WO2022054343A1 - リチウム2次電池 - Google Patents

リチウム2次電池 Download PDF

Info

Publication number
WO2022054343A1
WO2022054343A1 PCT/JP2021/019331 JP2021019331W WO2022054343A1 WO 2022054343 A1 WO2022054343 A1 WO 2022054343A1 JP 2021019331 W JP2021019331 W JP 2021019331W WO 2022054343 A1 WO2022054343 A1 WO 2022054343A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium secondary
lithium
electrolytic solution
Prior art date
Application number
PCT/JP2021/019331
Other languages
English (en)
French (fr)
Inventor
寿一 新井
健 緒方
Original Assignee
TeraWatt Technology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2020/034710 external-priority patent/WO2022054279A1/ja
Priority claimed from PCT/JP2021/014610 external-priority patent/WO2022215160A1/ja
Application filed by TeraWatt Technology株式会社 filed Critical TeraWatt Technology株式会社
Priority to EP21866304.5A priority Critical patent/EP4213260A1/en
Priority to CN202180052157.7A priority patent/CN115989604A/zh
Priority to KR1020237007813A priority patent/KR20230048114A/ko
Priority to JP2022547396A priority patent/JPWO2022054343A1/ja
Publication of WO2022054343A1 publication Critical patent/WO2022054343A1/ja
Priority to US18/119,082 priority patent/US20230246240A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery.
  • a lithium secondary battery that charges and discharges by moving lithium ions between a positive electrode and a negative electrode exhibits high voltage and high energy density.
  • a lithium ion having an active material capable of holding a lithium element in a positive electrode and a negative electrode, and charging / discharging by exchanging lithium ions between the positive electrode active material and the negative electrode active material.
  • Secondary batteries are known.
  • a lithium secondary battery (lithium metal battery, LMB) that uses lithium metal instead of a material such as a carbon material into which lithium ions can be inserted as a negative electrode active material.
  • LMB lithium metal battery
  • Patent Document 1 discloses a rechargeable battery using an electrode based on lithium metal as a negative electrode.
  • Patent Document 2 in a lithium secondary battery including a positive electrode, a negative electrode, a separation film interposed between them, and an electrolyte, metal particles are formed on a negative electrode current collector in the negative electrode, and the negative electrode is charged from the positive electrode. A lithium secondary battery that is moved to form a lithium metal on the negative electrode current collector in the negative electrode is disclosed.
  • Patent Document 2 provides a lithium secondary battery in which such a lithium secondary battery solves a problem caused by the reactivity of a lithium metal and a problem generated in the assembly process, and has improved performance and life. Discloses what can be done.
  • a lithium secondary battery including a negative electrode having a negative electrode active material it is difficult to sufficiently increase the energy density and capacity due to the volume and mass occupied by the negative electrode active material.
  • the conventional type tends to form a dendrite-like lithium metal on the surface of the negative electrode by repeating charging and discharging, resulting in short circuit and capacity. The cycle characteristics are not sufficient because the deterioration is likely to occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery having a high energy density and excellent cycle characteristics.
  • the lithium secondary battery according to the embodiment of the present invention includes a positive electrode, a separator, a negative electrode having no negative electrode active material, and an electrolytic solution, and the electrolytic solution has chemical formulas (A)-(D). It contains one or more fluorine solvents selected from the represented ether compounds. (During the ceremony, R independently represents either H, F, or a fully or partially fluorinated alkyl group having 1-3 carbon atoms. X represents a monovalent group. )
  • lithium secondary battery is provided with a negative electrode having no negative electrode active material, lithium metal is deposited on the surface of the negative electrode, and the precipitated lithium metal is electrolytically eluted to perform charging and discharging. , High energy density.
  • the present inventors have described that the lithium secondary battery containing the fluorine solvent represented by the above chemical formulas (A)-(D) in the electrolytic solution has a solid electrolyte interface layer (hereinafter, "SEI layer”) on the negative electrode surface. It was also found that) is likely to be formed. Since the SEI layer has ionic conductivity, the reactivity of the lithium precipitation reaction on the negative electrode surface on which the SEI layer is formed becomes uniform with respect to the surface direction of the negative electrode surface. Therefore, in the lithium secondary battery, the growth of dendrite-like lithium metal on the negative electrode is suppressed, and the cycle characteristics are excellent.
  • SEI layer solid electrolyte interface layer
  • the present embodiments will be described in detail with reference to the drawings as necessary.
  • the same elements are designated by the same reference numerals, and duplicate description will be omitted.
  • the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the ratios shown.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to the present embodiment.
  • the lithium secondary battery 100 of the present embodiment includes a positive electrode 120 and a negative electrode 130 having no negative electrode active material. Further, in the lithium secondary battery 100, the positive electrode current collector 110 is arranged on the side of the positive electrode 120 opposite to the surface facing the negative electrode 130, and the separator 140 is arranged between the positive electrode 120 and the negative electrode 130.
  • the positive electrode current collector 110 is arranged on the side of the positive electrode 120 opposite to the surface facing the negative electrode 130
  • the separator 140 is arranged between the positive electrode 120 and the negative electrode 130.
  • the negative electrode 130 does not have a negative electrode active material.
  • the "negative electrode active material” is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction at the negative electrode.
  • examples of the negative electrode active material include a lithium metal and a host material of a lithium element (lithium ion or lithium metal).
  • the host substance of the lithium element means a substance provided for holding lithium ions or lithium metal in the negative electrode.
  • the mechanism of such holding is not particularly limited, and examples thereof include intercalation, alloying, and occlusion of metal clusters, and typically intercalation.
  • the negative electrode does not have a negative electrode active material before the initial charge of the battery, lithium metal is deposited on the negative electrode, and the precipitated lithium metal is electrolyzed to charge and discharge. Is done. Therefore, in the lithium secondary battery of the present embodiment, the volume occupied by the negative electrode active material and the mass of the negative electrode active material are reduced, and the volume and mass of the entire battery are smaller than those of the lithium secondary battery having the negative electrode active material. Therefore, the energy density is high in principle.
  • the negative electrode does not have a negative electrode active material before the initial charge of the battery, lithium metal is deposited on the negative electrode by charging the battery, and the precipitated lithium metal is electrolyzed by discharging the battery. Elute. Therefore, in the lithium secondary battery of the present embodiment, the negative electrode does not substantially have the negative electrode active material even at the end of discharge of the battery. Therefore, in the lithium secondary battery of the present embodiment, the negative electrode acts as a negative electrode current collector.
  • the negative electrode has a host substance of a lithium element (lithium ion or lithium metal), the substance is filled with the lithium element by charging the battery, and the host substance releases the lithium element to form a battery. Is discharged.
  • the LIB differs from the lithium secondary battery of the present embodiment in that the negative electrode has a host substance of a lithium element.
  • a lithium metal battery (LMB) is manufactured by using an electrode having a lithium metal on its surface or a lithium metal alone as a negative electrode.
  • the LMB differs from the lithium secondary battery of the present embodiment in that the negative electrode has a lithium metal which is a negative electrode active material immediately after assembling the battery, that is, before the initial charge of the battery.
  • LMB uses an electrode containing a highly flammable and highly reactive lithium metal for its production, but the lithium secondary battery of the present embodiment uses a negative electrode having no lithium metal, so that it is safer and more productive. It is excellent.
  • the negative electrode does not have a negative electrode active material means that the negative electrode does not have or substantially does not have a negative electrode active material.
  • the fact that the negative electrode has substantially no negative electrode active material means that the content of the negative electrode active material in the negative electrode is 10% by mass or less with respect to the entire negative electrode.
  • the content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, 1.0% by mass or less, or 0.1% by mass or less with respect to the entire negative electrode. , 0.0% by mass or less.
  • lithium metal precipitates on the negative electrode means that the lithium metal is formed on the surface of the negative electrode or at least one place on the surface of the solid electrolyte interface (SEI) layer described later formed on the surface of the negative electrode. It means that it precipitates. For example, in FIG. 1, the lithium metal precipitates on the surface of the negative electrode 130 (the interface between the negative electrode 130 and the separator 140).
  • SEI solid electrolyte interface
  • the term "before the initial charge” of the battery means the state from the time when the battery is assembled to the time when the battery is charged for the first time. Further, “at the end of discharge” of the battery means a state in which discharge does not occur even if the voltage of the battery is further lowered, and the voltage of the battery at that time is, for example, 1.0 V or more and 3.8 V or less. It is preferably 1.0 V or more and 3.0 V or less.
  • a lithium secondary battery having a negative electrode having no negative electrode active material means that the negative electrode does not have a negative electrode active material before the initial charge of the battery or at the end of discharge. Therefore, the phrase “negative electrode without negative electrode active material” means “negative electrode without negative electrode active material before the initial charge of the battery or at the end of discharge” and “negative electrode active material other than lithium metal regardless of the state of charge of the battery”. It may be paraphrased as “a negative electrode having no lithium metal before the initial charge or at the end of discharge” or "a negative electrode current collector having no lithium metal before the initial charge or at the end of discharge”. .. Alternatively, in the above phrase, “before initial charge or at the end of discharge” may be replaced with the phrase “before initial charge”. Further, the "lithium secondary battery provided with a negative electrode having no negative electrode active material” may be paraphrased as an anode-free lithium battery, a zero anode lithium battery, or an anodeless lithium battery.
  • the content of the negative electrode active material other than the lithium metal is 10% by mass or less, preferably 5.0% by mass or less, based on the entire negative electrode, regardless of the state of charge of the battery. It may be 1.0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less. Further, the negative electrode of the present embodiment has a lithium metal content of 10% by mass or less, preferably 5.0% by mass or less, based on the entire negative electrode before initial charging or at the end of discharging. It may be 0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less.
  • the negative electrode preferably has a lithium metal content of 10% by mass or less with respect to the entire negative electrode before initial charging and at the end of discharge (preferably, the lithium metal content is preferably with respect to the entire negative electrode. It may be 5.0% by mass or less, 1.0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less.)
  • the content of the lithium metal when the voltage of the battery is 1.0 V or more and 3.5 V or less, the content of the lithium metal may be 10% by mass or less with respect to the entire negative electrode (preferably). Is 5.0% by mass or less, may be 1.0% by mass or less, may be 0.1% by mass or less, and may be 0.0% by mass or less.); When the voltage is 1.0 V or more and 3.0 V or less, the content of the lithium metal may be 10% by mass or less with respect to the entire negative electrode (preferably 5.0 mass% or less, 1. It may be 0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less.); Or, the voltage of the battery is 1.0V or more and 2.5V or less. In the above case, the content of the lithium metal may be 10% by mass or less with respect to the entire negative electrode (preferably 5.0% by mass or less, and may be 1.0% by mass or less. It may be 0.1% by mass or less, or 0.0% by mass or less).
  • the negative electrode is obtained when the battery voltage is 3.0 V with respect to the mass M 4.2 of the lithium metal deposited on the negative electrode when the battery voltage is 4.2 V.
  • the ratio M 3.0 / M 4.2 of the mass M 3.0 of the lithium metal deposited above is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less. Is.
  • the ratio M 3.0 / M 4.2 may be 8.0% or less, 5.0% or less, 3.0% or less, 1.0% or less. May be.
  • Examples of the negative electrode active material include lithium metal and alloys containing lithium metal, carbon-based substances, metal oxides, and metals alloying with lithium and alloys containing the metal.
  • the carbon-based substance is not particularly limited, and examples thereof include graphene, graphite, hard carbon, mesoporous carbon, carbon nanotubes, and carbon nanohorns.
  • the metal oxide is not particularly limited, and examples thereof include titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds.
  • Examples of the metal alloying with lithium include silicon, germanium, tin, lead, aluminum, and gallium.
  • the negative electrode of the present embodiment is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector, but does not react with, for example, Cu, Ni, Ti, Fe, and other Li. Metals, alloys thereof, and those consisting of at least one selected from the group consisting of stainless steel (SUS) can be mentioned.
  • SUS stainless steel
  • various conventionally known types of SUS can be used.
  • the negative electrode material as described above one type may be used alone or two or more types may be used in combination.
  • the “metal that does not react with Li” means a metal that does not react with lithium ions or lithium metal to form an alloy under the operating conditions of the lithium secondary battery.
  • the negative electrode of the present embodiment is preferably made of at least one selected from the group consisting of Cu, Ni, Ti, Fe, alloys thereof, and stainless steel (SUS), and more preferably. It consists of Cu, Ni, and alloys thereof, and at least one selected from the group consisting of stainless steel (SUS).
  • the negative electrode is more preferably Cu, Ni, an alloy thereof, or stainless steel (SUS). When such a negative electrode is used, the energy density and productivity of the battery tend to be further improved.
  • the average thickness of the negative electrode of the present embodiment is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and further preferably 6 ⁇ m or more and 15 ⁇ m or less. According to such an embodiment, the volume occupied by the negative electrode in the battery is reduced, so that the energy density of the battery is further improved.
  • the positive electrode 120 is not particularly limited as long as it is generally used for a lithium secondary battery, and a known material can be appropriately selected depending on the use of the lithium secondary battery. From the viewpoint of improving the stability of the battery and the output voltage, the positive electrode 120 preferably has a positive electrode active material.
  • the "positive electrode active material” is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction at the positive electrode.
  • examples of the positive electrode active material of the present embodiment include a host material of a lithium element (typically, lithium ion).
  • Examples of such a positive electrode active material include, but are not limited to, metal oxides and metal phosphates.
  • the metal oxide is not particularly limited, and examples thereof include a cobalt oxide-based compound, a manganese oxide-based compound, and a nickel oxide-based compound.
  • the metal phosphate is not particularly limited, and examples thereof include iron phosphate compounds and cobalt phosphate compounds.
  • the positive electrode active material as described above one type may be used alone or two or more types may be used in combination.
  • the positive electrode 120 may contain components other than the above-mentioned positive electrode active material. Such components include, but are not limited to, known conductive aids, binders, and polymer electrolytes.
  • the conductive auxiliary agent in the positive electrode 120 is not particularly limited, and examples thereof include carbon black, single-wall carbon nanotubes (SWCNT), multi-wall carbon nanotubes (MWCNT), carbon nanofibers (CF), and acetylene black.
  • the binder is not particularly limited, and examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene butadiene rubber, acrylic resin, and polyimide resin.
  • the content of the positive electrode active material in the positive electrode 120 may be, for example, 50% by mass or more and 100% by mass or less with respect to the entire positive electrode 120.
  • the content of the conductive auxiliary agent may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 120.
  • the content of the binder may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 120.
  • the content of the polymer electrolyte may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 120.
  • a positive electrode current collector 110 is arranged on one side of the positive electrode 120.
  • the positive electrode current collector 110 is not particularly limited as long as it is a conductor that does not react with lithium ions in the battery. Examples of such a positive electrode current collector include aluminum.
  • the average thickness of the positive electrode current collector 110 is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and further preferably 6 ⁇ m or more and 15 ⁇ m or less. According to such an embodiment, the volume occupied by the positive electrode current collector 110 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the separator 140 is a member for ensuring the ionic conductivity of lithium ions, which are charge carriers between the positive electrode 120 and the negative electrode 130, while preventing the battery from short-circuiting by separating the positive electrode 120 and the negative electrode 130. It is made of a material that does not have electron conductivity and does not react with lithium ions. The separator 140 also plays a role of holding the electrolytic solution. The material itself constituting the separator does not have ionic conductivity, but the separator holds the electrolytic solution, so that lithium ions are conducted through the electrolytic solution.
  • the separator 140 is not limited as long as it plays the above role, but is, for example, a porous organic film, preferably a porous polymer film, for example, a polyethylene (PE) film, a polypropylene (PP) film, or a laminated structure thereof. It is composed of.
  • a porous organic film preferably a porous polymer film, for example, a polyethylene (PE) film, a polypropylene (PP) film, or a laminated structure thereof. It is composed of.
  • the separator 140 may be covered with a separator coating layer.
  • the separator coating layer may cover both sides of the separator 140, or may cover only one side.
  • the separator coating layer is not particularly limited as long as it is a member that does not react with lithium ions, but it is preferable that the separator 140 and the layer adjacent to the separator 140 can be firmly adhered to each other.
  • the separator coating layer is not particularly limited, and is, for example, polyvinylidene fluoride (PVDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and lithium polyacrylic acid.
  • Examples include those containing binders such as (Li-PAA), polyimide (PI), polyamideimide (PAI), and aramid.
  • binders such as (Li-PAA), polyimide (PI), polyamideimide (PAI), and aramid.
  • inorganic particles such as silica, alumina, titania, zirconia, magnesium oxide, magnesium hydroxide, and lithium nitrate may be added to the binder.
  • the separator 140 may be a separator having no separator coating layer or a separator having a separator coating layer.
  • the average thickness of the separator 140 is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and further preferably 20 ⁇ m or less. According to such an embodiment, the volume occupied by the separator 140 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the average thickness of the separator 140 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more. According to such an aspect, the positive electrode 120 and the negative electrode 130 can be more reliably isolated, and the short circuit of the battery can be further suppressed.
  • the lithium secondary battery 100 has an electrolytic solution.
  • the electrolytic solution is a solution containing an electrolyte and a solvent and having ionic conductivity, and acts as a conductive path for lithium ions.
  • the electrolytic solution may be infiltrated into the separator 140, or may be enclosed in a closed container together with a laminate of the positive electrode collector 110, the positive electrode 120, the separator 140, and the negative electrode 130. ..
  • the electrolytic solution is a solution containing an electrolyte and a solvent and having ionic conductivity, and acts as a conductive path for lithium ions. Therefore, according to the embodiment including the electrolytic solution, the internal resistance of the battery is further reduced, and the energy density, capacity, and cycle characteristics are further improved.
  • a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode or the like by decomposing the solvent or the like in the electrolytic solution.
  • the SEI layer suppresses further decomposition of components in the electrolytic solution, irreversible reduction of lithium ions, generation of gas, and the like in the lithium secondary battery. Further, since the SEI layer has ionic conductivity, the reactivity of the lithium metal precipitation reaction becomes uniform in the surface direction of the negative electrode surface on the negative electrode surface on which the SEI layer is formed.
  • the lithium secondary battery 100 when a specific fluorine solvent is used, an SEI layer is likely to be formed on the surface of the negative electrode, and the growth of dendrite-like lithium metal on the negative electrode is further suppressed, and as a result, the cycle characteristics are further improved. Tend to do.
  • a compound is "contained as a solvent” as long as the compound alone or a mixture with another compound is a liquid in the usage environment of the lithium secondary battery, and further, the electrolyte is dissolved. Anything can be used as long as it can produce an electrolytic solution in the solution phase.
  • the electrolytic solution contains one or more fluorine solvents selected from the ether compounds represented by the following chemical formulas (A)-(D).
  • R independently represents either H, F, or a fully or partially fluorinated alkyl group having 1-3 carbon atoms.
  • X represents a monovalent group.
  • X is preferably either an alkyl group having 1-7 carbon atoms or a completely or partially fluorinated alkyl group having 1-7 carbon atoms.
  • the fluorinated ether compound represented by the chemical formulas (A)-(D) facilitates the formation of an SEI layer on the surface of the negative electrode and further suppresses the growth of dendrite-like lithium metal on the negative electrode, resulting in cycle characteristics.
  • the reason for the improvement is not always clear, but the following reasons can be considered.
  • the fluorinated ether compound competes with the precipitation reaction of Li ions and is reduced, or reacts with Li to form continuous or discontinuous SEI layers as reaction products on the surface of the negative electrode.
  • This SEI layer is considered to act repulsively on the hydrocarbon solvent to which Li ions are solvated, suppresses continuous and intermittent decomposition of the hydrocarbon solvent, and smoothes the separation of Li ions at the time of precipitation. It is presumed that the solvation potential during the elution reaction of Li metal is relaxed.
  • the SEI layer formed on the lithium secondary battery 100 containing the fluorine compound has higher ionic conductivity than the SEI layer formed on the conventional lithium secondary battery. It was issued. It is presumed that this is because the formed SEI layer has a high fluorine content and the movement path of lithium ions in the SEI layer is increased or expanded.
  • the factors are not limited to the above.
  • Examples of the ether compound having the structures of both the chemical formulas (A) and (B) include 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTFE), 1 , 1,2,2-Tetrafluoroethyl-2,2,3,3-Tetrafluoropropyldiethoxymethane, and 1,1,2,2-Tetrafluoroethyl-2,2,3,3-Tetrafluoropropyl Examples thereof include diethoxypropane.
  • TTFE 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether
  • 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether is preferable as the fluorine solvent AB.
  • Examples of the ether compound represented by the chemical formula (A) include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TFEE) and methyl-1,1,2,2. -Tetrafluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, propyl-1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 5H-perfluoropentyl-1,1, Examples thereof include 2,2-tetrafluoroethyl ether and 1H, 1H, 5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether.
  • TFEE 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • TFEE 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • the fluorine solvent A includes 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methyl-1, 1,2,2-Tetrafluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, and 1H, 1H, 5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether preferable.
  • Examples of the ether compound represented by the chemical formula (B) include difluoromethyl-2,2,3,3-tetrafluoropropyl ether, trifluoromethyl-2,2,3,3-tetrafluoropropyl ether and fluoromethyl.
  • -2,2,3,3-tetrafluoropropyl ether, methyl-2,2,3,3-tetrafluoropropyl ether and the like can be mentioned.
  • difluoromethyl-2,2,3,3-tetrafluoropropyl ether is preferable as the fluorine solvent B.
  • any of the compounds represented by the following chemical formulas (C1) to (C5) can be used.
  • the fluorinated ether solvent of the chemical formula (1) a fluorinated ether solvent having a branched chain is particularly preferable, and for example, a fluorinated ether solvent represented by the following chemical formula (C1) or (C2) is preferably used.
  • any of the fluorinated diether solvents represented by the following chemical formulas (D1) to (D2) can be used.
  • the electrolytic solution may contain other fluorine solvents.
  • a fluorine solvent methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5-decafluoro-3-methoxy-4-trifluoromethylpentane , Methyl-2,2,3,3,3-pentafluoropropyl ether, 1,1,2,3,3,3-hexafluoropropylmethyl ether, ethyl-1,1,2,3,3,3- Examples thereof include hexafluoropropyl ether and tetrafluoroethyl tetrafluoropropyl ether.
  • the electrolytic solution may contain at least one type of fluorine solvent. From the viewpoint of further improving the solubility of the electrolyte in the electrolytic solution and further facilitating the formation of the SEI layer, the electrolytic solution preferably contains two or more kinds of fluorine solvents.
  • the content of the above-mentioned fluorine solvent is not particularly limited, but is 20% by volume or more, 30% by volume or more, preferably 40% by volume or more, based on the total amount of the solvent components of the electrolytic solution. Yes, more preferably 50% by volume or more, still more preferably 60% by volume or more, still more preferably 70% by volume or more.
  • the content of the fluorine solvent is within the above range, the SEI layer is more likely to be formed, so that the cycle characteristics of the battery tend to be further improved.
  • the upper limit of the content of the fluorine solvent is not particularly limited, and the content of the fluorine solvent may be 100% by volume or less or 95% by volume or less with respect to the total amount of the solvent components of the electrolytic solution. , 90% by volume or less, or 80% by volume or less.
  • fluorine solvents When two kinds of fluorine solvents are used in combination, they are selected from a fluorine solvent selected from the ether compound represented by the chemical formula (A) or (B) and an ether compound represented by the chemical formula (C) or (D). Fluorine solvents can be preferably combined.
  • the ratio when the ether compound represented by the chemical formula (A) or (B) is combined with the ether compound represented by the chemical formula (C) or (D) is 1:10 to 10: 1, and 1: 5 It is preferably ⁇ 5: 1, 1: 3 to 3: 1, 1: 2 to 2: 1, 1: 1.
  • the electrolytic solution contains a non-fluorine solvent which is an ether compound having no fluorine atom.
  • a non-fluorine solvent which is an ether compound having no fluorine atom.
  • the solubility of the electrolyte in the electrolytic solution is further improved, so that the ionic conductivity in the electrolytic solution is improved, and as a result, the cycle characteristics of the lithium secondary battery can be improved.
  • the non-fluorine solvent two or more kinds of ether compounds having no fluorine atom may be contained. It is more preferable that the ether compound having no fluorine atom is a polyether compound containing 2 or more and 5 or less ether bonds.
  • the ether compound is not particularly limited, and is, for example, 1,2-dimethoxyethane (DME), 1,2-dimethoxypropane (DMP), triethylene glycol dimethyl ether (TGM), diethylene glycol dimethyl ether (DGM), tetra.
  • DME 1,2-dimethoxyethane
  • DMP 1,2-dimethoxypropane
  • TGM triethylene glycol dimethyl ether
  • DGM diethylene glycol dimethyl ether
  • tetra 1,2-dimethoxyethane
  • DME 1,2-dimethoxypropane
  • TGM triethylene glycol dimethyl ether
  • DGM diethylene glycol dimethyl ether
  • Ethylene glycol dimethyl ether TetGM
  • 1,2-dimethoxybutane, 2,3-dimethoxybutane, 1,2-diethoxypropane, 1,2-diethoxybutane, 2,3-diethoxybutane, diethoxyethane dimethyl ether , Acetonitrile, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ethylene carbonate, propylene carbonate, chloroethylene carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, trimethyl phosphate, and triethyl phosphate. And so on.
  • the content of the non-fluorine solvent is not particularly limited, but is 5% by volume or more, preferably 10% by volume or more, and more preferably 15 with respect to the total amount of the solvent components of the electrolytic solution. It is preferably 20% by volume or more, more preferably 20% by volume or more, and more preferably 30% by volume or less.
  • the electrolyte contained in the electrolytic solution is not particularly limited as long as it is a lithium salt, but LiI, LiCl, LiBr, LiF, LiBF 4 , LiPF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN (SO 2 F) 2 , LiN ( SO 2 CF 3 ) 2 , LiN (SO 2 CF 3 CF 3 ) 2 , LiBF 2 (C 2 O 4 ), LiB (O 2 C 2 H 4 ) 2 , LiB (O 2 C 2 H 4 ) F 2 , Examples thereof include LiB (OCOCF 3 ) 4 , LiNO 3 , and Li 2 SO 4 .
  • LiN (SO 2 F) 2 , LiPF 6 and LiBF 2 (C 2 O 4 ) are preferable as the lithium salt.
  • the electrolytic solution contains at least one of LiN (SO 2 F) 2 , LiPF 6 and LiBF 2 (C 2 O 4 )
  • the formation and growth of the SEI layer on the negative electrode surface is further promoted, and the cycle characteristics.
  • the above lithium salts may be used alone or in combination of two or more.
  • the electrolytic solution may further contain a salt other than the lithium salt as an electrolyte. Examples of such salts include salts of Na, K, Ca, and Mg.
  • the concentration of the lithium salt in the electrolytic solution is not particularly limited, but is preferably 0.5 M or more, more preferably 0.7 M or more, still more preferably 0.9 M or more, still more preferably 1.0 M or more. Is. When the concentration of the lithium salt is within the above range, the SEI layer is more likely to be formed, and the internal resistance tends to be further lowered. In particular, the lithium secondary battery 100 containing a fluorine compound as a solvent can increase the concentration of the lithium salt in the electrolytic solution, so that the cycle characteristics and the rate performance can be further improved.
  • the upper limit of the concentration of the lithium salt is not particularly limited, and the concentration of the lithium salt may be 10.0 M or less, 5.0 M or less, or 2.0 M or less.
  • the lithium secondary battery of the present embodiment may contain an electrolytic solution or a component of the electrolytic solution in a state other than the liquid.
  • an electrolytic solution or a component of the electrolytic solution in a state other than the liquid.
  • a battery containing an electrolytic solution in a solid or semi-solid (gel-like) member can be obtained by adding an electrolytic solution when preparing a separator described later.
  • the electrolytic solution can be paraphrased as an electrolyte.
  • the fact that the electrolytic solution contains a fluorine solvent and a non-fluorine solvent can be confirmed by various conventionally known methods.
  • Examples of such a method include an NMR measurement method, a mass spectrometry method such as HPLC-MS, and an IR measurement method.
  • FIG. 2 shows one usage mode of the lithium secondary battery of the present embodiment.
  • a positive electrode terminal 220 and a negative electrode terminal 210 for connecting the lithium secondary battery to an external circuit are bonded to the positive electrode current collector 110 and the negative electrode 130, respectively.
  • the lithium secondary battery 200 is charged and discharged by connecting the negative electrode terminal 210 to one end of the external circuit and the positive electrode terminal 220 to the other end of the external circuit.
  • the external circuit is, for example, a resistor, a power supply, a device, a potentiostat, or the like.
  • the lithium secondary battery 200 is charged by applying a voltage between the positive electrode terminal 220 and the negative electrode terminal 210 so that a current flows from the negative electrode terminal 210 to the positive electrode terminal 220 through an external circuit. Charging the lithium secondary battery 200 causes precipitation of lithium metal on the negative electrode.
  • a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode 130 (the interface between the negative electrode 130 and the separator 140) by the first charge (initial charge) after the battery is assembled.
  • SEI layer is not particularly limited, but may contain, for example, an inorganic compound containing lithium, an organic compound containing lithium, or the like.
  • the typical average thickness of the SEI layer is 1 nm or more and 10 ⁇ m or less.
  • the charged lithium secondary battery 200 when the positive electrode terminal 220 and the negative electrode terminal 210 are connected via an external circuit as needed, the lithium secondary battery 200 is discharged. As a result, the precipitation of the lithium metal generated on the negative electrode is electrolytically eluted.
  • the method for manufacturing the lithium secondary battery 100 as shown in FIG. 1 is not particularly limited as long as it can manufacture a lithium secondary battery having the above configuration, and examples thereof include the following methods. ..
  • the positive electrode 120 is prepared by a known manufacturing method or by purchasing a commercially available one.
  • the positive electrode 120 is manufactured, for example, as follows.
  • the above-mentioned positive electrode active material, a known conductive auxiliary agent, and a known binder are mixed to obtain a positive electrode mixture.
  • the compounding ratio is, for example, 50% by mass or more and 99% by mass or less of the positive electrode active material, 0.5% by mass or less of the conductive auxiliary agent, and 0.5% by mass or less of the binder with respect to the entire positive electrode mixture. It may be mass% or less.
  • the obtained positive electrode mixture is applied to one side of a metal foil (for example, Al foil) as a positive electrode current collector having a predetermined thickness (for example, 5 ⁇ m or more and 1 mm or less), and press-molded.
  • the obtained molded body is punched to a predetermined size by punching to obtain a positive electrode 120 formed on the positive electrode current collector 110.
  • the negative electrode 130 can be prepared by washing the above-mentioned negative electrode material, for example, a metal foil of 1 ⁇ m or more and 1 mm or less (for example, an electrolytic Cu foil) with a solvent containing sulfamic acid.
  • a metal foil of 1 ⁇ m or more and 1 mm or less for example, an electrolytic Cu foil
  • the separator 140 may be manufactured by a conventionally known method, or a commercially available one may be used.
  • the electrolytic solution may be prepared by dissolving the above-mentioned electrolyte (typically, a lithium salt) in the above-mentioned solvent.
  • the lithium secondary battery 100 can be obtained by enclosing the laminate obtained as described above in a closed container together with the electrolytic solution.
  • the closed container is not particularly limited, and examples thereof include a laminated film.
  • high energy density or “high energy density” means that the total volume of the battery or the capacity per total mass is high, but preferably 800 Wh / L or more or 350 Wh. It is / kg or more, more preferably 900 Wh / L or more or 400 Wh / kg or more, and further preferably 1000 Wh / L or more or 450 Wh / kg or more.
  • excellent in cycle characteristics means that the rate of decrease in battery capacity is low before and after the number of charge / discharge cycles that can be expected in normal use. That is, when comparing the first discharge capacity after the initial charge with the discharge capacity after the number of charge / discharge cycles that can be expected in normal use, the discharge capacity after the charge / discharge cycle is the discharge capacity after the initial charge. It means that there is almost no decrease with respect to the first discharge capacity of.
  • the "number of times that can be assumed in normal use” depends on the application in which the lithium secondary battery is used, but is, for example, 20 times, 30 times, 50 times, 70 times, 100 times, 300 times, or. 500 times.
  • the discharge capacity after the charge / discharge cycle is hardly reduced with respect to the first discharge capacity after the initial charge depends on the application in which the lithium secondary battery is used, but for example, charge.
  • the discharge capacity after the discharge cycle is 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, or 85% or more with respect to the first discharge capacity after the initial charge. means.
  • the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
  • the present invention can be modified in various ways as long as it does not deviate from the gist thereof. ..
  • an additional functional layer may be inserted between the positive electrode current collector, the positive electrode, the separator, and the laminated body of the negative electrode.
  • a lithium secondary battery was manufactured as follows. First, the electrolytic Cu foil having a thickness of 8 ⁇ m was washed with a solvent containing sulfamic acid and then washed with water. Subsequently, the electrolytic Cu foil was immersed in a solution containing 1H-benzotriazole (1H-benzotriazole) as a negative electrode coating agent, dried, and further washed with water to obtain a Cu foil coated with the negative electrode coating agent. Obtained. A negative electrode was obtained by punching the obtained Cu foil to a predetermined size (45 mm ⁇ 45 mm).
  • a separator having a thickness of 16 ⁇ m and a predetermined size (50 mm ⁇ 50 mm) having 2 ⁇ m of polyvinylidene fluoride (PVdF) coated on both sides of a 12 ⁇ m polyethylene microporous membrane was prepared.
  • PVdF polyvinylidene fluoride
  • the positive electrode was prepared as follows. 96 parts by mass of LiNi 0.85 Co 0.12 Al 0.03 O 2 as a positive electrode active material, 2 parts by mass of carbon black as a conductive auxiliary agent, and 2 parts by mass of polyvinylidene fluoride (PVdF) as a binder were mixed. The material was applied to one side of a 12 ⁇ m Al foil as a positive electrode current collector and press-molded. The obtained molded body was punched to a predetermined size (40 mm ⁇ 40 mm) by punching to obtain a positive electrode formed in a positive electrode current collector.
  • PVdF polyvinylidene fluoride
  • LiN (SO 2 F) 2 LiFSI was dissolved as a lithium salt in a mixed solvent of a fluorine solvent and a non-fluorine solvent to prepare an electrolytic solution consisting of a 1.2 M FSI solution.
  • Table 1 shows a matrix of combinations of a fluorine solvent and a non-fluorine solvent.
  • the fluorinated ether solvent is represented by TTFE, TFEE, an ether compound represented by the chemical formula (C1) (FIPME), an ether compound represented by the chemical formula (C2) (FIPFME), and a chemical formula (D1).
  • TTFE fluorinated ether solvent
  • TFEE an ether compound represented by the chemical formula (C1)
  • C2 ether compound represented by the chemical formula (C2)
  • D1 One or two of the ether compound (DEFEOM) and the ether compound (DHFPOM) represented by the chemical formula (D2) were used.
  • any one of 1,2-dimethoxyethane (DME), triethylene glycol dimethyl ether (TGM), 1,2-dimethoxypropane (DMP), diethylene glycol dimethyl ether (DGM), and tetraethylene glycol dimethyl ether (TetGM) is used.
  • DME 1,2-dimethoxyethane
  • TGM triethylene glycol dimethyl ether
  • DMP 1,2-dimethoxypropane
  • DGM diethylene glycol dimethyl ether
  • TetGM tetraethylene glycol dimethyl ether
  • a laminated body was obtained by laminating the positive electrode current collector, the separator, and the negative electrode on which the positive electrode obtained as described above was formed so that the positive electrode faces the separator in this order. Further, a 100 ⁇ m Al terminal and a 100 ⁇ m Ni terminal were bonded to the positive electrode current collector and the negative electrode by ultrasonic welding, respectively, and then inserted into the outer body of the laminate. Then, the electrolytic solution prepared as described above was injected into the above-mentioned exterior body. A lithium secondary battery was obtained by sealing the exterior body.
  • the prepared lithium secondary battery (cell at 25 ° C. and 32 mAh) was CC-charged at a charge rate of 0.1 C, and then CC-discharged at a discharge rate of 0.3 C.
  • the cycle was repeated in an environment at a temperature of 25 ° C.
  • Table 1 shows the number of cycles (referred to as “number of cycles” in the table) when the discharge capacity reaches 80% of the initial capacity.
  • the ratio (volume ratio) of the solvent in the mixed solvent is specified in parentheses (for example, 50/50).
  • Table 1 shows the cycle characteristics of a lithium secondary battery each containing 24 types of electrolytic solutions using a combination of 6 types of fluorine solvents and 4 types of non-fluorine solvents.
  • the cycle characteristic of a lithium secondary battery using an electrolytic solution containing a mixed solvent of a fluorine solvent DTFEOM and a non-fluorine solvent DME is 162 times.
  • a fluorinated ether solvent and another fluorinated solvent are mixed and used, and an electrolytic solution is prepared using the mixed solvent for the non-fluorinated solvent, and the lithium secondary battery using these electrolytic solutions is used.
  • the cycle characteristics were evaluated in the same manner as above. Table 2 shows the evaluation results of the cycle characteristics.
  • the fluorine solvent to be mixed with the fluorinated ether solvent 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTFE, equivalent to fluorine solvent AB) or TFEE (1).
  • TTFE 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, corresponding to fluorine solvent A) was used.
  • Tables 2 and 3 as in Table 1, the ratio (volume ratio) of the solvent in the mixed solvent is specified in parentheses.
  • Tables 2 and 3 show the cycle characteristics of a lithium secondary battery having 40 types of electrolytic solutions obtained by combining 10 types of mixed solvents of fluorine solvents and 4 types of mixed solvents of non-fluorine solvents.
  • LiPF 6 as a lithium salt is dissolved in a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) (30% by volume / 70% by volume) to prepare an electrolytic solution consisting of a 1M LiPF 6 solution.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a lithium secondary battery was prepared in the same manner as in the examples except for the points used, and the cycle characteristics were evaluated.
  • LiN (SO 2 F) 2 LiFSI
  • DME 1,2-dimethoxyethane
  • electrolytic solution composed of a 5M LiFSI solution
  • the lithium secondary battery of the present invention has a high energy density and excellent cycle characteristics, it has industrial applicability as a power storage device used for various purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、エネルギー密度が高く、サイクル特性に優れるリチウム2次電池を提供する。本発明は、正極と、セパレータと、負極活物質を有しない負極と、電解液と、を備え、 前記電解液が、化学式(A)-(D)で表されるエーテル化合物から選ばれるフッ素溶媒を1つ以上含む、リチウム2次電池である。(式中、Rは、それぞれ独立して、H、F、又は完全に又は部分的にフッ素化され炭素数1-3のフッ素化アルキル基のいずれかを示し、Xは、一価の基を示す。)

Description

リチウム2次電池
 本発明は、リチウム2次電池に関する。
 近年、太陽光又は風力等の自然エネルギーを電気エネルギーに変換する技術が注目されている。これに伴い、安全性が高く、かつ多くの電気エネルギーを蓄えることができる蓄電デバイスとして、様々な2次電池が開発されている。
 その中でも、正極及び負極の間をリチウムイオンが移動することで充放電を行うリチウム2次電池は、高電圧及び高エネルギー密度を示すことが知られている。典型的なリチウム2次電池として、正極及び負極にリチウム元素を保持することのできる活物質を有し、当該正極活物質及び負極活物質の間でのリチウムイオンの授受によって充放電をおこなうリチウムイオン2次電池(LIB)が知られている。
 また、高エネルギー密度化の実現を目的として、負極活物質として、炭素材料のようなリチウムイオンを挿入することができる材料に代えて、リチウム金属を用いるリチウム2次電池(リチウム金属電池、LMB)が開発されている。例えば、特許文献1には、負極としてリチウム金属をベースとする電極を用いる充電型電池が開示されている。
 また、更なる高エネルギー密度化や生産性の向上等を目的として、炭素材料やリチウム金属といった負極活物質を有しない負極を用いるリチウム2次電池が開発されている。例えば、特許文献2には、正極、負極、これらの間に介在された分離膜及び電解質を含むリチウム2次電池において、負極は、負極集電体上に金属粒子が形成され、充電によって正極から移動され、負極内の負極集電体上にリチウム金属を形成する、リチウム2次電池が開示されている。特許文献2は、そのようなリチウム2次電池は、リチウム金属の反応性による問題と、組み立ての過程で発生する問題点を解決し、性能及び寿命が向上されたリチウム2次電池を提供することができることを開示している。
特表2006-500755号公報 特表2019-505971号公報
 しかしながら、本発明者らが、上記特許文献に記載のものを始めとする従来の電池を詳細に検討したところ、エネルギー密度、及びサイクル特性の少なくともいずれかが十分でないことがわかった。
 例えば、負極活物質を有する負極を備えるリチウム2次電池は、その負極活物質の占める体積や質量に起因して、エネルギー密度及び容量を十分高くすることが困難である。また、負極活物質を有しない負極を備えるアノードフリー型リチウム2次電池についても、従来型のものは、充放電を繰り返すことにより負極表面上にデンドライト状のリチウム金属が形成されやすく、短絡及び容量低下が生じやすいため、サイクル特性が十分でない。
 また、アノードフリー型のリチウム2次電池において、リチウム金属析出時の不均一な成長を抑制するために、電池に大きな物理的圧力をかけて負極とセパレータとの界面を高圧に保つ方法も開発されている。しかしながら、そのような高圧の印加には大きな機械的機構が必要であるため、電池全体としては、重量及び体積が大きくなり、エネルギー密度が低下する。
 本発明は、上記問題点に鑑みてなされたものであり、エネルギー密度が高く、サイクル特性に優れる、リチウム2次電池を提供することを目的とする。
 本発明の一実施形態に係るリチウム2次電池は、正極と、セパレータと、負極活物質を有しない負極と、電解液と、を備え、前記電解液が、化学式(A)-(D)で表されるエーテル化合物から選ばれるフッ素溶媒を1つ以上含む。
Figure JPOXMLDOC01-appb-C000002
(式中、
 Rは、それぞれ独立して、H、F、又は完全に又は部分的にフッ素化され炭素数1-3のフッ素化アルキル基のいずれかを示し、
 Xは、一価の基を示す。)
 そのようなリチウム2次電池は、負極活物質を有しない負極を備えることにより、リチウム金属が負極の表面に析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われるため、エネルギー密度が高い。
 また、本発明者らは、電解液中に上記の化学式(A)-(D)で表されるフッ素溶媒を含有するリチウム2次電池は、負極表面に固体電解質界面層(以下、「SEI層」ともいう。)が形成されやすいことを見出した。SEI層はイオン伝導性を有するため、SEI層が形成された負極表面におけるリチウム析出反応の反応性は、負極表面の面方向について均一なものとなる。したがって、上記リチウム2次電池は、負極上にデンドライト状のリチウム金属が成長することが抑制され、サイクル特性に優れたものとなる。
 本発明によれば、エネルギー密度が高く、サイクル特性に優れるリチウム2次電池を提供することができる。
本実施形態に係るリチウム2次電池の概略断面図である。 本実施形態に係るリチウム2次電池の使用の概略断面図である。
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
(リチウム2次電池)
 図1は、本実施形態に係るリチウム2次電池の概略断面図である。本実施形態のリチウム2次電池100は、正極120と、負極活物質を有しない負極130とを備える。また、リチウム2次電池100において、正極120の負極130に対向する面とは反対側に正極集電体110が配置され、正極120と負極130との間に、セパレータ140が配置されている。
 以下、リチウム2次電池100の各構成について説明する。
(負極)
 負極130は、負極活物質を有しないものである。本明細書において、「負極活物質」とは、負極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、負極活物質としては、リチウム金属、及びリチウム元素(リチウムイオン又はリチウム金属)のホスト物質が挙げられる。リチウム元素のホスト物質とは、リチウムイオン又はリチウム金属を負極に保持するために設けられる物質を意味する。そのような保持の機構としては、特に限定されないが、例えば、インターカレーション、合金化、及び金属クラスターの吸蔵等が挙げられ、典型的には、インターカレーションである。
 本実施形態のリチウム2次電池は、電池の初期充電前に負極が負極活物質を有しないため、負極上にリチウム金属が析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われる。したがって、本実施形態のリチウム2次電池は、負極活物質を有するリチウム2次電池と比較して、負極活物質が占める体積及び負極活物質の質量が削減され、電池全体の体積及び質量が小さくなるため、エネルギー密度が原理的に高い。
 本実施形態のリチウム2次電池は、電池の初期充電前に負極が負極活物質を有せず、電池の充電により負極上にリチウム金属が析出し、電池の放電によりその析出したリチウム金属が電解溶出する。したがって、本実施形態のリチウム2次電池は、電池の放電終了時にも、負極が負極活物質を実質的に有しない。したがって、本実施形態のリチウム2次電池において、負極は負極集電体として働く。
 本実施形態のリチウム2次電池をリチウムイオン電池(LIB)及びリチウム金属電池(LMB)と比較すると、以下の点で異なるものである。
 リチウムイオン電池(LIB)において、負極はリチウム元素(リチウムイオン又はリチウム金属)のホスト物質を有し、電池の充電によりかかる物質にリチウム元素が充填され、ホスト物質がリチウム元素を放出することにより電池の放電が行われる。LIBは、負極がリチウム元素のホスト物質を有する点で、本実施形態のリチウム2次電池とは異なる。
 リチウム金属電池(LMB)は、その表面にリチウム金属を有する電極か、あるいはリチウム金属単体を負極として用いて製造される。すなわち、LMBは、電池を組み立てた直後、すなわち電池の初期充電前に、負極が負極活物質であるリチウム金属を有する点で、本実施形態のリチウム2次電池とは異なる。LMBは、その製造に、可燃性及び反応性が高いリチウム金属を含む電極を用いるが、本実施形態のリチウム2次電池は、リチウム金属を有しない負極を用いるため、より安全性及び生産性に優れるものである。
 本明細書において、負極が「負極活物質を有しない」とは、負極が負極活物質を有しないか、実質的に有しないことを意味する。負極が負極活物質を実質的に有しないとは、負極における負極活物質の含有量が、負極全体に対して10質量%以下であることを意味する。負極における負極活物質の含有量は、負極全体に対して、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。負極が負極活物質を有せず、又は、負極における負極活物質の含有量が上記の範囲内にあることにより、リチウム2次電池100のエネルギー密度が高いものとなる。
 本明細書において、「リチウム金属が負極上に析出する」とは、負極の表面、又は負極の表面に形成された後述する固体電解質界面(SEI)層の表面の少なくとも1箇所に、リチウム金属が析出することを意味する。例えば、図1において、リチウム金属は、負極130の表面(負極130とセパレータ140との界面)に析出する。
 本明細書において、電池が「初期充電前である」とは、電池が組み立てられてから第1回目の充電をするまでの状態を意味する。また、電池が「放電終了時である」とは、それ以上電池の電圧を低下させても放電が生じない状態を意味し、その際の電池の電圧は、例えば1.0V以上3.8V以下、好ましくは1.0V以上3.0V以下である。
 本明細書において、「負極活物質を有しない負極を備えるリチウム2次電池」とは、電池の初期充電前又は放電終了時に、負極が負極活物質を有しないことを意味する。したがって、「負極活物質を有しない負極」との句は、「電池の初期充電前又は放電終了時に負極活物質を有しない負極」、「電池の充電状態に依らずリチウム金属以外の負極活物質を有せず、かつ、初期充電前又は放電終了時においてリチウム金属を有しない負極」、又は「初期充電前又は放電終了時においてリチウム金属を有しない負極集電体」等と換言してもよい。あるいは、上記の句において、「初期充電前又は放電終了時」は、「初期充電前」との句に置き換えてもよい。また、「負極活物質を有しない負極を備えるリチウム2次電池」は、アノードフリーリチウム電池、ゼロアノードリチウム電池、又はアノードレスリチウム電池と換言してもよい。
 本実施形態の負極は、電池の充電状態によらず、リチウム金属以外の負極活物質の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。
 また、本実施形態の負極は、初期充電前又は放電終了時において、リチウム金属の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。負極は、初期充電前及び放電終了時において、リチウム金属の含有量が、負極全体に対して10質量%以下であると好ましい(その中でも好ましくは、リチウム金属の含有量が、負極全体に対して5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。)
 本実施形態のリチウム2次電池は、電池の電圧が1.0V以上3.5V以下である場合において、リチウム金属の含有量が、負極全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。);電池の電圧が1.0V以上3.0V以下である場合において、リチウム金属の含有量が、負極全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。);又は、電池の電圧が1.0V以上2.5V以下である場合において、リチウム金属の含有量が、負極全体に対して10質量%以下であってもよい(好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。)。
 また、本実施形態のリチウム2次電池において、電池の電圧が4.2Vの状態において負極上に析出しているリチウム金属の質量M4.2に対する、電池の電圧が3.0Vの状態において負極上に析出しているリチウム金属の質量M3.0の比M3.0/M4.2は、好ましくは20%以下であり、より好ましくは15%以下であり、更に好ましくは10%以下である。比M3.0/M4.2は、8.0%以下であってもよく、5.0%以下であってもよく、3.0%以下であってもよく、1.0%以下であってもよい。
 負極活物質の例としては、リチウム金属及びリチウム金属を含む合金、炭素系物質、金属酸化物、並びにリチウムと合金化する金属及び該金属を含む合金等が挙げられる。上記炭素系物質としては、特に限定されないが、例えば、グラフェン、グラファイト、ハードカーボン、メソポーラスカーボン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化チタン系化合物、酸化スズ系化合物、及び酸化コバルト系化合物等が挙げられる。上記リチウムと合金化する金属としては、例えば、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、及びガリウムが挙げられる。
 本実施形態の負極としては、負極活物質を有せず、集電体として用いることができるものであれば特に限定されないが、例えば、Cu、Ni、Ti、Fe、及び、その他Liと反応しない金属、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられる。なお、負極にSUSを用いる場合、SUSの種類としては従来公知の種々のものを用いることができる。上記のような負極材料は、1種を単独で又は2種以上を併用して用いられる。なお、本明細書中、「Liと反応しない金属」とは、リチウム2次電池の動作条件においてリチウムイオン又はリチウム金属と反応して合金化することがない金属を意味する。
 本実施形態の負極は、好ましくはCu、Ni、Ti、Fe、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものであり、より好ましくは、Cu、Ni、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものである。負極は、更に好ましくは、Cu、Ni、これらの合金、又は、ステンレス鋼(SUS)である。このような負極を用いると、電池のエネルギー密度、及び生産性が一層優れたものとなる傾向にある。
 本実施形態の負極の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、電池における負極の占める体積が減少するため、電池のエネルギー密度が一層向上する。
(正極)
 正極120としては、一般的にリチウム2次電池に用いられるものであれば特に限定されず、リチウム2次電池の用途によって、公知の材料を適宜選択することができる。電池の安定性及び出力電圧を向上させる観点から、正極120は、正極活物質を有することが好ましい。
 本明細書において、「正極活物質」とは、正極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、本実施形態の正極活物質としてはリチウム元素(典型的には、リチウムイオン)のホスト物質が挙げられる。
 そのような正極活物質としては、特に限定されないが、例えば、金属酸化物及び金属リン酸塩が挙げられる。金属酸化物としては、特に限定されないが、例えば、酸化コバルト系化合物、酸化マンガン系化合物、及び酸化ニッケル系化合物が挙げられる。上記金属リン酸塩としては、特に限定されないが、例えば、リン酸鉄系化合物、及びリン酸コバルト系化合物が挙げられる。典型的な正極活物質としては、LiCoO、LiNiCoMnO(x+y+z=1)、LiNiCoAlO(x+y+z=1)、LiNiMnO(x+y=1)、LiNiO、LiMn、LiFePO、LiCoPO、LiFeOF、LiNiOF、及びLiTiSが挙げられる。上記のような正極活物質は、1種を単独で又は2種以上を併用して用いられる。
 正極120は、上記の正極活物質以外の成分を含んでいてもよい。そのような成分としては、特に限定されないが、例えば、公知の導電助剤、バインダー、及びポリマー電解質が挙げられる。
 正極120における導電助剤としては、特に限定されないが、例えば、カーボンブラック、シングルウォールカーボンナノチューブ(SWCNT)、マルチウォールカーボンナノチューブ(MWCNT)、カーボンナノファイバー(CF)、及びアセチレンブラック等が挙げられる。また、バインダーとしては、特に限定されないが、例えば、ポリビニリデンフロライド、ポリテトラフルオロエチレン、スチレンブタジエンゴム、アクリル樹脂、及びポリイミド樹脂等が挙げられる。
 正極120における、正極活物質の含有量は、正極120全体に対して、例えば、50質量%以上100質量%以下であってもよい。導電助剤の含有量は、正極120全体に対して、例えば、0.5質量%30質量%以下あってもよい。バインダーの含有量は、正極120全体に対して、例えば、0.5質量%30質量%以下であってもよい。ポリマー電解質の含有量は、正極120全体に対して、例えば、0.5質量%30質量%以下であってもよい。
(正極集電体)
 正極120の片側には、正極集電体110が配置されている。正極集電体110は、電池においてリチウムイオンと反応しない導電体であれば特に限定されない。そのような正極集電体としては、例えば、アルミニウムが挙げられる。
 正極集電体110の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、リチウム2次電池100における正極集電体110の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。
(セパレータ)
 セパレータ140は、正極120と負極130とを隔離することにより電池が短絡することを防ぎつつ、正極120と負極130との間の電荷キャリアとなるリチウムイオンのイオン伝導性を確保するための部材であり、電子導電性を有せず、リチウムイオンと反応しない材料により構成される。また、セパレータ140は電解液を保持する役割も担う。セパレータを構成する材料自体にイオン伝導性はないが、セパレータが電解液を保持することにより、電解液を通じてリチウムイオンが伝導する。セパレータ140は、上記役割を担う限りにおいて限定はないが、例えば、多孔質の有機膜、好ましくは多孔質のポリマー膜、例えば、ポリエチレン(PE)膜、ポリプロピレン(PP)膜、又はこれらの積層構造により構成される。
 セパレータ140は、セパレータ被覆層により被覆されていてもよい。セパレータ被覆層は、セパレータ140の両面を被覆していてもよく、片面のみを被覆していてもよい。セパレータ被覆層は、リチウムイオンと反応しない部材であれば特に限定されないが、セパレータ140と、セパレータ140に隣接する層とを強固に接着させることができるものであると好ましい。そのようなセパレータ被覆層としては、特に限定されないが、例えば、ポリビニリデンフロライド(PVDF)、スチレンブタジエンゴムとカルボキシメチルセルロースの合材(SBR-CMC)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(Li-PAA)、ポリイミド(PI)、ポリアミドイミド(PAI)、及びアラミドのようなバインダーを含むものが挙げられる。セパレータ被覆層は、上記バインダーにシリカ、アルミナ、チタニア、ジルコニア、酸化マグネシウム、水酸化マグネシウム、硝酸リチウム等の無機粒子を添加させてもよい。なお、セパレータ140は、セパレータ被覆層を有しないセパレータであってもよく、セパレータ被覆層を有するセパレータであってもよい。
 セパレータ140の平均厚さは、好ましくは30μm以下であり、より好ましくは25μm以下であり、更に好ましくは20μm以下である。そのような態様によれば、リチウム2次電池100におけるセパレータ140の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。また、セパレータ140の平均厚さは、好ましくは5μm以上であり、より好ましくは7μm以上であり、更に好ましくは10μm以上である。そのような態様によれば、正極120と負極130とを一層確実に隔離することができ、電池が短絡することを一層抑止することができる。
(電解液)
 リチウム2次電池100は、電解液を有する。電解液は、電解質及び溶媒を含有し、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。リチウム2次電池100において、電解液は、セパレータ140に浸潤させてもよく、正極集電体110と、正極120と、セパレータ140と、負極130との積層体と共に密閉容器に封入してもよい。電解液は、電解質及び溶媒を含有し、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。このため、電解液を含む態様によれば、電池の内部抵抗が一層低下し、エネルギー密度、容量、及びサイクル特性が一層向上する。
 電解液を有するアノードフリー型のリチウム2次電池において、電解液中の溶媒等が分解されることにより、負極等の表面に固体電解質界面層(SEI層)が形成される。SEI層は、リチウム2次電池において、電解液中の成分が更に分解されること、並びにそれに起因する非可逆的なリチウムイオンの還元、及び気体の発生等を抑制する。また、SEI層はイオン伝導性を有するため、SEI層が形成された負極表面において、リチウム金属析出反応の反応性が負極表面の面方向について均一なものとなる。リチウム2次電池100において、特定のフッ素溶媒を用いると、負極表面にSEI層が形成されやすく、負極上にデンドライト状のリチウム金属が成長することが一層抑制され、その結果、サイクル特性が一層向上する傾向にある。
 なお、本明細書において、化合物が「溶媒として含まれる」とは、リチウム2次電池の使用環境において、当該化合物単体又は他の化合物との混合物が液体であればよく、さらには、電解質を溶解させて溶液相にある電解液を作製できるものであればよい。
 本実施形態では、電解液は、下記化学式(A)-(D)で表されるエーテル化合物から選ばれるフッ素溶媒を1つ以上含む。
Figure JPOXMLDOC01-appb-C000003
 式中、
 Rは、それぞれ独立して、H、F、又は完全に又は部分的にフッ素化され炭素数1-3のフッ素化アルキル基のいずれかを示し、
 Xは、一価の基を示す。
 Xは、炭素数1-7のアルキル基、又は、完全にあるいは部分的にフッ素化された炭素数1-7のフッ素化アルキル基のいずれかであることが好ましい。
 化学式(A)-(D)で表されるフッ素化エーテル化合物により、負極表面にSEI層が形成されやすく、負極上にデンドライト状のリチウム金属が成長することが一層抑制され、その結果、サイクル特性が向上する理由は、必ずしも明らかではないが、以下の理由が考えられる。
 フッ素化エーテル化合物(溶媒)はLiイオンの析出反応と競争して還元されたり、Liと反応したりすることで負極表面に反応生成物として連続、不連続のSEI層を形成する。このSEI層は、Liイオンが溶媒和する炭化水素溶媒に対して斥力的に作用すると考えられ、炭化水素溶媒の連続、断続的な分解を抑制するとともに、Liイオンの析出時の離脱をスムーズにし、Li金属の溶出反応時の溶媒和ポテンシャルを緩和するものと推察される。
 また、驚くべきことに、上記フッ素化合物を含有するリチウム2次電池100に形成されるSEI層は、従来のリチウム2次電池に形成されるSEI層に比べて、イオン伝導性が高いことが見出された。これは、形成されるSEI層のフッ素含有率が高いものとなり、SEI層におけるリチウムイオンの移動経路が増加、ないし拡張するためであると推定される。ただし、その要因は上記に限られない。
 化学式(A)及び(B)の双方の構造を有するエーテル化合物としては、例えば、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル(TTFE)、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルジエトキシメタン、及び1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルジエトキシプロパン等が挙げられる。上記のフッ化アルキル化合物の効果を有効かつ確実に奏する観点から、フッ素溶媒ABとしては、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテルが好ましい。
 化学式(A)で表されるエーテル化合物としては、例えば、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(TFEE)、メチル-1,1,2,2-テトラフルオロエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、プロピル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、及び1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル等が挙げられる。上記のフッ化アルキル化合物の効果を有効かつ確実に奏する観点から、フッ素溶媒Aとしては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、メチル-1,1,2,2-テトラフルオロエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、及び1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテルが好ましい。
 化学式(B)で表されるエーテル化合物としては、例えば、ジフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、トリフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、フルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、及びメチル-2,2,3,3-テトラフルオロプロピルエーテル等が挙げられる。上記のフッ化アルキル化合物の効果を有効かつ確実に奏する観点から、フッ素溶媒Bとしては、ジフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテルが好ましい。
 化学式(A)で表されるエーテル化合物又は化学式(B)で表されるエーテル化合物として好ましく用いることができるTTFE及びTFEEの化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000004
 化学式(C)で表されるエーテル化合物としては、下記化学式(C1)~(C5)で示される化合物のいずれかを用いることができる。化学式(1)のフッ素化エーテル溶媒として、特に、分岐鎖を有するフッ素化エーテル溶媒が好ましく、例えば、下記化学式(C1)又は(C2)で示されるフッ素化エーテル溶媒を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 化学式(D)のフッ素化ジエーテル溶媒として、下記化学式(D1)~(D2)で示されるフッ素化ジエーテル溶媒のいずれかを用いることができる。
Figure JPOXMLDOC01-appb-C000006
 電解液は、その他のフッ素溶媒を含んでいてもよい。このようなフッ素溶媒として、メチルノナフルオロブチルエーテル、エチルノナフルオロブチルエーテル、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-トリフルオロメチルペンタン、メチル-2,2,3,3,3-ペンタフルオロプロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルメチルエーテル、エチル-1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、及びテトラフロロエチルテトラフロロプロピルエーテル等が挙げられる。
 電解液は、少なくとも1種のフッ素溶媒を含有していればよい。電解液における電解質の溶解度を一層向上させる観点、及びSEI層が一層形成されやすくなる観点から、電解液は、2種以上のフッ素溶媒を含有することが好ましい。
 上述したフッ素溶媒の含有量(フッ素溶媒の総計)は、特に限定されないが、電解液の溶媒成分の総量に対して、20体積%以上、30体積%以上であり、好ましくは40体積%以上であり、より好ましくは50体積%以上であり、更に好ましくは60体積%以上であり、更により好ましくは70体積%以上である。フッ素溶媒の含有量が上記の範囲内にあると、SEI層が一層形成されやすくなるため、電池のサイクル特性が一層向上する傾向にある。フッ素溶媒の含有量の上限は特に限定されず、フッ素溶媒の含有量は、電解液の溶媒成分の総量に対して、100体積%以下であってもよく、95体積%以下であってもよく、90体積%以下であってもよく、80体積%以下であってもよい。
 2種のフッ素溶媒を組合わせて用いる場合、化学式(A)又は(B)で表されるエーテル化合物から選ばれるフッ素溶媒と、化学式(C)又は(D)で表されるエーテル化合物から選ばれるフッ素溶媒を好ましく組み合わせることができる。化学式(A)又は(B)で表されるエーテル化合物と、化学式(C)又は(D)で表されるエーテル化合物を組み合わせる場合の割合は、1:10~10:1であり、1:5~5:1、1:3~3:1、1:2~2:1、1:1であることが好ましい。
 電解液が、フッ素原子を有しないエーテル化合物である非フッ素溶媒を含むことが好ましい。非フッ素溶媒を含むことにより、電解液における電解質の溶解度が一層向上するため、電解液におけるイオン伝導性が向上し、その結果、リチウム2次電池のサイクル特性を向上できる。非フッ素溶媒として、フッ素原子を有しないエーテル化合物を2種類以上含んでいてもよい。フッ素原子を有しないエーテル化合物が、エーテル結合を2つ以上5つ以下で含むポリエーテル化合物であることがさらに好ましい。そのようなエーテル化合物としては、特に限定されないが、例えば、1,2-ジメトキシエタン(DME)、1,2-ジメトキシプロパン(DMP)、トリエチレングリコールジメチルエーテル(TGM)、ジエチレングリコールジメチルエーテル(DGM)、テトラエチレングリコールジメチルエーテル(TetGM)、1,2-ジメトキシブタン、2,3-ジメトキシブタン、1,2-ジエトキシプロパン、1,2-ジエトキシブタン、2,3-ジエトキシブタン、ジエトキシエタン、ジメチルエーテル、アセトニトリル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、エチレンカーボネート、プロピレンカーボネート、クロロエチレンカーボネート、メチルアセテート、エチルアセテート、プロピルアセテート、メチルプロピオネート、エチルプロピオネート、リン酸トリメチル、及びリン酸トリエチル等が挙げられる。
 非フッ素溶媒の含有量(フッ素溶媒の総計)は、特に限定されないが、電解液の溶媒成分の総量に対して、5体積%以上であり、好ましくは10体積%以上であり、より好ましくは15体積%以上であり、更により好ましくは20体積%以上であり、30体積%以下であることが好ましい。
 電解液に含まれる電解質として、リチウム塩であれば特に限定されないが、LiI、LiCl、LiBr、LiF、LiBF、LiPF、LiAsF、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOCFCF、LiBF(C)、LiB(O、LiB(O)F、LiB(OCOCF、LiNO、及びLiSO等が挙げられる。リチウム2次電池100のエネルギー密度、及びサイクル特性が一層優れる観点から、リチウム塩としては、LiN(SOF)、LiPF及びLiBF(C)が好ましい。また、電解液がLiN(SOF)、LiPF及びLiBF(C)のうち少なくとも1種以上を含有すると、負極表面におけるSEI層の形成及び成長が一層促進され、サイクル特性が一層優れたリチウム2次電池100を得ることができる傾向にある。なお、上記のリチウム塩は、1種を単独で又は2種以上を併用して用いられる。
 電解液は、リチウム塩以外の塩を電解質として更に含んでいてもよい。そのような塩としては、例えば、Na、K、Ca、及びMgの塩等が挙げられる。
 電解液におけるリチウム塩の濃度は特に限定されないが、好ましくは0.5M以上であり、より好ましくは0.7M以上であり、更に好ましくは0.9M以上であり、更により好ましくは1.0M以上である。リチウム塩の濃度が上記の範囲内にあることにより、SEI層が一層形成されやすくなり、また、内部抵抗が一層低くなる傾向にある。特に、フッ素化合物を溶媒として含むリチウム2次電池100は、電解液中におけるリチウム塩の濃度を高くすることができるため、サイクル特性及びレート性能を一層向上させることができる。リチウム塩の濃度の上限は特に限定されず、リチウム塩の濃度は10.0M以下であってもよく、5.0M以下であってもよく、2.0M以下であってもよい。
 本実施形態のリチウム2次電池は、液体以外の状態で電解液又は電解液の成分を含んでいてもよい。例えば、後述するセパレータを調製する際に電解液を添加することにより固体状又は半固体状(ゲル状)の部材中に電解液を含む電池とすることができる。また、電解液は電解質と換言することができる。
 なお、電解液にフッ素溶媒、及び非フッ素溶媒が含まれることは、従来公知の種々の方法により確かめることができる。そのような方法としては、例えば、NMR測定法、HPLC-MS等の質量分析法、及びIR測定法等が挙げられる。
(リチウム2次電池の使用)
 図2に本実施形態のリチウム2次電池の1つの使用態様を示す。リチウム2次電池200は、リチウム2次電池100において、正極集電体110及び負極130に、リチウム2次電池を外部回路に接続するための正極端子220及び負極端子210がそれぞれ接合されている。リチウム2次電池200は、負極端子210を外部回路の一端に、正極端子220を外部回路のもう一端に接続することにより充放電される。外部回路とは、例えば抵抗、電源、装置、又はポテンショスタット等である。
 正極端子220及び負極端子210の間に、負極端子210から外部回路を通り正極端子220へと電流が流れるような電圧を印加することでリチウム2次電池200が充電される。リチウム2次電池200を充電することにより、負極上にリチウム金属の析出が生じる。
 リチウム2次電池200は、電池の組み立て後の第1回目の充電(初期充電)により、負極130の表面(負極130とセパレータ140との界面)に固体電解質界面層(SEI層)が形成されていてもよい。形成されるSEI層としては、特に限定されないが、例えば、リチウムを含む無機化合物、又はリチウムを含む有機化合物等を含んでいてもよい。SEI層の典型的な平均厚さとしては、1nm以上10μm以下である。
 充電後のリチウム2次電池200について、正極端子220及び負極端子210を、必要に応じて外部回路を介して接続するとリチウム2次電池200が放電される。これにより、負極上に生じたリチウム金属の析出が電解溶出する。
(リチウム2次電池の製造方法)
 図1に示すようなリチウム2次電池100の製造方法としては、上述の構成を備えるリチウム2次電池を製造することができる方法であれば特に限定されないが、例えば以下のような方法が挙げられる。
 まず、正極120を公知の製造方法により、又は市販のものを購入することにより準備する。正極120は例えば以下のようにして製造する。上述した正極活物質、公知の導電助剤、及び公知のバインダーを混合し、正極混合物を得る。その配合比は、例えば、上記正極混合物全体に対して、正極活物質が50質量%以上99質量%以下、導電助剤が0.5質量%30質量%以下、バインダーが0.5質量%30質量%以下であってもよい。得られた正極混合物を、所定の厚さ(例えば、5μm以上1mm以下)を有する正極集電体としての金属箔(例えば、Al箔)の片面に塗布し、プレス成型する。得られた成型体を、打ち抜き加工により、所定のサイズに打ち抜き、正極集電体110上に形成された正極120を得る。
 次に、負極130は、上述した負極材料、例えば1μm以上1mm以下の金属箔(例えば、電解Cu箔)を、スルファミン酸を含む溶剤で洗浄することで準備することができる。
 次に、上述した構成を有するセパレータ140を準備する。セパレータ140は従来公知の方法で製造してもよく、市販のものを用いてもよい。電解液は、上記の溶媒に上記の電解質(典型的には、リチウム塩)を溶解させることにより調製すればよい。
 次に、以上のようにして得られた、正極120が形成された正極集電体110、セパレータ140、及び負極130を、この順に積層することで図1に示されるような積層体を得る。以上のようにして得られた積層体を、電解液と共に密閉容器に封入することでリチウム2次電池100を得ることができる。密閉容器としては、特に限定されないが、例えば、ラミネートフィルムが挙げられる。
 なお、本明細書において、「エネルギー密度が高い」又は「高エネルギー密度である」とは、電池の総体積又は総質量当たりの容量が高いことを意味するが、好ましくは800Wh/L以上又は350Wh/kg以上であり、より好ましくは900Wh/L以上又は400Wh/kg以上であり、更に好ましくは1000Wh/L以上又は450Wh/kg以上である。
 また、本明細書において、「サイクル特性に優れる」とは、通常の使用において想定され得る回数の充放電サイクルの前後において、電池の容量の減少率が低いことを意味する。すなわち、初期充電の後の1回目の放電容量と、通常の使用において想定され得る回数の充放電サイクル後の放電容量とを比較した際に、充放電サイクル後の放電容量が、初期充電の後の1回目の放電容量に対してほとんど減少していないことを意味する。ここで、「通常の使用において想定され得る回数」とは、リチウム2次電池が用いられる用途にもよるが、例えば、20回、30回、50回、70回、100回、300回、又は500回である。また、「充放電サイクル後の放電容量が、初期充電の後の1回目の放電容量に対してほとんど減少していない」とは、リチウム2次電池が用いられる用途にもよるが、例えば、充放電サイクル後の放電容量が、初期充電の後の1回目の放電容量に対して、60%以上、65%以上、70%以上、75%以上、80%以上、又は85%以上であることを意味する。
 上記本実施形態は、本発明を説明するための例示であり、本発明をその本実施形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。例えば、正極集電体、正極、セパレータ、及び負極の積層体の間に追加の機能層を挿入してもよい。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
[実施例]
 以下のようにしてリチウム2次電池を作製した。
 まず、厚さ8μmの電解Cu箔を、スルファミン酸を含む溶剤で洗浄した後、水洗した。続いて、電解Cu箔を、負極コーティング剤としての1H-benzotriazole(1H-ベンゾトリアゾール)を含有する溶液に浸漬した後、乾燥させ、更に水洗することにより、負極コーティング剤がコーティングされたCu箔を得た。得られたCu箔を所定の大きさ(45mm×45mm)に打ち抜くことにより負極を得た。
 セパレータとして、12μmのポリエチレン微多孔膜の両面に2μmのポリビニリデンフロライド(PVdF)がコーティングされた、厚さ16μm、所定の大きさ(50mm×50mm)のセパレータを準備した。
 正極は以下のようにして作製した。正極活物質としてLiNi0.85Co0.12Al0.03を96質量部、導電助剤としてカーボンブラックを2質量部、及びバインダーとしてポリビニリデンフロライド(PVdF)を2質量部混合したものを、正極集電体としての12μmのAl箔の片面に塗布し、プレス成型した。得られた成型体を、打ち抜き加工により、所定の大きさ(40mm×40mm)に打ち抜き、正極集電体に形成された正極を得た。
 フッ素溶媒と非フッ素溶媒の混合溶媒に、リチウム塩としてLiN(SOF)(LiFSI)を溶解させて、1.2M FSI溶液からなる電解液を調製した。フッ素溶媒と非フッ素溶媒の組合せのマトリックスを表1に示す。実施例では、フッ素化エーテル溶媒として、TTFE、TFEE、化学式(C1)で表されるエーテル化合物(FIPME)、化学式(C2)で表されるエーテル化合物(FIPFME)、化学式(D1)で表されるエーテル化合物(DEFEOM)、化学式(D2)で表されるエーテル化合物(DHFPOM)のうちの1種又は2種を使用した。非フッ素溶媒として、1,2-ジメトキシエタン(DME)、トリエチレングリコールジメチルエーテル(TGM)、1,2-ジメトキシプロパン(DMP)、ジエチレングリコールジメチルエーテル(DGM)、テトラエチレングリコールジメチルエーテル(TetGM)のいずれかを用いた。フッ素溶媒と非フッ素溶媒の混合比は、容量比で80:20とした。
 以上のようにして得られた正極が形成された正極集電体、セパレータ、及び負極を、この順に、正極がセパレータと対向するように積層することで積層体を得た。更に、正極集電体及び負極に、それぞれ100μmのAl端子及び100μmのNi端子を超音波溶接で接合した後、ラミネートの外装体に挿入した。次いで、上記のようにして調製した電解液を上記の外装体に注入した。外装体を封止することにより、リチウム2次電池を得た。
[サイクル特性の評価]
 以下のようにして、各実施例で作製したリチウム2次電池のサイクル特性を評価した。
 作製したリチウム2次電池(25℃、32mAhのセル)を、0.1Cの充電レートでCC充電した後、0.3Cの放電レートでCC放電するサイクルを、温度25℃の環境で繰り返した。各例について、その放電容量が初期容量の80%になったときのサイクル回数(表中、「サイクル回数」という。)を表1に示す。なお、表1では、混合溶媒を使用している場合には、混合溶媒中の溶媒の割合(容量比)を括弧書きで明記してある(例えば、50/50)。
Figure JPOXMLDOC01-appb-T000007
 表1では、フッ素溶媒6種と非フッ素溶媒4種の組合せによる24種類の電解液をそれぞれ備えるリチウム2次電池のサイクル特性をしている。例えば、フッ素溶媒DTFEOMと非フッ素溶媒DMEの混合溶媒を含む電解液を使用したリチウム2次電池のサイクル特性は162回である。
 次に、フッ素化エーテル溶媒と他のフッ素溶媒とを混合して用い、さらに、非フッ素溶媒についても混合溶媒を使用して電解液を調製し、これらの電解液を使用したリチウム2次電池のサイクル特性を上記と同様の方法で評価した。表2にサイクル特性の評価結果を示す。フッ素化エーテル溶媒と混合するフッ素溶媒として、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル(TTFE、フッ素溶媒ABに相当)、又は、TFEE(1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、フッ素溶媒Aに相当)を用いた。表2,3では、表1と同様に、混合溶媒中の溶媒の割合(容量比)を括弧書きで明記してある。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表2,3では、フッ素溶媒の混合溶媒10種と非フッ素溶媒の混合溶媒4種の組合せによる40種類の電解液をそれぞれ備えるリチウム2次電池のサイクル特性をしている。
[比較例]
 比較例1として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)(30体積%/70体積%)の混合溶媒に、リチウム塩としてLiPFを溶解させて、1M LiPF溶液からなる電解液を使用した点を除いて、実施例と同様にリチウム2次電池を作製し、サイクル特性を評価した。
 比較例2として、1,2-ジメトキシエタン(DME)からなる溶媒に、リチウム塩としてLiN(SOF)(LiFSI)を溶解させて、5M LiFSI溶液からなる電解液を使用した点を除いて、実施例と同様にリチウム2次電池を作製し、サイクル特性を評価した。
 以下に、比較例1~2の評価結果を示す。
Figure JPOXMLDOC01-appb-T000010
 表1~4に示すように、いずれの実施例も、比較例に比べてサイクル特性を向上できた。また、表2,3に示した、非フッ素溶媒の混合系及びフッ素化エーテル溶媒の混合系を用いることにより、さらなるサイクル特性の向上効果が得られた。
 本発明のリチウム2次電池は、エネルギー密度が高く、サイクル特性に優れるため、様々な用途に用いられる蓄電デバイスとして、産業上の利用可能性を有する。
 100,200,300…リチウム2次電池、110…正極集電体、120…正極、130…負極、140…セパレータ、210…負極端子、220…正極端子。

Claims (10)

  1.  正極と、セパレータと、負極活物質を有しない負極と、電解液と、を備え、
     前記電解液が、化学式(A)-(D)で表されるエーテル化合物から選ばれるフッ素溶媒を1つ以上含む、
     リチウム2次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Rは、それぞれ独立して、H、F、又は完全に又は部分的にフッ素化され炭素数1-3のフッ素化アルキル基のいずれかを示し、
     Xは、一価の基を示す。)
  2.  Xは、炭素数1-7のアルキル基、又は、完全にあるいは部分的にフッ素化された炭素数1-7のフッ素化アルキル基のいずれかを示す、
    請求項1に記載のリチウム2次電池。
  3.  前記電解液が、化学式(A)-(D)で表されるエーテル化合物から選ばれるフッ素溶媒を2種類以上含む、
    請求項1又は2に記載のリチウム2次電池。
  4.  前記電解液が、フッ素原子を有しないエーテル化合物である非フッ素溶媒を1つ以上含む、
    請求項1~3のいずれか1項に記載のリチウム2次電池。
  5.  前記電解液が、フッ素原子を有しないエーテル化合物である非フッ素溶媒を2種類以上含む、
    請求項1~4のいずれか一項に記載のリチウム2次電池。
  6.  前記フッ素原子を有しないエーテル化合物が、エーテル結合を2つ以上5つ以下で含む化合物である、請求項4又は5に記載のリチウム2次電池。
  7.  前記電解液が、LiN(SOF)をリチウム塩として含む、
    請求項1~6のいずれか一項に記載のリチウム2次電池。
  8.  前記フッ素溶媒の合計の含有量が、前記電解液の溶媒成分の総量に対して、20体積%以上である、
    請求項1~7のいずれか一項に記載のリチウム2次電池。
  9.  前記フッ素溶媒の合計の含有量が、前記電解液の溶媒成分の総量に対して、50体積%以上である、
    請求項8に記載のリチウム2次電池。
  10.  前記非フッ素溶媒の含有量が、前記電解液の溶媒成分の総量に対して、10体積%以上50体積%以下である、請求項4~6のいずれか1項に記載のリチウム2次電池。
PCT/JP2021/019331 2020-09-14 2021-05-21 リチウム2次電池 WO2022054343A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21866304.5A EP4213260A1 (en) 2020-09-14 2021-05-21 Lithium secondary battery
CN202180052157.7A CN115989604A (zh) 2020-09-14 2021-05-21 锂二次电池
KR1020237007813A KR20230048114A (ko) 2020-09-14 2021-05-21 리튬 이차 전지
JP2022547396A JPWO2022054343A1 (ja) 2020-09-14 2021-05-21
US18/119,082 US20230246240A1 (en) 2020-09-14 2023-03-08 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/034710 WO2022054279A1 (ja) 2020-09-14 2020-09-14 リチウム2次電池
JPPCT/JP2020/034710 2020-09-14
PCT/JP2021/014610 WO2022215160A1 (ja) 2021-04-06 2021-04-06 リチウム2次電池
JPPCT/JP2021/014610 2021-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/119,082 Continuation US20230246240A1 (en) 2020-09-14 2023-03-08 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2022054343A1 true WO2022054343A1 (ja) 2022-03-17

Family

ID=80630425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019331 WO2022054343A1 (ja) 2020-09-14 2021-05-21 リチウム2次電池

Country Status (6)

Country Link
US (1) US20230246240A1 (ja)
EP (1) EP4213260A1 (ja)
JP (1) JPWO2022054343A1 (ja)
KR (1) KR20230048114A (ja)
CN (1) CN115989604A (ja)
WO (1) WO2022054343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191386A1 (ko) * 2022-03-28 2023-10-05 서울대학교 산학협력단 리튬이온배터리용 전해질 첨가제, 이를 포함하는 전해질 및 이를 포함하는 리튬이온배터리
WO2023215607A1 (en) * 2022-05-06 2023-11-09 The Board Of Trustees Of The Leland Stanford Junior University Flurorinated acetal electrolytes for high-voltage and low-impedance lithium metal batteries

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363031A (ja) * 2003-06-06 2004-12-24 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006500755A (ja) 2002-09-27 2006-01-05 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー 充電型リチウム電池
WO2014080870A1 (ja) * 2012-11-20 2014-05-30 日本電気株式会社 リチウムイオン二次電池
JP2014110235A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2017059367A (ja) * 2015-09-15 2017-03-23 大日本印刷株式会社 二次電池、二次電池用電解液
JP2019501480A (ja) * 2015-11-18 2019-01-17 シェンチェン・インスティテューツ・オブ・アドバンスド・テクノロジー・チャイニーズ・アカデミー・オブ・サイエンシーズShenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences 二次電池及びその製造方法
JP2019505971A (ja) 2016-07-14 2019-02-28 エルジー・ケム・リミテッド リチウム金属が正極に形成されたリチウム二次電池とこの製造方法
US20190214672A1 (en) * 2018-01-05 2019-07-11 Samsung Electronics Co., Ltd. Anodeless lithium metal battery and method of manufacturing the same
JP2019216094A (ja) * 2018-06-07 2019-12-19 パナソニックIpマネジメント株式会社 リチウム二次電池
US20200161706A1 (en) * 2018-11-21 2020-05-21 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115602B1 (ko) 2017-06-21 2020-05-26 주식회사 엘지화학 리튬 이차전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500755A (ja) 2002-09-27 2006-01-05 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー 充電型リチウム電池
JP2004363031A (ja) * 2003-06-06 2004-12-24 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2014080870A1 (ja) * 2012-11-20 2014-05-30 日本電気株式会社 リチウムイオン二次電池
JP2014110235A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2017059367A (ja) * 2015-09-15 2017-03-23 大日本印刷株式会社 二次電池、二次電池用電解液
JP2019501480A (ja) * 2015-11-18 2019-01-17 シェンチェン・インスティテューツ・オブ・アドバンスド・テクノロジー・チャイニーズ・アカデミー・オブ・サイエンシーズShenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences 二次電池及びその製造方法
JP2019505971A (ja) 2016-07-14 2019-02-28 エルジー・ケム・リミテッド リチウム金属が正極に形成されたリチウム二次電池とこの製造方法
US20190214672A1 (en) * 2018-01-05 2019-07-11 Samsung Electronics Co., Ltd. Anodeless lithium metal battery and method of manufacturing the same
JP2019216094A (ja) * 2018-06-07 2019-12-19 パナソニックIpマネジメント株式会社 リチウム二次電池
US20200161706A1 (en) * 2018-11-21 2020-05-21 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAGOS TESFAYE TEKA, SU WEI-NIEN, HUANG CHEN-JUI, THIRUMALRAJ BALAMURUGAN, CHIU SHUO-FENG, ABRHA LJALEM HADUSH, HAGOS TEKLAY MEZGEB: "Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 461, 1 June 2020 (2020-06-01), AMSTERDAM, NL, XP055913325, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2020.228053 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191386A1 (ko) * 2022-03-28 2023-10-05 서울대학교 산학협력단 리튬이온배터리용 전해질 첨가제, 이를 포함하는 전해질 및 이를 포함하는 리튬이온배터리
WO2023215607A1 (en) * 2022-05-06 2023-11-09 The Board Of Trustees Of The Leland Stanford Junior University Flurorinated acetal electrolytes for high-voltage and low-impedance lithium metal batteries

Also Published As

Publication number Publication date
JPWO2022054343A1 (ja) 2022-03-17
US20230246240A1 (en) 2023-08-03
KR20230048114A (ko) 2023-04-10
CN115989604A (zh) 2023-04-18
EP4213260A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP4743752B2 (ja) リチウムイオン二次電池
WO2017094416A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法
JP4222519B2 (ja) リチウムイオン二次電池およびこれを用いた機器
WO2011030832A1 (ja) 蓄電デバイス用非水電解液および蓄電デバイス
US20230246240A1 (en) Lithium secondary battery
JP5357517B2 (ja) リチウムイオン二次電池
WO2022038793A1 (ja) リチウム2次電池
WO2019065151A1 (ja) 非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法
US20240120549A1 (en) Lithium secondary battery
US20230246238A1 (en) Lithium secondary battery
WO2023042262A1 (ja) リチウム2次電池
JP6258180B2 (ja) リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池
JP5201794B2 (ja) リチウム二次電池及びリチウム二次電池の製造方法
WO2022215160A1 (ja) リチウム2次電池
WO2022102072A1 (ja) リチウム2次電池
WO2022162822A1 (ja) リチウム2次電池及びその製造方法
WO2022144947A1 (ja) リチウム2次電池
WO2023053295A1 (ja) リチウム2次電池
WO2023002537A1 (ja) リチウム2次電池
WO2022091407A1 (ja) リチウム2次電池
WO2022244110A1 (ja) リチウム2次電池及びその使用方法、並びにリチウム2次電池の製造方法
WO2022264406A1 (ja) リチウム2次電池
JP2017041389A (ja) Li電池用添加剤およびそれを用いたLi電池
JP2022015971A (ja) 負極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547396

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007813

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021866304

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866304

Country of ref document: EP

Effective date: 20230414