上であることがより好ましく、0.5mol%以上であることがより好ましい。
 本発明のジルコニア仮焼体において、ジルコニアに固溶されていないイットリア(以下において「未固溶イットリア」ということがある)の存在率fは、以下の数式(1)に基づいて算出することができる。
Figure JPOXMLDOC01-appb-M000004
 数式(1)において、I(111)は、CuKα線によるXRDパターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示す。I(111)及びI(11-1)は、ジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示す。I(111)は、ジルコニアの正方晶系の(111)面のピーク強度を示す。I(111)は、ジルコニアの立方晶系の(111)面のピーク強度を示す。
 本発明のジルコニア仮焼体における未固溶イットリアの存在率fは、歯科用(特に歯科医院での使用)としてより好適な透光性と優れた強度を示す観点から、0%より大きいと好ましく、1%以上がより好ましく、2%以上がさらに好ましい。未固溶イットリアの存在率fの上限は、例えば13%以下であってもよいが、好適にはジルコニア仮焼体におけるイットリアの含有率に依存する。図1のジルコニア仮焼体10の一端Pを含む層、すなわちイットリア含有率が4.5mol%以上6.5mol%以下である層においては、fは13%以下とすることができる。図1のジルコニア仮焼体10の他端Qを含む層、すなわちイットリア含有率が2.5mol%以上4.5mol%未満である層においては、fは7%以下とすることができる。図1のジルコニア仮焼体10の一端Pを含む層、すなわちイットリア含有率が4.5mol%以上6.5mol%以下である層においては、fは1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。図1のジルコニア仮焼体10の他端Qを含む層、すなわちイットリア含有率が2.5mol%以上4.5mol%未満である層においては、fは0.5%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましい。
 なお、上記数式(1)は、I(111)の代わりに他のピークを代入することによって、イットリア以外の安定化剤の未固溶存在率の算出にも適用することができる。
 本発明のジルコニア仮焼体は、歯科用(特に歯科医院での使用)として好適な透光性と強度を達成する観点から、前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、前記一端から他端に向かって上記数式(1)で算出されるジルコニア仮焼体における未固溶イットリアの存在率fの増減傾向が変化しないことが好ましい。いいかえると、ジルコニア仮焼体中の未固溶イットリアの存在率fが単調に増加又は減少することが好ましい。以下、ジルコニア仮焼体の模式図として図1を用いて説明する。図1のジルコニア仮焼体10の一端Pから他端Qに向かう第1方向Yに延在する直線上において、ジルコニア仮焼体中の未固溶イットリアの存在率fの増加傾向又は減少傾向は逆方向に変化しないことが好ましい。すなわち、一端Pから他端Qに向かう直線上においてジルコニア仮焼体中の未固溶イットリアの存在率fが減少傾向にある場合、ジルコニア仮焼体中の未固溶イットリアの存在率fが実質的に増加する区間が存在しないことが好ましい。また、ある実施形態においては、安定化剤の含有率との関係において、歯科用(特に歯科医院での使用)として好適な透光性と強度を達成する観点から、一端Pから他端Qに向かう直線上においてジルコニア仮焼体中の未固溶イットリアの存在率fが減少傾向にある場合、前記一端Pから他端Qに向かう直線上においてジルコニア中の単斜晶系の割合fが増加傾向にあることが好ましい。
 以上、図1の模式図を用いて説明してきたが、本発明において、例えば、ジルコニア仮焼体及びその焼結体が歯冠形状を有する場合、上記「一端」及び「他端」とは、切端側の端部の一点及び根元側の端部の一点を指すと好ましい。当該一点は、端面上の一点でもよいし、断面上の一点でもよい。
 ジルコニア仮焼体が、円板形状や直方体等の六面体形状を有する場合、上記「一端」及び「他端」とは、上面及び下面(底面)上の一点を指すと好ましい。当該一点は、端面上の一点でもよいし、断面上の一点でもよい。
 なお、本発明において、「一端から他端に向かう第1方向」とは、イットリアの含有率が変化している方向を意味する。例えば、第1方向とは、後述の製造方法における粉末を積層する方向であると好ましい。例えば、ジルコニア仮焼体が歯冠形状を有する場合、第1方向は、切端部側と歯頚部側を結ぶ方向であると好ましい。
 本発明のジルコニア仮焼体の曲げ強さは、機械的加工を可能にする強度を確保するために、15MPa以上が好ましい。また、仮焼体の曲げ強さは、機械的加工を容易にするために、70MPa以下が好ましく、60MPa以下がより好ましい。
 前記曲げ強さは、ISO 6872:2015に準拠して測定することができるが、試験片の大きさの条件のみを変えて、5mm×10mm×50mmの大きさの試験片を用いて測定を行う。該試験片の面及びC面は、600番のサンドペーパーで長手方向に面仕上げする。該試験片は、最も広い面が鉛直方向(荷重方向)を向くように配置する。曲げ試験測定において、スパンは30mm、クロスヘッドスピードは0.5mm/分とする。
 本発明のジルコニア仮焼体は、本発明の効果を奏する限り、ジルコニア及び安定化剤以外の添加物を含有してもよい。該添加物としては、例えば、着色剤(顔料、複合顔料及び蛍光剤を含む)、アルミナ(Al)、酸化チタン(TiO)、シリカ(SiO)等が挙げられる。
 前記顔料としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Pr、Sm、Eu、Gd、Tb及びErの群から選択される少なくとも1つの元素の酸化物が挙げられる。前記複合顔料としては、例えば、(Zr,V)O2、Fe(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・ZrSiO、(Co,Zn)Al等が挙げられる。蛍光剤としては、例えば、YSiO:Ce、YSiO:Tb、(Y,Gd,Eu)BO、Y:Eu、YAG:Ce、ZnGa:Zn、BaMgAl1017:Eu等が挙げられる。
 本発明のジルコニア仮焼体は、ジルコニア粒子と安定化剤とを含む原料粉末から形成されたジルコニア成形体をジルコニア粒子が焼結に至らない温度で焼成(即ち仮焼)して作製することができる(仮焼工程)。ジルコニア成形体は、特に限定されず、ジルコニア粒子と安定化剤とを含む原料粉末を用いて、公知の方法(例えば、プレス成形等)を用いて製造することができる。仮焼温度は、ブロック化を確実にするため、例えば、800℃以上が好ましく、900℃以上がより好ましく、950℃以上がさらに好ましい。また、焼成温度は、寸法精度を高めるため、例えば、1200℃以下が好ましく、1150℃以下がより好ましく、1100℃以下がさらに好ましい。すなわち、本発明のジルコニア仮焼体の製造方法として、800℃~1200℃であることが好ましい。このような焼成温度であれば、安定化剤の固溶は進行しないと考えられる。
 本発明のジルコニア仮焼体は、所定の形状を有する成形体であってもよい。例えば、ジルコニア仮焼体は、ディスク(円板)形状、直方体形状、歯科製品形状(例えば歯冠形状)を有することができる。仮焼したジルコニアディスクをCAD/CAM(Computer-Aided Design/Computer-Aided Manufacturing)システムで加工した歯科用製品(例えば歯冠形状の補綴物)も仮焼体に含まれる。
 本発明のジルコニア仮焼体は、短時間の焼成でも透光性の高い焼結体を作製することができる。本発明のジルコニア仮焼体を適正焼成温度で、ある一定時間焼成して作製した焼結体を第1の焼結体とする。また、本発明のジルコニア仮焼体を適正焼成温度で120分間焼成して作製した焼結体を第2の焼結体とする。第1の焼結体の焼成時間を30分間として、第1の焼結体と第2の焼結体の透光性を比較したとき、第1の焼結体の透光性が、第2の焼結体の透光性の85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、実質的に同等であることが特に好ましい。さらに、第1の焼結体の焼成時間を15分間としたとき、第1の焼結体の透光性が、第2の焼結体の透光性の85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、実質的に同等であることが特に好ましい。以上のことから、本発明のジルコニア仮焼体は、上述の短時間焼成に関する利点を有する。なお、本発明における適正焼成温度、及び透光性については、後述の実施例において評価方法等、詳細を説明する。
 本発明のジルコニア焼結体について説明する。本発明において、ジルコニア焼結体とは、例えば、ジルコニア粒子(粉末)が焼結状態に至ったものということができる。特に、本発明のジルコニア焼結体は、本発明のジルコニア仮焼体から作製されたものをいう。該ジルコニア焼結体の相対密度は99.5%以上が好ましい。相対密度は、理論密度に対する、アルキメデス法で測定した実測密度の割合として算出することができる。
 本発明のジルコニア焼結体には、成形したジルコニア粒子を常圧下ないし非加圧下において焼結させた焼結体のみならず、HIP(Hot Isostatic Pressing;熱間静水等方圧プレス)処理等の高温加圧処理によって緻密化させた焼結体も含まれる。
 本発明のジルコニア焼結体におけるジルコニア及び安定化剤の含有率は、焼結体作製前の仮焼体における含有率と同様である。該ジルコニア焼結体におけるジルコニアの結晶系については、単斜晶系の割合fは、10%以下が好ましく、5%以下がより好ましく、実質的には含有されていない(0%)とさらに好ましい。単斜晶系以外の結晶系は、正方晶系及び/又は立方晶系である。
 本発明のジルコニア焼結体における安定化剤の固溶の割合については、含有されている安定化剤の95%以上がジルコニアに固溶されていると好ましく、実質的には全ての安定化剤が固溶されているとより好ましい。すなわち、未固溶イットリアの存在率fは、5%以下が好ましく、1%以下がより好ましく、実質的にはすべて固溶されている(0%)とさらに好ましい。なお、後述の焼結工程において、安定化剤(例えばイットリア)は、ジルコニアに固溶されると考えられる。
 本発明のジルコニア焼結体の製造方法について以下に説明する。本発明のジルコニア焼結体は、ジルコニア粒子が焼結に至る温度でジルコニア仮焼体を焼成して作製することができる(焼結工程)。焼結工程における焼成温度は、例えば、1400℃以上が好ましく、1450℃以上がより好ましい。また、該焼成温度は、例えば、1650℃以下が好ましく、1600℃以下がより好ましい。昇温速度及び降温速度は300℃/分以下が好ましい。すなわち、本発明のジルコニア焼結体の製造方法として、ジルコニア仮焼体を最高焼成温度1400℃~1650℃で焼成することが好ましい。ジルコニア仮焼体の適正焼成温度は、前記最高焼成温度としてもよい。
 焼結工程において、焼結可能温度(例えば、最高焼成温度)における保持時間は、120分未満が好ましく、90分以下がより好ましく、75分以下がさらに好ましく、60分以下がよりさらに好ましく、45分以下が特に好ましく、30分以下が最も好ましい。さらに、25分以下、20分以下、又は15分以下とすることもできる。また、当該保持時間は1分以上が好ましく、5分以上がより好ましく、10分以上がさらに好ましい。本発明のジルコニア仮焼体によれば、このような短い焼成時間であっても、作製されるジルコニア焼結体の透光性の低下を抑制することができる。また、焼成時間を短縮することにより、生産効率を高めると共に、エネルギーコストを低減させることができる。
 焼結工程における昇温速度及び降温速度は、焼結工程に要する時間が短くなるように設定すると好ましい。例えば、昇温速度は、焼成炉の性能に応じて最短時間で最高焼成温度に到達するように設定することができる。最高焼成温度までの昇温速度は、例えば、10℃/分以上、50℃/分以上、100℃/分以上、120℃/分以上、150℃/分以上、又は200℃/分以上とすることができる。降温速度は、焼結体にクラック等の欠陥が生じないような速度を設定すると好ましい。例えば、加熱終了後、焼結体を室温で放冷することができる。最高焼成温度とは焼結工程において、最も高くなる温度を意味する。
 本発明のジルコニア仮焼体を焼成したジルコニア焼結体は、歯科用製品に好適に使用できる。歯科用製品としては、例えば、コーピング、フレームワーク、クラウン、クラウンブリッジ、アバットメント、インプラント、インプラントスクリュー、インプラントフィクスチャー、インプラントブリッジ、インプラントバー、ブラケット、義歯床、インレー、オンレー、矯正用ワイヤー、ラミネートベニア等が挙げられる。また、その製造方法としては各用途に応じて適切な方法を選択することができるが、例えば、本発明のジルコニア仮焼体を切削加工した後に焼結することにより、歯科用製品を得ることができる。なお、該切削加工においてCAD/CAMシステムを用いることが好ましい。
 本発明は、本発明の効果を奏する限り、本発明の技術的思想の範囲内において、上記の構成を種々組み合わせた実施形態を含む。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、本発明の技術的思想の範囲内で多くの変形が当分野において通常の知識を有する者により可能である。
(実施例1~5及び比較例1~3)
[ジルコニア仮焼体の作製]
 各実施例及び比較例のジルコニア仮焼体を以下の手順により作製した。
 実施例1~5及び比較例1~2のジルコニア仮焼体を作製するために使用する原料粉末の作製方法について説明する。まず、単斜晶系のジルコニア粉末とイットリア粉末とを用いて、ジルコニアとイットリアの合計molに対して表1に記載のイットリアの含有率となるように混合物を作製した。次に、この混合物を水に添加してスラリーを作製し、平均粒径0.13μm以下になるまでボールミルで湿式粉砕混合した。粉砕後のスラリーをスプレードライヤで乾燥させ、得られた粉末を950℃で2時間焼成して、粉末(一次粉末)を作製した。なお、前記平均粒径は、レーザー回折散乱法により求めることができる。レーザー回折散乱法は、具体的に例えば、レーザー回折式粒度分布測定装置(SALD-2300:株式会社島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。
 得られた一次粉末を水に添加してスラリーを作製し、平均粒径0.13μm以下になるまでボールミルで湿式粉砕混合した。粉砕後のスラリーにバインダを添加した後、スプレードライヤで乾燥させて、粉末(二次粉末)を作製した。作製した二次粉末を原料粉末として、後述のジルコニア仮焼体の製造に用いた。
 また、比較例3のジルコニア仮焼体を作製するために使用する原料粉末として、1層目に東ソー株式会社製Zpex(登録商標)Smile、2層目に東ソー株式会社製Zpex(登録商標)を用いた。
 次に、ジルコニア仮焼体の製造方法について説明する。まず、内寸20mm×25mmの金型に、前記原料粉末を表1に記載された順に充填し、一軸プレス成形機によって、面圧300kg/cmで90秒間、1次プレス成形した。得られた1次プレス成形体を1700kg/cmで5分間、CIP成形して、積層構造の成形体を作製した。なお、2層からなる実施例1及び比較例3では、各層の充填量は15g、3層からなる実施例2~5では、各層の充填量は10g、単層である比較例1及び2の充填量は30gで作製した。得られた成形体を1000℃で2時間焼成してジルコニア仮焼体を作製した。
[ジルコニア仮焼体の適正焼成温度の定義と測定]
 本発明において、ジルコニア仮焼体の適正焼成温度は、市販のジルコニアを用いる場合には製造元により指定された焼成温度を指す。一方、特に指定された焼成温度の情報が無い場合は、以下のように規定することができる。まず、ジルコニア仮焼体を種々の温度で120分焼成し、その後、両面を#600研磨加工して厚さ0.5mmのジルコニア焼結体の試料を得た。得られた試料の外観を目視にて観察し、試料の透明度に基づき以下の基準により各ジルコニア仮焼体の適正焼成温度を決定した。図2の左側の試料のように、透明度が高く背景が透過する状態は、ジルコニア仮焼体が十分に焼成されているとみなすことができる。一方、図2の右側の試料のように、透明度の低い状態あるいは白濁した状態は、焼成不足と判断できる。本発明において、図2の左側の試料のように十分に焼成されているとみなすことができる最低の温度をジルコニア仮焼体の適正焼成温度と判断した。なお、イットリア含有率が異なる複数の層を持つジルコニア仮焼体の場合、最もイットリア含有率が多い層での適正焼成温度を、そのジルコニア仮焼体の適正焼成温度とする。
 各実施例及び比較例で用いたジルコニア仮焼体の適正焼成温度は、上記の測定により実施例1~5及び比較例1では1550℃、比較例2では1500℃という結果となった。一方、東ソー株式会社製のZpex(登録商標)及びZpex(登録商標)Smileを使用した比較例3では製造元の指定する焼成温度が1450℃である。
[焼成収縮率の差の測定]
 各実施例及び比較例のジルコニア仮焼体を用いてジルコニア焼結体を以下の方法で作製し、一端Pを含む層と他端Qを含む層の焼成収縮率の差を評価した。
 まず、図3Aに示したように、前述の方法で作製した実施例及び比較例のジルコニア仮焼体10から、8mm×10mmの断面を持った積層方向に長い直方体形状のジルコニア仮焼体20を切り出し、一端Pを含む層の長辺WP、短辺LP及び他端Qを含む層の長辺WQ、短辺LQのそれぞれの長さを測定した。
 次に、切り出したジルコニア仮焼体20を適正焼成温度で120分間又は15分間焼成して、ジルコニア焼結体を作製した。なお、昇温速度と降温速度は、120分間と15分間焼成の両条件とも同一条件とした。
 得られた焼結体においても、一端Pを含む層の長辺WP、短辺LP及び他端Qを含む層の長辺WQ、短辺LQのそれぞれの長さを測定し、焼成収縮率の差を以下の式により算出した。評価結果を表1に示す。なお、焼成収縮率の差は絶対値で表すこととする。
Figure JPOXMLDOC01-appb-M000005
 表1に示すように、実施例1~5では焼成収縮率の差が0.5%以内となり、該ジルコニア仮焼体を用いることで変形や割れのない歯科用補綴物を作製することができるという結果となった。特に実施例1及び2では焼成収縮率の差が0.1%以内となり、変形が非常に小さく、支台歯への適合に優れた歯科用補綴物を作製することができる。なお、実施例2~5において、表1に記載の焼成収縮率の差は、1層目と3層目の焼成収縮率の差の値を示し、1層目と2層目の焼成収縮率の差、2層目と3層目の焼成収縮率の差についても、0.5%以内の値であった。一方、比較例3の15分間焼成での焼成収縮率の差は0.5%を大きく超える結果となり、該ジルコニア仮焼体は、焼成した際の変形が大きく、歯科用補綴物として使用することができないものである。
Figure JPOXMLDOC01-appb-T000006
[ジルコニア焼結体の透光性確認(1)]
 各実施例及び比較例のジルコニア仮焼体を用いてジルコニア焼結体を以下の方法で作製し、天然歯の外観との比較の観点で、目視により透光性を評価した。
 まず、前述の方法で作製した実施例及び比較例のジルコニア仮焼体10から、CAD/CAMシステム(「カタナ(登録商標) CAD/CAMシステム」、クラレノリタケデンタル株式会社)を用いて歯冠形状に切削加工した。得られた切削加工後のジルコニア仮焼体を、適正焼成温度で120分間又は15分間焼成して、ジルコニア焼結体を作製した。なお、昇温速度と降温速度は、120分間焼成と15分間焼成の両条件とも同一条件とした。また、積層方向のジルコニア焼結体の長さはいずれも約8mmであった。得られたジルコニア焼結体について、以下の基準で目視により評価した。表2に結果を示す。
 <評価基準>
 〇:120分間焼成と15分間焼成の両方において、天然歯と同様の透光性があり、透光性が徐々に低下するグラデーションの形成が認められる
 △:120分間焼成と15分間焼成のいずれかにおいてのみ、天然歯と同様の透光性があり、透光性が徐々に低下するグラデーションの形成が認められる
 ×:120分間焼成と15分間焼成の両方において、透光性が徐々に低下するグラデーションの形成が認められない
 実施例1~5では、いずれのジルコニア焼結体も、図1に示すジルコニア仮焼体10の一端Pを含む層に相当する領域から他端Qを含む層に相当する領域に向かって、透光性が徐々に低下するグラデーションが形成され、天然歯と同様の外観を呈していた。また、ジルコニア仮焼体を焼成する際の適正焼成温度での保持時間について、120分間と15分間のいずれの条件においても透光性に大きな差は無く、短時間焼成においても適正な透光性を持つ歯科用補綴物を作製できることが確認された。
 一方、比較例1及び2では、図1に示すジルコニア仮焼体10の一端Pを含む層に相当する領域から他端Qを含む層に相当する領域に向かって、透光性は一定であり、天然歯と同様の外観を呈するとは言えなかった。また、比較例3では、適正焼成温度での保持時間を120分間とした場合の透光性に対して、15分間とした場合の透光性は大きく低下し、短時間焼成では天然歯のような透光性が発現せず、天然歯と同様の透光性を持つ歯科用補綴物を作製することができないという結果となった。
[ジルコニア焼結体の透光性確認(2)]
 各実施例及び比較例のジルコニア焼結体の各層における透光性について、以下の方法で各層それぞれ単独のジルコニア焼結体を作製し、定量的に評価した。
 まず、得られるジルコニア焼結体の両面を#600研磨加工した後に厚さ1.2mmのジルコニア焼結体が得られるように、予めサイズを調整してプレス成形を行うことで、各実施例及び比較例の各層における原料粉末からなる成形体を作製した。次に、該成形体を1000℃で2時間焼成してジルコニア仮焼体を作製した。次に、適正焼成温度に設定して、120分間又は15分間、該ジルコニア仮焼体を焼成してジルコニア焼結体を作製した。得られたジルコニア焼結体の両面を#600研磨加工し、厚さ1.2mmのジルコニア焼結体を透光性の測定に用いた。また、実施例1の1層目及び比較例3の1層目については適正焼成温度の保持時間を30分間、60分間とした焼結体も作製した。得られたジルコニア焼結体の透光性を後述の方法により測定した。なお、昇温速度と降温速度は、120分間の焼成と同一条件とした。適正焼成温度で120分間焼成した焼結体の透光性(ΔL*120)に対する、保持時間x分間で焼成した焼結体の透光性(ΔL*)の変化を透光性として下記式により算出した。表2、表3及び図4に結果を示す。
 透光性保持率(%)=(ΔL*)/(ΔL*120)×100
[ジルコニア焼結体の透光性ΔL*の測定]
 ジルコニア焼結体の透光性は、コニカミノルタ株式会社製の分光測色計CM-3610Aを用いてD65光源にて測定した、L*a*b*表色系(JIS Z 8781-4:2013 測色-第4部:CIE 1976 L*a*b*色空間)における明度(色空間)のL*値を用いて算出した。試料の背景を白色にして測定したL*値を第1のL*値とし、第1のL*値を測定した同一の試料について、試料の背景を黒色にして測定したL*値を第2のL*値とし、第1のL*値から第2のL*値を控除した値(ΔL*)を、透光性を示す数値とした。
 表2より、実施例1~5のジルコニア焼結体の各層において、適正焼成温度での保持時間が120分の場合の透光性と15分の場合の透光性は大差なく、透光性保持率はいずれも96%以上となった。一方、比較例3の各層において適正焼成温度での保持時間が120分の場合の透光性と15分の場合の透光性は大きく異なり、透光性保持率は60%以下となった。
Figure JPOXMLDOC01-appb-T000007
 表3より、比較例3の1層目においては、適正焼成温度での保持時間が短くなるに従い透光性は低下していき、60分焼成では120分焼成における透光性の89%、30分焼成では120分焼成における透光性の70%、15分焼成では120分焼成における透光性の60%であった。一方、実施例1の1層目においては、適正焼成温度での保持時間を短くしても120分焼成と同等の透光性を確保することができた。30分焼成においては120分焼成のほぼ100%とすることができ、15分焼成においても120分焼成の95%以上とすることができた。すなわち、本発明のジルコニア仮焼体によれば、高い透光性を維持しつつ焼成時間を短縮することができることが分かる。これにより、ジルコニア焼結体の生産効率を高めることができると共に、エネルギーコストを低減させることができる。また、本発明のジルコニア仮焼体を用いて歯科用補綴物を作製する場合には、患者に対する時間的負担を軽減させることができる。
Figure JPOXMLDOC01-appb-T000008
[ジルコニア焼結体の曲げ強度の測定]
(実施例1)
 実施例1の2層目における原料粉末を用いて、前記仮焼体の製造方法にしたがいジルコニア仮焼体を作製し、その後、後述の条件にて焼成を行い、ジルコニア焼結体を得た。ISO6872に従い、サンプルサイズ1.2mm×4.0mm×16.0mm、支点間距離(スパン長)12mm、クロスヘッドスピード0.5mm/分の条件にて曲げ強度を測定したところ、最高焼成温度での保持時間が120分の場合は1130MPa、最高焼成温度での保持時間が15分の場合は1090MPaとなった。最高焼成温度での保持時間が120分、15分のいずれにおいても1000MPa以上であり、歯科用補綴物の歯頚部として必要な強度を持つ。なお、表1に示したように、実施例1の1層目の透光性(ΔL*)は最高焼成温度での保持時間が120分の場合で16.3であり、最高焼成温度での保持時間が15分の場合では15.7であり、いずれにおいても歯科用補綴物の切端部として必要な透光性を持つ。すなわち、一つの焼結体の中で、切端部として適正な透光性と、歯頚部として適正な強度を同時に併せ持つことが確認された。
[ジルコニア仮焼体のXRD測定]
 ジルコニアの結晶系及び安定化剤がジルコニアに固溶されていない程度を確認した。結果を表2に示す。
 実施例1~5及び比較例1~3の各層におけるジルコニア仮焼体について、CuKα線を用いてXRDパターンを測定し、f及びfを算出した。結果を表1、2に示す。図5に、実施例1の2層目のジルコニア仮焼体のXRDパターンを示す。図6に、比較例3の1層目で作製したジルコニア仮焼体のXRDパターンを示す。
 図6の通り、比較例3の1層目におけるジルコニア仮焼体においては、単斜晶系のジルコニアのピークは確認されなかった。また、イットリアのピークも確認されなかった。比較例3の2層目も同様の結果となった。一方、図5より、実施例1の2層目におけるジルコニア仮焼体においては、単斜晶系、正方晶系及び立方晶系のジルコニアのピークが確認され、単斜晶系のピークのほうが高強度であった。他の実施例も同様の結果となった。また、実施例のいずれのジルコニア仮焼体においても、2θが29.4°付近にイットリアのピーク(図5におけるピーク番号6)も確認され、それぞれのジルコニア仮焼体においては、一部のイットリアがジルコニアに固溶していないと考えられる。
 本明細書に記載した数値範囲については、別段の記載のない場合であっても、当該範囲内に含まれる任意の数値ないし範囲が本書に具体的に記載されているものと解釈されるべきである。
 本発明のジルコニア仮焼体及びその焼結体は、補綴物等の歯科用製品に利用することができる。
 10  ジルコニア仮焼体
 P   一端
 Q   他端
 L   全長
 Y   第1方向
 20  焼成収縮率測定用サンプル(ジルコニア仮焼体)
 WP  一端Pを含む層の長辺
 LP  一端Pを含む層の短辺
 WQ  他端Qを含む層の長辺
 LQ  他端Qを含む層の短辺

Claims (22)

  1.  ジルコニアと、
    ジルコニアの相転移を抑制可能な安定化剤と、を含有し、
     ジルコニアの主たる結晶系が単斜晶系であり、
     ジルコニアと安定化剤の合計molに対する安定化剤の含有率が異なる複数の層を備える、ジルコニア仮焼体。
  2.  前記ジルコニアの55%以上が単斜晶系である、請求項1に記載のジルコニア仮焼体。
  3.  前記ジルコニアの75%以上が単斜晶系である、請求項1又は2に記載のジルコニア仮焼体。
  4.  前記安定化剤の少なくとも一部はジルコニアに固溶されていない、請求項1~3のいずれか一項に記載のジルコニア仮焼体。
  5.  前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
    前記一端から他端に向かってジルコニアと安定化剤の合計molに対する安定化剤の含有率の増減傾向が変化しない、請求項1~4のいずれか一項に記載のジルコニア仮焼体。
  6.  密度が2.7~4.0g/cmである、請求項1~5のいずれか一項に記載のジルコニア仮焼体。
  7.  曲げ強さが15~70MPaである、請求項1~6のいずれか一項に記載のジルコニア仮焼体。
  8.  前記安定化剤がイットリアである、請求項1~7のいずれか一項に記載のジルコニア仮焼体。
  9.  前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
    前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
     前記ジルコニアと前記イットリアの合計molに対して、
    前記一端を含む層のイットリアの含有率が4.5mol%以上7.0mol%以下であり、
    前記他端を含む層のイットリアの含有率が2.0mol%以上4.5mol%未満である、請求項8に記載のジルコニア仮焼体。
  10.  前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
    前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
     前記ジルコニアと前記イットリアの合計molに対して、
    前記一端を含む層と前記他端を含む層のイットリアの含有率の差が4.0mol%以下である、請求項8又は9に記載のジルコニア仮焼体。
  11.  X線回折パターンにおいてイットリアのピークが存在する、請求項8~10のいずれか一項に記載のジルコニア仮焼体。
  12.  以下の数式(1)に基づいて算出したfが0%超である、請求項8~11のいずれか一項に記載のジルコニア仮焼体。
    Figure JPOXMLDOC01-appb-M000001
    (ただし、I(111)は、CuKα線によるX線回折パターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示し、
     I(111)及びI(11-1)は、前記X線回折パターンにおけるジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示し、
     I(111)は、前記X線回折パターンにおけるジルコニアの正方晶系の(111)面のピーク強度を示し、
     I(111)は、前記X線回折パターンにおけるジルコニアの立方晶系の(111)面のピーク強度を示す。)
  13.  前記fが13%以下である、請求項12に記載のジルコニア仮焼体。
  14.  前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
    前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
     前記一端を含む層において、
    前記fが1%以上である、請求項12又は13に記載のジルコニア仮焼体。
  15.  前記ジルコニア仮焼体の一端から他端に向かう第1方向に延在する直線上において、
    前記一端から他端に向かってジルコニアとイットリアの合計molに対するイットリアの含有率の増減傾向が変化しないジルコニア仮焼体であって、
     前記他端を含む層において、
    前記fが0.5%以上である、請求項12~14のいずれか一項に記載のジルコニア仮焼体。
  16.  前記ジルコニア仮焼体を適正焼成温度で30分間焼成して作製された第1の焼結体の第1の透光性と、
     前記ジルコニア仮焼体を該適正焼成温度で120分間焼成して作製された第2の焼結体の第2の透光性と、を比較したとき、
     前記第1の透光性が前記第2の透光性の85%以上である、請求項1~15のいずれか一項に記載のジルコニア仮焼体。
  17.  前記ジルコニア仮焼体を適正焼成温度で15分間焼成して作製された第1の焼結体の第1の透光性と、
     前記ジルコニア仮焼体を該適正焼成温度で120分間焼成して作製された第2の焼結体の第2の透光性と、を比較したとき、
     前記第1の透光性が前記第2の透光性の85%以上である、請求項1~16のいずれか一項に記載のジルコニア仮焼体。
  18.  ジルコニア粒子と安定化剤とを含む原料粉末から形成されたジルコニア成形体を800℃~1200℃で仮焼する、請求項1~17のいずれか一項に記載のジルコニア仮焼体の製造方法。
  19.  請求項1~17のいずれか一項に記載のジルコニア仮焼体を最高焼成温度1400℃~1600℃で焼成する、ジルコニア焼結体の製造方法。
  20.  最高焼成温度での保持時間が120分未満である、請求項19に記載のジルコニア焼結体の製造方法。
  21.  請求項1~17のいずれか一項に記載のジルコニア仮焼体を切削加工した後に焼結する、歯科用製品の製造方法。
  22.  前記切削加工がCAD/CAMシステムを用いた切削加工である、請求項21に記載の歯科用製品の製造方法。
     
PCT/JP2019/051188 2018-12-27 2019-12-26 歯科用に好適なジルコニア仮焼体 WO2020138316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19902009.0A EP3903761A4 (en) 2018-12-27 2019-12-26 CALCINED ZIRCONIA OBJECT SUITABLE FOR DENTISTRY
US17/311,518 US20220017423A1 (en) 2018-12-27 2019-12-26 Zirconia pre-sintered body suitable for dental use
KR1020217021517A KR102591180B1 (ko) 2018-12-27 2019-12-26 치과용으로 바람직한 지르코니아 가소체
CN201980086189.1A CN113194905B (zh) 2018-12-27 2019-12-26 适合于齿科用途的氧化锆预烧体
JP2020562423A JP7213268B2 (ja) 2018-12-27 2019-12-26 歯科用に好適なジルコニア仮焼体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245667 2018-12-27
JP2018-245667 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138316A1 true WO2020138316A1 (ja) 2020-07-02

Family

ID=71128769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051188 WO2020138316A1 (ja) 2018-12-27 2019-12-26 歯科用に好適なジルコニア仮焼体

Country Status (6)

Country Link
US (1) US20220017423A1 (ja)
EP (1) EP3903761A4 (ja)
JP (1) JP7213268B2 (ja)
KR (1) KR102591180B1 (ja)
CN (1) CN113194905B (ja)
WO (1) WO2020138316A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142463A (zh) * 2020-09-29 2020-12-29 西南科技大学 热压烧结制备ZrO2/ZrSiO4复相陶瓷的方法及对放射性核素固化的应用
WO2021132644A1 (ja) * 2019-12-26 2021-07-01 クラレノリタケデンタル株式会社 加工性ジルコニア複合焼結体の製造方法、加工性ジルコニア複合焼結体の原料組成物及び加工性ジルコニア複合仮焼体
WO2022065452A1 (ja) 2020-09-25 2022-03-31 クラレノリタケデンタル株式会社 ジルコニア焼結体の製造方法
WO2022071348A1 (ja) * 2020-09-29 2022-04-07 クラレノリタケデンタル株式会社 良切削性のジルコニア仮焼体
CN116922546A (zh) * 2023-09-18 2023-10-24 成都永益泵业股份有限公司 一种使用氧化锆制作成型件的方法及泵过流部件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041239A (ja) * 2010-08-20 2012-03-01 Noritake Co Ltd ジルコニア焼結体、並びにその焼結用組成物及び仮焼体
US20130224454A1 (en) * 2012-02-23 2013-08-29 Yunoh Jung Non-Pre-Colored Multi-Layer Zirconia Dental Blank that has a Gradual Change in Chroma through a Thickness After Sintering
US20130221554A1 (en) 2012-02-23 2013-08-29 Yunoh Jung Non-Pre-Colored Multi-Layer Zirconia Dental Blank that has a Gradual Change in Translucency through a Thickness After Sintering
WO2018056330A1 (ja) 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
JP2018514245A (ja) * 2015-03-19 2018-06-07 デンタルマックス カンパニーリミテッド 人工歯用ジルコニア多層ブロックの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056540B1 (ko) * 2009-08-18 2011-08-11 주식회사 쿠보텍 치과용 지르코니아 예비소결체의 제조방법 및 지르코니아 예비소결체 그리고 이를 이용한 지르코니아 세라믹의 제조방법
CN102285795A (zh) * 2011-05-30 2011-12-21 北京大学口腔医学院 牙科复色可切削氧化锆陶瓷及制备方法
KR102089203B1 (ko) * 2013-05-10 2020-03-13 쿠라레 노리타케 덴탈 가부시키가이샤 지르코니아 소결체, 지르코니아 조성물 및 지르코니아 가소체, 그리고 치과용 보철물
CN109790047B (zh) * 2016-09-20 2022-09-20 可乐丽则武齿科株式会社 氧化锆组合物、预煅烧体和烧结体以及它们的制造方法、以及层叠体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041239A (ja) * 2010-08-20 2012-03-01 Noritake Co Ltd ジルコニア焼結体、並びにその焼結用組成物及び仮焼体
US20130224454A1 (en) * 2012-02-23 2013-08-29 Yunoh Jung Non-Pre-Colored Multi-Layer Zirconia Dental Blank that has a Gradual Change in Chroma through a Thickness After Sintering
US20130221554A1 (en) 2012-02-23 2013-08-29 Yunoh Jung Non-Pre-Colored Multi-Layer Zirconia Dental Blank that has a Gradual Change in Translucency through a Thickness After Sintering
JP2018514245A (ja) * 2015-03-19 2018-06-07 デンタルマックス カンパニーリミテッド 人工歯用ジルコニア多層ブロックの製造方法
WO2018056330A1 (ja) 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132644A1 (ja) * 2019-12-26 2021-07-01 クラレノリタケデンタル株式会社 加工性ジルコニア複合焼結体の製造方法、加工性ジルコニア複合焼結体の原料組成物及び加工性ジルコニア複合仮焼体
WO2022065452A1 (ja) 2020-09-25 2022-03-31 クラレノリタケデンタル株式会社 ジルコニア焼結体の製造方法
KR20230070446A (ko) 2020-09-25 2023-05-23 쿠라레 노리타케 덴탈 가부시키가이샤 지르코니아 소결체의 제조 방법
CN112142463A (zh) * 2020-09-29 2020-12-29 西南科技大学 热压烧结制备ZrO2/ZrSiO4复相陶瓷的方法及对放射性核素固化的应用
WO2022071348A1 (ja) * 2020-09-29 2022-04-07 クラレノリタケデンタル株式会社 良切削性のジルコニア仮焼体
CN112142463B (zh) * 2020-09-29 2022-05-06 西南科技大学 热压烧结制备ZrO2/ZrSiO4复相陶瓷的方法及对放射性核素固化的应用
CN116922546A (zh) * 2023-09-18 2023-10-24 成都永益泵业股份有限公司 一种使用氧化锆制作成型件的方法及泵过流部件
CN116922546B (zh) * 2023-09-18 2023-12-29 成都永益泵业股份有限公司 一种使用氧化锆制作成型件的方法及泵过流部件

Also Published As

Publication number Publication date
KR20210099119A (ko) 2021-08-11
EP3903761A4 (en) 2022-11-09
EP3903761A1 (en) 2021-11-03
JP7213268B2 (ja) 2023-01-26
US20220017423A1 (en) 2022-01-20
JPWO2020138316A1 (ja) 2021-10-14
CN113194905B (zh) 2023-05-30
KR102591180B1 (ko) 2023-10-19
CN113194905A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US11873254B2 (en) Zirconia composition, pre-sintered body and sintered body, and method of producing the same
WO2020138316A1 (ja) 歯科用に好適なジルコニア仮焼体
JP7213829B2 (ja) 歯科用に好適なジルコニア仮焼体
JP7001310B1 (ja) 歯科用に好適なジルコニア仮焼体
JP7005819B2 (ja) ジルコニア焼結体の製造方法
WO2020218541A1 (ja) 歯科用に好適なジルコニア仮焼体及びその製造方法
JP7026295B1 (ja) ジルコニア焼結体の製造方法
JP6920573B1 (ja) ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法
WO2021125351A1 (ja) ジルコニア焼結体の製造方法
JP7022875B1 (ja) 歯科用被加工体
WO2023127945A1 (ja) 歯科用に好適なジルコニア仮焼体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021517

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019902009

Country of ref document: EP

Effective date: 20210727