WO2022048377A1 - 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用 - Google Patents

一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用 Download PDF

Info

Publication number
WO2022048377A1
WO2022048377A1 PCT/CN2021/110288 CN2021110288W WO2022048377A1 WO 2022048377 A1 WO2022048377 A1 WO 2022048377A1 CN 2021110288 W CN2021110288 W CN 2021110288W WO 2022048377 A1 WO2022048377 A1 WO 2022048377A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
strength
low
aluminosilicate glass
brittle
Prior art date
Application number
PCT/CN2021/110288
Other languages
English (en)
French (fr)
Inventor
王志安
彭引平
刘仲军
仵小曦
Original Assignee
彩虹集团(邵阳)特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彩虹集团(邵阳)特种玻璃有限公司 filed Critical 彩虹集团(邵阳)特种玻璃有限公司
Publication of WO2022048377A1 publication Critical patent/WO2022048377A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the invention relates to the technical field of preparation of aluminosilicate glass, in particular to a high-strength, low-brittleness aluminosilicate glass and a strengthening method and application thereof.
  • the present invention provides a high-strength, low-brittle aluminosilicate glass and a strengthening method and application thereof, with low cost, convenient operation, and chemical strengthening treatment. Afterwards, a deep ion exchange depth and a high surface compressive stress can be obtained. On the one hand, the internal stress concentration of the glass under tension is prevented, and on the other hand, the crack propagation on the glass surface is prevented, thereby improving the strength of the glass.
  • a high strength, low brittleness aluminosilicate glass comprising 56%-70% SiO2 , 8 %-25% Al2O3 , 1 %-10% B2O3 in molar percentage , 0-15% Li 2 O, 6%-20% Na 2 O, 0-10% K 2 O, 0-5% MgO, 1%-5% ZrO 2 and 0.1%-1% SnO 2 .
  • the molar percentage of the ZrO 2 is 1% to 4%.
  • the mole percentage of Li 2 O is 0-10%
  • the mole percentage of Na 2 O is 6%-14%
  • the mole percentage of K 2 O is 0-5%.
  • the mole percentages of ZrO 2 and R 2 O satisfy the following relationship:
  • the molar percentages of Al 2 O 3 and R 2 O satisfy the following relationship:
  • the glass is a flat glass or glass product obtained in the following manner, wherein,
  • the flat glass is formed by float method, overflow down-draw method or slit down-draw method, and the thickness of the flat glass is less than 5mm;
  • Glass products are obtained by bending, molding or machining into the desired shape.
  • the mole percentages of R 2 O, R′O, Al 2 O 3 , ZrO 2 and B 2 O 3 satisfy the following relationship:
  • the molar percentages of Al 2 O 3 , ZrO 2 and B 2 O 3 satisfy the following relationship:
  • the molar percentages of R 2 O and R′O satisfy the following relationship:
  • a method for strengthening aluminosilicate glass with high strength and low brittleness comprising the following steps:
  • Step 1 in terms of molar percentage, prepare raw materials according to the components of the glass, and shape the raw materials into glass after melting and clarifying; the components of the glass in molar percentages are : SiO 2 56%-70%, Al O3 8 %-25%, B2O3 1 %-10%, Li2O 0-15%, Na2O 6 %-20%, K2O 0-10%, MgO 0-5%, ZrO 2 1%-5%, SnO 2 0.1%-1%;
  • Step 2 ion-exchange the glass in a salt bath of potassium nitrate and sodium nitrate at 360-450° C. to obtain chemically strengthened aluminosilicate glass, wherein when the glass does not contain Li 2 O, an ion-exchange is performed , when the glass contains Li 2 O, two ion exchanges are performed;
  • the mass percentage of potassium nitrate and sodium nitrate is (2%-98%): (2%-98%), and the exchange time is greater than 1h;
  • the mass percentage of potassium nitrate and sodium nitrate in the first ion exchange is (2%-98%): (2%-98%), the exchange time is 1-8h, the second ion exchange When the mass percentage of potassium nitrate and sodium nitrate is (80% ⁇ 100%):(0% ⁇ 20%), the exchange time is more than 10min.
  • the surface compressive stress is greater than 600MPa, and the compression depth of the stress layer is greater than 30 ⁇ m;
  • the surface compressive stress of the glass is greater than 700MPa
  • the compression depth of the stress layer is greater than 60 ⁇ m
  • the fracture toughness is 0.8-1.3MPa ⁇ m 0.5
  • the brittleness is less than 9 ⁇ m -0.5
  • the hardness is 5-10GPa .
  • a high-strength, low-brittle aluminosilicate glass obtained by any one of the above-mentioned strengthening methods for high-strength, low-brittleness aluminosilicate glass.
  • the present invention has the following beneficial technical effects:
  • the high-strength and low-brittle aluminosilicate glass of the present invention by designing the specific content of SiO 2 to be 56%-70% by mole, can stabilize the glass network structure and at the same time make the glass reach the required melting, chemical and chemical properties.
  • Al 2 O 3 with a molar percentage of 8% to 25% greatly improves the chemical stability of the glass while ensuring that the glass has a certain viscosity, hardness and mechanical strength, resulting in a glass with long material properties , together with the alkali metal oxides in the glass to help ion exchange, which can reduce the tendency of glass to crystallize;
  • B 2 O 3 with a molar percentage of 1%-10% can improve the damage resistance of the glass and reduce the Young's degree of the glass.
  • B 2 O 3 also helps to remove non-bridging oxygen atoms in the glass network structure, the toughness of the glass will increase, and the brittleness of the glass will increase when the hardness remains unchanged.
  • the combination of Li 2 O with a mole percentage of 0-15%, Na 2 O with a mole percentage of 6%-20%, and K 2 O with a mole percentage of 0-10% can improve the The solubility of the glass ensures the progress of the chemical ion exchange process, thereby obtaining a deeper compression depth of the stress layer and enhancing the flexural strength of the glass ; It resists the formation of cracks in the glass and the expansion of cracks, prevents the precipitation of alkali metal ions, improves the viscosity, hardness, elasticity, refractive index and chemical stability of the glass, reduces the thermal expansion coefficient of the glass, and enhances the degree of networking of the glass structure.
  • MgO with a molar percentage of 0-5% can reduce the clarification temperature of the glass and promote the melting of the batch;
  • SnO 2 with a molar percentage of 0.1%-1% can eliminate the bubbles in the glass melt; the above
  • the chemically strengthened glass obtained after the ion exchange of the components achieves a deep ion exchange depth and a high surface compressive stress, so that it can have high mechanical strength, which can effectively prevent the display product to protect the screen surface. damage and prolong the service life of electronic display products.
  • soda lime silicate glass it has higher strength and hardness and lower brittleness.
  • the raw materials can be melted and clarified to form the glass, and then two methods are adopted according to whether the glass contains Li 2 O or not.
  • Different ion exchange schemes but all are ion exchanged in sodium and potassium salt baths at 360-450°C to obtain chemically strengthened aluminosilicate glass products; aluminosilicate glass without Li 2 O undergoes primary ion exchange Exchange, by exchanging the sodium ions with the smaller radius in the glass with the larger radius potassium ion in the salt bath, to obtain a larger ion exchange depth and surface compressive stress.
  • Aluminosilicate glass containing Li 2 O is subjected to secondary ion exchange, first by exchanging sodium ions and/or lithium ions with smaller radii in the glass with larger radii in the salt bath to obtain larger ion exchange depth and surface compressive stress, and then the surface of the glass product is mainly exchanged between K + in the salt bath and Na + in the glass for a short time to obtain a higher compressive stress close to the surface of the glass product.
  • Figure 1 shows the fracture toughness of the ion-exchangeable aluminosilicate glass prepared in the embodiment of the present invention as a function of non-bridging oxygen atoms, namely (R 2 O+R'O-Al 2 O 3 -2ZrO 2 )-B 2 O The relationship between the content of 3 and the change.
  • Figure 2 shows the hardness of the ion-exchangeable aluminosilicate glass prepared in the embodiment of the present invention as a function of non-bridging oxygen atoms, namely (R 2 O+R'O-Al 2 O 3 -2ZrO 2 )-B 2 O 3
  • the relationship diagram of the content of .
  • Figure 3 shows the brittleness of the ion-exchangeable aluminosilicate glass prepared in the embodiment of the present invention as a function of non-bridging oxygen atoms, namely (R 2 O+R'O-Al 2 O 3 -2ZrO 2 )-B 2 O 3
  • the relationship diagram of the content of .
  • the daily use of glass products usually requires the glass to have high strength, and the strength of the glass is essentially determined by the system and composition.
  • B 2 O 3 and ZrO 2 are added to the glass composition, and the composition of the glass is adjusted by adjusting the composition. , can obtain high-strength, low-brittle aluminosilicate glass.
  • the strength of glass can be further improved by chemical strengthening. Chemical strengthening is achieved by ion exchange process in a low temperature environment. The formation of compressive stress and a compressive stress layer with a certain depth on the surface of the glass can further prevent the expansion of micro-cracks. Further obtain high-strength, low-brittle aluminosilicate glass.
  • the present invention is a transparent aluminosilicate glass with high strength and low brittleness, including flat glass and glass products, etc., and in molar percentage, it comprises, 56%-70% SiO 2 ; 8%-25% Al 2 O 3 ; 1 %-10% B 2 O 3 ; 0-15% Li 2 O; 6%-20% Na 2 O; 0-10% K 2 O; 0-5% MgO; 1%-5% ZrO 2 ; The addition of SnO 2 may be included in the range of 0.1% to 1% SnO 2 in molar percentage.
  • SiO 2 mainly forms oxides of glass and is used to stabilize the network structure, and is an essential component to constitute the skeleton of glass.
  • the higher the content the more chemical durability and mechanical strength of the glass can be improved.
  • the content of SiO 2 of 62%-66% can satisfy the requirements of glass component melting, chemical durability and mechanical strength.
  • Al 2 O 3 is an intermediate oxide, used as a glass former, which can greatly improve the chemical stability of the glass, reduce the crystallization tendency of the glass, reduce the expansion coefficient, and is also an essential component to improve the hardness and mechanical strength of the glass.
  • Al 2 O 3 has a tendency to increase the viscosity of the glass melt.
  • Al 2 O 3 combines with alkali metal oxides such as Na 2 O in the glass, which can improve the ion-exchange strengthening properties of the glass, and can eliminate the formation of NBO [AlO 4 ] Tetrahedron, which makes the glass harder after strengthening.
  • NBO [AlO 4 ] Tetrahedron which makes the glass harder after strengthening.
  • the content of Al 2 O 3 is too high, it becomes difficult to obtain glass with long yield, and the acid resistance of the glass composition decreases.
  • the glass of the present invention contains 8%-25% of Al 2 O 3 , and 16 data are listed between 10% and 20% in the examples, the viscosity of the obtained glass melt is not too high, and the melting temperature is less than 1680° C.
  • the melting and fining of glass components can be achieved by an electric furnace and a platinum pipeline fining system assisted by natural gas.
  • B 2 O 3 is a glass-forming oxide, which can exist in the glass network in the form of tri- or tetra-coordination, B 2 O 3 can be used to reduce the Young's modulus and shear modulus of the glass, and in turn B 2 O 3 It is an effective oxide to improve the damage resistance of glass, while B 2 O 3 acts as a co-solvent to soften the glass, and B 2 O 3 also helps to remove non-bridging oxygen atoms (NBO) in the glass network structure.
  • NBO non-bridging oxygen atoms
  • non-bridging oxygen atoms can remove non-bridging oxygen atoms and convert non-bridging oxygen atoms into bridging oxygen atoms.
  • NBO non-bridging oxygen atoms
  • ZrO 2 is an intermediate oxide of glass, which can improve the chemical stability of glass, increase the hardness of glass surface, and resist the formation and propagation of cracks in glass, thus making the glass more resistant to scratches and drops.
  • ZrO 2 has two structures of hexacoordination and octacoordination in glass.
  • Zr mainly enters the glass network in the form of hexacoordination [ZrO 6 ]
  • Zr 4+ preferentially captures the non-bridging oxygen in the network to increase the degree of glass networking.
  • Zr enters the glass network in the eight-coordinated form [ZrO 8 ] and preferentially captures the bridging oxygen, To a certain extent, the integrity of the network structure is destroyed.
  • the six-coordinated form of Zr has a smaller contribution to the increase in hardness than the eight-coordinated form, but has a greater contribution to the increase in toughness. Therefore, when Zr exists in the six-coordinated form in the glass, the ratio of hardness to toughness is higher than that of the eight-coordinated form.
  • the form is smaller, that is, the brittleness of the glass obtained when Zr exists in the six-coordinated form is much less than that in the eight-coordinated form.
  • EXAFS X-ray absorption fine structure spectroscopy
  • a Zr 4+ can connect two non-bridging oxygens to embed the silicon-oxygen network, which has a repairing effect on the network and enhances the The network degree of the glass structure is increased, thereby increasing the toughness of the glass.
  • ZrO 2 with a molar percentage of 1% to 4% can simultaneously improve the viscosity, hardness, elasticity, refractive index and chemical stability of the glass, and reduce the thermal expansion coefficient of the glass. When the content is more than 4%, it is easy to crystallize, but in the glass system with high alkali metal oxide Na 2 O, Li 2 O and K 2 O content in the molar percentage of 8% to 20%, the crystallization ability is weakened.
  • ZrO 2 can be used to manufacture glass with good chemical stability and thermal stability, but when the content of ZrO 2 introduced is too high, it is easy to devitrify and increase the melting temperature. enhanced effect.
  • Na 2 O, Li 2 O and K 2 O act as the network outer body of the glass, which reduces the melting temperature of the glass components. If the total content of Na 2 O, Li 2 O and K 2 O is more than 13%, it can be significantly By improving the melting effect of glass, the viscosity of glass melt can be greatly reduced.
  • the existence of Na 2 O, Li 2 O and K 2 O makes the glass have the possibility of chemical ion exchange strengthening, and the glass can realize chemical toughening treatment.
  • Li 2 O with a mole percentage of 0-10%, Na 2 O with a mole percentage of 6%-14%, and K 2 O with a mole percentage of 0%-5% can ensure the progress of the chemical ion exchange process, and the ionic radius is small
  • the presence of lithium ions can make the glass get a deeper compression depth of the stress layer during the chemical ion exchange process in the salt bath of sodium nitrate and potassium nitrate, and enhance the crack growth resistance of the glass.
  • the presence of a small amount of potassium oxide in the glass helps to speed up the ion exchange rate of potassium ions for sodium ions.
  • MgO with a molar percentage of 0-5% can appropriately reduce the refining temperature of the aluminosilicate glass, and can eliminate the unmelted defect in the batch.
  • the addition of MgO is beneficial to the compressive stress formed in the glass ion exchange process, but too much MgO content will increase the crystallization tendency of the glass.
  • SnO 2 is added to the glass component of the present invention as a clarifying agent, and its addition amount is usually 0.1%-1.0%, which can eliminate the bubbles in the glass melt.
  • the glass of the present invention is a zirconium aluminosilicate glass system. Because the composition contains more alumina and zirconia, the viscosity and surface tension of the glass liquid increase, and its melting and clarification become difficult.
  • the present invention utilizes high temperature
  • the fining agent, tin oxide achieves the fining effect of glass through an electric furnace heated by natural gas and a platinum pipeline fining system.
  • NBO non-bridging oxygen atoms
  • the production process of the aluminosilicate glass with improved strength, hardness and brittleness of the present invention is as follows:
  • the glass raw material to make it a component of glass, prepare it, mix it evenly, and melt it in a glass melting furnace.
  • the flow down-drawing method and the slit down-drawing method are used to form flat glass with a thickness of less than 5mm, and then the flat glass can be hot bent or molded and machined as required to form various 2D, 2.5D or 3D glass products;
  • the above-mentioned flat glass or glass product is chemically strengthened by ion exchange in a salt bath of molten sodium salt and potassium salt at 360-450 ° C, that is, the larger alkali metal cations are used to replace the larger ones present in the glass.
  • the first type of ion exchange chemically strengthened glass is exchanged in a molten salt bath at 360-450 ° C for more than 1 hour, wherein in some embodiments, the mass percentages of sodium nitrate and potassium nitrate are (2%-98%): (2%- 98%), the purpose is to obtain larger ion exchange depth and surface compressive stress by exchanging sodium ions with smaller radius in potassium ion exchange glass with larger radius in salt bath;
  • the second type of ion exchange chemically strengthened glass is first exchanged in a molten salt bath at 360-450 ° C for more than 1 hour, and not more than 8 hours, wherein the mass percentage of sodium nitrate and potassium nitrate in some embodiments is (2%-98%) : (2%-98%), the purpose is to obtain a larger ion exchange depth and surface compressive stress by exchanging sodium ions and/or lithium ions with a smaller radius in a potassium ion exchange glass with a larger radius in a salt bath; Exchange for more than 10min in a molten salt bath at 360-450°C, the mass percentage of sodium nitrate and potassium nitrate is (0%-20%): (80%-100%), the purpose is that the surface of glass products is mainly subjected to K + in the salt bath. A short-time exchange with Na + in the glass results in a higher compressive stress near the surface of the glass article.
  • the surface compressive stress of the first type of ion exchange can reach at least 600MPa, the compression depth of the stress layer can reach more than 30 ⁇ m, the compressive stress of the second type of ion exchange surface can reach at least 700MPa, and the compression depth of the stress layer can reach 60 ⁇ m or more.
  • the strengthened glass of the present invention can be extended to all alkali-containing aluminosilicates that can be strengthened, and can be reasonably expanded, predicted and realized in principle.
  • the FSM-6000 stress meter to measure the surface compressive stress and the compression depth of the stress layer respectively, where the surface compressive stress can be abbreviated as CS, and the compression depth of the stress layer can be abbreviated as DOL, and the surface of the above samples is measured with a Vickers hardness tester Hardness (refer to GB/T16534-2009 test method), the fracture toughness of the above samples was measured by four-point bending method (refer to GB/T 23806-2009 test method), and the obtained strengthening properties are shown in Table 4 and Table 5, among which , IOX represents ion exchange, IOX1 represents the first ion exchange, IOX2 represents the second ion exchange, A is sodium nitrate, B is potassium nitrate, when chemical strengthening, respectively weigh analytically pure sodium nitrate and potassium nitrate in proportion Into 16 stainless steel containers heated by sidewall resistance wires and heated to a set temperature to form a salt bath and then keep warm.
  • CS surface compressive stress
  • the brittleness of glass refers to the characteristic of breaking immediately when the glass is subjected to a load exceeding the ultimate strength of the glass.
  • the brittleness of glass is usually expressed by the ratio of the Vickers hardness to the fracture toughness of the material,
  • H V is the Vickers hardness of the material
  • K IC is the fracture toughness
  • B is the brittleness index.
  • the Vickers hardness and fracture toughness are detected by GB/T 16534-2009 and GB/T 23806-2009 national standard respectively, and the units are GPa and MPa m 0.5 respectively. It can be seen that the glass with higher toughness is less brittle, Its crack growth resistance and scratch resistance are strong.
  • Fracture toughness test is to measure the critical load of unilateral pre-cracked beam specimens at break by three-point or four-point bending method at room temperature. Calculate the fracture toughness of the tested sample. Straight-through cracks in the specimens are prefabricated by Vickers indentation or notched specimens (including straight-notched and oblique-notched specimens).
  • the fracture toughness K IC of the present invention is a parameter when the material resists brittle failure, and is an inherent characteristic of the material. Fracture toughness characterizes the ability of the material to resist crack propagation, and the crack propagation is related to the stress concentration at the crack tip on the surface of the material, and the stress field intensity factor K I represents the strength of the stress field. The component will be fractured, and the critical value is the fracture toughness K IC . In linear elastic fracture mechanics, K IC can be expressed by the following formula:
  • Y is the geometric shape factor, which is determined by the type of crack, the geometry and size of the sample, etc.; ⁇ is the applied stress; a is the half-length of the crack.
  • the liquidus temperature is the temperature at which the glass begins to crystallize during the actual cooling process.
  • the silicate glass with lower liquidus temperature and higher liquidus viscosity can be overflow drawn, that is to say, the glass can be formed into a sheet by the overflow down drawing method, including but not limited to the melt drawing method and Slot pull-down method.
  • the aluminosilicate glass of the present invention can have its strength enhanced by ion exchange, so that the glass has high damage resistance for applications such as but not limited to glass for display covers, and does not contain lithium aluminum silicon
  • the surface compressive stress CS and DOL of acid glass can be measured by surface stress meter (FSM-6000), the surface compressive stress CS of lithium-containing aluminosilicate glass can be measured by surface stress meter (FSM-6000), and the depth of compression layer DOL can be measured. Measured by scattered light polarizer technique (SLP).
  • Example 9 10 11 12 13 14 15 16 SiO 2 (mol%) 65.22 63.66 64.2 64.01 62.88 65.01 64.42 60.31 Al 2 O 3 (mol%) 12.24 11.35 10.1 12.68 13.63 12.42 13.05 12.27 B 2 O 3 (mol%) 2.02 2.65 2.5 1.62 2.3 2.04 1.06 3.56 Na 2 O (mol%) 12.14 11.54 10.47 12.65 12.05 11.04 13.75 12.52 Li 2 O (mol%) 3.4 3.82 4.24 5.26 5.94 6.25 4.6 7.4 ZrO 2 (mol%) 3.14 3.65 3.9 2.6 1.73 1.75 1.81 1.92 K 2 O (mol%) 0.8 0.24 1.8 0.52 0.32 0.83 0.11 0.8 MgO(mol%) 0.94 2.99 2.69 0.56 1.05 0.56 1.1 1.12 SnO 2 (mol%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
  • a glass composition that adheres to the above relationship and has a deep compressive stress layer depth and compressive stress has high resistance to crack initiation and crack propagation after ion exchange.
  • Example 1 2 3 4 5 6 7 8 IOX1 temperature 410°C 390°C 400°C 410°C 410°C 390°C 410°C 400°C IOX1 salt bath ratio A/B (wt%) 100/0 80/20 75/25 64/36 50/50 100/0 25/75 50/50 IOX1 time 5h 2h 4h 3h 5.5h 6h 5h 6.5h IOX2 temperature 390°C 380°C 400°C 380°C / / / / IOX2 salt bath ratio A/B (wt%) 0/100 10/90 0/100 20/80 / / / / IOX2 time 25min 35min 60min 30min / / / / CS(MPa) 676 756 782 722 658 663 612 692 DOL( ⁇ m) 68.6 73.3 82.1 74.2 33.6 34.2 35.5 33.2 Fracture toughness (Mpa ⁇ m 0.5 ) 0.818
  • Example 9 10 11 12 13 14 15 16 IOX1 temperature 410°C 390°C 410°C 400°C 390°C 450°C 410°C 410°C IOX1 salt bath ratio A/B (wt%) 50/50 64/36 50/50 3/97 80/20 60/40 0/100 8/100 IOX1 time 3h 2h 3h 4h 2h 1.5h 5h 5h IOX2 temperature 380°C 390°C 410°C 420°C 380°C 450°C 400°C 390°C IOX2 salt bath ratio A/B (wt%) 4/96 0/100 0/100 0/100 9/91 0/100 9/91 0/100 IOX2 time 30min 25min 35min 60min 30min 40min 45min 50min CS(MPa) 892 816 912 822 763 856 876 812 DOL( ⁇ m) 87.5 83 102 77.4 85.3 78.4 94.5 82.6 Frac
  • the brittleness of aluminosilicate glass is less than 9 ⁇ m -0.5 and the hardness is 5-10GPa.
  • Figures 1, 2 and 3 plot the hardness, fracture toughness and brittleness of aluminosilicate glasses as a function of non-bridging oxygen atoms (NBO, i.e. R 2 O+R'O-Al 2 O 3 -2ZrO 2 -B 2 The relationship diagram of the change in the content of O 3 ). As can be seen from Figure 2, the hardness gradually increases with the increase of non-bridging oxygen atoms (NBO).
  • the aluminosilicate glass of the present invention has high strength, high impact resistance and low brittleness, and can be applied to cover glass of mobile devices, such as protective glass for mobile devices, tablet computers, notebook computers, cameras, etc.; it can also be used for non-movable devices , such as protective glass for TVs, car windows, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用,所述玻璃按摩尔百分比计,包括56%-70%的SiO 2、8%-25%的Al 2O 3、1%-10%的B 2O 3、0-15%的Li 2O、6%-20%的Na 2O、0-10%的K 2O、0-5%的MgO、1%-5%的ZrO 2和0.1%~1%的SnO 2。在强化方法时先依照所述玻璃的组分配制原料,将原料熔化、澄清后成型为玻璃;再将玻璃在360-450℃的硝酸钾和硝酸钠的盐浴中进行离子交换,得到化学强化的铝硅酸盐玻璃,可在移动器件防护和固定器件防护中应用。

Description

一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用 技术领域
本发明涉及铝硅酸盐玻璃制备技术领域,具体为一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用。
背景技术
随着现代显示技术的迅速发展,玻璃制品在电子器件中作为便携式或手持式电子通讯装置的盖板越来越受欢迎,如手机、平板、液晶显示装置等,而玻璃属于易脆材料,在日常生活中这些电子显示装置会受到各种恶劣环境的影响,比如划伤及破碎等。
由于目前这些电子显示装置的抗击外界冲击能力和抗划伤能力都较差,因此这些电子显示装置的屏幕表面亟需一种强度高、硬度高和脆性低的透明铝硅酸盐玻璃材料。但传统的钠钙玻璃不能满足高强度、高硬度及低脆性的要求。
发明内容
针对现有技术中存在的问题,玻璃易脆且易划伤,本发明提供一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用,成本低,操作方便,经化学强化处理后可得到较深的离子交换深度和很高的表面压应力,一方面阻碍玻璃受张力时内部应力集中,另一方面防止玻璃表面的裂纹扩展,从而提高玻璃的强度。
本发明通过以下技术方案实现:
一种高强度、低脆性的铝硅酸盐玻璃,按摩尔百分比计,包括56%-70%的SiO 2、8%-25%的Al 2O 3、1%-10%的B 2O 3、0-15%的Li 2O、6%-20%的Na 2O、0-10%的K 2O、0-5%的MgO、1%-5%的ZrO 2和0.1%~1%的SnO 2
优选的,所述ZrO 2的摩尔百分比为1%~4%。
优选的,所述Li 2O的摩尔百分比为0-10%,Na 2O的摩尔百分比为6%-14%, K 2O的摩尔百分比为0-5%。
优选的,ZrO 2和R 2O的摩尔百分比满足以下关系:
0.05<ZrO 2/R 2O<0.4,其中,R是Li,Na或K。
优选的,Al 2O 3和R 2O的摩尔百分比满足以下关系:
0.8<R 2O/Al 2O 3<1.2,其中,R是Li,Na或K。
优选的,所述玻璃为采用以下方式得到的平板玻璃或玻璃制品,其中,
平板玻璃采用浮法、溢流下拉法或狭缝下拉法成型得到,该平板玻璃的厚度为5mm以下;
玻璃制品经过热弯、模压或机械加工成所需形状得到。
优选的,R 2O、R′O、Al 2O 3、ZrO 2和B 2O 3的摩尔百分比满足以下关系:
-10≤R 2O+R′O-Al 2O 3-2ZrO 2-B 2O 3≤3,其中,R是Li,Na或K,R′是Mg。
优选的,Al 2O 3、ZrO 2和B 2O 3的摩尔百分比满足以下关系:
15<Al 2O 3+B 2O 3+2ZrO 2<28。
优选的,R 2O和R′O的摩尔百分比满足以下关系:
9<R 2O+R′O<21,其中,R是Li,Na或K,R′是Mg。
一种高强度、低脆性的铝硅酸盐玻璃的强化方法,包括以下步骤,
步骤1,按摩尔百分比计,依照所述玻璃的组分配制原料,将原料熔化、澄清后成型为玻璃;所述玻璃的组分按摩尔百分比计为,SiO 2 56%-70%,Al 2O 3 8%-25%,B 2O 3 1%-10%,Li 2O 0-15%,Na 2O 6%-20%,K 2O 0-10%,MgO 0-5%,ZrO 2 1%-5%,SnO 2 0.1%-1%;
步骤2,将玻璃在360-450℃的硝酸钾和硝酸钠的盐浴中进行离子交换,得到化学强化的铝硅酸盐玻璃,其中,当所述玻璃不含Li 2O时进行一次离子交换,当所述玻璃含Li 2O时进行两次离子交换;
对于一次离子交换,硝酸钾和硝酸钠的质量百分比为(2%-98%):(2%-98%),交换时间大于1h;
对于二次离子交换,第一次离子交换时,硝酸钾和硝酸钠的质量百分比为(2%-98%):(2%-98%),交换时间为1-8h,第二次离子交换时,硝酸钾和硝酸钠的质量百分比为(80%~100%):(0%~20%),交换时间大于10min。
进一步,所述玻璃经一次离子交换后,表面压应力大于600MPa,应力层压缩深度大于30μm以上;
所述玻璃经二次离子交换后,表面压应力大于700MPa,应力层压缩深度大于60μm,断裂韧性为0.8-1.3MPa·m 0 . 5,脆性小于9μm -0 . 5,硬度为5-10GPa。
一种由上述任意一项所述的高强度、低脆性的铝硅酸盐玻璃的强化方法得到的高强度、低脆性的铝硅酸盐玻璃。
高强度、低脆性的铝硅酸盐玻璃在移动器件防护和固定器件防护中的应用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的高强度、低脆性的铝硅酸盐玻璃,通过将SiO 2的具体含量设计为摩尔百分比为56%-70%,在稳定玻璃网络结构的同时使玻璃达到符合要求的熔解性、化学耐久性和机械强度;摩尔百分比为8%-25%的Al 2O 3在保证玻璃有一定粘度、硬度和机械强度的情况下,极大地改善了玻璃的化学稳定性,得到料性长的玻璃,与玻璃中的碱金属氧化物共同作用有助于离子交换,可降低玻璃析晶倾向;摩尔百分比为1%-10%的B 2O 3可改善玻璃的抗损坏性,降低玻璃的杨氏模量和剪切模量,作为助溶剂使玻璃软化,B 2O 3还有助于清除玻璃网络结构中的非桥氧原子,玻璃的韧性会增大,硬度不变时玻璃的脆性就会减少,得到抗脆断性的玻璃;摩尔百分比为0-15%的Li 2O和摩尔百分比为6%-20%的Na 2O、摩尔百分比为0-10%的K 2O结合,能改善玻璃的熔解性,且保证了化学离子交换过程的进行,进而得到更深的应力层压缩深度,增强玻璃的抗弯强度;摩尔百分比为1%-5%的ZrO 2能够提高玻璃化学稳定性,能抵抗玻璃形成裂纹以及裂纹的扩展,防止了碱金属离子的析出, 能提高玻璃的粘度、硬度、弹性、折射率和化学稳定性,降低玻璃的热膨胀系数,增强了玻璃结构的网络化程度,从而增加了玻璃的韧性;摩尔百分比为0-5%的MgO可降低玻璃的澄清温度,促进配合料的熔解;摩尔百分比为0.1%-1%的SnO 2能消除玻璃熔融液中的气泡;以上这些组分在经过离子交换后得到的化学强化玻璃达到较深的离子交换深度和很高的表面压应力,从而使之能够具有高机械强度,可以有效地防止显示产品保护屏幕表面的裂纹扩展和划伤损害,延长了电子显示产品的使用寿命。相比于现有技术钠钙硅酸盐玻璃其强度和硬度较高、脆性较低。
本发明的高强度、低脆性的铝硅酸盐玻璃的强化方法,依照玻璃的组分配制原料后,将原料熔化、澄清后可成型为玻璃,之后针对玻璃是否含Li 2O采用了两种不同的离子交换方案,但均在360-450℃的钠盐和钾盐盐浴中进行离子交换,得到化学强化的铝硅酸盐玻璃制品;不含Li 2O的铝硅酸玻璃进行一次离子交换,通过盐浴中半径较大的钾离子交换玻璃中半径较小的钠离子,取得较大的离子交换深度和表面压应力。含Li 2O的铝硅酸玻璃进行二次离子交换,先通过盐浴中半径较大的钾离子交换玻璃中半径较小的钠离子和/或锂离子从而获得较大的离子交换深度和表面压应力,再对玻璃制品表面主要进行盐浴中K +与玻璃中Na +的短时间交换从而获得较高的靠近玻璃制品表面的压应力。
附图说明
图1为本发明所述实施例制备的可离子交换铝硅酸盐玻璃的断裂韧性随非桥氧原子,即(R 2O+R′O-Al 2O 3-2ZrO 2)-B 2O 3的含量不同而变化的关系图。
图2为本发明所述实施例制备的可离子交换铝硅酸盐玻璃的硬度随非桥氧原子,即(R 2O+R′O-Al 2O 3-2ZrO 2)-B 2O 3的含量不同而变化的关系图。
图3为本发明所述实施例制备的可离子交换铝硅酸盐玻璃的脆性随非桥氧原子,即(R 2O+R′O-Al 2O 3-2ZrO 2)-B 2O 3的含量不同而变化的关系图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
玻璃制品的日常用途通常要求玻璃具有较高的强度,而玻璃的强度本质上是由体系与组成来决定的,在玻璃组合物中添加B 2O 3和ZrO 2,通过调整玻璃的组合物成分,能够获得高强度、低脆性的铝硅酸盐玻璃。采用化学强化的方法可进一步提高玻璃的强度,化学强化是在低温环境下通过离子交换工艺来实现,在玻璃表面形成压缩应力以及具有一定深度的压缩应力层,可以进一步阻止微裂纹的扩展,从而进一步获得高强度、低脆性的铝硅盐玻璃。
本发明一种高强度、低脆性的透明铝硅酸盐玻璃,包括平板玻璃和玻璃制品等,按摩尔百分比计包括,56%-70%SiO 2;8%-25%Al 2O 3;1%-10%B 2O 3;0-15%Li 2O;6%-20%Na 2O;0-10%K 2O;0-5%MgO;1%-5%ZrO 2;此外还可以包括加入SnO 2,按摩尔百分比计0.1%-1%SnO 2
以下讨论上述铝硅酸盐玻璃中各组分的作用及具体的含量,含量单位均为摩尔百分比。
56%-70%SiO 2
SiO 2主要形成玻璃的氧化物且用于稳定网络结构,是构成玻璃骨架的必要的成分,其含量越高越能提高玻璃的化学耐久性,越能提高玻璃的机械强度。但如果SiO 2含量过低,不利于玻璃的化学耐久性,会使玻璃的热膨胀系数增大,SiO 2含量过高,由于SiO 2具有提高玻璃熔融液粘度的倾向,可降低玻璃的成形性,使玻璃熔融困难,因此,SiO 2的含量为62%-66%就能够兼顾玻璃组分熔解、化学耐久性和机械强度方面的要求。
8%-25%Al 2O 3
Al 2O 3是中间体氧化物,用作玻璃形成剂,能极大地改善玻璃的化学稳定性,可降低玻璃的析晶倾向,降低膨胀系数,同时也是提高玻璃硬度和机 械强度的必要成份。Al 2O 3具有提高玻璃熔融液粘度的倾向,另外,Al 2O 3与玻璃中的碱金属氧化物如Na 2O等结合,可改善玻璃离子交换强化性能,可清除NBO形成[AlO 4]四面体,强化后使得玻璃更硬。但如果Al 2O 3含量过多,就难以得到料性长的玻璃,玻璃组合物的耐酸性会降低。本发明的玻璃包含8%-25%的Al 2O 3,实施例在10%-20%之间列举了16个数据,得到的玻璃熔融液的粘度不会过高,熔解温度小于1680℃,通过天然气辅助加热的电熔炉和铂金管道澄清系统即可实现玻璃组分的熔解和澄清效果。
1%-10%B 2O 3
B 2O 3是玻璃形成氧化物,可以三配位或四配位的形式存在于玻璃网络中,B 2O 3可用于降低玻璃的杨氏模量和剪切模量,进而B 2O 3是改善玻璃的抗破坏性的有效氧化物,同时B 2O 3作为助溶剂使玻璃软化,B 2O 3还有助于清除玻璃网络结构中的非桥氧原子(NBO),当碱金属氧化物浓度小于Al 2O 3与B 2O 3浓度之和时,碱金属提供的游离氧优先用于形成[AlO 4]四面体,而B在网络结构中以硼氧三角体[BO 3]形式存在,一般为层状结构,当碱金属氧化物浓度大于Al 2O 3与B 2O 3浓度之和时,碱金属提供的足够游离氧用于形成[AlO 4]四面体,同时产生非桥氧原子(NBO),NBO与B 3+离子相连,形成硼氧四面体[BO 4],为架状结构。B能清除非桥氧原子,将非桥氧原子转化成桥氧原子,非桥氧原子(NBO)含量低,玻璃的韧性会增大,硬度不变时玻璃的脆性就会减少,由此可以得到抗脆断性的玻璃。
1%-5%ZrO 2
ZrO 2是玻璃的中间体氧化物,能够提高玻璃化学稳定性,增加玻璃表面硬度,且能抵抗玻璃形成裂纹以及裂纹的扩展,从而使得玻璃更耐划伤和抗跌落。随着碱金属相对含量的不同,ZrO 2在玻璃中有六配位、八配位两种结构,当碱金属含量较多的情况下,Zr主要以六配位形式[ZrO 6]进入玻璃网络中,Zr 4+优先夺取网络中的非桥氧,增加玻璃的网络化程度,当碱金属含 量不足的情况下,Zr以八配位形式[ZrO 8]进入玻璃网络中,优先夺取桥氧,一定程度上破坏网络结构的完整性。Zr以六配位形式较八配位形式对硬度增加的贡献较小,对韧性增加的贡献较大,从而Zr在玻璃中以六配位形式存在时,其硬度与韧性的比值较八配位形式存在要小,即Zr以六配位形式较八配位形式存在得到的玻璃脆性小得多。
在铝硅酸盐体系中,使用EXAFS(X射线吸收精细结构谱)研究铝硅酸盐玻璃中引入ZrO 2中Zr的配位数,结果表明,Zr以六配位形式进入玻璃结构中,增大玻璃韧性,以八配位形式进入玻璃结构中,玻璃脆性会增大。本发明中引入0.05<ZrO 2/R 2O<0.4时,Zr 4+会夺取网络中的非桥氧,以六配位形式[ZrO 6]进入到玻璃网络中,会使处在解聚状态的硅氧四面体通过Si-O-Zr-O-Si的形式连接起来,通过这种方式一个Zr 4+可将两个非桥氧连接起来嵌入硅氧网络,对网络起到了修补作用,增强了玻璃结构的网络化程度,从而增加了玻璃的韧性。摩尔百分比为1%~4%的ZrO 2能同时提高玻璃的粘度、硬度、弹性、折射率和化学稳定性,降低玻璃的热膨胀系数。在含量大于4%时易析晶,但是在摩尔百分比为8%~20%的高碱金属氧化物Na 2O、Li 2O及K 2O含量的玻璃体系中,其析晶能力减弱。ZrO 2可用于制造化学稳定性和热稳定性良好的玻璃,但引入的ZrO 2的含量过高时,则易析晶和提高熔解温度,在硅酸盐玻璃中引入适量的ZrO 2起到结构增强的作用。
0-15%Li 2O;6%-20%Na 2O;0-10%K 2O;
碱金属氧化物存在玻璃中一方面会促进熔化,使得玻璃软化,有助于离子交换,另一方面会破坏玻璃网络结构,降低玻璃粘度。Na 2O和Li 2O及K 2O作为玻璃的网络外体,使得玻璃组分的熔融温度下降,如果Na 2O和Li 2O及K 2O的总含量在13%以上,就能显著改善玻璃的熔解效果,可以大幅降低玻璃熔融液的粘度。Na 2O和Li 2O及K 2O的存在使得玻璃具备化学离子交换强化的可能性,玻璃能够实现化学钢化处理。摩尔百分比为0-10%的Li 2O和 摩尔百分比为6%-14%的Na 2O及摩尔百分比为0%-5%的K 2O可以保证化学离子交换过程的进行,离子半径较小的锂离子的存在可使得玻璃在硝酸钠和硝酸钾的盐浴中的化学离子交换过程中得到更深的应力层压缩深度,增强玻璃的抗裂纹扩展能力。玻璃中存在少量的氧化钾有助于加快钾离子对钠离子的离子交换速率。
0-5%MgO;
摩尔百分比为0-5%的MgO的加入能适当降低铝硅酸盐玻璃的澄清温度,可消除配合料中未熔解的缺陷。同时MgO的加入有利于玻璃离子交换过程中形成的压缩应力,但MgO含量过多将增大玻璃的析晶倾向。
0.1%-1%SnO 2
SnO 2作为澄清剂加入到本发明的玻璃组分中,其加入量通常为0.1%-1.0%,能消除玻璃熔融液中的气泡,当SnO 2的质量百分比为0.2%-0.5%时,在节约原料的同时也能达到完全去除气泡的效果。本发明的玻璃为锆质铝硅酸盐玻璃体系,因为成份中含有较多的氧化铝和氧化锆,导致玻璃液的粘度和表面张力增大,其熔解和澄清变得困难,本发明利用高温澄清剂氧化锡,通过天然气辅助加热的电熔炉和铂金管道澄清系统来实现玻璃的澄清效果。
为了改善玻璃的脆性并增大玻璃的韧性,将玻璃网络结构中的非桥氧原子(NBO)数目调整至最小,存在较多的非桥氧原子(NBO)通常会降低玻璃的熔融温度,从而促进熔化,富含较多的碱金属和碱土金属离子的玻璃(即含较多的R 2O和R′O的玻璃)通常还具有较低的韧性和高的硬度。
本发明一种强度、硬度和脆性改善的铝硅酸盐玻璃的生产工艺过程如下:
首先,选择玻璃原料,使其成为玻璃的组分,进行配制,混合均匀,在玻璃熔炉中进行熔解,熔解方式可采用全电熔炉的方式或者火焰结合电助熔炉的方式,采用浮法、溢流下拉法和狭缝下拉法进行成型得到厚度为5mm 以下的平板玻璃,之后可根据需要将平板玻璃热弯或模压以及机械加工形成各种2D、2.5D或3D玻璃制品;
然后,将上述的平板玻璃或者玻璃制品在360-450℃的熔融的钠盐与钾盐的盐浴中通过离子交换进行化学强化,即用较大的碱金属阳离子来置换存在于玻璃中的较小的碱金属阳离子,从而在玻璃表面形成产生压缩应力(CS)的层,该压缩层从表面延伸至玻璃内部的深度为压缩应力层深度DOL,得到含碱铝硅酸盐化学强化玻璃,其中,不含锂的铝硅盐玻璃进行第一类离子交换,含锂的铝硅盐玻璃进行第二类离子交换。
第一类离子交换:化学强化玻璃在360-450℃的熔融盐浴中交换1h以上,其中在一些实施方式中硝酸钠和硝酸钾的质量百分比为(2%-98%):(2%-98%),目的是通过盐浴中半径较大的钾离子交换玻璃中半径较小的钠离子,取得较大的离子交换深度和表面压应力;
第二类离子交换:化学强化玻璃首先在360-450℃的熔融盐浴中交换1h以上,且不大于8h,其中一些实施方式中硝酸钠和硝酸钾的质量百分比为(2%-98%):(2%-98%),目的是通过盐浴中半径较大的钾离子交换玻璃中半径较小的钠离子和/或锂离子从而获得较大的离子交换深度和表面压应力;其次在360-450℃的熔融盐浴中交换10min以上,硝酸钠和硝酸钾的质量百分比为(0%-20%):(80%-100%),目的为玻璃制品表面主要进行盐浴中K +与玻璃中Na +的短时间交换从而获得较高的靠近玻璃制品表面的压应力。
经离子交换化学强化后,第一类离子交换表面压应力至少可达到600MPa以上,应力层压缩深度可达到30μm以上,第二类离子交换表面压应力至少可达到700MPa以上,应力层压缩深度可达到60μm以上。需要说明的是,本发明所述的强化玻璃可扩展至所有可强化的含碱铝硅酸盐,从原理上均可合理拓展、预测和实现。
按照表1~2氧化物的比例分别称取原料,混合配成铝硅酸盐玻璃配合料 试样,将上述配合料装入铂金钳锅于马弗炉中,加热至1575-1680℃进行熔解,澄清10小时后,将熔融样品在不锈钢模具中浇铸成规定形状的玻璃块,利用纤维伸长来测定玻璃的退火点、应变点和软化点,利用浮法来测定密度,如表1-2所示,然后经过冷加工处理后制成厚度为1mm的不同配方的平板玻璃各5片,再将上述制成的玻璃板试样各5片分别浸入硝酸钾和硝酸钠的高温熔融液中按照设定的温度和时间进行第一类或第二类离子交换,即进行化学强化处理。得到这些玻璃试样的CS和DOL,每个玻璃试样的CS和DOL分别以MPa和μm为单位列于表3~4中。所测得的CS和DOL的测量结果也列于表3~4中。
用FSM-6000应力仪分别测定以上试样的表面压应力和应力层压缩深度,其中表面压应力可简写为CS,应力层压缩深度可简写为DOL,用维氏硬度计测定以上试样的表面硬度(参照GB/T16534-2009测试方法),用四点弯曲法测定以上试样的断裂韧性(参照GB/T 23806-2009测试方法),得到的强化性能如表4和表5所示,其中,IOX表示离子交换,IOX1表示第一次离子交换,IOX2表示第二次离子交换,A为硝酸钠,B为硝酸钾,化学强化时,分别按比例称取分析纯的硝酸钠和硝酸钾放入侧壁电阻丝加热的16个不锈钢容器中并加热至设定的温度形成盐浴后保温。
玻璃的脆性指当玻璃所受负荷超过玻璃的极限强度时,立即破裂的特征。玻璃的脆性通常由材料的维氏硬度与断裂韧性之比来表示,
B=H V/K IC
式中H V为材料维氏硬度;K IC为断裂韧性;B为脆性指数。其中,维氏硬度和断裂韧性分别采用GB/T 16534-2009和GB/T 23806-2009国标检测,单位分别为GPa和MPa·m 0.5,可以看出具有较高韧性的玻璃其脆性较小,其抗裂纹扩展性和抗刮性较强。
维氏硬度检测是将维氏压头用试验力压入玻璃表面,保持规定时间后,卸除试验力,测量玻璃表面压痕对角线长度,通过公式维氏硬度H V=常数*试验力/压痕面积,得出测量试样的维氏硬度值。断裂韧性测试是在室温下,用三点或四点弯曲法测量单边预裂纹梁试样断裂时的临界载荷,根据预裂纹长度、试样尺寸以及试样两支撑点间的跨距,可计算得出被测试样的断裂韧性。试样中的直通裂纹是通过维氏压痕或切口试样(包含直通切口和斜切口试样)预制所得。
本发明所述断裂韧性K IC是材料抵抗脆性破坏时的一个参数,是材料固有的特性。断裂韧性表征材料抵抗裂纹扩展的能力,而裂纹扩展与材料表面裂纹尖端应力集中有关,应力场强度因子K I表示应力场的强弱程度,当K I达到某一临界值时,带有裂纹的构件就会发生断裂破坏,该临界值即为断裂韧性K IC,在线弹性断裂力学中,K IC可用下式表示:
Figure PCTCN2021110288-appb-000001
式中Y为几何形状因子,由裂纹类型、试样几何形状和尺寸等决定;σ为外加应力;a为裂纹半长度。
液相线温度是指玻璃在实际冷却过程中开始析晶的温度。而具有较低液相线温度及较高液相线粘度的硅酸盐玻璃是可以溢流下拉的,即采用溢流下拉法能使玻璃成形成片材,包括但不限于熔融拉制法和狭缝下拉法。
本发明所述的铝硅酸盐玻璃可通过离子交换能够使其强度得以增强,使得玻璃对于诸如但不限于用于显示屏盖的玻璃的应用具有较高的抗损伤性,不含锂铝硅酸盐玻璃的表面压应力CS和DOL可通过表面应力计(FSM-6000)测量,含锂铝硅酸盐玻璃的表面压应力CS通过表面应力计(FSM-6000)测量,压缩层深度DOL可通过散射光偏光镜技术(SLP)测量。
表1本发明的实施例1至8玻璃试样的基本性能列表
Figure PCTCN2021110288-appb-000002
Figure PCTCN2021110288-appb-000003
表2本发明的实施例9至16玻璃试样的基本性能列表
实施例 9 10 11 12 13 14 15 16
SiO 2(mol%) 65.22 63.66 64.2 64.01 62.88 65.01 64.42 60.31
Al 2O 3(mol%) 12.24 11.35 10.1 12.68 13.63 12.42 13.05 12.27
B 2O 3(mol%) 2.02 2.65 2.5 1.62 2.3 2.04 1.06 3.56
Na 2O(mol%) 12.14 11.54 10.47 12.65 12.05 11.04 13.75 12.52
Li 2O(mol%) 3.4 3.82 4.24 5.26 5.94 6.25 4.6 7.4
ZrO 2(mol%) 3.14 3.65 3.9 2.6 1.73 1.75 1.81 1.92
K 2O(mol%) 0.8 0.24 1.8 0.52 0.32 0.83 0.11 0.8
MgO(mol%) 0.94 2.99 2.69 0.56 1.05 0.56 1.1 1.12
SnO 2(mol%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
合计 100 100 100 100 100 100 100 100
R 2O+R′O 17.28 18.59 19.2 18.99 19.36 18.68 19.56 21.84
Al 2O 3+2ZrO 2+B 2O 3 20.54 21.3 20.4 19.5 19.39 17.96 17.73 19.67
ZrO 2/R 2O 0.19 0.23 0.24 0.14 0.09 0.10 0.10 0.09
R 2O+R′O-Al 2O 3-2ZrO 2-B 2O 3 -3.26 -2.71 -1.2 -0.51 -0.03 0.72 1.83 2.17
密度(g/cm 3) 2.521 2.354 2.464 2.511 2.484 2.541 2.441 2.484
退火点(℃) 664 684 645 635 641 650 656 638
应变点(℃) 597 574 558 566 559 589 586 547
软化点(℃) 920 899 916 896 920.4 908 926 915.5
液相线温度(℃) 765 795 823 816 853 744 783 796
液相线黏度(kP) 4412 5324 4695 3954 3524 6021 5024 4985
由以上数据可以看到,-10mol%≤R 2O+R′O-Al 2O 3-2ZrO 2-B 2O 3≤3mol%,15 mol%<Al 2O 3+B 2O 3+2ZrO 2<28mol%,9mol%<R 2O+R′O<21mol%,其中,Al 2O 3是玻璃中间体氧化物,B 2O 3是玻璃形成体氧化物,ZrO 2是玻璃中间体氧化物,R是Li,Na或K,R′是Mg,碱金属和碱土金属是改性剂。经过离子交换的玻璃的压缩应力层深度可防止玻璃表面处或附近的裂纹扩展,为了通过离子交换获得较深的压缩应力层和高的压缩应力,当0.8<R 2O/Al 2O 3<1.2,遵守上述关系式且具有较深的压缩应力层深度及压缩应力的玻璃组合物,在离子交换后对裂纹引发和裂纹扩展均具有高的抵抗力。
表3玻璃组合物1-8的离子交换性质
实施例 1 2 3 4 5 6 7 8
IOX1温度 410℃ 390℃ 400℃ 410℃ 410℃ 390℃ 410℃ 400℃
IOX1盐浴比例A/B(wt%) 100/0 80/20 75/25 64/36 50/50 100/0 25/75 50/50
IOX1时间 5h 2h 4h 3h 5.5h 6h 5h 6.5h
IOX2温度 390℃ 380℃ 400℃ 380℃ / / / /
IOX2盐浴比例A/B(wt%) 0/100 10/90 0/100 20/80 / / / /
IOX2时间 25min 35min 60min 30min / / / /
CS(MPa) 676 756 782 722 658 663 612 692
DOL(μm) 68.6 73.3 82.1 74.2 33.6 34.2 35.5 33.2
断裂韧性(Mpa·m 0.5) 0.818 0.826 0.83 0.843 0.855 0.86 0.872 0.879
维氏硬度(GPa) 6.54 6.5 6.32 6.24 6.2 6.58 6.76 6.62
脆性(μm -0.5) 8.00 7.87 7.61 7.40 7.25 7.65 7.75 7.53
表4玻璃组合物9-16的离子交换性质
实施例 9 10 11 12 13 14 15 16
IOX1温度 410℃ 390℃ 410℃ 400℃ 390℃ 450℃ 410℃ 410℃
IOX1盐浴比例A/B(wt%) 50/50 64/36 50/50 3/97 80/20 60/40 0/100 8/100
IOX1时间 3h 2h 3h 4h 2h 1.5h 5h 5h
IOX2温度 380℃ 390℃ 410℃ 420℃ 380℃ 450℃ 400℃ 390℃
IOX2盐浴比例A/B(wt%) 4/96 0/100 0/100 0/100 9/91 0/100 9/91 0/100
IOX2时间 30min 25min 35min 60min 30min 40min 45min 50min
CS(MPa) 892 816 912 822 763 856 876 812
DOL(μm) 87.5 83 102 77.4 85.3 78.4 94.5 82.6
断裂韧性(Mpa·m 0.5) 0.88 0.895 0.8962 0.8976 0.916 0.873 0.795 0.789
维氏硬度(GPa) 6.76 6.89 6.96 6.84 6.39 6.49 6.65 6.86
脆性(μm -0.5) 7.68 7.70 7.77 7.62 6.98 7.43 8.36 8.69
从以上数据可以看到,经化学强化后,铝硅酸盐玻璃的脆性小于9μm -0.5,硬度为5-10GPa。
图1、图2和图3绘制了铝硅酸盐玻璃的硬度、断裂韧性及脆性随着非桥氧原子(NBO,即R 2O+R′O-Al 2O 3-2ZrO 2-B 2O 3)的含量不同而变化的关系图。从图2可以看出,随着非桥氧原子(NBO)的增加,硬度逐渐增大。从图1可以看出,在-0.03附近,断裂韧性达到最大值,在最大值处过量改性剂R 2O+R′O的量略小于Al 2O 3+2ZrO 2+B 2O 3的含量,B 2O 3清除非桥氧原子NBO以[BO 4]四面体的形式存在,ZrO 2清除非桥氧原子以[ZrO 6]六配位形式存在,从图3可以看出,此时玻璃的脆性最低,得到抗脆断性的玻璃。与此相反,具有过量改性剂的玻璃,会由于碱金属和碱土金属形成较多的NBO,使得玻璃制品具有较低的韧性,包含较多的改性剂,玻璃的硬度高,由此得到的玻璃脆性高。
本发明的铝硅酸盐玻璃具有高强度、高抗冲击性及低脆性可应用于移动器件的盖板玻璃,如移动装置、平板电脑、笔记本电脑、摄像头等防护玻璃;也可用于不可移动器件,如电视、车窗等的防护玻璃。

Claims (18)

  1. 一种高强度、低脆性的铝硅酸盐玻璃,其特征在于,按摩尔百分比计,包括56%-70%的SiO 2、8%-25%的Al 2O 3、1%-10%的B 2O 3、0-15%的Li 2O、6%-20%的Na 2O、0-10%的K 2O、0-5%的MgO、1%-5%的ZrO 2和0.1%~1%的SnO 2
  2. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,所述ZrO 2的摩尔百分比为1%~4%。
  3. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,所述Li 2O的摩尔百分比为0-10%,Na 2O的摩尔百分比为6%-14%,K 2O的摩尔百分比为0-5%。
  4. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,ZrO 2和R 2O的摩尔百分比满足以下关系:
    0.05<ZrO 2/R 2O<0.4,其中,R是Li,Na和K中的一种或多种。
  5. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,Al 2O 3和R 2O的摩尔百分比满足以下关系:
    0.8<R 2O/Al 2O 3<1.2,其中,R是Li,Na和K中的一种或多种。
  6. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,ZrO 2和R 2O的摩尔百分比满足以下关系:
    0.05<ZrO 2/R 2O<0.4;
    且Al 2O 3和R 2O的摩尔百分比满足以下关系:
    0.8<R 2O/Al 2O 3<1.2,其中,R是Li,Na和K中的一种或多种。
  7. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,所述玻璃为采用以下方式得到的平板玻璃或玻璃制品,其中,
    平板玻璃采用浮法、溢流下拉法或狭缝下拉法成型得到,该平板玻璃的厚度为5mm以下;
    玻璃制品经过热弯、模压或机械加工成所需形状得到。
  8. 根据权利要求7所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,所述玻璃制品为根据需要将平板玻璃经热弯、模压或机械加工形成的2D、2.5D或3D的玻璃制品。
  9. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,R 2O、R′O、Al 2O 3、ZrO 2和B 2O 3的摩尔百分比满足以下关系:
    -10≤R 2O+R′O-Al 2O 3-2ZrO 2-B 2O 3≤3,其中,R是Li,Na和K中的一种或多种,R′是Mg。
  10. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,Al 2O 3、ZrO 2和B 2O 3的摩尔百分比满足以下关系:
    15<Al 2O 3+B 2O 3+2ZrO 2<28。
  11. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,R 2O和R′O的摩尔百分比满足以下关系:
    9<R 2O+R′O<21,其中,R是Li,Na和K中的一种或多种,R′是Mg。
  12. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,R 2O、R′O、Al 2O 3、ZrO 2和B 2O 3的摩尔百分比满足以下关系:
    -10≤R 2O+R′O-Al 2O 3-2ZrO 2-B 2O 3≤3,
    且Al 2O 3、ZrO 2和B 2O 3的摩尔百分比满足以下关系:
    15<Al 2O 3+B 2O 3+2ZrO 2<28;
    且R 2O和R′O的摩尔百分比满足以下关系:
    9<R 2O+R′O<21,其中,R是Li,Na和K中的一种或多种,R′是Mg,Ca,Sr和Ba中的一种或多种。
  13. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,所述的铝硅酸盐玻璃的断裂韧性为0.8~1.3MPa·m 0.5
  14. 根据权利要求1所述的高强度、低脆性的铝硅酸盐玻璃,其特征在于,所述的铝硅酸盐玻璃的脆性小于8μm -0.5,所述的铝硅酸盐玻璃的硬度为5~10GPa。
  15. 一种高强度、低脆性的铝硅酸盐玻璃的强化方法,其特征在于,包括以下步骤,
    步骤1,按摩尔百分比计,依照所述玻璃的组分配制原料,将原料熔化、澄清后成型为玻璃;所述玻璃的组分按摩尔百分比计为,SiO 256%-70%,Al 2O 38%-25%,B 2O 31%-10%,Li 2O 0-15%,Na 2O 6%-20%,K 2O 0-10%,MgO 0-5%,ZrO 21%-5%,SnO 20.1%-1%;
    步骤2,将玻璃在360-450℃的硝酸钾和硝酸钠的盐浴中进行离子交换,得到化学强化的铝硅酸盐玻璃,其中,当所述玻璃不含Li 2O时进行一次离子交换,当所述玻璃含Li 2O时进行两次离子交换;
    对于一次离子交换,硝酸钾和硝酸钠的质量百分比为(2%-98%):(2%-98%),交换时间大于1h;
    对于二次离子交换,第一次离子交换时,硝酸钾和硝酸钠的质量百分比为(2%-98%):(2%-98%),交换时间为1-8h,第二次离子交换时,硝酸钾和硝酸钠的质量百分比为(80%~100%):(0%~20%),交换时间大于10min。
  16. 根据权利要求15所述的高强度、低脆性的铝硅酸盐玻璃的强化方法,其特征在于,所述玻璃经一次离子交换后,表面压应力大于600MPa,应力层压缩深度大于30μm以上;
    所述玻璃经二次离子交换后,表面压应力大于700MPa,应力层压缩深度大于60μm,断裂韧性为0.8-1.3MPa·m 0.5,脆性小于9μm -0.5,硬度为5-10GPa。
  17. 一种由权利要求15-16中任意一项所述的高强度、低脆性的铝硅酸盐玻璃的强化方法得到的高强度、低脆性的铝硅酸盐玻璃。
  18. 如权利要求17所述的高强度、低脆性的铝硅酸盐玻璃在移动器件防护和固定器件防护中的应用。
PCT/CN2021/110288 2020-09-04 2021-08-03 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用 WO2022048377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010924058.0A CN111995243A (zh) 2020-09-04 2020-09-04 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
CN202010924058.0 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022048377A1 true WO2022048377A1 (zh) 2022-03-10

Family

ID=73469792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110288 WO2022048377A1 (zh) 2020-09-04 2021-08-03 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用

Country Status (2)

Country Link
CN (1) CN111995243A (zh)
WO (1) WO2022048377A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995243A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
CN112960904B (zh) * 2021-02-09 2022-02-15 醴陵旗滨电子玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用
CN113135655A (zh) * 2021-04-21 2021-07-20 彩虹集团(邵阳)特种玻璃有限公司 一种可快速离子交换的含硼铝硅酸盐玻璃
CN113135659A (zh) * 2021-04-26 2021-07-20 常熟明阳玻璃制品有限公司 一种卫浴用低密度高强度钢化玻璃及其制备方法
CN113149428B (zh) * 2021-04-30 2022-09-09 科立视材料科技有限公司 一种高铝玻璃、高铝钢化玻璃及其制备方法
CN114394745B (zh) * 2022-01-07 2024-02-20 彩虹集团(邵阳)特种玻璃有限公司 铝硅酸盐玻璃及其制备方法和盖板玻璃
CN114634308B (zh) * 2022-03-30 2022-11-15 安徽汉柔光电科技有限公司 一种碱铝硅玻璃
CN114988698B (zh) * 2022-05-30 2024-03-22 河北光兴半导体技术有限公司 用于制备铝硅酸盐玻璃的组合物、铝硅酸盐玻璃及其制备方法和应用
CN115108721A (zh) * 2022-05-30 2022-09-27 河北光兴半导体技术有限公司 用于制备高铝硅酸盐玻璃的组合物、高铝硅酸盐玻璃及其制备方法和应用
CN115818956A (zh) * 2022-10-26 2023-03-21 彩虹集团(邵阳)特种玻璃有限公司 一种高铝硅玻璃及其制备方法及应用
CN115583795A (zh) * 2022-10-26 2023-01-10 彩虹集团(邵阳)特种玻璃有限公司 一种高强高模、抗断裂的铝硅酸盐玻璃及其制备方法及应用
CN115784619B (zh) * 2022-11-21 2024-03-19 咸宁南玻光电玻璃有限公司 微晶玻璃及其制备方法和应用
CN115745399B (zh) * 2022-11-21 2024-03-19 咸宁南玻光电玻璃有限公司 分相玻璃及其制备方法、强化玻璃、玻璃盖板和电子设备
CN116119923A (zh) * 2022-12-30 2023-05-16 河北视窗玻璃有限公司 一种低脆性高硬度玻璃及制备方法和触摸屏
CN117326798A (zh) * 2023-09-18 2024-01-02 清远南玻节能新材料有限公司 锂硼铝硅酸盐玻璃、钢化玻璃及其制备方法,含玻璃的制品、交通工具及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892723A (zh) * 2010-02-26 2013-01-23 肖特公开股份有限公司 具有高弹性模量的锂铝硅酸盐玻璃及其制备方法
CN104066695A (zh) * 2011-10-25 2014-09-24 康宁股份有限公司 具有改善的化学和机械耐久性的碱土金属铝硅酸盐玻璃组合物
WO2014166250A1 (en) * 2013-04-10 2014-10-16 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass
CN104556648A (zh) * 2013-10-24 2015-04-29 中国南玻集团股份有限公司 铝硅酸盐玻璃的强化方法
CN110028240A (zh) * 2019-04-16 2019-07-19 醴陵旗滨电子玻璃有限公司 一种铝硅酸盐玻璃及其制备方法
CN110615611A (zh) * 2019-10-10 2019-12-27 清远南玻节能新材料有限公司 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN111995243A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392220A1 (en) * 2007-11-29 2018-10-24 Corning Incorporated Glasses having improved toughness and scratch resistance
US8341976B2 (en) * 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
JP6032468B2 (ja) * 2012-07-09 2016-11-30 日本電気硝子株式会社 強化ガラス基板の製造方法
CN104326666A (zh) * 2013-12-31 2015-02-04 东旭集团有限公司 一种显示器件用铝硅酸盐玻璃保护盖板的原料配方
CN108706868A (zh) * 2018-07-13 2018-10-26 科立视材料科技有限公司 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
CN110316974B (zh) * 2019-05-31 2022-03-22 彩虹集团(邵阳)特种玻璃有限公司 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892723A (zh) * 2010-02-26 2013-01-23 肖特公开股份有限公司 具有高弹性模量的锂铝硅酸盐玻璃及其制备方法
CN104066695A (zh) * 2011-10-25 2014-09-24 康宁股份有限公司 具有改善的化学和机械耐久性的碱土金属铝硅酸盐玻璃组合物
WO2014166250A1 (en) * 2013-04-10 2014-10-16 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass
CN104556648A (zh) * 2013-10-24 2015-04-29 中国南玻集团股份有限公司 铝硅酸盐玻璃的强化方法
CN110028240A (zh) * 2019-04-16 2019-07-19 醴陵旗滨电子玻璃有限公司 一种铝硅酸盐玻璃及其制备方法
CN110615611A (zh) * 2019-10-10 2019-12-27 清远南玻节能新材料有限公司 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN111995243A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用

Also Published As

Publication number Publication date
CN111995243A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022048377A1 (zh) 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
US20220002187A1 (en) Ion exchangeable li-containing glass compositions for 3-d forming
JP7327533B2 (ja) 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法
JP7184073B2 (ja) 化学強化用ガラス
CN110316974B (zh) 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
CN108503213B (zh) 铝硅酸盐玻璃及强化玻璃
WO2010111850A1 (zh) 适于化学钢化的玻璃及化学钢化玻璃
TW201742841A (zh) 在後離子交換熱處理之後保留高壓縮應力的玻璃組成物
CN102417301A (zh) 一种玻璃组合物及由其制成的玻璃、制法和用途
KR102644011B1 (ko) 화학 강화용 유리
CN109694187B (zh) 一种低软化点含锂玻璃
WO2020008901A1 (ja) 化学強化ガラスおよびその製造方法
WO2024109495A1 (zh) 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃
WO2021179623A1 (zh) 一种含氟碱铝硅酸盐玻璃及其强化方法和应用
WO2022141274A1 (zh) 玻璃、强化玻璃及其制备方法和电子产品
JP2021181388A (ja) 結晶化ガラス
WO2023149384A1 (ja) ガラス、化学強化ガラスおよびカバーガラス
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
WO2023008168A1 (ja) 強化ガラス、強化用ガラス、およびディスプレイデバイス
EP4299536A1 (en) Transparent strengthened glass ceramic having high stress depth, preparation method therefor and application thereof
TWI838347B (zh) 化學強化用玻璃
US20240208855A1 (en) Transparent strengthened glass ceramic having high stress depth, preparation method therefor and application thereof
US20240199475A1 (en) Transparent spinel glass ceramic and preparation method therefor and use thereof
WO2022172813A1 (ja) 強化ガラス板及びその製造方法
US20230399258A1 (en) Toughened glass plate, method for manufacturing toughened glass plate, and glass plate to be toughened

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863445

Country of ref document: EP

Kind code of ref document: A1