WO2022054775A1 - 導電性ペースト及び導電膜 - Google Patents

導電性ペースト及び導電膜 Download PDF

Info

Publication number
WO2022054775A1
WO2022054775A1 PCT/JP2021/032756 JP2021032756W WO2022054775A1 WO 2022054775 A1 WO2022054775 A1 WO 2022054775A1 JP 2021032756 W JP2021032756 W JP 2021032756W WO 2022054775 A1 WO2022054775 A1 WO 2022054775A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin
conductive paste
acrylic resin
mass
Prior art date
Application number
PCT/JP2021/032756
Other languages
English (en)
French (fr)
Inventor
哲平 西川
亘人 濱田
信也 田中
静雄 酒井
慎也 古賀
Original Assignee
互応化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 互応化学工業株式会社 filed Critical 互応化学工業株式会社
Priority to JP2022547596A priority Critical patent/JPWO2022054775A1/ja
Priority to KR1020237008558A priority patent/KR20230050417A/ko
Priority to CN202180062187.6A priority patent/CN116171286A/zh
Publication of WO2022054775A1 publication Critical patent/WO2022054775A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/08Epoxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/066Copolymers with monomers not covered by C08L33/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/068Copolymers with monomers not covered by C09D133/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present disclosure relates to a conductive paste and a conductive film, and more particularly to a conductive paste containing a binder, a metal powder, boric acid and an organic solvent, and a conductive film containing a cured product of the conductive paste.
  • a technique for forming wiring by printing a conductive paste on various substrates is used.
  • a conductive paste is printed on the surface of a base material by a screen printing method or the like to form a conductive film having a predetermined pattern of wiring.
  • the conduction mechanism of the conductive paste is due to contact or close contact between the metal powders due to the curing shrinkage of the thermosetting resin that is the binder, and the conductivity is large depending on the oxidation state of the metal powder surface and the curing shrinkage state of the thermosetting resin. to be influenced.
  • the binder a resol-type phenol resin having good conductivity has been generally used because of its large curing shrinkage.
  • the resol type phenol resin is hard and brittle and has low adhesion to the substrate. Therefore, a conductive paste using a (meth) acrylic resin has been proposed.
  • Patent Document 1 describes a conductive paste containing a (meth) acrylic resin as a binder resin, an organic solvent, and a metal powder, wherein the (meth) acrylic resin is a conductive paste.
  • the glass transition point Tg is in the range of -60 ° C to 120 ° C
  • the hydroxy group in the molecule is in the range of 0.01% by weight to 5% by weight
  • the acid value is in the range of 1 mgKOH / g to 50 mgKOH / g.
  • Patent Document 2 discloses a conductive paste containing a conductive component, a thermosetting resin, and a specific cationic polymerization initiator, and containing an acrylic resin as the thermosetting resin.
  • the conductive paste can have good flexibility due to its characteristics and can improve the adhesion, but the curing shrinkage of the resin due to heating is small.
  • the conductive paste using the conventional (meth) acrylic resin could not exhibit sufficient conductivity.
  • An object of the present disclosure is to provide a conductive paste and a conductive film capable of achieving both good adhesion and conductivity.
  • the conductive paste according to one aspect of the present disclosure contains a binder (A), a metal powder (B), boric acid (C), and an organic solvent (D).
  • the binder (A) contains a (meth) acrylic resin (a) having a hydroxyl group.
  • the conductive film according to one aspect of the present disclosure includes a cured product of the conductive paste.
  • the conductive paste of the present embodiment contains a binder (A), a metal powder (B), boric acid (C), and an organic solvent (D). ..
  • the binder (A) contains a (meth) acrylic resin (a) having a hydroxyl group.
  • (Meta) acrylic resin means acrylic resin, methacrylic resin, or both.
  • the (meth) acrylic resin is a polymer having a structural unit based on at least one monomer of (meth) acrylic acid and (meth) acrylic acid ester.
  • the present inventors used a (meth) acrylic resin (a) having a hydroxyl group as the (meth) acrylic resin in a conductive paste using a (meth) acrylic resin as the thermosetting resin of the binder, and further added boric acid. It has been found that good conductivity can be exhibited by adding the mixture. The reason for this is not always clear, but for example, the hydroxyl group of the (meth) acrylic resin (a) and boric acid form a three-dimensional crosslinked structure in a network due to hydrogen bonds or the like, so that the curing shrinkage of the resin becomes large. As a result, it is considered that the conductivity is improved.
  • the binder (A) contains the (meth) acrylic resin (a) having a hydroxyl group and contains boric acid, so that the adhesion to various substrates can be improved. I found it. As described above, according to the conductive paste (X), both good adhesion and conductivity can be achieved.
  • the binder (A) contains a (meth) acrylic resin (a) having a hydroxyl group (hereinafter, also referred to as (meth) acrylic resin (a)).
  • the hydroxyl group include alcoholic hydroxyl groups and phenolic hydroxyl groups.
  • the hydroxyl group of the (meth) acrylic resin (a) includes, for example, an alcoholic hydroxyl group or a phenolic hydroxyl group in a structural unit based on a monomer having a hydroxyl group, and an epoxy group and a carboxyl group in the modification reaction of the (meth) acrylic resin. Examples thereof include alcoholic hydroxyl groups generated by the reaction of.
  • the hydroxyl value of the (meth) acrylic resin (a) is preferably 20 mgKOH / g or more and 150 mgKOH / g or less. By setting the hydroxyl value in the above range, the adhesion to the substrate is further improved, the hydrogen bondability to boric acid is further improved, and the conductivity can be further improved.
  • the hydroxyl value is more preferably 30 mgKOH / g or more and 130 mgKOH / g, further preferably 40 mgKOH / g or more and 120 mgKOH / g, and particularly preferably 50 mgKOH / g or more and 80 mgKOH / g.
  • the hydroxyl value of the (meth) acrylic resin (a) means the number of mg of potassium hydroxide equivalent to the hydroxyl group in 1 g of the (meth) acrylic resin (a).
  • the acid value of the (meth) acrylic resin (a) is preferably 0 mgKOH / g or more and 200 mgKOH / g or less, and more preferably 50 mgKOH / g or more and 150 mgKOH / g or less. By setting the acid value in the above range, the dispersibility of the metal powder can be improved.
  • the acid value of the (meth) acrylic resin (a) is the number of mg of potassium hydroxide required to neutralize the carboxyl group of 1 g of the (meth) acrylic resin (a).
  • the weight average molecular weight (Mw) of the (meth) acrylic resin (a) is preferably 3000 or more and 100,000 or less. By setting Mw in the above range, the adhesion can be further improved, the paste viscosity can be made more appropriate, and the handling becomes better. If Mw exceeds 100,000, the adhesion may decrease, the paste viscosity may increase, and the handling may deteriorate. Mw is more preferably 5,000 or more and 80,000 or less, further preferably 7,000 or more and 50,000 or less, and particularly preferably 10,000 or more and 50,000 or less. Mw is a value obtained in terms of standard polystyrene by the GPC measurement method.
  • the main chain structure is the same as that of the (meth) acrylic resin (a), and the glass transition temperature (Tg) of the precursor resin (x) that gives the (meth) acrylic resin (a) is 20 ° C. or higher and 100 ° C. or lower. Is preferable. By setting Tg in the above range, the adhesion can be further improved.
  • the Tg is more preferably 30 ° C. or higher and 95 ° C. or lower, and further preferably 40 ° C. or higher and 90 ° C. or lower.
  • the glass transition temperature (Tg) is a value theoretically calculated from the composition ratio of the monomer which is a constituent unit of the resin (x), and is a value calculated by the Fox formula.
  • Examples of the (meth) acrylic resin (a) include the following resins (a1) to (a4).
  • Resin (a1) A resin resin (a2) in which a polymer (x1) having a structural unit based on a (meth) acryloyl group and a monomer having a carboxyl group is modified with a compound having a (meth) acryloyl group and an epoxy group.
  • Resin (a3) Resin (a2). ) Is further modified with carboxylic acid anhydride
  • Resin (a4) (meth) acrylic resin having a structural unit based on a monomer having a hydroxyl group.
  • the polymer (x1) having a structural unit (hereinafter, also referred to as a structural unit (u1)) based on a monomer having a (meth) acryloyl group and a carboxyl group is a (meth) acryloyl group and an epoxy group. It is a resin modified with a compound having a compound (hereinafter, also referred to as compound (c1)).
  • the resin (a1) is formed by a modification reaction of a compound (c1) having an epoxy group with a (meth) acrylic resin (x1) having a carboxyl group.
  • a secondary alcoholic hydroxyl group is generated by the reaction of the carboxyl group and the epoxy group, and this hydroxyl group and boric acid form a network by hydrogen bonding or the like. Further, since the resin (a1) has a (meth) acryloyl group at the end of the side chain of the polymer, this is involved in thermosetting and the curing shrinkage becomes larger, so that the conductivity can be further improved. Conceivable.
  • Examples of the monomer having a (meth) acryloyl group and a carboxyl group include (meth) acrylic acid, crotonic acid, cinnamic acid, carboxymethyl (meth) acrylate, carboxyethyl (meth) acrylate, and (meth) acrylic acid.
  • Carboxycyclohexyl (meth) carboxyphenyl acrylate, (meth) carboxybenzyl acrylate, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl, 2- (meth) hexahydrophthalate ) Acryloyloxyethyl, 2- (meth) acryloyloxyethyl succinate, ⁇ -carboxy-polycaprolactone monoacrylate and the like.
  • the ratio of the structural unit (u1) in the resin (a1) is preferably 5% by mass or more and 100% by mass or less, and 20% by mass or more and 50% by mass or less, with respect to all the structural units constituting the resin (a1). Is more preferable.
  • Examples of the compound (c1) having a (meth) acryloyl group and an epoxy group include glycidyl (meth) acrylate, epoxybutyl (meth) acrylate, and epoxycyclohexyl (meth) acrylate.
  • the amount of the epoxy group of the compound (c1) is 0.1 mol or more and 0.7 mol or less with respect to 1 mol of the carboxyl group of the polymer (x1). It is preferable to use it.
  • the inorganic base material and the organic base material of the conductive film formed from the conductive paste (X) By optimizing the ratio of the structural unit (u1) in the resin (a1) and the ratio of the compound (c1) used in the modification reaction, the inorganic base material and the organic base material of the conductive film formed from the conductive paste (X). It is possible to further improve the adhesion to the material and the conductivity.
  • the polymer (x2) having a structural unit (hereinafter, also referred to as a structural unit (u2)) based on a monomer having a (meth) acryloyl group and an epoxy group is a (meth) acryloyl group and a carboxyl group. It is a resin modified with a compound having a compound (hereinafter, also referred to as compound (c2)).
  • the resin (a2) is formed by a modification reaction of a compound (c2) having a carboxyl group with a (meth) acrylic resin (x2) having an epoxy group.
  • a secondary alcoholic hydroxyl group is generated by the reaction between the epoxy group and the carboxyl group, and this hydroxyl group and boric acid form a network by hydrogen bonding or the like. Further, since the resin (a2) has a (meth) acryloyl group at the end of the side chain of the polymer, this is involved in thermosetting and the curing shrinkage becomes larger, so that the conductivity can be further improved. Conceivable.
  • Examples of the monomer having a (meth) acryloyl group and an epoxy group include the same compounds as those exemplified as the compound (c1) having the (meth) acryloyl group and the epoxy group described above.
  • the ratio of the structural unit (u2) in the resin (a2) is preferably 10% by mass or more and 100% by mass or less, and 30% by mass or more and 80% by mass or less, with respect to all the structural units constituting the resin (a2). Is more preferable.
  • Examples of the compound (c2) having a (meth) acryloyl group and a carboxyl group include compounds similar to those exemplified as the above-mentioned monomers having a (meth) acryloyl group and a carboxyl group.
  • the compound (c2) In the modification reaction between the polymer (x2) and the compound (c2), the compound (c2) has an amount of the carboxyl group of 0.1 mol or more and 1.0 mol or less with respect to 1 mol of the epoxy group of the polymer (x2). It is preferable to use it.
  • the inorganic base material and the organic base material of the conductive film formed from the conductive paste (X) By optimizing the ratio of the structural unit (u2) in the resin (a2) and the ratio of the compound (c2) used in the modification reaction, the inorganic base material and the organic base material of the conductive film formed from the conductive paste (X). It is possible to further improve the adhesion to the material and the conductivity.
  • the resin (a3) is a resin in which the resin (a2) is further modified with a carboxylic acid anhydride.
  • the resin (a3) is formed by a modification reaction of a carboxylic acid anhydride (compound (c3)) with a resin (a2) having an epoxy group.
  • carboxylic acid anhydride examples include aliphatics such as succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, glutaconic anhydride, and 1,2,3,4-butanetetracarboxylic acid anhydride.
  • Carboxic acid anhydride tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, cyclohexanetricarboxylic acid anhydride, cyclohexanetetracarboxylic acid anhydride, bicyclo [2.2.1] heptane-2,3- Dicarboxylic acid anhydride, alicyclic carboxylic acid anhydride such as methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride; phthalic anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, Aromatic carboxylic acids such as naphthalenedicarboxylic acid anhydride, naphthalenetricarboxylic acid anhydride, naphthalenetetracarboxylic acid anhydride, biphenyldicarboxylic acid anhydride, biphenyltricarboxylic acid anhydr
  • the carboxylic acid anhydride is preferably used in an amount such that the acid value of the obtained resin (a3) is preferably 0 mgKOH / g or more and 200 mgKOH / g, more preferably 50 mgKOH / g or more and 150 mgKOH / g or less.
  • the acid value of the resin (a3) is preferably 0 mgKOH / g or more and 200 mgKOH / g, more preferably 50 mgKOH / g or more and 150 mgKOH / g or less.
  • the resin (a4) is a (meth) acrylic resin having a structural unit (hereinafter, also referred to as a structural unit (u4)) based on a monomer having a hydroxyl group.
  • a structural unit (u4) examples include alcoholic hydroxyl groups and phenolic hydroxyl groups.
  • Examples of the monomer having a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxycyclohexyl (meth) acrylate, and hydroxyphenyl (meth) acrylate.
  • Examples thereof include (meth) hydroxy group-containing esters of (meth) acrylate such as hydroxybenzyl (meth) acrylate; hydroxy group-containing vinyl compounds such as allyl alcohol and vinylcyclohexanol.
  • the resin (a4) preferably has a structural unit (u1).
  • the resin (a4) since the resin (a4) has a carboxyl group, it is considered that this is involved in thermosetting and the curing shrinkage becomes larger, so that the conductivity can be further improved.
  • the ratio of the structural unit (u4) in the resin (a4) is preferably 5% by mass or more and 50% by mass or less, preferably 10% by mass or more and 30% by mass or less, with respect to all the structural units constituting the resin (a4). Is more preferable.
  • the resins (a1) to (a3) may have a constituent unit (u4).
  • Examples of the monomer giving a structural unit other than the structural units (u1) to (u4) in the resins (a1) to (a4) include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, and (meth) acrylic acid.
  • (Meta) acrylic acid aliphatic esters such as propyl, (meth) butyl acrylate, (meth) 2-ethylhexyl acrylate; (meth) acrylic acid alicyclic esters such as (meth) cyclohexyl acrylate; (meth) acrylic Examples thereof include (meth) acrylic acid esters such as (meth) acrylic acid aromatic esters such as phenyl acid and benzyl (meth) acrylic acid, and vinyl compounds such as ethylene, propylene, 1-butene and styrene.
  • the ratio of the (meth) acrylic resin (a) is preferably 50% by mass or more and 100% by mass or less, and more preferably 70% by mass or more and 100% by mass or less with respect to the binder (A).
  • the binder (A) may contain, for example, a thermosetting resin other than the above-mentioned (meth) acrylic resin (a) as the other resin.
  • thermosetting resins include epoxy resins, phenol resins, amino resins, urethane resins, unsaturated polyester resins, cyanate resins, and (meth) acrylic resins having no hydroxyl group.
  • the proportion of the other resin is preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 45% by mass or less, and 10% by mass or more and 40% by mass or less, based on the binder (A). It is more preferably mass% or less.
  • the conductive paste (X) may contain, for example, a curing agent, a curing accelerator, or the like in order to cure the thermosetting resin.
  • any one that can cure the thermosetting resin can be used, for example, novolak resin; latent amine-based curing agent such as dicyandiamide, imidazole, BF3 -amine complex, guanidine derivative; meta.
  • Aromatic amines such as phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone; curing agents containing nitrogen atoms such as cyclophosphazene oligomers; polyamide resin, maleic anhydride, phthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride Examples thereof include acid anhydride-based curing agents such as.
  • the ratio of the curing agent is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less with respect to the thermosetting resin.
  • the curing accelerator examples include tertiary amines such as benzyldimethylamine, imidazole, organic acid metal salts, Lewis acid, amine complex salts and the like.
  • the ratio of the curing accelerator is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 3% by mass or less with respect to the thermosetting resin.
  • thermosetting resin described above preferably contains a resin having a hydroxyl group or a resin that generates a hydroxyl group during heat curing.
  • thermosetting resins include epoxy resins and phenol resins.
  • thermosetting of the conductive paste (X) proceeds mainly by the cross-linking reaction involving radicals in the (meth) acrylic resin (a). Further, when the (meth) acrylic resin (a) has an acid functional group such as a carboxyl group, the curing proceeds by the reaction between the (meth) acrylic resin (a) and the epoxy resin, the curing agent, or the like.
  • the conductive paste (X) contains a compound that generates a hydroxyl group during thermosetting, such as an epoxy resin, so that the generated hydroxyl group, the hydroxyl group of the (meth) acrylic resin (a), and boric acid are more complicated three-dimensional. By forming the network, even better conductivity can be obtained.
  • the composition (X) contains a metal powder (B).
  • the metal powder (B) is a particle containing a metal as a main component, and the metal is exposed on the surface of the particle.
  • Examples of the metal powder (B) include copper powder (including silver-coated copper powder), silver powder, copper-silver alloy powder, gold powder, platinum powder, palladium powder, nickel powder, aluminum powder and the like. Among these, copper powder (including silver-coated copper powder) is preferable. In this case, a highly conductive and inexpensive conductive paste (X) can be obtained.
  • Examples of the shape of the metal powder (B) include a spherical shape, a flat shape (scale shape), a dendritic shape, an amorphous shape, and the like.
  • the metal powder (B) may be a combination of two or more of these shapes.
  • the average particle size of the metal powder (B) is preferably 0.1 ⁇ m or more and 30 ⁇ m or less, more preferably 0.5 ⁇ m or more and 20 ⁇ m or less, and 1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of printability. More preferred.
  • the average particle size is the median size, and indicates the particle size in the cumulative distribution of 50% by volume by measuring the particle size distribution (volume basis) of the metal powder (B).
  • the ratio of the metal powder (B) is preferably 50% by mass or more and 99% by mass or less, more preferably 60% by mass or more and 98% by mass or less, and 70% by mass with respect to the conductive paste (X). It is more preferably% or more and 95% by mass or less, and particularly preferably 80% by mass or more and 90% by mass or less.
  • the boric acid (C) includes not only orthoboric acid (H 3 BO 3 ) but also metaboric acid, tetraboric acid and the like, which are condensates thereof.
  • the ratio of boric acid (C) is preferably 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the binder (A) (solid content). In this case, the adhesiveness and conductivity of the conductive paste (X) can be further improved.
  • the ratio of boric acid is more preferably 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder (A) (solid content), and further preferably 3 parts by mass or more and 15 parts by mass or less. ..
  • the ratio of boric acid (C) is preferably 0.1% by mass or more and 5% by mass or less, and 0.2% by mass or more and 3% by mass or less with respect to the conductive paste (X) (solid content). It is more preferable that there is, and it is further preferable that it is 0.5% by mass or more and 2% by mass or less.
  • composition (X) contains an organic solvent (D).
  • organic solvent (D) organic solvent
  • organic solvent (D) examples include diols such as ethylene glycol, propylene glycol and dipropylene glycol, polyhydric alcohols such as triol such as glycerin; sugar alcohols; mono such as ethanol, methanol, butanol, propanol and isopropanol.
  • the ratio of the organic solvent (D) may be 0.1% by mass or more and 30% by mass or less with respect to the conductive paste (X) from the viewpoint of adjusting the viscosity of the conductive paste (X) more appropriately. It is preferable that it is 1% by mass or more and 25% by mass or less, and further preferably 3% by mass or more and 20% by mass or less.
  • the conductive paste (X) contains other components such as a rust inhibitor, an antioxidant, an adhesion imparting agent, a dispersant, a chelating agent, a leveling agent, a thixo adjuster, and an antifoaming agent. good.
  • the ratio of other components is, for example, 2% by mass or less with respect to the conductive paste (X).
  • the viscosity of the conductive paste (X) at 25 ° C. is preferably 5.0 Pa ⁇ s or more and 200 Pa ⁇ s or less. In this case, the conductive paste (X) is easy to print, does not impair the workability of screen printing, and easily forms wiring having a good pattern.
  • the ticko ratio (Ti value) of the conductive paste (X) is preferably 1.0 or more and 3.0 or less.
  • the conductive paste (X) does not impair the workability of screen printing, and wiring having a good pattern is likely to be formed.
  • the conductive film of the present embodiment includes the cured product of the above-mentioned conductive paste (X). Since the conductive film of the present embodiment is formed of the conductive paste (X), it is possible to achieve both good adhesion and conductivity. Further, the conductive film obtained by curing the conductive paste (X) has good adhesion to various substrates and also has excellent flexibility, so that it is not an aluminum plate, a glass plate, a stainless plate, etc.
  • flexible substrates such as polyvinyl chloride film, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, polycarbonate film, ABS film, and indium tin oxide (ITO).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • ITO indium tin oxide
  • the conductive film of the present embodiment is formed by applying it on a substrate by, for example, a screen printing method, and then heating and curing it.
  • the heating temperature and the heating time can be appropriately selected in consideration of the type of the base material and the like, but the heating temperature is usually 100 ° C. or higher and 250 ° C. or lower, and preferably 130 ° C. or higher and 200 ° C. or lower.
  • the heating time is usually 1 minute or more and 5 hours or less, and preferably 10 minutes or more and 1 hour or less.
  • the shape of the conductive film is not particularly limited, and examples thereof include a plane line-of-sight shape such as a circuit pattern or a band shape, and a plane line-of-sight shape such as a circle or a quadrangle.
  • the thickness of the conductive film is, for example, 1 ⁇ m or more and 1 mm or less, preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m
  • the base material examples include a metal plate such as an aluminum plate and a stainless steel plate; an inorganic plate such as a glass plate; an organic film such as a polyvinyl chloride film, a PET film, a PEN film, a PBT film, a polycarbonate film and an ABS film, and an ITO film.
  • a transparent conductive film such as a tin oxide film and a ZnO-based film. Since the conductive film to be formed is formed by curing the conductive paste (X), it can be made excellent in adhesion to these a wide range of substrates.
  • a particularly low specific resistance value can be obtained. It is considered that this is because the hydroxyl group on the ITO film further forms a network with the hydroxyl group of the boric acid- (meth) acrylic resin (a). Further, this further improves the adhesion of the conductive film to the ITO film.
  • the blending amount of azobisisobutyronitrile was changed to obtain a solution of resin A1-2. Further, the mass ratio of methacrylic acid / butyl methacrylate / glycidyl methacrylate to be used was changed to obtain a solution of the resins A1-3, A1-4, A1-5 and the resin A1-6.
  • the weight average molecular weight of the obtained (meth) acrylic resin (a) was measured by the GPC measuring method shown below.
  • the weight average molecular weight was determined by the GPC method in terms of standard polystyrene. The measurement conditions are shown below.
  • Tables 1 and 2 below show the weight average molecular weight, acid value and hydroxyl value of the (meth) acrylic resin (a), as well as the (meth) acrylic resin (x) ((meth) acrylic resin (x1) and (x2)).
  • Tg glass transition temperature
  • Example 1 A solution of resin A1-1 (9.4 g) and boric acid (0.5 g) were mixed and dissolved in 2.0 g of ethyl carbitol as a solvent. 48.0 g of copper powder (manufactured by Fukuda Metal Leaf Industry Co., Ltd., trade name "Cu-HWF-4") was mixed with the obtained solution, mixed with a hybrid mixer, and then kneaded with a roll mill to carry out a conductive paste. 1 (DP-1) was obtained.
  • Example 2 Conductive paste 2 (DP-2) was obtained in the same manner as in Example 1 except that 9.4 g of the solution of the resin A1-2 was used instead of the solution of the resin A1-1.
  • Example 3 A conductive paste 3 (DP-3) was obtained in the same manner as in Example 1 except that 10.8 g of a solution of resin A1-3 was used instead of the solution of resin A1-1.
  • Example 4 Conductive paste 4 (DP-4) was obtained in the same manner as in Example 1 except that 8.5 g of the solution of the resin A1-6 was used instead of the solution of the resin A1-1.
  • Example 5 A conductive paste 5 (DP-5) was obtained in the same manner as in Example 1 except that 10.5 g of a solution of resin A1-4 was used instead of the solution of resin A1-1.
  • Example 6 A conductive paste 6 (DP-6) was obtained in the same manner as in Example 1 except that 8.7 g of a solution of resin A1-5 was used instead of the solution of resin A1-1.
  • Example 7 Instead of the solution of the resin A1-1, 6.7 g of the solution of the resin A4-1 was used, and 1.8 g of the epoxy resin (EPICLON EXA4816 manufactured by DIC Corporation) and the curing accelerator (Curesol 2PHZ-PW manufactured by Shikoku Kasei Co., Ltd.) were used.
  • a conductive paste 7 (DP-7) was obtained in the same manner as in Example 1 except that 0.02 g was added and the blending amount of ethylcarbitol as a solvent was changed to 3.0 g.
  • Example 8 Same as Example 1 except that 48.0 g of silver-coated copper powder (manufactured by Mitsui Mining & Smelting Co., Ltd., trade name "10% Ag02K”) was used as the metal powder instead of the copper powder (Cu-HWF-4). A conductive paste 8 (DP-8) was obtained.
  • Example 9 Change the blending amount of the resin A1-1 solution to 5.8 g, and add 1.8 g of epoxy resin (EPICLON EXA4816 manufactured by DIC) and 0.02 g of curing accelerator (Curesol 2PHZ-PW manufactured by Shikoku Kasei Co., Ltd.).
  • a conductive paste 9 (DP-9) was obtained in the same manner as in Example 1 except that the blending amount of ethyl carbitol as a solvent was changed to 3.0 g.
  • Example 10 Conductive paste 10 (DP) was used in the same manner as in Example 1 except that 10.0 g of the solution of the resin A2-1 was used instead of the solution of the resin A1-1 and the solvent was changed to 3.0 g of ethyl carbitol acetate. -10) was obtained.
  • Example 11 A conductive paste 11 (DP-11) was obtained in the same manner as in Example 10 except that 8.3 g of the solution of the resin A3-1 was used instead of the solution of the resin A2-1.
  • Example 1 A conductive paste 12 (DP-12) was obtained in the same manner as in Example 1 except that the blending amount of the solution of the resin A1-1 was changed to 10.4 g and boric acid was not added.
  • Example 2 Conductive paste 13 in the same manner as in Example 1 except that the solution of the resin A1-1 was not blended, but 4.5 g of the epoxy resin (EPICLON EXA4816) and 0.05 g of the curing accelerator (Curesol 2PHZ-PW) were blended. (DP-13) was obtained.
  • the dispersibility of the metal powder was evaluated according to the following criteria.
  • Table 3 below also shows the measured values of the paste viscosity (Pa ⁇ s) (5 rpm, 0.5 rpm), the Ti value, and the evaluation results of the dispersibility of the metal powder.
  • the obtained conductive pastes 1 to 13 are applied to a transparent conductive film (indium tin oxide) on a PET film substrate, a glass substrate, and a glass substrate by a screen printing method. It is applied on a film) in a strip-shaped wiring shape having a width of 1 mm, a length of 50 mm, and a thickness of 20 ⁇ m, respectively, and heated at 150 ° C. for 30 minutes to be cured to conduct conductive films 1 to 13 (DM-1 to DM-13). ) With a conductive film were obtained.
  • the glass was prepared by a method based on JIS-K5600-5-6: 1999 (general paint test method (adhesion: cross-cut method)). Adhesion to PET and ITO was evaluated. Specifically, a conductive film (dimensions: 20 mm ⁇ 100 mm, thickness 18 ⁇ m) formed on each substrate is cut with a cutter in a 5 ⁇ 5 grid pattern with a width of 1 mm, and cellophane is formed in the grid pattern. The operation of attaching and peeling the tape was carried out, and the adhesion was evaluated on a scale of 6 from classification 0 to classification 5.
  • Bending resistance evaluation The obtained conductive films 1 to 13 (DM-1 to DM-13) were wound around a 2 mm ⁇ iron core using a bending tester, bent, and then unbent, and then the specific resistance value was measured. Bending resistance was evaluated according to the following criteria. A: The rate of increase in resistance before and after bending is 20% or less. B: The rate of increase in resistance before and after bending is more than 20% and 100% or less. C: The rate of increase in resistance before and after bending is over 100%.
  • Table 4 shows the resistance value ( ⁇ ) of the conductive film, the film thickness ( ⁇ m) of the conductive film, the specific resistance value (volume resistivity) ( ⁇ ⁇ cm) calculated from the resistance value and the film thickness, and the adhesion (glass). , PET, ITO), and the bending resistance evaluation result are also shown.
  • the conductive pastes of Examples 1, 6 and 7 are used to obtain a conductive film having a low resistivity value of 100 ⁇ ⁇ cm or less and showing particularly good adhesion to various substrates. Can be done.
  • the conductive paste of Comparative Example 1 has a large resistivity value because hydrogen bonds are not formed and sufficient curing shrinkage for developing conductivity cannot be obtained because boric acid is not used. Conceivable. Since the conductive paste of Comparative Example 2 does not contain a (meth) acrylic resin, it has low adhesion to various substrates.
  • the conductive paste of the first aspect according to the present disclosure contains a binder (A), a metal powder (B), boric acid (C), and an organic solvent (D). ..
  • the binder (A) contains a (meth) acrylic resin (a) having a hydroxyl group.
  • the conductive paste can achieve both good adhesion and conductivity.
  • the conductive paste of the second aspect has the weight average molecular weight of the (meth) acrylic resin (a) of 3000 or more and 100,000 or less, and the hydroxyl value of the (meth) acrylic resin (a). It is 20 mgKOH / g or more and 150 mgKOH / g or less.
  • the conductive paste can have better adhesion to the substrate, better hydrogen bonding to boric acid, better conductivity, and the paste.
  • the viscosity can be made more moderate and the handling will be better.
  • the conductive paste of the third aspect is the weight of the (meth) acrylic resin (a) having a structural unit based on a monomer having a (meth) acryloyl group and a carboxyl group in the first or second aspect.
  • the coalescence (x1) comprises a resin (a1) modified by a compound having a (meth) acryloyl group and an epoxy group.
  • a secondary alcoholic hydroxyl group is generated by the reaction of the carboxyl group and the epoxy group, and this hydroxyl group and boric acid form a network by hydrogen bonding or the like, and the side chain of the polymer is formed. Since it has a (meth) acryloyl group at the end of the group, it participates in thermosetting, and the curing shrinkage becomes larger, so that the conductivity can be further improved.
  • the conductive paste of the fourth aspect is the weight in which the (meth) acrylic resin (a) has a structural unit based on a monomer having a (meth) acryloyl group and an epoxy group.
  • the coalescence (x2) comprises a resin (a2) modified with a compound having a (meth) acryloyl group and a carboxyl group.
  • a secondary alcoholic hydroxyl group is generated by the reaction of the epoxy group and the carboxyl group, and this hydroxyl group and boric acid form a network by hydrogen bonding or the like, and the side chain of the polymer is formed. Since it has a (meth) acryloyl group at the end of the group, it participates in thermosetting, and the curing shrinkage becomes larger, so that the conductivity can be further improved.
  • the conductive paste of the fifth aspect includes the resin (a3) in which the resin (a2) is further modified with a carboxylic acid anhydride in the (meth) acrylic resin (a).
  • the dispersibility of the metal powder can be further improved by using the resin (a3).
  • the metal powder (B) contains copper powder in any one of the first to fifth aspects.
  • a highly conductive and inexpensive conductive paste can be obtained.
  • the conductive film of the seventh aspect includes a cured product of the conductive paste of any one of the first to sixth aspects.
  • the seventh aspect it is possible to achieve both good adhesion and conductivity in the conductive film.
  • the conductive paste according to the present disclosure can be used for forming an electrode of a semiconductor device, an electronic component, or the like, and a conductive film as a circuit pattern.
  • the conductive paste of the present disclosure can be thermally cured at a low temperature (for example, 250 ° C. or lower) to form an electrode.
  • a conductive film (electrode) having a low resistivity value can be obtained.
  • the conductive paste of the present disclosure can optimize the numerical range of various physical properties of the (meth) acrylic resin in order to obtain a coating film having excellent adhesion to both an inorganic base material and an organic base material.
  • a conductive film having excellent adhesion not only on the surface of inorganic substrates such as semiconductors, oxides and ceramics, but also on organic substrates with low heat resistance such as PET and PEN. It can be used to form a circuit pattern. Further, a conductive film having excellent adhesion can be formed on a transparent conductive film (ITO film, tin oxide film, ZnO-based film, etc.) which is a material of a transparent electrode, and can be used for electrode formation.
  • ITO film, tin oxide film, ZnO-based film, etc. which is a material of a transparent electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

良好な密着性と導電性とを両立できる導電性ペーストを提供する。導電性ペーストは、バインダー(A)と、金属粉(B)と、ホウ酸(C)と、有機溶剤(D)とを含有する。バインダー(A)は、水酸基を有する(メタ)アクリル樹脂(a)を含む。

Description

導電性ペースト及び導電膜
 本開示は、導電性ペースト及び導電膜に関し、詳しくは、バインダーと金属粉とホウ酸と有機溶剤とを含有する導電性ペースト、及びこの導電性ペーストの硬化物を含む導電膜に関する。
 導電性ペーストを各種基材に印刷することで配線を形成する技術が用いられている。導電性ペーストを基材表面にスクリ-ン印刷法などにより印刷し、所定パターンの配線となる導電膜を形成することが行われている。
 導電性ペーストの導通メカニズムはバインダーである熱硬化性樹脂の硬化収縮による金属粉同士の接触又は接近によるもので、金属粉表面の酸化状態、及び熱硬化性樹脂の硬化収縮状態により導電性は大きく影響を受ける。バインダーとしては、硬化収縮の大きさから、良好な導電性が得られるレゾール型フェノール樹脂が一般的に用いられてきた。しかし、レゾール型フェノール樹脂は、固脆く、基板に対する密着性も低い。そこで、(メタ)アクリル樹脂を用いた導電性ペーストが提案されている。
 (メタ)アクリル樹脂を用いた導電性ペーストとして、特許文献1には、バインダ樹脂としての(メタ)アクリル樹脂、有機溶剤、及び金属粉末を含む導電性ペーストであって、(メタ)アクリル樹脂は、ガラス転移点Tgが-60℃~120℃の範囲にあり、分子中のヒドロキシ基が0.01重量%~5重量%の範囲にあり、酸価が1mgKOH/g~50mgKOH/gの範囲にあり、重量平均分子量が10000~350000の範囲にある導電性ペーストが開示されている。特許文献2には、導電性成分、熱硬化性樹脂、特定のカチオン重合開始剤を含み、熱硬化性樹脂としてアクリル樹脂を含む導電性ペーストが開示されている。
 導電性ペーストは、(メタ)アクリル樹脂を用いることにより、その特性から柔軟性を良好にすることができ、また、密着性を向上させることはできるが、加熱による樹脂の硬化収縮が小さいため、前記従来の(メタ)アクリル樹脂を用いた導電性ペーストでは、十分な導電性を発現できなかった。
国際公開第2013/187183号 特開2019-106305号公報
 本開示の課題は、良好な密着性と導電性とを両立できる導電性ペースト、及び導電膜を提供することにある。
 本開示の一態様に係る導電性ペーストは、バインダー(A)と、金属粉(B)と、ホウ酸(C)と、有機溶剤(D)とを含有する。前記バインダー(A)は、水酸基を有する(メタ)アクリル樹脂(a)を含む。
 本開示の一態様に係る導電膜は、前記導電性ペーストの硬化物を含む。
<導電性ペースト>
 本実施形態の導電性ペースト(以下、導電性ペースト(X)ともいう)は、バインダー(A)と、金属粉(B)と、ホウ酸(C)と、有機溶剤(D)とを含有する。バインダー(A)は、水酸基を有する(メタ)アクリル樹脂(a)を含む。「(メタ)アクリル樹脂」とは、アクリル樹脂、メタクリル樹脂又はこれらの両方を意味する。(メタ)アクリル樹脂は、(メタ)アクリル酸及び(メタ)アクリル酸エステルの少なくとも一方の単量体に基づく構成単位を有する重合体である。
 本発明者らは、バインダーの熱硬化性樹脂として(メタ)アクリル樹脂を用いる導電性ペーストにおいて、(メタ)アクリル樹脂として、水酸基を有する(メタ)アクリル樹脂(a)を用い、さらにホウ酸を添加することにより、良好な導電性を発現できることを見出した。この理由は必ずしも明確ではないが、例えば(メタ)アクリル樹脂(a)の水酸基とホウ酸とが、水素結合等によるネットワークで、3次元架橋構造を形成することにより、樹脂の硬化収縮が大きくなり、その結果、導電性が向上したこと等が考えられる。また、導電性ペースト(X)において、バインダー(A)が水酸基を有する(メタ)アクリル樹脂(a)を含み、かつホウ酸を含有することによって、各種基材への密着性を良好にできることも見出した。このように、導電性ペースト(X)によれば、良好な密着性及び導電性を両立することができる。
[バインダー(A)]
 バインダー(A)は、水酸基を有する(メタ)アクリル樹脂(a)(以下、(メタ)アクリル樹脂(a)ともいう)を含む。水酸基としては、アルコール性水酸基、フェノール性水酸基が挙げられる。(メタ)アクリル樹脂(a)の水酸基としては、例えば水酸基を有する単量体に基づく構成単位中のアルコール性水酸基又はフェノール性水酸基、(メタ)アクリル樹脂の変性反応において、エポキシ基とカルボキシル基との反応により生じるアルコール性水酸基などが挙げられる。
 (メタ)アクリル樹脂(a)の水酸基価は、20mgKOH/g以上150mgKOH/g以下であることが好ましい。水酸基価を前記範囲とすることにより、基材との密着性がより向上すると共に、ホウ酸との水素結合性がより良好となり、導電性をより向上させることができる。水酸基価は、30mgKOH/g以上130mgKOH/gであることがより好ましく、40mgKOH/g以上120mgKOH/gであることがさらに好ましく、50mgKOH/g以上80mgKOH/gであることが特に好ましい。(メタ)アクリル樹脂(a)の水酸基価とは、(メタ)アクリル樹脂(a)1g中の水酸基と当量の水酸化カリウムのmg数を意味する。
 (メタ)アクリル樹脂(a)の酸価は、0mgKOH/g以上200mgKOH/g以下であることが好ましく、50mgKOH/g以上150mgKOH/g以下であることがより好ましい。酸価を前記範囲とすることにより、金属粉の分散性をより良好なものとすることができる。(メタ)アクリル樹脂(a)の酸価とは、(メタ)アクリル樹脂(a)1gのカルボキシル基を中和するのに要する水酸化カリウムのmg数である。
 (メタ)アクリル樹脂(a)の重量平均分子量(Mw)は3000以上100000以下であることが好ましい。Mwを前記範囲とすることにより、密着性がより向上すると共に、ペースト粘度をより適度なものにすることができ、ハンドリングがより良好になる。Mwが100000を超えると、密着性が低下すると共に、ペースト粘度が高くなり、ハンドリングが悪くなる場合がある。Mwは5000以上80000以下であることがより好ましく、7000以上50000以下であることがさらに好ましく、10000以上50000以下であることが特に好ましい。Mwは、GPC測定法により標準ポリスチレン換算で求められる値である。
 (メタ)アクリル樹脂(a)をと主鎖構造が同一であり、(メタ)アクリル樹脂(a)を与える前駆体の樹脂(x)のガラス転移温度(Tg)は、20℃以上100℃以下であることが好ましい。Tgを前記範囲とすることにより、密着性をより向上させることができる。Tgは、30℃以上95℃以下であることがより好ましく、40℃以上90℃以下であることがさらに好ましい。ガラス転移温度(Tg)は、樹脂(x)の構成単位である単量体の組成割合から理論的に計算される値であり、Foxの式で算出した値である。
 (メタ)アクリル樹脂(a)としては、例えば以下の樹脂(a1)~(a4)等が挙げられる。
 樹脂(a1):(メタ)アクリロイル基及びカルボキシル基を有する単量体に基づく構成単位を有する重合体(x1)が(メタ)アクリロイル基及びエポキシ基を有する化合物によって変性された樹脂
 樹脂(a2):(メタ)アクリロイル基及びエポキシ基を有する単量体に基づく構成単位を有する重合体(x2)が(メタ)アクリロイル基及びカルボキシル基を有する化合物によって変性された樹脂
 樹脂(a3):樹脂(a2)がさらにカルボン酸無水物によって変性された樹脂
 樹脂(a4):水酸基を有する単量体に基づく構成単位を有する(メタ)アクリル樹脂
(樹脂(a1))
 樹脂(a1)は、(メタ)アクリロイル基及びカルボキシル基を有する単量体に基づく構成単位(以下、構成単位(u1)ともいう)を有する重合体(x1)が(メタ)アクリロイル基及びエポキシ基を有する化合物(以下、化合物(c1)ともいう)によって変性された樹脂である。樹脂(a1)は、カルボキシル基を有する(メタ)アクリル樹脂(x1)に、エポキシ基を有する化合物(c1)が変性反応することによって形成される。カルボキシル基とエポキシ基との反応により2級のアルコール性水酸基が生成し、この水酸基とホウ酸とが水素結合等によりネットワークを形成する。また、樹脂(a1)は、重合体の側鎖の末端に(メタ)アクリロイル基を有するため、これが熱硬化に関与し、硬化収縮がより大きくなるため、導電性をより向上させることができると考えられる。
 (メタ)アクリロイル基及びカルボキシル基を有する単量体としては、例えば(メタ)アクリル酸、クロトン酸、桂皮酸、(メタ)アクリル酸カルボキシメチル、(メタ)アクリル酸カルボキシエチル、(メタ)アクリル酸カルボキシシクロヘキシル、(メタ)アクリル酸カルボキシフェニル、(メタ)アクリル酸カルボキシベンジル、フタル酸2-(メタ)アクリロイルオキシエチル、テトラヒドロフタル酸2-(メタ)アクリロイルオキシエチル、ヘキサヒドロフタル酸2-(メタ)アクリロイルオキシエチル、コハク酸2-(メタ)アクリロイルオキシエチル、ω-カルボキシ-ポリカプロラクトンモノアクリレート等が挙げられる。
 樹脂(a1)における構成単位(u1)の割合は、樹脂(a1)を構成する全構成単位に対して、5質量%以上100質量%以下であることが好ましく、20質量%以上50質量%以下であることがより好ましい。
 (メタ)アクリロイル基及びエポキシ基を有する化合物(c1)としては、例えばグリシジル(メタ)アクリレート、エポキシブチル(メタ)アクリレート、エポキシシクロヘキシル(メタ)アクリレート等が挙げられる。
 重合体(x1)と化合物(c1)との変性反応において、化合物(c1)は、重合体(x1)のカルボキシル基1molに対して、エポキシ基が0.1mol以上0.7mol以下となる量を用いることが好ましい。
 樹脂(a1)における構成単位(u1)の割合及び変性反応に用いる化合物(c1)の割合を最適化することにより、導電性ペースト(X)から形成される導電膜の無機基材及び有機基材に対する密着性、並びに導電性をより向上させることができる。
(樹脂(a2))
 樹脂(a2)は、(メタ)アクリロイル基及びエポキシ基を有する単量体に基づく構成単位(以下、構成単位(u2)ともいう)を有する重合体(x2)が(メタ)アクリロイル基及びカルボキシル基を有する化合物(以下、化合物(c2)ともいう)によって変性された樹脂である。樹脂(a2)は、エポキシ基を有する(メタ)アクリル樹脂(x2)に、カルボキシル基を有する化合物(c2)が変性反応することによって形成される。エポキシ基とカルボキシル基との反応により2級のアルコール性水酸基が生成し、この水酸基とホウ酸とが水素結合等によりネットワークを形成する。また、樹脂(a2)は、重合体の側鎖の末端に(メタ)アクリロイル基を有するため、これが熱硬化に関与し、硬化収縮がより大きくなるため、導電性をより向上させることができると考えられる。
 (メタ)アクリロイル基及びエポキシ基を有する単量体としては、例えば前述の(メタ)アクリロイル基及びエポキシ基を有する化合物(c1)として例示したものと同様の化合物などが挙げられる。
 樹脂(a2)における構成単位(u2)の割合は、樹脂(a2)を構成する全構成単位に対して、10質量%以上100質量%以下であることが好ましく、30質量%以上80質量%以下であることがより好ましい。
 (メタ)アクリロイル基及びカルボキシル基を有する化合物(c2)としては、例えば前述の(メタ)アクリロイル基及びカルボキシル基を有する単量体として例示したものと同様の化合物などが挙げられる。
 重合体(x2)と化合物(c2)との変性反応において、化合物(c2)は、重合体(x2)のエポキシ基1molに対して、カルボキシル基が0.1mol以上1.0mol以下となる量を用いることが好ましい。
 樹脂(a2)における構成単位(u2)の割合及び変性反応に用いる化合物(c2)の割合を最適化することにより、導電性ペースト(X)から形成される導電膜の無機基材及び有機基材に対する密着性、並びに導電性をより向上させることができる。
(樹脂(a3))
 樹脂(a3)は、樹脂(a2)がさらにカルボン酸無水物によって変性された樹脂である。樹脂(a3)は、エポキシ基を有する樹脂(a2)に、カルボン酸無水物(化合物(c3))が変性反応することによって形成される。樹脂(a3)を用いることにより、金属粉の分散性をより向上させることができる。
 カルボン酸無水物としては、例えば無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水グルタコン酸、1,2,3,4-ブタンテトラカルボン酸無水物等の脂肪族カルボン酸無水物;無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸無水物、シクロヘキサンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物等の脂環式カルボン酸無水物;無水フタル酸、トリメリット酸無水物、ピロメリット酸無水物、ナフタレンジカルボン酸無水物、ナフタレントリカルボン酸無水物、ナフタレンテトラカルボン酸無水物、ビフェニルジカルボン酸無水物、ビフェニルトリカルボン酸無水物、ビフェニルテトラカルボン酸無水物、ベンゾフェノンテトラカルボン酸無水物等の芳香族カルボン酸無水物などが挙げられる。
 カルボン酸無水物は、得られる樹脂(a3)の酸価が、好ましくは0mgKOH/g以上200mgKOH/g、より好ましくは50mgKOH/g以上150mgKOH/g以下になる量を用いることが好ましい。樹脂(a3)の酸価を前記範囲とすることにより、金属粉の良好な分散性が得られる。
(樹脂(a4))
 樹脂(a4)は、水酸基を有する単量体に基づく構成単位(以下、構成単位(u4)ともいう)を有する(メタ)アクリル樹脂である。水酸基としては、アルコール性水酸基及びフェノール性水酸基が挙げられる。
 水酸基を有する単量体としては、例えば(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシシクロヘキシル、(メタ)アクリル酸ヒドロキシフェニル、(メタ)アクリル酸ヒドロキシベンジル等の(メタ)アクリル酸ヒドロキシ基含有エステル;アリルアルコール、ビニルシクロヘキサノール等のヒドロキシ基含有ビニル化合物などが挙げられる。
 樹脂(a4)は、構成単位(u1)を有することが好ましい。この場合、樹脂(a4)がカルボキシル基を有するため、これが熱硬化に関与し、硬化収縮がより大きくなるため、導電性をより向上させることができると考えられる。
 樹脂(a4)における構成単位(u4)の割合は、樹脂(a4)を構成する全構成単位に対して、5質量%以上50質量%以下であることが好ましく、10質量%以上30質量%以下であることがより好ましい。
 樹脂(a1)~(a3)は、構成単位(u4)を有していてもよい。樹脂(a1)~(a4)における構成単位(u1)~(u4)以外の構成単位を与える単量体としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸脂肪族エステル;(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸脂環式エステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸芳香族エステルなどの(メタ)アクリル酸エステル、エチレン、プロピレン、1-ブテン、スチレン等のビニル化合物などが挙げられる。
 (メタ)アクリル樹脂(a)の割合は、バインダー(A)に対して、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましい。
(その他の樹脂)
 バインダー(A)は、その他の樹脂として、例えば前述の(メタ)アクリル樹脂(a)以外の他の熱硬化性樹脂を含んでいてもよい。このような他の熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、アミノ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、シアネート樹脂、水酸基を有さない(メタ)アクリル樹脂などが挙げられる。
 その他の樹脂の割合としては、バインダー(A)に対して、1質量%以上50質量%以下であることが好ましく、5質量%以上45質量%以下であることがより好ましく、10質量%以上40質量%以下であることがさらに好ましい。
 導電性ペースト(X)は、熱硬化性樹脂を硬化させるために、例えば硬化剤、硬化促進剤などを含有していてもよい。
 硬化剤としては、熱硬化性樹脂を硬化させることができるものであれば用いることができ、例えばノボラック樹脂;ジシアンジアミド、イミダゾール、BF-アミン錯体、グアニジン誘導体等の潜在性アミン系硬化剤;メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族アミン類;シクロホスファゼンオリゴマー等の窒素原子を含有する硬化剤;ポリアミド樹脂、無水マレイン酸、無水フタル酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸等の酸無水物系硬化剤などが挙げられる。硬化剤の割合は、熱硬化性樹脂に対して、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましい。
 硬化促進剤としては、例えばベンジルジメチルアミン等の第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。硬化促進剤の割合は、熱硬化性樹脂に対して、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上3質量%以下であることがより好ましい。
 前述の他の熱硬化性樹脂は、水酸基を有している樹脂、又は熱硬化時に水酸基を生じる樹脂を含むことが好ましい。このような熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂等が挙げられる。他の熱硬化性樹脂が水酸基を有しているか又は生じることで、水酸基とホウ酸との水素結合等によるネットワークがより多く形成されるため、さらなる導電性の向上を実現することができる。
 導電性ペースト(X)の熱硬化は、主に(メタ)アクリル樹脂(a)におけるラジカルが関与する架橋反応が起こることにより進行すると考えられる。また、(メタ)アクリル樹脂(a)がカルボキシル基等の酸官能基を有する場合、(メタ)アクリル樹脂(a)とエポキシ樹脂や硬化剤などとの反応によっても硬化が進行する。導電性ペースト(X)は、エポキシ樹脂等の熱硬化時に水酸基を生じる化合物を含有することで、この生じた水酸基と(メタ)アクリル樹脂(a)の水酸基とホウ酸とのさらに複雑な3次元ネットワークが形成されることにより、さらに良好な導電性を得ることができる。
[金属粉(B)]
 組成物(X)は、金属粉(B)を含有する。金属粉(B)は、金属を主成分とする粒子であり、粒子表面に金属が露出しているものである。
 金属粉(B)としては、例えば銅粉(銀コート銅粉を含む)、銀粉、銅-銀合金粉、金粉、白金粉、パラジウム粉、ニッケル粉、アルミニウム粉などが挙げられる。これらの中で、銅粉(銀コート銅粉を含む)が好ましい。この場合、高導電性で安価な導電性ペースト(X)が得られる。
 金属粉(B)の形状としては、例えば球形、扁平形(鱗片形)、樹枝形、不定形等が挙げられる。金属粉(B)は、これらの形状を2種以上組み合わせたものであってもよい。
 金属粉(B)の平均粒子径は、印刷適正の観点から、0.1μm以上30μm以下であることが好ましく、0.5μm以上20μm以下であることがより好ましく、1μm以上10μm以下であることがさらに好ましい。平均粒子径とは、メジアン径であって、金属粉(B)の粒度分布(体積基準)を計測し、その累積分布50体積%における粒径を示す。
 金属粉(B)の割合は、導電性ペースト(X)に対して、50質量%以上99質量%以下であることが好ましく、60質量%以上98質量%以下であることがより好ましく、70質量%以上95質量%以下であることがさらに好ましく、80質量%以上90質量%以下であることが特に好ましい。
[ホウ酸(C)]
 ホウ酸(C)としては、オルトホウ酸(HBO)以外にも、この縮合物であるメタホウ酸、四ホウ酸等も含まれる。
 ホウ酸(C)の割合は、バインダー(A)(固形分)100質量部に対して、1質量部以上40質量部以下であることが好ましい。この場合、導電性ペースト(X)の密着性及び導電性をより向上させることができる。ホウ酸の割合は、バインダー(A)(固形分)100質量部に対して、2質量部以上20質量部以下であることがより好ましく、3質量部以上15質量部以下であることがさらに好ましい。
 ホウ酸(C)の割合は、導電性ペースト(X)(固形分)に対して、0.1質量%以上5質量%以下であることが好ましく、0.2質量%以上3質量%以下であることがより好ましく、0.5質量%以上2質量%以下であることがさらに好ましい。
[有機溶剤(D)]
 組成物(X)は、有機溶剤(D)を含有する。これにより、導電性ペースト(X)は、粘度をより適度に調整することができ、スクリーン印刷等に好適に用いることができる。
 有機溶剤(D)としては、例えば、エチレングリコール、プロピレングリコール、ジプロピレングリコール等のジオール、グリセリン等のトリオールなどの多価アルコール類;糖アルコール類;エタノール、メタノール、ブタノール、プロパノール、イソプロパノール等のモノアルコール類;1-メチル-1-メトキシブタノール;エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノ-iso-プロピルエーテル(iso-プロピルセロソルブ)、エチレングリコールモノ-n-ブチルエーテル(n-ブチルセロソルブ)、エチレングリコールモノ-t-ブチルエーテル(t-ブチルセロソルブ)等のセロソルブ類;ジエチレングリコールモノメチルエーテル(メチルカルビトール)、ジエチレングリコールモノエチルエーテル(エチルカルビトール)、ジエチレングリコールモノ-n-プロピルエーテル(n-プロピルカルビトール)、ジエチレングリコールモノ-iso-プロピルエーテル(iso-プロピルカルビトール)、エチレングリコールモノ-n-ブチルエーテル(n-ブチルカルビトール)、ジエチレングリコールモノ-t-ブチルエーテル(t-ブチルカルビトール)等のカルビトール類;トリエチレングリコールモノエチルエーテル(エチルトリグリコール)等のトリグリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-iso-プロピルエーテル等のプロピレングリコールモノエーテル類;ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-iso-プロピルエーテル等のジプロピレングリコールモノエーテル類;トリプロピレングリコールモノメチルエーテル等のトリプロピレングリコールモノエーテル類などのグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート等のセロソルブカルボキシレート類などのグリコールエーテルカルボキシレート類;エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類などが挙げられる。
 有機溶剤(D)の割合は、導電性ペースト(X)の粘度をより適度に調整する観点から、導電性ペースト(X)に対して、0.1質量%以上30質量%以下であることが好ましく、1質量%以上25質量%以下であることがより好ましく、3質量%以上20質量%以下であることがさらに好ましい。
[その他の成分]
 導電性ペースト(X)は、その他の成分として、例えば防錆剤、酸化防止剤、密着性付与剤、分散剤、キレート剤、レベリング剤、チクソ調整剤、消泡剤等を含有していてもよい。その他の成分の割合は、導電性ペースト(X)に対して例えば2質量%以下である。
(粘度)
 導電性ペースト(X)の25℃における粘度は、5.0Pa・s以上200Pa・s以下であることが好ましい。この場合、導電性ペースト(X)は、印刷しやすく、スクリーン印刷の作業性を損なうことがなく、良好なパターンを有する配線が形成されやすい。また導電性ペースト(X)のチクソ比(Ti値)は、1.0以上3.0以下であることが好ましい。チクソ比は、25℃、0.5rpmでの粘度と、25℃、5rpmでの粘度との比率で表される(チクソ比=(25℃、0.5rpmでの粘度)/(25℃、5rpmでの粘度))。この場合、導電性ペースト(X)は、スクリーン印刷の作業性を損なうことがなく、良好なパターンを有する配線が形成されやすい。
<導電膜>
 本実施形態の導電膜は、前述の導電性ペースト(X)の硬化物を含む。本実施形態の導電膜は、導電性ペースト(X)から形成されるので、良好な密着性と導電性とを両立することができる。また、導電性ペースト(X)を硬化させて得られる導電膜は、各種基材への密着性が良好であることに加え、柔軟性にも優れるため、アルミニウム板、ガラス板、ステンレス板等以外に、ポリ塩化ビニルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリカーボネートフィルム、ABSフィルムなどの柔軟性のある基材や、酸化インジウムスズ(ITO)膜上への配線等の導電膜の形成が可能になる。
 本実施形態の導電膜は、例えばスクリーン印刷法などにより、基材上に塗布した後、加熱して硬化させることにより形成される。加熱温度及び加熱時間は、基材の種類等を考慮して適宜選択することができるが、加熱温度は、通常100℃以上250℃以下であり、130℃以上200℃以下であることが好ましい。加熱時間は、通常1分以上5時間以下であり、10分以上1時間以下であることが好ましい。導電膜の形状は、特に限定されず、回路パターン等の平面視線形状又は帯形状の他、円形、四角形等の平面視面形状などが挙げられる。導電膜の厚さは、例えば1μm以上1mm以下であり、5μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましい。
 基材としては、例えばアルミニウム板、ステンレス板等の金属板;ガラス板等の無機板;ポリ塩化ビニルフィルム、PETフィルム、PENフィルム、PBTフィルム、ポリカーボネートフィルム、ABSフィルムなどの有機フィルム、ITO膜、酸化スズ膜、ZnO系膜等の透明導電膜などが挙げられる。形成される導電膜は、導電性ペースト(X)の硬化により形成されるので、これら広範囲の基材に対して密着性に優れたものとすることができる。
 導電性ペースト(X)を用いて、ITO膜等の透明導電膜の表面に配線等の導電膜を形成した場合、特に低い比抵抗値を得ることができる。これは、ITO膜上の水酸基が、ホウ酸-(メタ)アクリル樹脂(a)の水酸基とのネットワークをより形成させるためと考えられる。また、これにより、導電膜のITO膜への密着性もより向上する。
 以下、本開示を実施例によって具体的に説明する。
<(メタ)アクリル樹脂(a)の合成>
[(メタ)アクリル樹脂(a1)の合成]
 撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、ジプロピレングリコールモノメチルエーテル300g、メタクリル酸70g、メタクリル酸ブチル130g、及びアゾビスイソブチロニトリル2gを配合し、常圧、窒素ガス気流下、80℃で10時間、溶液重合法により重合反応を行い、(メタ)アクリル樹脂(x1)である樹脂X1-1の溶液を得た。続いて、撹拌装置、冷却管、滴下ロート及び空気の液中導入管を備えた反応装置において、得られた樹脂X1-1の溶液に、ヒドロキノン0.2g、及びトリフェニルホスフィン2gを加えて溶解し、さらにグリシジルメタクリレート70gを加えてから、110℃、空気バブリング下で、5時間加熱した。このようにして、(メタ)アクリル樹脂(a1)である樹脂A1-1の溶液を得た。
 同様の反応において、アゾビスイソブチロニトリルの配合量を変えて、樹脂A1-2の溶液を得た。また、使用するメタクリル酸/メタクリル酸ブチル/グリシジルメタクリレートの質量比を変えて、樹脂A1-3、A1-4、A1-5及び樹脂A1-6の溶液を得た。
[(メタ)アクリル樹脂(a4)の合成]
 前記同様の反応において、さらに、単量体として水酸基を有するヒドロキシエチルメタクリレートを使用し、かつグリシジルメタクリレートの付加反応を実施しないことにより、樹脂A4-1の溶液を得た。
[(メタ)アクリル樹脂(a2)の合成]
 撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、エチルカルビトールアセテート300g、メタクリル酸メチル130g、グリシジルメタクリレート70g及びアゾビスイソブチロニトリル5gを配合し、常圧、窒素ガス気流下、80℃で7時間、溶液重合法により重合反応を行い、(メタ)アクリル樹脂(x2)である樹脂X2-1の溶液を得た。続いて、撹拌装置、冷却管、滴下ロート及び空気の液中導入管を備えた反応装置において、得られた樹脂X2-1の溶液に、アクリル酸36g及びトリフェニルホスフィン2gを加えて溶解し、100℃、空気バブリング下で、8時間加熱した。このようにして、(メタ)アクリル樹脂(a2)である樹脂A2-1の溶液を得た。
[(メタ)アクリル樹脂(a3)の合成]
 前記同様の反応において、使用するメタクリル酸メチル/グリシジルメタクリレート/アクリル酸の質量比を変え、さらにカルボン酸無水物であるテトラヒドロ無水フタル酸による変性も行うことにより、樹脂A3-1の溶液を得た。
 得られた(メタ)アクリル樹脂(a)について、以下に示すGPC測定法により重量平均分子量の測定を行った。
(重量平均分子量の測定)
 重量平均分子量は、GPC法により標準ポリスチレン換算で求めた。測定条件を以下に示す。
・装置:島津製作所製、「Prominence LC-20AD」
・カラム:昭和電工社製、「GPC KF-801,GPC KF-803,GPC KF-805」計3本
・ガードカラム:昭和電工社製、「GPC-KF-G 4A」
・サンプル濃度:(メタ)アクリル樹脂(a)の濃度が0.5質量%になるようにテトラヒドロフランで希釈した。
・移動相溶媒:テトラヒドロフラン
・流量:1.0mL/分
・カラム温度:40℃
 下記表1及び表2に、(メタ)アクリル樹脂(a)の重量平均分子量、酸価及び水酸基価、並びに(メタ)アクリル樹脂(x)((メタ)アクリル樹脂(x1)及び(x2))のガラス転移温度(Tg)の測定結果を合わせて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<導電性ペーストの調製>
(実施例1)
 樹脂A1-1の溶液9.4g、及びホウ酸0.5gを配合して、溶剤であるエチルカルビトール2.0gに溶解させた。得られた溶液に、銅粉(福田金属箔工業社製、商品名「Cu-HWF-4」)48.0gを配合し、ハイブリッドミキサーで混合した後、ロールミルにより混錬を行い、導電性ペースト1(DP-1)を得た。
(実施例2)
 樹脂A1-1の溶液に代えて、樹脂A1-2の溶液9.4gを用いた以外は、実施例1と同様にして導電性ペースト2(DP-2)を得た。
(実施例3)
 樹脂A1-1の溶液に代えて、樹脂A1-3の溶液10.8gを用いた以外は、実施例1と同様にして導電性ペースト3(DP-3)を得た。
(実施例4)
 樹脂A1-1の溶液に代えて、樹脂A1-6の溶液8.5gを用いた以外は、実施例1と同様にして導電性ペースト4(DP-4)を得た。
(実施例5)
 樹脂A1-1の溶液に代えて、樹脂A1-4の溶液10.5gを用いた以外は、実施例1と同様にして導電性ペースト5(DP-5)を得た。
(実施例6)
 樹脂A1-1の溶液に代えて、樹脂A1-5の溶液8.7gを用いた以外は、実施例1と同様にして導電性ペースト6(DP-6)を得た。
(実施例7)
 樹脂A1-1の溶液に代えて樹脂A4-1の溶液6.7gを用い、さらにエポキシ樹脂(DIC社製、EPICLON EXA4816)1.8g及び硬化促進剤(四国化成社製、キュアゾール2PHZ-PW)0.02gを加え、溶剤であるエチルカルビトールの配合量を3.0gに変えた以外は、実施例1と同様にして導電性ペースト7(DP-7)を得た。
(実施例8)
 金属粉として、銅粉(Cu-HWF-4)に代えて、銀コート銅粉(三井金属鉱業社製、商品名「10%Ag02K」)48.0gを用いた以外は、実施例1と同様にして導電性ペースト8(DP-8)を得た。
(実施例9)
 樹脂A1-1の溶液の配合量を5.8gに変え、さらにエポキシ樹脂(DIC社製、EPICLON EXA4816)1.8g及び硬化促進剤(四国化成社製、キュアゾール2PHZ-PW)0.02gを加え、溶剤であるエチルカルビトールの配合量を3.0gに変えた以外は、実施例1と同様にして導電性ペースト9(DP-9)を得た。
(実施例10)
 樹脂A1-1の溶液に代えて、樹脂A2-1の溶液10.0gを用い、溶剤をエチルカルビトールアセテート3.0gに変えた以外は、実施例1と同様にして導電性ペースト10(DP-10)を得た。
(実施例11)
 樹脂A2-1の溶液に代えて、樹脂A3-1の溶液8.3gを用いた以外は、実施例10と同様にして導電性ペースト11(DP-11)を得た。
(比較例1)
 樹脂A1-1の溶液の配合量を10.4gに変え、またホウ酸を添加しないこと以外は、実施例1と同様にして導電性ペースト12(DP-12)を得た。
(比較例2)
 樹脂A1-1の溶液を配合せず、エポキシ樹脂(EPICLON EXA4816)4.5g及び硬化促進剤(キュアゾール2PHZ-PW)0.05gを配合した以外は、実施例1と同様にして導電性ペースト13(DP-13)を得た。
[導電性ペーストの評価]
(粘度、Ti値の測定)
 実施例1~10並びに比較例1及び2で得られた各導電性ペーストの25℃における粘度(5rpm及び0.5rpm)をコーンプレート型粘度計(東機産業社製)にて測定した。また、これらの測定値から、Ti値(=0.5rpmでの粘度/5rpmでの粘度)を求めた。
(金属粉の分散性評価)
 得られた導電性ペースト中の金属粉の分散性を評価するため、グラインドゲージ(太佑機材社製、GM-7470、0~25μm)を用い、JIS K5600-2-5(分散度)を参照して、粗粒の確認を行った。
 粗粒の確認結果から、金属粉の分散性を以下の基準で評価した。
 A:グラインドゲージ判定結果が7.5μm以下であった。
 B:グラインドゲージ判定結果が10.0μmであった。
 C:グラインドゲージ判定結果が12.5μm以上であった。
 下記表3に、ペースト粘度(Pa・s)(5rpm、0.5rpm)の測定値、Ti値、並びに金属粉の分散性の評価結果について合わせて示す。
Figure JPOXMLDOC01-appb-T000003
<導電膜の形成>
 前記得られた導電性ペースト1~13(DP-1~DP-13)を、スクリーン印刷法により、PETフィルム基材上、ガラス基材上、及びガラス基材上の透明導電膜(酸化インジウムスズ膜)の上にそれぞれ、幅1mm、長さ50mm、厚さ20μmの帯状の配線形状に塗布し、150℃で30分間加熱し硬化させて、導電膜1~13(DM-1~DM-13)を有する導電膜付き基材1~13を得た。
[導電膜の評価]
(導電膜の抵抗値の測定)
 得られた導電膜1~13(DM-1~DM-13)の抵抗値(Ω)を、四探針抵抗測定値計(日置社製、RESISTANCE METER RM3544-01)を用いて測定した。
(密着性評価)
 得られた導電膜1~13(DM-1~DM-13)について、JIS-K5600-5-6:1999(塗料一般試験方法(付着性:クロスカット法))に準拠した方法により、ガラス、PET、及びITOに対する密着性評価を行った。具体的には、各基材上に形成した導電膜(寸法:20mm×100mm、厚さ18μm)に1mm幅で5×5の碁盤目状にカッターで切れ目を入れ、碁盤目状の部分にセロハンテープを貼着し剥がす操作を実施し、密着性を分類0~分類5の6段階にて評価した。
(耐折り曲げ性評価)
 得られた導電膜1~13(DM-1~DM-13)を、折り曲げ試験機を用い、2mmΦの鉄芯に巻き付けて折り曲げ、折り曲げを戻した後に、比抵抗値を測定した。耐折り曲げ性を、以下の基準により評価した。
 A:折り曲げ前後の抵抗値の上昇率が20%以下である。
 B:折り曲げ前後の抵抗値の上昇率が20%超100%以下である。
 C:折り曲げ前後の抵抗値の上昇率が100%超である。
 下記表4に、導電膜の抵抗値(Ω)、導電膜の膜厚(μm)、抵抗値と膜厚から算出される比抵抗値(体積抵抗率)(μΩ・cm)、密着性(ガラス、PET、ITO)の評価結果、及び耐折り曲げ性の評価結果について合わせて示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から分かるように、実施例の導電性ペーストによれば、良好な密着性と導電性とを両立することができる。特に、実施例1、実施例6及び実施例7の導電性ペーストにより、100μΩ・cm以下の低い比抵抗値を有し、各種基材に対して特に良好な密着性を示す導電膜を得ることができる。比較例1の導電性ペーストは比抵抗値が大きいが、これは、ホウ酸を用いていないことにより、水素結合が形成されず、導電性発現のための十分な硬化収縮が得られないためと考えられる。比較例2の導電性ペーストは、(メタ)アクリル樹脂を配合していないため、各種基材に対して密着性が低い。
(まとめ)
 以上から明らかなように、本開示に係る第一の態様の導電性ペーストは、バインダー(A)と、金属粉(B)と、ホウ酸(C)と、有機溶剤(D)とを含有する。前記バインダー(A)が、水酸基を有する(メタ)アクリル樹脂(a)を含む。
 第一の態様によれば、導電性ペーストは、良好な密着性と導電性とを両立することができる。
 第二の態様の導電性ペーストは、第一の態様において、前記(メタ)アクリル樹脂(a)の重量平均分子量が3000以上100000以下であり、前記(メタ)アクリル樹脂(a)の水酸基価が20mgKOH/g以上150mgKOH/g以下である。
 第二の態様によれば、導電性ペーストは、基材との密着性がより向上すると共に、ホウ酸との水素結合性がより良好となり、導電性をより向上させることができ、また、ペースト粘度をより適度なものにすることができ、ハンドリングがより良好になる。
 第三の態様の導電性ペーストは、第一又は第二の態様において、前記(メタ)アクリル樹脂(a)は、(メタ)アクリロイル基及びカルボキシル基を有する単量体に基づく構成単位を有する重合体(x1)が(メタ)アクリロイル基及びエポキシ基を有する化合物によって変性された樹脂(a1)を含む。
 第三の態様によれば、カルボキシル基とエポキシ基との反応により2級のアルコール性水酸基が生成し、この水酸基とホウ酸とが水素結合等によりネットワークを形成し、また、重合体の側鎖の末端に(メタ)アクリロイル基を有するため、これが熱硬化に関与し、硬化収縮がより大きくなるため、導電性をより向上させることができる。
 第四の態様の導電性ペーストは、第一又は第二の態様において、前記(メタ)アクリル樹脂(a)は、(メタ)アクリロイル基及びエポキシ基を有する単量体に基づく構成単位を有する重合体(x2)が(メタ)アクリロイル基及びカルボキシル基を有する化合物によって変性された樹脂(a2)を含む。
 第四の態様によれば、エポキシ基とカルボキシル基との反応により2級のアルコール性水酸基が生成し、この水酸基とホウ酸とが水素結合等によりネットワークを形成し、また、重合体の側鎖の末端に(メタ)アクリロイル基を有するため、これが熱硬化に関与し、硬化収縮がより大きくなるため、導電性をより向上させることができる。
 第五の態様の導電性ペーストは、第四の態様において、前記(メタ)アクリル樹脂(a)は、前記樹脂(a2)がさらにカルボン酸無水物によって変性された樹脂(a3)を含む。
 第五の態様によれば、樹脂(a3)を用いることにより、金属粉の分散性をより向上させることができる。
 第六の態様の導電性ペーストは、第一から第五のいずれか一つの態様において、前記金属粉(B)が銅粉を含む。
 第六の態様によれば、高導電性で安価な導電性ペーストが得られる。
 第七の態様の導電膜は、第一から第六のいずれか一つの態様の導電性ペーストの硬化物を含む。
 第七の態様によれば、導電膜において、良好な密着性と導電性とを両立させることができる。
 本開示に係る導電性ペーストは、半導体装置及び電子部品等の電極、並びに回路パターンとしての導電膜を形成するために用いることができる。本開示の導電性ペーストは、所定の成分を含むことにより、低温(例えば250℃以下)で熱硬化させて電極を形成することが可能である。また、本開示の導電性ペーストを用いることにより、比抵抗値が低い導電膜(電極)を得ることができる。本開示の導電性ペーストは、(メタ)アクリル樹脂の諸物性の数値範囲を、無機基材及び有機基材の両方に対する密着性に優れる塗膜を得るために最適化することができる。それにより、半導体、酸化物及びセラミック等の無機基材の表面だけでなく、PET及びPEN等の耐熱性の低い有機基材にも密着性に優れる導電膜を形成でき、フレキシブルデバイス等の電極、回路パターンを形成するために用いることができる。また、透明電極の材料である透明導電膜(ITO膜、酸化スズ膜、ZnO系膜等)にも密着性に優れる導電膜を形成でき、電極形成のために用いることができる。


 

Claims (7)

  1.  バインダー(A)と、金属粉(B)と、ホウ酸(C)と、有機溶剤(D)とを含有し、
     前記バインダー(A)が、水酸基を有する(メタ)アクリル樹脂(a)を含む導電性ペースト。
  2.  前記(メタ)アクリル樹脂(a)の重量平均分子量が3000以上100000以下であり、前記(メタ)アクリル樹脂(a)の水酸基価が20mgKOH/g以上150mgKOH/g以下である請求項1に記載の導電性ペースト。
  3.  前記(メタ)アクリル樹脂(a)は、(メタ)アクリロイル基及びカルボキシル基を有する単量体に基づく構成単位を有する重合体(x1)が(メタ)アクリロイル基及びエポキシ基を有する化合物によって変性された樹脂(a1)を含む請求項1又は2に記載の導電性ペースト。
  4.  前記(メタ)アクリル樹脂(a)は、(メタ)アクリロイル基及びエポキシ基を有する単量体に基づく構成単位を有する重合体(x2)が(メタ)アクリロイル基及びカルボキシル基を有する化合物によって変性された樹脂(a2)を含む請求項1又は2に記載の導電性ペースト。
  5.  前記(メタ)アクリル樹脂(a)は、前記樹脂(a2)がさらにカルボン酸無水物によって変性された樹脂(a3)を含む請求項4に記載の導電性ペースト。
  6.  前記金属粉(B)が銅粉を含む請求項1乃至5のいずれか一項に記載の導電性ペースト。
  7.  請求項1乃至6のいずれか一項に記載の導電性ペーストの硬化物を含む導電膜。
PCT/JP2021/032756 2020-09-10 2021-09-07 導電性ペースト及び導電膜 WO2022054775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022547596A JPWO2022054775A1 (ja) 2020-09-10 2021-09-07
KR1020237008558A KR20230050417A (ko) 2020-09-10 2021-09-07 도전성 페이스트 및 도전막
CN202180062187.6A CN116171286A (zh) 2020-09-10 2021-09-07 导电糊料和导电膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020152422 2020-09-10
JP2020-152422 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022054775A1 true WO2022054775A1 (ja) 2022-03-17

Family

ID=80632402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032756 WO2022054775A1 (ja) 2020-09-10 2021-09-07 導電性ペースト及び導電膜

Country Status (5)

Country Link
JP (1) JPWO2022054775A1 (ja)
KR (1) KR20230050417A (ja)
CN (1) CN116171286A (ja)
TW (1) TWI800918B (ja)
WO (1) WO2022054775A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086661A (ja) * 2005-09-26 2007-04-05 Taiyo Ink Mfg Ltd ガラススラリー、及びそれを用いた感光性ペースト並びにプラズマディスプレイパネル
JP2010165997A (ja) * 2009-01-19 2010-07-29 Mitsubishi Paper Mills Ltd 導電性パターン形成用基材および導電性部材
JP2013225461A (ja) * 2011-04-28 2013-10-31 Fujifilm Corp 導電性部材、その製造方法、タッチパネル及び太陽電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765707B1 (ko) 2012-06-15 2017-08-07 가부시키가이샤 무라타 세이사쿠쇼 도전성 페이스트, 그리고 적층 세라믹 전자부품 및 그 제조방법
WO2016121668A1 (ja) * 2015-01-29 2016-08-04 ハリマ化成株式会社 導電性ペースト
JP6709943B2 (ja) 2017-12-13 2020-06-17 ナミックス株式会社 導電性ペースト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086661A (ja) * 2005-09-26 2007-04-05 Taiyo Ink Mfg Ltd ガラススラリー、及びそれを用いた感光性ペースト並びにプラズマディスプレイパネル
JP2010165997A (ja) * 2009-01-19 2010-07-29 Mitsubishi Paper Mills Ltd 導電性パターン形成用基材および導電性部材
JP2013225461A (ja) * 2011-04-28 2013-10-31 Fujifilm Corp 導電性部材、その製造方法、タッチパネル及び太陽電池

Also Published As

Publication number Publication date
CN116171286A (zh) 2023-05-26
TW202217860A (zh) 2022-05-01
JPWO2022054775A1 (ja) 2022-03-17
KR20230050417A (ko) 2023-04-14
TWI800918B (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
TWI640582B (zh) 可撓性導電墨水
EP2455947B1 (en) Conductive paste composition and electrode including the same
KR101484651B1 (ko) 저온 소결성 도전성 페이스트 및 이를 이용한 도전막과 도전막의 형성방법
US20090169724A1 (en) Conductive paste for use in membrane touch switch applications
JP6447504B2 (ja) 導電性ペースト
CN103021512A (zh) 用于低温烧结的导电浆料组合物
US7828994B2 (en) Conductive paint compositions for forming conductive coatings on substrates
JP2660937B2 (ja) 銅導電性組成物
TW201351044A (zh) 紫外線硬化性樹脂組成物
JP2006241365A (ja) 導電性接着剤
KR20060039277A (ko) 전자파 차폐용 페인트 및 그 제조 방법
TW201833940A (zh) 導電性組成物
JP2005293851A (ja) 導電性ペースト
WO2022054775A1 (ja) 導電性ペースト及び導電膜
JP5082281B2 (ja) カチオン硬化型導電性インキ
JP2010059409A (ja) 導電性インキ
JP5526576B2 (ja) 導電性インキ
JP2005078967A (ja) 導電性ペースト
JP2014080555A (ja) 熱硬化性組成物及び熱硬化性導電性ペースト
JPH0773730A (ja) 導電性粉末
JP6795409B2 (ja) 硬化性材料、硬化性材料の製造方法及び積層体
JP4815719B2 (ja) 導電ペーストおよびプリント配線板
KR20060036883A (ko) 도전성 페인트 조성물 및 그의 제조방법
JP2017152221A (ja) 加熱硬化型導電性ペースト組成物およびその硬化物
WO2020003765A1 (ja) 真空印刷用導電性ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547596

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008558

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866734

Country of ref document: EP

Kind code of ref document: A1