WO2021179623A1 - 一种含氟碱铝硅酸盐玻璃及其强化方法和应用 - Google Patents

一种含氟碱铝硅酸盐玻璃及其强化方法和应用 Download PDF

Info

Publication number
WO2021179623A1
WO2021179623A1 PCT/CN2020/123857 CN2020123857W WO2021179623A1 WO 2021179623 A1 WO2021179623 A1 WO 2021179623A1 CN 2020123857 W CN2020123857 W CN 2020123857W WO 2021179623 A1 WO2021179623 A1 WO 2021179623A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
fluorine
containing alkali
alkali aluminosilicate
aluminosilicate glass
Prior art date
Application number
PCT/CN2020/123857
Other languages
English (en)
French (fr)
Inventor
李靖波
彭引平
王志安
刘仲军
Original Assignee
彩虹集团(邵阳)特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彩虹集团(邵阳)特种玻璃有限公司 filed Critical 彩虹集团(邵阳)特种玻璃有限公司
Publication of WO2021179623A1 publication Critical patent/WO2021179623A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the invention relates to the technical field of optical glass manufacturing, in particular to a fluorine-containing alkali aluminosilicate glass and a strengthening method and application thereof.
  • touch screens have been widely used in mobile electronic devices.
  • touch screens are widely used in smart phones, e-readers, notebook computers, and tablet computers.
  • People have higher and higher requirements for the sense of use of electronic touch screens.
  • fingers, electronic pens, etc. often leave traces on the screen during use of the touch screen, or encounter some harsh use environments, such as sharp objects. Scratches, keys or even man-made drops will cause the screen of the electronic display product to be damaged or scratched on the surface, which will affect the display effect of the display product, and even endanger their service life.
  • Ion-exchangeable alkali aluminosilicate chemically strengthened glass is widely used as cover glass for displays in many modern electronic devices. Although it can overcome the above problems, many ion-exchangeable alkali aluminosilicate glasses have relatively high refractive index. The problem of poor light transmittance. As we all know, fluoride glass has the characteristics of extremely low refractive index (n D ⁇ 1.51) and good light transmittance, but perfluoride glass has the disadvantage of poor stability and is not suitable for preparing cover glass.
  • the present invention provides a fluorine-containing alkali-aluminosilicate glass and its strengthening method and application.
  • the glass has low cost and convenient operation.
  • the prepared glass has ultra-low surface refractive index and high light transmission.
  • the chemical strengthening treatment can obtain a deeper ion exchange depth and a high surface compressive stress, so as to achieve higher mechanical strength, flexural strength and impact strength.
  • a fluorine-containing alkali aluminosilicate glass the components of the glass include, by mass percentage, SiO 2 52% to 68%, Al 2 O 3 8% to 23%, and Na 2 O 11% to 13%, Li 2 O 3% ⁇ 5%, P 2 O 5 3% ⁇ 4%, ZrO 2 3% ⁇ 4%, fluoride 1% ⁇ 2%;
  • the fluoride is a fluoride capable of forming glass with the above-mentioned oxides.
  • the fluoride is AlF 3 .
  • the glass is a 2D or 3D glass product with a desired shape after mechanical processing.
  • the glass is flat glass formed by an overflow down-draw method, a float method or a slit down-draw method.
  • the thickness of the flat glass is 3 mm or less.
  • a method for strengthening fluorine-containing alkali aluminosilicate glass includes the following steps:
  • Step 1 In terms of mass percentage, prepare raw materials according to the components of the glass, melt and clarify the raw materials, and shape them into glass; in terms of mass percentage, the components of the glass are 52% ⁇ 68% of SiO 2 and Al 2 O 3 8% ⁇ 23%, Na 2 O 11% ⁇ 13%, Li 2 O 3% ⁇ 5%, P 2 O 5 3% ⁇ 4%, ZrO 2 3% ⁇ 4%, AlF 3 1% ⁇ 2 %;
  • Step 2 The glass is sequentially ion exchanged twice in a salt bath of potassium nitrate and sodium nitrate at 350-450°C to obtain a chemically strengthened fluoroalkali aluminosilicate glass, wherein,
  • the mass percentage of potassium nitrate and sodium nitrate during the first ion exchange is (5% ⁇ 36%): (95% ⁇ 64%), and the time is 1 ⁇ 4h;
  • the mass percentage of potassium nitrate and sodium nitrate during the second ion exchange is (96% to 100%): (0% to 4%), and the time is not more than 1 h.
  • the surface compressive stress is more than 300 MPa, and the compression depth of the stress layer is more than 50 ⁇ m.
  • the surface compressive stress is >600 MPa
  • the compression depth of the stress layer is >50 ⁇ m
  • the refractive index is ⁇ 1.51.
  • a fluorine-containing alkali aluminosilicate glass obtained according to any one of the above-mentioned strengthening method of fluorine-containing alkali aluminosilicate glass.
  • the present invention has the following beneficial technical effects:
  • the specific content of SiO 2 is designed to be 52% to 68% by mass, so that not only glass with long material properties can be obtained, but also the glass can reach the required chemical durability and mechanical strength;
  • the mass percentage is 8 % ⁇ 23% Al 2 O 3 can greatly improve the chemical stability of the glass and reduce the tendency of glass devitrification under the condition that the glass has a certain viscosity, hardness and mechanical strength;
  • the mass percentage is 3% ⁇ 4%
  • the combination of P 2 O 5 with 11% to 13% by mass of Na 2 O and 3% to 5% by mass of Li 2 O can not only improve the melting of the glass when the structure of the glass becomes loose.
  • the fluorine-containing alkali aluminosilicate glass of the present invention reduces the refractive index of the glass by adding a fluoride with a low refractive index to the alkali metal oxide component, and improves the transmittance of the glass.
  • the surface compressive stress of the glass and the depth of the ion exchange layer are greatly improved, so that the glass has good hardness and mechanical strength, which greatly broadens the application range of optical cover glass.
  • the glass formed according to the components of the fluorine-containing alkali aluminosilicate glass is sequentially subjected to two ion exchanges in a salt bath of sodium nitrate and potassium nitrate.
  • the first ion exchange mainly causes the potassium with a larger radius in the salt bath
  • the ions are exchanged with sodium ions and lithium ions with a smaller radius in the fluorine-containing alkali aluminosilicate glass to obtain higher surface compressive stress, deeper stress layer compression depth, higher bending strength and higher Vickers hardness.
  • Fluoroaluminosilicate chemically strengthens glass; the second ion exchange mainly exchanges K + in the salt bath with Na + in the glass for a short time to obtain a higher compressive stress close to the surface of the glass product.
  • the plate glass or glass product is chemically strengthened to further enhance the mechanical strength of the glass, improve the bending strength and scratch resistance of the glass, and can meet the requirements of the screen protection function of electronic display products.
  • the fluorine-containing alkali aluminosilicate glass prepared by the glass component of the present invention is chemically strengthened.
  • the chemically strengthened glass can finally reach a deeper ion exchange depth and a high surface compressive stress, so that it can have High mechanical strength, and the addition of fluoride, the glass has excellent optical properties.
  • the prepared glass has high light transmittance and can effectively prevent the impact and scratch damage of the display product protection screen surface.
  • the use of electronic display screens extends the service life of flat-panel electronic display products, and has excellent application prospects in the field of optical cover glass.
  • the present invention adds a small amount of fluoride to the existing alkali aluminosilicate glass, and through chemical strengthening, it can maintain the good chemical stability of the alkali aluminosilicate glass while increasing the transmittance of the glass to prepare a high light transmittance Transparent glass material with good efficiency, low refractive index, hardness and mechanical strength.
  • the fluorine-containing alkali-aluminosilicate glass of the present invention includes flat glass and glass products, and, in terms of mass percentage, includes SiO 2 52% to 68%, Al 2 O 3 8% to 23%, and Na 2 O 11 % ⁇ 13%, Li 2 O 3% ⁇ 5%, P 2 O 5 3% ⁇ 4%, ZrO 2 3% ⁇ 4%, AlF 3 1% ⁇ 2%.
  • SiO 2 is an essential component that constitutes the framework of the glass. The higher its content, the more it can improve the chemical durability of the glass, and the more it can increase the mechanical strength of the glass. In addition, since SiO 2 has a tendency to increase the viscosity of the glass melt, if the content is too large, it is difficult to obtain a glass with long material properties.
  • Al 2 O 3 is an intermediate oxide, which can greatly improve the chemical stability of glass, reduce the tendency of glass to crystallize, and is also a necessary component to increase the hardness and mechanical strength of the glass.
  • Al 2 O 3 improves the tensile elasticity of glass
  • the modulus component also has a tendency to increase the viscosity of the glass melt. If the Al 2 O 3 content is too large, it is difficult to obtain a glass with long material properties.
  • Na 2 O and Li 2 O act as external bodies of the glass network, which lower the melting temperature of the glass components.
  • the presence of Na 2 O and Li 2 O makes the glass have the possibility of chemical ion exchange strengthening, and the glass can be chemically tempered.
  • Li 2 O with a mass percentage of 3% to 5% and Na 2 O with a mass percentage of 11% to 13% can ensure the progress of the chemical ion exchange process.
  • the presence of lithium ions with a small ion radius can make the glass in the sodium nitrate and sodium nitrate and Na 2 O
  • the chemical ion exchange process in the salt bath of potassium nitrate obtains a deeper compression depth of the stress layer, which enhances the bending strength and impact strength of the glass; at the same time, it can significantly improve the melting effect of the glass, and can greatly reduce the viscosity of the glass melt.
  • P 2 O 5 is a network forming body of glass, since a phosphorus-oxygen double bond in the phosphorus-oxygen tetrahedron is easy to break, its network is a layered structure, and the bond length of the phosphorus-oxygen bond is greater than that of the silicon-oxygen bond.
  • the volume of oxygen tetrahedron is also larger than that of silicon-oxygen tetrahedron. Therefore , the addition of P 2 O 5 with a mass percentage of 3% to 4% makes the structure of the glass loose, so that the ion exchange reaches a deeper depth.
  • ZrO 2 is an intermediate oxide of glass, which has the effect of improving the chemical stability of glass and preventing the precipitation of alkali metal ions.
  • ZrO 2 is also an important component for improving the tensile elastic modulus of glass.
  • ZrO 2 with a mass percentage of preferably 3% to 4% can simultaneously increase the viscosity, hardness, elasticity, refractive index and chemical stability of the glass, and reduce the thermal expansion coefficient of the glass. Glass containing ZrO 2 is more difficult to dissolve, and is easy to crystallize when the content is greater than 3%, but in a glass system with a high alkali metal oxide Na 2 O and Li 2 O content with a total mass percentage of 14% to 18%, Its crystallization ability is weakened.
  • ZrO 2 can be used to produce glass with good chemical and thermal stability. If the content of ZrO 2 is too much, it will easily crystallize and increase the melting temperature.
  • AlF 3 1% to 2%.
  • Adding AlF 3 to oxide glass can effectively reduce the refractive index of the glass.
  • AlF 3 has low surface free energy and strong hydrophobicity Therefore, adding AlF 3 to the glass component can effectively reduce the surface free energy of the glass, improve the surface hydrophobicity of the glass, and make the display screen more resistant to pollution and fingerprints.
  • AlF 3 can be added as a fining agent to the glass component of the present invention, while removing bubbles in the glass dissolution process, without introducing new elements, reducing the surface defects of the glass, and improving the performance of the glass.
  • the glass of the present invention is a zirconium aluminosilicate glass system, because the composition contains more alumina and the presence of zirconia, which will increase the viscosity and surface tension of the glass breaking liquid, and make it difficult to melt and clarify.
  • AlF 3 is used to dissolve and generate gas at a high temperature to take away the bubbles in the molten glass to achieve the clarification effect of the glass.
  • quartz sand Determine the formula of the embodiment of the present invention according to the above ratio, and then weigh a certain amount of quartz sand according to the above ratio.
  • the purity of the quartz sand is 99.8%
  • the Fe content is below 100ppm
  • the particle size is below 100 mesh
  • chemically pure alumina Chemically pure sodium carbonate, chemically pure lithium carbonate, chemically pure potassium dihydrogen phosphate, chemically pure zirconia and chemically pure aluminum trifluoride are formulated into fluorine-containing alkali aluminosilicate glass batch materials.
  • the immersion time in the first salt bath is 1h ⁇ 4h.
  • the purpose is to exchange the potassium ions with a larger radius in the salt bath with sodium ions and lithium ions with a smaller radius in the fluorine-containing alkali aluminosilicate glass to obtain larger ion exchange.
  • the depth and surface compressive stress are taken out and cleaned to obtain a strengthened soda lime glass.
  • the fluorine-containing alkali aluminosilicate glass or soda-lime glass after being taken out and cleaned is obtained.
  • the present invention has made 6 examples and 2 comparative examples.
  • the surface compressive stress and the compression depth of the stress layer of the upper sample are measured by the FSM-6000 stress meter and SLP through PMC fitting.
  • the surface compressive stress can be abbreviated as CS.
  • the compression depth of the stress layer can be abbreviated as DOL.
  • the surface hardness of the above samples is measured with a Vickers hardness tester, the bending strength of the above samples is measured with a four-point bending strength measuring instrument, and the refractive index of the above samples is measured with an Abbe refractometer. , And finally calculate the average value, and the data obtained is shown in Table 1.
  • the surface compressive stress of the glass product can reach at least 300MPa or more, and the compression depth of the stress layer can reach more than 50 ⁇ m.
  • the surface compressive stress can reach at least 600MPa. It should be noted that the strengthened glass of the present invention can be extended to all strengthenable fluorine-containing alkali aluminosilicates. Reasonable expansion, prediction and realization.
  • the chemical strengthening can be carried out when the temperature of the first strengthening and the second strengthening is lower than the softening point temperature of the glass (about 600°C).
  • the CS and DOL of the glass within the range of 350°C ⁇ 450°C meet the requirements of glass cover processing. Therefore, this range is selected, and the present invention selects the two points of 410°C and 390°C for the examples.
  • the CS and DOL of the inner glass meet the conventional requirements of glass cover processing.
  • the first strengthening time is 1 ⁇ 4h.
  • the present invention chooses 4h for the examples.
  • the second strengthening for K + and Na + exchange requires a salt bath with a high potassium ion concentration.
  • KNO 3 :NaNO 3 (96% ⁇ 100%):(0% ⁇ 4%)
  • the CS and DOL of the inner glass satisfy the glass General requirements for cover processing.
  • the glass components are SiO 2 72%, Al 2 O 3 2%, Na 2 O 16%, CaO 7%, K 2 O 1.5%, and MgO 1.5%.
  • Soak in a salt bath for 4 hours, take it out and wash to obtain a strengthened soda lime glass; the strengthened soda lime glass is heated at 390°C with potassium nitrate and sodium nitrate (KNO 3 :NaNO 3 100:0) Soak in the second salt bath for 1 hour, take it out and wash it to obtain a second strengthened soda lime glass.
  • the prepared secondary strengthened soda lime glass measured by PMC with FSM-6000 stress meter and SLP, the CS is 600MPa, DOL is 10 ⁇ m, and the four-point bending strength measured by the four-point bending strength measuring instrument is 450MPa , The Vickers hardness measured by the Vickers hardness meter is 490MPa, and the refractive index measured by the Abbe refractometer is 1.52.
  • Comparative Example 1 The difference from Comparative Example 1 is only the glass composition.
  • the glass composition is SiO 2 68%, Al 2 O 3 8%, Na 2 O 13%, Li 2 O 3%, P 2 O 5 4%, ZrO 2 3%, SnO 2 1% (calculated by mass percentage).
  • the other preparation process and test process are the same as that of Comparative Example 1.
  • the prepared alkali aluminosilicate glass has a CS of 650 MPa, an ion exchange layer depth of 50 ⁇ m, a four-point bending strength of 490 MPa, a Vickers hardness of 510 MPa, and a refractive index of 1.51. Compared with Comparative Example 1, the performance of the alkali aluminosilicate glass is better than that of Comparative Example 1.
  • Comparative Example 2 The difference from Comparative Example 2 is only the glass composition, the glass composition is SiO 2 68%, Al 2 O 3 8%, Na 2 O 13%, Li 2 O 3%, P 2 O 5 4%, ZrO 2 3%, AlF 3 1% (calculated by mass percentage).
  • the other preparation process and test process are the same as the comparative example.
  • the prepared alkali aluminosilicate glass has a CS of 670 MPa, an ion exchange layer depth of 60 ⁇ m, a four-point bending strength of 500 MPa, a Vickers hardness of 530 MPa, and a refractive index of 1.50.
  • the performance of the fluorine-containing alkali aluminosilicate glass is better than that of Comparative Example 2, indicating that the present invention has achieved good technical effects and progress.
  • the difference from Comparative Example 2 is only the glass composition.
  • the glass composition is SiO 2 65%, Al 2 O 3 10%, Na 2 O 13%, Li 2 O 3%, P 2 O 5 4%, ZrO 2 3%, AlF 3 2% (calculated by mass percentage).
  • the other preparation process and test process are the same as the comparative example.
  • the prepared alkali aluminosilicate glass had a CS of 690 MPa, an ion exchange layer depth of 100 ⁇ m, a four-point bending strength of 532 MPa, a Vickers hardness of 545 MPa, and a refractive index of 1.49.
  • the performance of the fluorine-containing alkali aluminosilicate glass is better than that of Comparative Example 2, indicating that the present invention has achieved good technical effects and progress.
  • Comparative Example 2 The only difference from Comparative Example 2 is the glass composition.
  • the glass composition is SiO 2 52%, Al 2 O 3 23%, Na 2 O 11%, Li 2 O 5%, P 2 O 5 3%, ZrO 2 4%, AlF 3 2% (calculated by mass percentage).
  • the other preparation process and test process are the same as that of Comparative Example 2.
  • the prepared alkali aluminosilicate glass has a CS of 710 MPa, an ion exchange layer depth of 115 ⁇ m, a four-point bending strength of 670 MPa, a Vickers hardness of 589 MPa, and a refractive index of 1.49.
  • the performance of the fluorine-containing alkali aluminosilicate glass is better than that of Comparative Example 2, indicating that the present invention has achieved good technical effects and progress.
  • the prepared alkali aluminosilicate glass has a CS of 715 MPa, an ion exchange layer depth of 130 ⁇ m, a four-point bending strength of 679 MPa, a Vickers hardness of 602 MPa, and a refractive index of 1.49.
  • the ion exchange depth of the prepared fluorine-containing alkali aluminosilicate glass is better than that of Example 1, indicating that the strengthening process of the present invention has achieved good technical effects and progress.
  • Example 3 The only difference from Example 3 is that the second enhanced salt bath is different.
  • the prepared alkali aluminosilicate glass has a CS of 925 MPa, an ion exchange layer depth of 125 ⁇ m, a four-point bending strength of 890 MPa, a Vickers hardness of 735 MPa, and a refractive index of 1.49.
  • the prepared fluorine-containing alkali aluminosilicate glass has better stress, four-point bending strength, and Vickers hardness than Example 3, indicating that the strengthening process of the present invention has achieved good technical effects and progress.
  • Example 3 The difference from Example 3 is only that the secondary strengthening time is different, the secondary strengthening time is 15 minutes, and the other preparation process and testing process are the same as in Example 3.
  • the prepared alkali aluminosilicate glass has a CS of 820 MPa, an ion exchange layer depth of 136 ⁇ m, a four-point bending strength of 751 MPa, a Vickers hardness of 689 MPa, and a refractive index of 1.49.
  • the ion exchange depth of the prepared fluorine-containing alkali aluminosilicate glass is much better than that of Example 3, indicating that the strengthening process of the present invention has achieved good technical effects and progress.
  • the surface stress, depth of stress layer, bending strength and Vickers hardness of the fluorine-containing alkali aluminosilicate glass are greater than those of the comparative example, and the refractive index is lower than that of the comparative example, indicating that the prepared fluorine-containing alkali aluminosilicate glass has extreme Good performance.
  • the above examples show that adding fluoride to the components of alkali aluminosilicate glass can effectively increase the surface stress of the glass, the depth of the ion exchange layer, the bending strength, the Vickers hardness, and the lower the refractive index of the glass.
  • the prepared fluorine-containing alkali aluminosilicate glass has stronger impact resistance and scratch resistance than ordinary soda lime strengthened glass after two chemical strengthening, and can be made into fluorine-containing alkali aluminosilicate after chemical strengthening.
  • Display devices include electronic display products, specifically smart phones, e-readers , Laptops and tablet computers, which can achieve high mechanical strength, bending strength and impact resistance when in use, and are specifically suitable for use as a protective cover for the display screen of electronic devices such as mobile phones and tablets, which can effectively prevent these
  • the flat panel display device is damaged by external impact and scratches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种含氟碱铝硅酸盐玻璃及其强化方法和应用,玻璃的组分包括,SiO 252%~68%,Al 2O 38%~23%,Na 2O 11%~13%,Li 2O 3%~5%,P 2O 53%~4%,ZrO 23%~4%,氟化物1%~2%;依组分配制原料,熔化、澄清后成型为玻璃,在350~450℃的硝酸钾和硝酸钠的盐浴中化学强化,第一次离子交换时硝酸钾和硝酸钠的质量百分比为(5%~36%):(95%~64%),时间为1~4h;第二次离子交换时硝酸钾和硝酸钠的质量百分比为(96%~100%):(0%~4%),时间不大于1h;玻璃透光性高、折射率低,可在显示装置和移动设备中应用。

Description

一种含氟碱铝硅酸盐玻璃及其强化方法和应用 技术领域
本发明涉及光学玻璃制造技术领域,具体为一种含氟碱铝硅酸盐玻璃及其强化方法和应用。
背景技术
随着现代科技和人们生活水平的发展,触摸屏在移动电子设备中得到了广泛的应用,例如,智能手机、电子阅读器、笔记本电脑和平板电脑中都广泛使用触摸屏。人们对电子触摸显示屏的使用感要求越来越高,然而触摸屏在使用过程中手指、电子笔等经常会在屏幕上留下使用痕迹,或遇到一些恶劣的使用环境,如尖锐的物品刻划,钥匙甚至人为摔落等将导致电子显示产品的屏幕出现破损或表面划伤,都将影响显示产品的显示效果,甚至危及到它们的使用寿命。
可离子交换的碱铝硅酸盐化学强化玻璃在许多现代电子装置中广泛的用作显示器的盖板玻璃,虽然能够克服上述问题,然而许多可离子交换的碱铝硅酸盐玻璃存在折射率较大,透光性差的问题。众所周知,氟化物玻璃具有极低的折射率(n D<1.51)、透光性好等特性,但是全氟化物玻璃存在稳定性差的缺点,不适用于制备盖板玻璃。
发明内容
针对现有技术中存在的问题,本发明提供一种含氟碱铝硅酸盐玻璃及其强化方法和应用,成本低,操作方便,所制备的玻璃具有超低的表面折射率和高透光率、强污染性,化学强化处理后可得到较深的离子交换深度和很高的表面压应力,从而实现较高的机械强度、抗弯强度和耐冲击强度。
本发明是通过以下技术方案来实现:
一种含氟碱铝硅酸盐玻璃,所述玻璃的组分按质量百分比计包括,SiO 2 52%~68%,Al 2O 38%~23%,Na 2O 11%~13%,Li 2O 3%~5%,P 2O 53%~4%,ZrO 23%~4%,氟化物1%~2%;
所述的氟化物为能与上述氧化物形成玻璃的氟化物。
优选的,所述的氟化物为AlF 3
优选的,所述玻璃为经过机械加工得到所需形状的2D或3D玻璃制品。
优选的,所述玻璃为通过溢流下拉法、浮法或狭缝下拉法成型的平板玻璃。
进一步,所述的平板玻璃厚度为3mm以下。
一种含氟碱铝硅酸盐玻璃的强化方法,包括以下步骤,
步骤1,按质量百分比计,依照所述玻璃的组分配制原料,将原料熔化、澄清后成型为玻璃;所述玻璃的组分按质量百分比计为,SiO 2 52%~68%,Al 2O 38%~23%,Na 2O 11%~13%,Li 2O 3%~5%,P 2O 53%~4%,ZrO 23%~4%,AlF 31%~2%;
步骤2,将玻璃在350~450℃的硝酸钾和硝酸钠的盐浴中依次进行两次离子交换,得到化学强化的氟碱铝硅酸盐玻璃,其中,
第一次离子交换时硝酸钾和硝酸钠的质量百分比为(5%~36%):(95%~64%),时间为1~4h;
第二次离子交换时硝酸钾和硝酸钠的质量百分比为(96%~100%):(0%~4%),时间不大于1h。
进一步,所述玻璃经第一次离子交换后,表面压应力>300MPa,应力层压缩深度>50μm。
进一步,所述玻璃经化学强化后,表面压应力>600MPa,应力层压缩深度>50μm,折射率<1.51。
一种根据上述任意一项所述的含氟碱铝硅酸盐玻璃的强化方法得到的含氟碱铝硅酸盐玻璃。
上述含氟碱铝硅酸盐玻璃在显示装置和移动设备中的应用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明通过将SiO 2的具体含量设计为质量百分比为52%~68%,这样不仅可得到料性长的玻璃,而且还能使玻璃达到符合要求的化学耐久性和机械强度;质量百分比为8%~23%的Al 2O 3在保证玻璃有一定粘度、硬度和机械强度的情况下,极大地改善了玻璃的化学稳定性,可降低玻璃析晶倾向;质量百分比为3%~4%的P 2O 5与质量百分比为11%~13%的Na 2O和质量百分比为3%~5%的Li 2O结合,在使玻璃的结构变得疏松的情况下,不仅能改善玻璃的熔解性,而且保证了化学离子交换过程的进行,进而得到更深的应力层压缩深度,增强玻璃的抗弯强度和抗冲击强度;质量百分比为3%~4%的ZrO 2防止了碱金属离子的析出,能提高玻璃的粘度、硬度、弹性、折射率和化学稳定性,降低玻璃的热膨胀系数。本发明所述的含氟碱铝硅酸盐玻璃,通过在碱金属氧化物组分中加入折射率低的氟化物降低玻璃的折射率,提高玻璃的透过率,并通过化学强化步骤,极大的提高了玻璃的表面压缩应力和离子交换层深度,使玻璃具有很好的硬度和机械强度,极大的拓宽了光学盖板玻璃的应用范围。
本发明将按含氟碱铝硅酸盐玻璃的组分成型的玻璃在硝酸钠和硝酸钾的盐浴中依次进行两次离子交换,第一次离子交换主要使盐浴中半径较大的钾离子和含氟碱铝硅酸盐玻璃中半径较小的钠离子、锂离子进行交换,得到较高表面压应力、较深应力层压缩深度、较高抗弯强度和较高维氏硬度的含氟铝硅酸盐化学强化玻璃;第二次离子交换主要使盐浴中的K +与玻璃中Na +的短时间交换以获得较高的靠近玻璃制品表面的压应力。本发明将平板玻璃 或玻璃制品通过化学强化处理,进一步增强了玻璃的机械强度,提高了玻璃的抗弯强度和抗划伤性能,能满足电子显示产品屏幕保护功能的要求。
本发明所述得玻璃组分制得的含氟碱铝硅酸盐玻璃经过化学强化后得到的化学强化玻璃最终能达到较深的离子交换深度和很高的表面压应力,从而使之能够具有高机械强度,并且氟化物的加入,使玻璃具有极好的光学性质,所制备的玻璃具有很高的透光性并且可以有效地防止显示产品保护屏幕表面的抗冲击和划伤损害,提高了电子显示屏的使用感并且延长了平板电子显示产品的使用寿命,在光学盖板玻璃领域中具有极好的应用前景。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明在现有的碱铝硅酸盐玻璃中加入少量氟化物,通过化学强化,可以在保持碱铝硅酸盐玻璃化学稳定性好的同时提高玻璃的透过率,制备一种高透光率、低折射率、硬度和机械强度好的透明玻璃材料。
本发明所述的含氟碱铝硅酸盐玻璃,包括了平板玻璃和玻璃制品,按质量百分比计包括,SiO 2 52%~68%,Al 2O 38%~23%,Na 2O 11%~13%,Li 2O 3%~5%,P 2O 53%~4%,ZrO 23%~4%,AlF 31%~2%。
以下讨论上述含氟碱铝硅酸盐玻璃中各组分的作用及具体的含量,含量单位均为质量百分比。
SiO 2:52%~68%。
SiO 2是构成玻璃骨架的必要的成分,其含量越高越能提高玻璃的化学耐久性,越能提高玻璃的机械强度。此外,由于SiO 2具有提高玻璃熔融液粘度的倾向,所以如果含量过多就难以得到料性长的玻璃。
Al 2O 3:8%~23%。
Al 2O 3是中间体氧化物,能极大地改善玻璃的化学稳定性,可降低玻璃的析晶倾向,同时也是提高玻璃硬度和机械强度的必要成份,Al 2O 3是提高玻璃拉伸弹性模量的成分,但是也具有提高玻璃熔融液粘度的倾向,如果Al 2O 3含量过多,就难以得到料性长的玻璃。
Na 2O:11%~13%和Li 2O:3%~5%。
Na 2O和Li 2O作为玻璃的网络外体,使得玻璃组分的熔融温度下降。Na 2O和Li 2O的存在使得玻璃具备化学离子交换强化的可能性,玻璃能够实现化学钢化处理。质量百分比为3%~5%的Li 2O和质量百分比为11%~13%的Na 2O可以保证化学离子交换过程的进行,离子半径较小的锂离子的存在可使得玻璃在硝酸钠和硝酸钾的盐浴中的化学离子交换过程中得到更深的应力层压缩深度,增强玻璃的抗弯强度和抗冲击强度;同时能够显著改善玻璃的熔解效果,可以大幅降低玻璃熔融液的粘度。
P 2O 5:3%~4%。
P 2O 5虽然是玻璃的网络形成体,但由于磷氧四面体中有一个磷氧双键容易断裂,因此它的网络为层状结构,且磷氧键的键长大于硅氧键,磷氧四面体的体积也大于硅氧四面体,因此质量百分比为3%~4%的P 2O 5的加入使得玻璃的结构变得疏松,从而使得离子交换达到更深的深度。
ZrO 2:3%~4%。
ZrO 2是玻璃的中间体氧化物,具有改善玻璃化学稳定性和防止碱金属离子析出的作用,另外ZrO 2也是提高玻璃拉伸弹性模量的重要成份。质量百分比优选为3%~4%的ZrO 2能同时提高玻璃的粘度、硬度、弹性、折射率和化学稳定性,降低玻璃的热膨胀系数。含ZrO 2的玻璃比较难于熔解,且在含量大于3%时易析晶,但是在质量百分比总和为14%~18%的高碱金 属氧化物Na 2O和Li 2O含量的玻璃体系中,其析晶能力减弱。ZrO 2可用于制造化学稳定性和热稳定性良好的玻璃,如果ZrO 2含量过多,则易析晶和提高熔解温度。
AlF 3:1%~2%。
质量百分比为1%~2%的AlF 3的加入可解聚断裂P 2O 5形成的偏磷酸链,进一步能与玻璃网络主体中的阳离子结合,形成复杂的网络结构,可以使玻璃系统更为稳定,AlF 3的折射率(n D=1.385)与色散均大大低于氧化物,在氧化物玻璃中添加AlF 3可有效降低玻璃的折射率,AlF 3具有较低的表面自由能和强疏水性,故在玻璃组分中加入AlF 3可有效降低玻璃的表面自由能,提高玻璃的表面疏水性,使显示屏更耐污染,抗指纹。
同时,AlF 3可作为澄清剂加入到本发明的玻璃组分中,在去除玻璃溶解过程中气泡的同时,不引入新的元素,减少玻璃的表面缺陷,提高玻璃的性能。本发明的玻璃为锆质铝硅酸盐玻璃体系,因为成份中含有较多的氧化铝,而且存在氧化锆,这会导致破璃液的粘度和表面张力增大,其熔解和澄清变得困难,本发明利用AlF 3在高温下溶解产生气体,带走熔融玻璃液中的气泡来实现玻璃的澄清效果。
按上述比例确定本发明实施例的配方,然后按照上述比例分别称取一定量的石英砂,其中石英砂的纯度为99.8%,Fe含量在100ppm以下,粒度为100目以下,化学纯氧化铝、化学纯碳酸钠、化学纯碳酸锂、化学纯磷酸二氢钾、化学纯氧化锆和化学纯三氟化铝配成含氟碱铝硅酸盐玻璃配合料。
将上述配合粉料分别盛入铂金钳锅中混合均匀,按全电熔炉方式或火焰结合电助熔炉方式加热至1500~1700℃进行熔解和澄清,16小时后在不锈钢模板中,按浮法、溢流下拉法或狭缝下拉法浇铸成规定形状的玻璃板,然后 进行退火、研磨和抛光,分别制成厚度为<3mm的不同配方的平板玻璃,根据需要将平板玻璃进行热弯、模压等机械加工操作,形成各种2D或3D玻璃制品。
第一次离子交换,
将上述制成的平板玻璃试样或者玻璃制品在350~450℃的硝酸钾和硝酸钠KNO 3:NaNO 3(A:B)=(5%~36%):(64%~95%)的第一盐浴中浸泡时间1h~4h,目的是通过盐浴中半径较大的钾离子与含氟碱铝硅酸盐玻璃中半径较小的钠离子和锂离子进行交换取得较大的离子交换深度和表面压应力,取出后清洗,得到一次强化后的钠钙玻璃。
第二次离子交换,
将一次强化后的含氟碱铝硅酸盐玻璃或钠钙玻璃预热,以防止直接在高温下处理,玻璃会炸裂,之后在350~450℃下的硝酸钾和硝酸钠KNO 3:NaNO 3(A:B)=(96%~100%):(0%~4%)的第二盐浴中浸泡不大于1h,目的是使玻璃制品表面进行K +与玻璃中Na +的短时间交换以获得较高的靠近玻璃制品表面的压应力,取出后清洗,得到二次强化后的含氟碱铝硅酸盐玻璃或钠钙玻璃。本发明做了6个实施例和2个对比例,用FSM-6000应力仪和SLP经PMC拟合测得以上试样的表面压应力和应力层压缩深度,其中表面压应力可简写为CS,应力层压缩深度可简写为DOL,用维氏硬度计测定以上试样的表面硬度,用四点弯曲强度测量仪测定以上试样的抗弯强度,用阿贝折射仪测定以上试样的折射率,最后求平均值,得到的数据如表1所示。
表1对比例和各实施例制备的强化玻璃及其性能对比
Figure PCTCN2020123857-appb-000001
经一次强化后玻璃制品的表面压应力至少可达到300MPa以上,应力层压缩深度可达到50μm以上。经两次离子交换化学强化后,表面压应力至少可达到600MPa以上,需要说明的是,本发明所述的强化玻璃可扩展至所有可强化的含氟碱铝硅酸盐,从原理上均可合理拓展、预测和实现。
一般来讲第一次强化和第二次强化温度低于玻璃的软化点温度(600℃左右)时即可进行化学强化,在350℃~450℃范围内玻璃的CS、DOL满足玻璃盖板加工的常规要求,因此选择该范围,本发明分别选择410℃和390℃这两个点进行实施例列举。第一次强化进行钾离子和钠离子交换,以及钾离 子和锂离子交换,需盐浴中具有充分的钠离子,KNO 3:NaNO 3=(5%~36%):(64%~95%)内玻璃的CS、DOL满足玻璃盖板加工的常规要求。第一次强化的时间为1~4h,,强化时间过短,影响强化效果,玻璃的性能不佳,强化时间过长,会产生应力松弛现象。本发明选择4h进行实施例列举。第二次强化进行K +、Na +交换,需要钾离子浓度高的盐浴,KNO 3:NaNO 3=(96%~100%):(0%~4%)内玻璃的CS、DOL满足玻璃盖板加工常规要求。
以下针对上述的2个对比例和6个实施例做具体描述。
对比例1:钠钙玻璃
按质量百分比计,玻璃组分为SiO 272%,Al 2O 3 2%,Na 2O 16%,CaO 7%,K 2O 1.5%,MgO 1.5%。
将上述配合粉料分别盛入铂金钳锅中于马弗炉中加热至1650℃进行熔解和澄清,16小时后在不锈钢模板中浇铸成规定形状的玻璃板,然后进行退火、研磨和抛光,分别制成厚度为1mm的不同配方的平板玻璃各5片,再将上述制成的玻璃板试样各5片在410℃的硝酸钾和硝酸钠(KNO 3:NaNO 3=5:95)的第一盐浴中浸泡4h,取出后清洗,得到一次强化后的钠钙玻璃;将一次强化后的钠钙玻璃在390℃下的硝酸钾和硝酸钠(KNO 3:NaNO 3=100:0)的第二盐浴中浸泡1h,取出后清洗,得到二次强化后的钠钙玻璃。
所制得的二次强化后的钠钙玻璃,用FSM-6000应力仪和SLP经PMC拟合测得CS为600MPa,DOL为10μm,用四点弯曲强度测量仪测得四点弯曲强度为450MPa,维氏硬度计测得维氏硬度为490MPa,阿贝折射仪测得折射率为1.52。
对比例2
与对比例1的区别仅在于玻璃组分不同,玻璃组分为SiO 268%,Al 2O 3 8%,Na 2O 13%,Li 2O 3%,P 2O 54%,ZrO 23%,SnO 21%(按质量百分比计)。其他制备工艺和测试工艺与对比例1相同。
所制备的碱铝硅酸盐玻璃的CS为650MPa,离子交换层深度为50μm,四点弯曲强度为490MPa,维氏硬度为510MPa,折射率为1.51。与对比例1相比,碱铝硅酸盐玻璃的各个性能都优于对比例1。
实施例1
与对比例2的区别仅在于玻璃组分不同,玻璃组分为SiO 268%,Al 2O 3 8%,Na 2O 13%,Li 2O 3%,P 2O 54%,ZrO 23%,AlF 31%(按质量百分比计)。其他制备工艺和测试工艺与对比例相同。
所制备的碱铝硅酸盐玻璃的CS为670MPa,离子交换层深度为60μm,四点弯曲强度为500MPa,维氏硬度为530MPa,折射率为1.50。与实施例1相比,含氟碱铝硅酸盐玻璃的各个性能都优于对比例2,说明本发明取得了很好的技术效果和进步。
实施例2
与对比例2的区别仅在于玻璃组分不同,玻璃组分为SiO 265%,Al 2O 3 10%,Na 2O 13%,Li 2O 3%,P 2O 54%,ZrO 23%,AlF 32%(按质量百分比计)。其他制备工艺和测试工艺与对比例相同。
所制备的碱铝硅酸盐玻璃的CS为690MPa,离子交换层深度为100μm,四点弯曲强度为532MPa,维氏硬度为545MPa,折射率为1.49。与实施例1相比,含氟碱铝硅酸盐玻璃的各个性能都优于对比例2,说明本发明取得了很好的技术效果和进步。
实施例3
与对比例2的区别仅在于玻璃组分不同,玻璃组分为SiO 252%,Al 2O 3 23%,Na 2O 11%,Li 2O 5%,P 2O 53%,ZrO 24%,AlF 32%(按质量百分比计)。其他制备工艺和测试工艺与对比例2相同。
所制备的碱铝硅酸盐玻璃的CS为710MPa,离子交换层深度为115μm,四点弯曲强度为670MPa,维氏硬度为589MPa,折射率为1.49。与实施例1相比,含氟碱铝硅酸盐玻璃的各个性能都优于对比例2,说明本发明取得了很好的技术效果和进步。
实施例4
一次强化的盐浴为硝酸钾和硝酸钠(KNO 3:NaNO 3=36:64),其他制备工艺和测试工艺与实施例3相同。
所制备的碱铝硅酸盐玻璃的CS为715MPa,离子交换层深度为130μm,四点弯曲强度为679MPa,维氏硬度为602MPa,折射率为1.49。与实施例2相比,所制备的含氟碱铝硅酸盐玻璃的离子交换深度优于实施例1,说明本发明的强化工艺取得了很好的技术效果和进步。
实施例5
与实施例3的区别仅在于二次强化盐浴不同,二次强化的盐浴为硝酸钾和硝酸钠(KNO 3:NaNO 3=96:4),其他制备工艺和测试工艺与实施例3相同。
所制备的碱铝硅酸盐玻璃的CS为925MPa,离子交换层深度为125μm,四点弯曲强度为890MPa,维氏硬度为735MPa,折射率为1.49。与实施例4相比,所制备的含氟碱铝硅酸盐玻璃的应力、四点弯曲强度、维氏硬度远优于实施例3,说明本发明的强化工艺取得了很好的技术效果和进步。
实施例6
与实施例3的区别仅在于二次强化时间不同,二次强化时间为15min,其他制备工艺和测试工艺与实施例3相同。
所制备的碱铝硅酸盐玻璃的CS为820MPa,离子交换层深度为136μm,四点弯曲强度为751MPa,维氏硬度为689MPa,折射率为1.49。与实施例3相比,所制备的含氟碱铝硅酸盐玻璃的离子交换深度远优于实施例3,说明本发明的强化工艺取得了很好的技术效果和进步。
从表1可以看出,对比例2的碱铝硅酸盐玻璃的表面应力,应力层深度,抗弯强度和维氏硬度都大于对比例1,并且折射率小于对比例1,说明所制备的碱铝硅酸盐玻璃具有优异的性能。实施例1~6和对比例1对比,一方面是将钠钙玻璃制得了碱铝硅酸盐玻璃,另一方面是在碱铝硅酸盐玻璃的组分中加入了氟化物,所制得的含氟碱铝硅酸盐玻璃的表面应力,应力层深度,抗弯强度和维氏硬度都大于对比例,并且折射率小于对比例,说明所制备的含氟碱铝硅酸盐玻璃具有极好的性能。
以上实施例说明在碱铝硅酸盐玻璃的组分中加入氟化物,可有效地提高玻璃得表面应力,离子交换层深度,抗弯强度,维氏硬度,降低玻璃的折射率。所制备得含氟碱铝硅酸盐玻璃在经两次化学强化比普通的钠钙强化玻璃比具有更强的抗冲击和耐刮擦性能,经化学强化可制成含氟碱铝硅酸盐玻璃盖板、视窗玻璃和显示玻璃中的一种或多种玻璃制品,因此可作为屏幕保护材料应用在显示装置和移动设备中,显示装置包括电子显示产品,具体可以是智能手机、电子阅读器、笔记本电脑和平板电脑,在使用时能实现较高的机械强度、抗弯强度和耐冲击强度,具体地适合于用作手机、平板等电子装置显示屏幕的保护盖板,可以有效地防止这些平板显示装置受到外力冲击和 划伤造成的损害。

Claims (10)

  1. 一种含氟碱铝硅酸盐玻璃,其特征在于,所述玻璃的组分按质量百分比计包括,SiO 252%~68%,Al 2O 38%~23%,Na 2O 11%~13%,Li 2O 3%~5%,P 2O 53%~4%,ZrO 23%~4%,氟化物1%~2%;
    所述的氟化物为能与上述氧化物形成玻璃的氟化物。
  2. 根据权利要求1所述的一种含氟碱铝硅酸盐玻璃,其特征在于,所述的氟化物为AlF 3
  3. 根据权利要求1所述的一种含氟碱铝硅酸盐玻璃,其特征在于,所述玻璃为经过机械加工得到所需形状的2D或3D玻璃制品。
  4. 根据权利要求1所述的一种含氟碱铝硅酸盐玻璃,其特征在于,所述玻璃为通过溢流下拉法、浮法或狭缝下拉法成型的平板玻璃。
  5. 根据权利要求4所述的一种含氟碱铝硅酸盐玻璃,其特征在于,所述的平板玻璃厚度为3mm以下。
  6. 一种含氟碱铝硅酸盐玻璃的强化方法,其特征在于,包括以下步骤,
    步骤1,按质量百分比计,依照所述玻璃的组分配制原料,将原料熔化、澄清后成型为玻璃;所述玻璃的组分按质量百分比计为,SiO 252%~68%,Al 2O 38%~23%,Na 2O 11%~13%,Li 2O 3%~5%,P 2O 53%~4%,ZrO 23%~4%,AlF 31%~2%;
    步骤2,将玻璃在350~450℃的硝酸钾和硝酸钠的盐浴中依次进行两次离子交换,得到化学强化的氟碱铝硅酸盐玻璃,其中,
    第一次离子交换时硝酸钾和硝酸钠的质量百分比为(5%~36%):(95%~64%),时间为1~4h;
    第二次离子交换时硝酸钾和硝酸钠的质量百分比为(96%~100%):(0%~4%),时间不大于1h。
  7. 根据权利要求6所述的一种含氟碱铝硅酸盐玻璃的强化方法,其特征 在于,所述玻璃经第一次离子交换后,表面压应力>300MPa,应力层压缩深度>50μm。
  8. 根据权利要求6所述的一种含氟碱铝硅酸盐玻璃的强化方法,其特征在于,所述玻璃经化学强化后,表面压应力>600MPa,应力层压缩深度>50μm,折射率<1.51。
  9. 一种根据权利要求6~8中任意一项所述的含氟碱铝硅酸盐玻璃的强化方法得到的含氟碱铝硅酸盐玻璃。
  10. 如权利要求9所述的含氟碱铝硅酸盐玻璃在显示装置和移动设备中的应用。
PCT/CN2020/123857 2020-03-13 2020-10-27 一种含氟碱铝硅酸盐玻璃及其强化方法和应用 WO2021179623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177130.8 2020-03-13
CN202010177130.8A CN111348828A (zh) 2020-03-13 2020-03-13 一种含氟碱铝硅酸盐玻璃及其强化方法和应用

Publications (1)

Publication Number Publication Date
WO2021179623A1 true WO2021179623A1 (zh) 2021-09-16

Family

ID=71190747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123857 WO2021179623A1 (zh) 2020-03-13 2020-10-27 一种含氟碱铝硅酸盐玻璃及其强化方法和应用

Country Status (2)

Country Link
CN (1) CN111348828A (zh)
WO (1) WO2021179623A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348828A (zh) * 2020-03-13 2020-06-30 彩虹集团(邵阳)特种玻璃有限公司 一种含氟碱铝硅酸盐玻璃及其强化方法和应用
CN113582558A (zh) * 2021-08-24 2021-11-02 Oppo广东移动通信有限公司 玻璃强化方法、玻璃、壳组件和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308843A (ja) * 1988-02-26 1989-12-13 Ohara Inc 光学ガラス
CN108863050A (zh) * 2018-06-20 2018-11-23 醴陵旗滨电子玻璃有限公司 锂铝硅酸盐玻璃及其制备方法
CN110316974A (zh) * 2019-05-31 2019-10-11 彩虹集团(邵阳)特种玻璃有限公司 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
CN111348828A (zh) * 2020-03-13 2020-06-30 彩虹集团(邵阳)特种玻璃有限公司 一种含氟碱铝硅酸盐玻璃及其强化方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337770B (zh) * 2008-08-18 2011-06-22 苏州新吴硝子科技有限公司 高强度铝硅酸盐玻璃及其化学钢化方法
US8889575B2 (en) * 2011-05-31 2014-11-18 Corning Incorporated Ion exchangeable alkali aluminosilicate glass articles
CN110510874B (zh) * 2019-08-23 2022-06-14 清远南玻节能新材料有限公司 铝硅酸盐玻璃及其制备方法、强化玻璃和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308843A (ja) * 1988-02-26 1989-12-13 Ohara Inc 光学ガラス
CN108863050A (zh) * 2018-06-20 2018-11-23 醴陵旗滨电子玻璃有限公司 锂铝硅酸盐玻璃及其制备方法
CN110316974A (zh) * 2019-05-31 2019-10-11 彩虹集团(邵阳)特种玻璃有限公司 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
CN111348828A (zh) * 2020-03-13 2020-06-30 彩虹集团(邵阳)特种玻璃有限公司 一种含氟碱铝硅酸盐玻璃及其强化方法和应用

Also Published As

Publication number Publication date
CN111348828A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2020239048A1 (zh) 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
JP7184073B2 (ja) 化学強化用ガラス
WO2022048377A1 (zh) 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
JP6130503B2 (ja) 3D成形のためのイオン交換可能なLi含有ガラス組成物
JP5672405B2 (ja) 板ガラス
JP5757278B2 (ja) タッチパネル用ガラスの製造方法
JP4947502B2 (ja) 強化ガラス基板及びその製造方法
JP5427278B2 (ja) ガラス組成物、それから得られたガラス、並びに、ガラスの製造方法及び使用。
WO2016104446A1 (ja) ガラス及び化学強化ガラス
WO2022166029A1 (zh) 铝硅酸盐强化玻璃及其制备方法
WO2020138062A1 (ja) 強化ガラス板及びその製造方法
WO2021179623A1 (zh) 一种含氟碱铝硅酸盐玻璃及其强化方法和应用
WO2020177271A1 (zh) 一种低软化点含锂玻璃
CN113480167A (zh) 复合玻璃澄清剂、硼铝硅酸盐玻璃及其制备方法与应用
WO2020078075A1 (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
CN115490423B (zh) 铝硅酸盐玻璃及其制备方法
JP7134397B2 (ja) 強化ガラス及び強化用ガラス
WO2020021933A1 (ja) 強化ガラス及び強化用ガラス
WO2022172813A1 (ja) 強化ガラス板及びその製造方法
CN114195381B (zh) 钠钙硅酸盐玻璃、强化玻璃及其制备方法与应用
WO2024043194A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
WO2022097416A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
TWI837260B (zh) 強化玻璃板及其製造方法、強化用玻璃板
JP2017057134A (ja) 強化用ガラスの製造方法及び強化ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924366

Country of ref document: EP

Kind code of ref document: A1