WO2020239048A1 - 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用 - Google Patents

一种含碱铝硅酸盐玻璃及其制品、强化方法和应用 Download PDF

Info

Publication number
WO2020239048A1
WO2020239048A1 PCT/CN2020/093098 CN2020093098W WO2020239048A1 WO 2020239048 A1 WO2020239048 A1 WO 2020239048A1 CN 2020093098 W CN2020093098 W CN 2020093098W WO 2020239048 A1 WO2020239048 A1 WO 2020239048A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
alkali
aluminosilicate glass
containing aluminosilicate
chemically strengthened
Prior art date
Application number
PCT/CN2020/093098
Other languages
English (en)
French (fr)
Inventor
王志安
彭引平
仵小曦
Original Assignee
彩虹集团(邵阳)特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彩虹集团(邵阳)特种玻璃有限公司 filed Critical 彩虹集团(邵阳)特种玻璃有限公司
Publication of WO2020239048A1 publication Critical patent/WO2020239048A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the invention relates to the technical field of plate glass manufacturing, in particular to an alkali-containing aluminosilicate glass and its products, strengthening methods and applications.
  • the present invention provides an alkali-containing aluminosilicate glass and its products, strengthening method and application, which are low in cost, easy to operate, and can obtain a deeper ion exchange depth and a very high degree of ion exchange after chemical strengthening. High surface compressive stress, so as to achieve higher mechanical strength, bending strength and impact resistance.
  • a method for strengthening alkali-containing aluminosilicate glass is sequentially subjected to two ion exchanges in a salt bath of sodium nitrate and potassium nitrate at 350-450°C to obtain chemically strengthened aluminosilicate Salt glass products, of which,
  • the mass percentage of sodium nitrate and potassium nitrate during the first ion exchange is (3% ⁇ 80%): (20% ⁇ 97%), and the exchange time is at least 1h;
  • the mass percentage of sodium nitrate and potassium nitrate during the second ion exchange is (0 ⁇ 10%): (90% ⁇ 100%), and the exchange time is not less than 1h;
  • the surface compressive stress reaches at least 600MPa or more, and the compression depth of the stress layer reaches more than 50 ⁇ m.
  • An alkali-containing aluminosilicate glass includes SiO 2 52% to 68%, Al 2 O 3 10% to 23%, Na 2 O 8% to 13%, and Li 2 O 0 ⁇ 6%, P 2 O 5 2% ⁇ 5%, ZrO 2 0 ⁇ 5%, ZnO 0 ⁇ 3%.
  • the mass percentage of the Al 2 O 3 is 12%-20%.
  • the mass percentage of the SnO 2 is 0.1% to 1%.
  • the glass is a flat glass formed by an overflow down-draw method, a float method or a slit down-draw method, or a 2D or 3D glass product of a desired shape obtained by hot bending, molding and mechanical processing.
  • the thickness of the flat glass is 5 mm or less.
  • a glass product made of alkali-containing aluminosilicate glass after chemical strengthening After the glass is chemically strengthened, the surface compressive stress is more than 600 MPa, and the compression depth of the stress layer is more than 50 ⁇ m.
  • a glass product made of alkali-containing aluminosilicate glass chemically strengthened. After the glass is chemically strengthened, the bending strength is >600MPa and the Vickers hardness is >600MPa.
  • An electronic device comprising the above-mentioned chemically strengthened alkali-containing aluminosilicate glass product.
  • the present invention has the following beneficial technical effects:
  • the glass or glass product is sequentially subjected to two ion exchanges in a salt bath of sodium nitrate and potassium nitrate, so that the potassium ions and/or sodium ions in the salt bath Exchange sodium ions and/or lithium ions in glass to obtain aluminosilicate chemically strengthened glass with higher surface compressive stress, deeper stress layer compression depth, higher bending strength and higher Vickers hardness; flat glass or glass
  • the product is chemically toughened to further enhance the mechanical strength of the glass, improve the bending strength and scratch resistance of the glass, and meet the requirements of the screen protection function of electronic display products.
  • the specific content of SiO 2 is designed to be 52% to 68% by mass, so that not only glass with long material properties can be obtained, but also the glass can meet the requirements.
  • Chemical durability and mechanical strength; Al 2 O 3 with a mass percentage of 10% to 23% can greatly improve the chemical stability of the glass and reduce the crystallization of the glass while ensuring that the glass has a certain viscosity, hardness and mechanical strength
  • the electronic device of the present invention includes a chemically strengthened alkali-containing aluminosilicate glass product, which can achieve higher mechanical strength, bending strength and impact strength when in use.
  • the present invention is an alkali-containing aluminosilicate glass that can be chemically strengthened, including flat glass and glass products, including SiO 2 52% to 68%, Al 2 O 3 10% to 23%, and Na 2 O in mass percentage. 8% ⁇ 13%, Li 2 O 0 ⁇ 6%, P 2 O 5 2% ⁇ 5%, ZrO 2 0 ⁇ 5%, ZnO 0 ⁇ 3%; in addition, it can also include adding SnO 2 , SnO by mass percentage 2 0.1% ⁇ 1%.
  • SiO 2 is an essential component that constitutes the glass skeleton, and the higher its content, the more it can improve the chemical durability of the glass, and the more it can increase the mechanical strength of the glass. In addition, since SiO 2 has a tendency to increase the viscosity of the glass melt, if the content is too large, it is difficult to obtain glass with long material properties. When the content of SiO 2 is 62% to 66%, the requirements for melting of glass components, chemical durability and mechanical strength can be satisfied.
  • Al 2 O 3 is an intermediate oxide, which can greatly improve the chemical stability of glass, reduce the tendency of glass to crystallize, and is also a necessary component to increase the hardness and mechanical strength of the glass.
  • Al 2 O 3 improves the tensile elasticity of glass
  • the modulus component also has a tendency to increase the viscosity of the glass melt. If the content of Al 2 O 3 is too large, it is difficult to obtain a glass with long material properties. When the content of Al 2 O 3 is 12% to 20%, the viscosity of the obtained glass melt will not be too high, and the melting temperature will be less than 1680°C.
  • the glass composition can be achieved by the electric furnace heated by natural gas and the platinum pipeline clarification system. Melting and clarification effect.
  • Na 2 O and Li 2 O are the external bodies of the glass network, which lower the melting temperature of the glass components. If the content of Na 2 O and Li 2 O is 13% or more, it can be expected to significantly improve the melting effect of the glass. Greatly reduce the viscosity of molten glass. The presence of Na 2 O and Li 2 O makes the glass have the possibility of chemical ion exchange strengthening, and the glass can be chemically tempered.
  • Li 2 O and 0 mass% to 6 mass percentage is 8 percent to 13 percent of Na 2 O can ensure chemical ion exchange process, there is a small ionic radius lithium ions in the glass may be such that sodium nitrate and nitric acid
  • the chemical ion exchange process in the potassium salt bath obtains a deeper compression depth of the stress layer, which enhances the bending strength and impact strength of the glass.
  • P 2 O 5 is a network forming body of glass, since a phosphorus-oxygen double bond in the phosphorus-oxygen tetrahedron is easy to break, its network is a layered structure, and the bond length of the phosphorus-oxygen bond is greater than that of the silicon-oxygen bond.
  • the volume of the oxygen tetrahedron is also larger than that of the silicon-oxygen tetrahedron, so the addition of P 2 O 5 with a mass percentage of 2% to 5% makes the structure of the glass loose, so that the ion exchange reaches a deeper depth.
  • ZrO 2 is an intermediate oxide of glass, which has the effect of improving the chemical stability of glass and preventing the precipitation of alkali metal ions.
  • ZrO 2 is also an important component to improve the tensile elastic modulus of glass.
  • ZrO 2 with a mass percentage of 2% to 3% can simultaneously increase the viscosity, hardness, elasticity, refractive index and chemical stability of the glass, and reduce the thermal expansion coefficient of the glass.
  • the glass containing ZrO 2 is more difficult to dissolve, and is easy to crystallize when the content is greater than 3%, but in a glass system with a high alkali metal oxide Na 2 O and Li 2 O content of 8% to 19% by mass, its The crystallization ability is weakened.
  • ZrO 2 can be used to make glass with good chemical and thermal stability. If the content of ZrO 2 is too much, it will easily crystallize and increase the melting temperature.
  • SnO 2 is added as a fining agent to the glass composition of the present invention, and its addition amount is usually 0.1% to 1.0%, which can eliminate bubbles in the glass melt. When the mass percentage of SnO 2 is 0.2% to 0.5%, While saving raw materials, it can also achieve the effect of completely removing bubbles.
  • the glass of the present invention is a zirconium aluminosilicate glass system. Because the composition contains more alumina and zirconia, the viscosity and surface tension of the glass breaking liquid increase, and its melting and clarification become difficult.
  • the high-temperature fining agent tin oxide achieves the clarification effect of glass through an electric furnace heated by natural gas and a platinum pipeline clarification system.
  • the melting method can be an all-electric furnace or a flame combined with an electric booster, using float and overflow.
  • the flow down-draw method and the slit down-draw method are used to form a flat glass with a thickness of 5mm or less, and then the flat glass can be bent or molded and machined to form various 2D or 3D glass products as needed;
  • the above-mentioned plate glass or glass product is sequentially subjected to ion exchange twice in a salt bath of potassium nitrate and sodium nitrate at 350-450°C for chemical strengthening to obtain an alkali-containing aluminosilicate chemically strengthened glass.
  • the mass percentage of sodium nitrate and potassium nitrate during primary ion exchange is (36% ⁇ 80%): (64% ⁇ 20%)
  • the exchange time is generally more than 1h
  • the purpose is to exchange potassium ions with a larger radius in the salt bath
  • the sodium ions and/or lithium ions with a smaller radius in the glass achieve greater ion exchange depth and surface compressive stress
  • the mass percentage of sodium nitrate and potassium nitrate during the second ion exchange is (0%-10%): (100 % ⁇ 90%)
  • the exchange time is usually controlled within 1h
  • the exchange time is usually controlled within 1 hour.
  • the purpose is to exchange K + and Na + in the glass for a short time on the surface of the glass product to obtain a higher surface close to the glass product The compressive stress.
  • the surface compressive stress of the glass product can reach at least 300MPa or more, and the compression depth of the stress layer can reach more than 50 ⁇ m.
  • the surface compressive stress can reach at least 600MPa. It should be noted that the strengthened glass of the present invention can be extended to all strengthenable alkali-containing aluminosilicates, which is reasonable in principle. Expansion, prediction and realization.
  • Table 1 The composition list of the strengthened glass of the present invention and the soda lime glass of the comparative example
  • quartz sand weighs a certain amount of quartz sand according to the ratio in the comparative example in Table 1.
  • the purity of the quartz sand is 99.8%
  • the Fe content is below 100ppm
  • the particle size is below 100 mesh
  • chemically pure alumina chemically pure sodium carbonate
  • chemical Pure potassium carbonate chemically pure calcium carbonate
  • chemically pure magnesium carbonate chemically pure tin oxide are made into soda lime glass sample batches.
  • the surface compressive stress and the compression depth of the stress layer of the above samples were measured with the FSM-6000 stress meter.
  • the surface compressive stress can be abbreviated as CS, and the compression depth of the stress layer can be abbreviated as DOL.
  • the surface of the above sample is measured with a Vickers hardness tester. Hardness, measured the flexural strength of the above samples by four-point bending method, and finally calculated the average value.
  • the obtained data are shown in Table 2 and Table 3.
  • IOX 1 represents the first ion exchange
  • IOX 2 represents the second Ion exchange
  • A is sodium nitrate
  • B is potassium nitrate.
  • the analytically pure sodium nitrate and potassium nitrate are weighed in proportion and put into 11 stainless steel containers heated by resistance wires on the side walls and heated to the set temperature Keep warm after forming a salt bath.
  • the alkali-containing aluminosilicate glass has a deeper compression depth of stress layer, greater surface compressive stress, greater bending strength and greater dimension than ordinary soda lime strengthened glass after chemical strengthening. Its hardness is higher than that of soda lime glass, so it has stronger impact resistance and surface scratch resistance, and has stronger protection ability for electronic products than soda lime glass.
  • the alkali-containing aluminosilicate glass of the present invention is also suitable for surface chemical strengthening treatment and obtains a deeper compression depth of the stress layer, so that the strengthened glass is comparable to ordinary sodium Calcium strengthened glass has stronger impact and scratch resistance than that, so it can be used in electronic devices. It is a screen protection material for electronic display products.
  • the electronic device contains the chemically strengthened alkali-containing material of the present invention.
  • One or more glass products of aluminosilicate glass cover, window glass and display glass can achieve high mechanical strength, bending strength and impact strength when in use, and are particularly suitable for use as mobile phones,
  • the protective cover plate of the display screen of the electronic device such as the tablet can effectively prevent the damage of the flat display device from external impact and scratches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种含碱铝硅酸盐玻璃及其制品、强化方法和应用,将含碱铝硅酸盐玻璃在350~450℃的硝酸钠和硝酸钾的盐浴中依次进行两次离子交换,得到化学强化的铝硅酸盐玻璃制品;玻璃的组分包括,SiO 2 52%~68%,Al 2O 3 10%~23%,Na 2O 8%~13%,Li 2O 0~6%,P 2O 5 2%~5%,ZrO 2 0~5%,ZnO 0~3%;玻璃经化学强化后的玻璃制品表面压应力>600MPa,应力层压缩深度>50μm,抗弯强度>600MPa,维氏硬度>600MPa。

Description

一种含碱铝硅酸盐玻璃及其制品、强化方法和应用 技术领域
本发明涉及平板玻璃制造技术领域,具体为一种含碱铝硅酸盐玻璃及其制品、强化方法和应用。
背景技术
随着现代显示科技的发展,液晶显示器、提款机保护屏、触摸屏信息查询机和媒体广告播放机等平板显示产品大量涌现并进入我们的日常生活,有些电子显示产品经常会遇到一些恶劣的使用环境,比如尖锐的物品刻划,此外还存在人为破坏的影响。另外,有些触摸屏和掌上电脑经常会有一些危险操作,比如用手指、电子笔、签字笔甚至钥匙在显示屏上进行书写、刻划和冲击,这将导致电子显示产品的屏幕出现破损和表面划伤,影响显示产品显示效果,甚至危及到它们的使用寿命。
由于这些显示产品的抗划伤和抗击外界冲击能力都较差,因此这些显示产品的屏幕表面急需一种硬度和机械强度好的透明玻璃材料。
发明内容
针对现有技术中存在的问题,本发明提供一种含碱铝硅酸盐玻璃及其制品、强化方法和应用,成本低,操作方便,化学强化处理后可得到较深的离子交换深度和很高的表面压应力,从而实现较高的机械强度、抗弯强度和耐冲击强度。
本发明是通过以下技术方案来实现:
一种含碱铝硅酸盐玻璃的强化方法,将含碱铝硅酸盐玻璃在350~450℃的硝酸钠和硝酸钾的盐浴中依次进行两次离子交换,得到化学强化的铝硅酸盐玻璃制品,其中,
第一次离子交换时硝酸钠和硝酸钾的质量百分比为(3%~80%):(20%~97%),交换时间至少为1h;
第二次离子交换时硝酸钠和硝酸钾的质量百分比为(0~10%):(90%~100%),交换时间不小于1h;
经两次离子交换化学强化后,表面压应力至少达到600MPa以上,应力层压缩深度达到50μm以上。
一种含碱铝硅酸盐玻璃,所述玻璃的组分按质量百分比计包括,SiO 2 52%~68%,Al 2O 3 10%~23%,Na 2O 8%~13%,Li 2O 0~6%,P 2O 5 2%~5%,ZrO 2 0~5%,ZnO 0~3%。
进一步,所述的Al 2O 3的质量百分比为12%~20%。
进一步,所述SnO 2的质量百分比为0.1%~1%。
进一步,所述的Na 2O和Li 2O的质量百分比之和为13%~19%。
进一步,所述玻璃为通过溢流下拉法、浮法或狭缝下拉法成型的平板玻璃,或者为经过热弯、模压和机械加工得到所需形状的2D或3D玻璃制品。
进一步,所述的平板玻璃厚度为5mm以下。
一种含碱铝硅酸盐玻璃经化学强化后的玻璃制品,所述玻璃经化学强化后,表面压应力>600MPa,应力层压缩深度>50μm。
一种含碱铝硅酸盐玻璃经化学强化后的玻璃制品,所述玻璃经化学强化后,抗弯强度>600MPa,维氏硬度>600MPa。
一种包含上述经化学强化的含碱铝硅酸盐玻璃制品的电子装置。
与现有技术相比,本发明具有以下有益的技术效果:
本发明所述含碱铝硅酸盐玻璃的强化方法,将玻璃或玻璃制品在硝酸钠和硝酸钾的盐浴中依次进行两次离子交换,以使盐浴中的钾离子和/或钠离子交换玻璃中的钠离子和/或锂离子,得到较高表面压应力、较深应力层压缩深度、较高抗弯强度和较高维氏硬度的铝硅酸盐化学强化玻璃;平板玻璃或玻璃制品通过化学钢化处理,进一步增强了玻璃的机械强度,提高了玻璃的抗弯强度和抗划伤性能,能满足电子显示产品屏幕保护功能的要求。
本发明所述的含碱铝硅酸盐玻璃,通过将SiO 2的具体含量设计为质量百分比为52%~68%,这样不仅可得到料性长的玻璃,而且还能使玻璃达到符合要求的化学耐久性和机械强度;质量百分比为10%~23%的Al 2O 3在保证玻璃有一定粘度、硬度和机械强度的情况下,极大地改善了玻璃的化学稳定性,可降低玻璃析晶倾向;质量百分比为2%~5%的P 2O 5与质量百分比为8%~13%的Na 2O和质量百分比为0~6%的Li 2O结合,在使玻璃的结构变得疏松的情况下,不仅能改善玻璃的熔解性,而且保证了化学离子交换过程的进行,进而得到更深的应力层压缩深度,增强玻璃的抗弯强度和抗冲击强度;质量百分比为0~5%的ZrO 2防止了碱金属离子的析出,能提高玻璃的粘度、硬度、弹性、折射率和化学稳定性,降低玻璃的热膨胀系数;质量百分比为0~3%的ZnO提高了玻璃的耐碱性,因此这些组分在经过化学强化后得到的化学强化玻璃最终能达到较深的离子交换深度和很高的表面压应力,从而使之能够具有高机械强度,可以有效地防止显示产品保护屏幕表面的抗冲击和划伤损害,延长了平板电子显示产品的使用寿命。
进一步的,通过加入质量百分比为0.1%~1%的SnO 2作为玻璃的澄清剂,能消除玻璃熔融液中的气泡。
本发明一种包含经化学强化的含碱铝硅酸盐玻璃制品的电子装置,在使用时能实现较高的机械强度、抗弯强度和耐冲击强度。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明一种可化学强化的含碱铝硅酸盐玻璃,包括平板玻璃和玻璃制品,按质量百分比计包括,SiO 2 52%~68%,Al 2O 3 10%~23%,Na 2O 8%~13%,Li 2O 0~6%,P 2O 5 2%~5%,ZrO 2 0~5%,ZnO 0~3%;此外还可以包括加入SnO 2,按质量百分比计SnO 2 0.1%~1%。
以下讨论上述含碱铝硅酸盐玻璃中各组分的作用及具体的含量,含量单位均为质量百分比。
SiO 2:52%~68%。
SiO 2是构成玻璃骨架的必要的成分,其含量越高越能提高玻璃的化学耐久性,越能提高玻璃的机械强度。此外,由于SiO 2具有提高玻璃熔融液粘度的倾向,所以如果含量过多就难以得到料性长的玻璃。SiO 2的含量为62%~66%就能够兼顾玻璃组分熔解、化学耐久性和机械强度方面的要求。
Al 2O 3:10%~23%。
Al 2O 3是中间体氧化物,能极大地改善玻璃的化学稳定性,可降低玻璃的析晶倾向,同时也是提高玻璃硬度和机械强度的必要成份,Al 2O 3是提高玻璃拉伸弹性模量的成分,但是也具有提高玻璃熔融液粘度的倾向,如果Al 2O 3含量过多,就难以得到料性长的玻璃。Al 2O 3的含量为12%~20%则得到的玻璃熔融液的粘度不会过高,熔解温度小于1680℃,通过天然气辅助加热的电熔炉和铂金管道澄清系统即可实现玻璃组分的熔解和澄清效果。
Na 2O:8%~13%和Li 2O:0%~6%。
Na 2O和Li 2O作为玻璃的网络外体,使得玻璃组分的熔融温度下降,如果这Na 2O和Li 2O的含量是13%以上,就能够期待显著改善玻璃的熔解效果,可以大幅降低玻璃熔融液的粘度。Na 2O和Li 2O的存在使得玻璃具备化学离子交换强化的可能性,玻璃能够实现化学钢化处理。质量百分比为0~6%的Li 2O和质量百分比为8%~13%的Na 2O可以保证化学离子交换过程的进行,离子半径较小的锂离子的存在可使得玻璃在硝酸钠和硝酸钾的盐浴中的化学离子交换过程中得到更深的应力层压缩深度,增强玻璃的抗弯强度和抗冲击强度。
P 2O 5:2%~5%。
P 2O 5虽然是玻璃的网络形成体,但由于磷氧四面体中有一个磷氧双键 容易断裂,因此它的网络为层状结构,且磷氧键的键长大于硅氧键,磷氧四面体的体积也大于硅氧四面体,因此质量百分比为2%~5%的P 2O 5的加入使得玻璃的结构变得疏松,从而使得离子交换达到更深的深度。
ZrO 2:0~5%。
ZrO 2是玻璃的中间体氧化物,具有改善玻璃化学稳定性和防止碱金属离子析出的作用,另外ZrO 2也是提高玻璃拉伸弹性模量的重要成份。质量百分比为2%~3%的ZrO 2能同时提高玻璃的粘度、硬度、弹性、折射率和化学稳定性,降低玻璃的热膨胀系数。含ZrO 2的玻璃比较难于熔解,且在含量大于3%时易析晶,但是在质量百分比为8%~19%的高碱金属氧化物Na 2O和Li 2O含量的玻璃体系中,其析晶能力减弱。ZrO 2可用于制造化学稳定性和热稳定性良好的玻璃,如果ZrO 2含量过多,则易析晶和提高熔解温度。
ZnO:0~3%。
质量百分比为0~3%的ZnO的加入能适当提高玻璃的耐碱性,但ZnO含量过多将增大玻璃的析晶倾向。
SnO 2:0.1%~1%。
SnO 2作为澄清剂加入到本发明的玻璃组分中,其加入量通常为0.1%~1.0%,能消除玻璃熔融液中的气泡,当SnO 2的质量百分比为0.2%~0.5%时,在节约原料的同时也能达到完全去除气泡的效果。本发明的玻璃为锆质铝硅酸盐玻璃体系,因为成份中含有较多的氧化铝和氧化锆,导致破璃液的粘度和表面张力增大,其熔解和澄清变得困难,本发明利用高温澄清剂氧化锡,通过天然气辅助加热的电熔炉和铂金管道澄清系统来实现玻璃的澄清效果。
本发明一种含碱铝硅酸盐玻璃的生产工艺过程如下,
首先,选择玻璃原料,使其成为玻璃的组分,进行配制,混合均匀,在玻璃熔炉中进行熔解,熔解方式可采用全电熔炉的方式或者火焰结合电助熔 炉的方式,采用浮法、溢流下拉法和狭缝下拉法进行成型得到厚度为5mm以下的平板玻璃,之后可根据需要将平板玻璃热弯或模压以及机械加工形成各种2D或3D玻璃制品;
然后,将上述的平板玻璃或者玻璃制品在350~450℃的硝酸钾和硝酸钠的盐浴中依次进行两次离子交换,进行化学强化,得到含碱铝硅酸盐化学强化玻璃,其中,第一次离子交换时硝酸钠和硝酸钾的质量百分比为(36%~80%):(64%~20%),交换时间一般为1h以上,目的是通过盐浴中半径较大的钾离子交换玻璃中半径较小的钠离子和/或锂离子取得较大的离子交换深度和表面压应力;第二次离子交换时硝酸钠和硝酸钾的质量百分比为(0%~10%):(100%~90%),交换时间通常控制在1h以内,交换时间通常控制在1小时以内,目的为玻璃制品表面主要进行K +与玻璃中Na +的短时间交换从而获得较高的靠近玻璃制品表面的压应力。
经一次强化后玻璃制品的表面压应力至少可达到300MPa以上,应力层压缩深度可达到50μm以上。经两次离子交换化学强化后,表面压应力至少可达到600MPa以上,需要说明的是,本发明所述的强化玻璃可扩展至所有可强化的含碱铝硅酸盐,从原理上均可合理拓展、预测和实现。
表1本发明的强化玻璃和比较例的钠钙玻璃组成列表
Figure PCTCN2020093098-appb-000001
按表1氧化物的比例确定本发明实施例的配方和比较例的钠钙玻璃配方,然后按照表1的比例分别称取一定量的石英砂,其中石英砂的纯度为99.8%,Fe含量在100ppm以下,粒度为100目以下,化学纯氧化铝、化学纯碳酸钠、化学纯碳酸锂、化学纯磷酸二氢钾、化学纯氧化锆、化学纯氧化锌和化学纯氧化锡配成高铝硅酸盐玻璃配合料试样。
接着,按表1比较例中的比例分别称取一定量的石英砂,其中石英砂的纯度为99.8%,Fe含量在100ppm以下,粒度100目以下,化学纯氧化铝、化学纯碳酸钠、化学纯碳酸钾、化学纯碳酸钙、化学纯碳酸镁和化学纯氧化锡配成钠钙玻璃试样配合料。
将上述配合粉料分别盛入铂金钳锅中于马弗炉中在加热至1650℃进行熔解和澄清16小时后在不锈钢模板中浇铸成规定形状的玻璃板,然后进行退火、研磨和抛光,分别制成厚度为1mm的不同配方的平板玻璃各5片,再将上述制成的玻璃板试样各5片分别浸入硝酸钾和硝酸钠的高温熔融液中按照设定的温度和时间依次进行两次离子交换,进行化学钢化处理,其中组分不含Li 2O的实施例也可进行第二次离子交换。
用FSM-6000应力仪分别测定以上试样的表面压应力和应力层压缩深度,其中表面压应力可简写为CS,应力层压缩深度可简写为DOL,用维氏硬度计测定以上试样的表面硬度,用四点弯曲法测定以上试样的抗弯强度,最后求平均值,得到的数据如表2和表3所示,其中,IOX 1表示第一次离子交换,IOX 2表示第二次离子交换,A为硝酸钠,B为硝酸钾,化学强化时,分别按比例称取分析纯的硝酸钠和硝酸钾放入侧壁电阻丝加热的11个不锈钢容器中并加热至设定的温度形成盐浴后保温。
表2本发明的实施例1至实施例3与比较例的各个参数和结果列表
Figure PCTCN2020093098-appb-000002
表3本发明的实施例4至实施例7的各个参数列表
Figure PCTCN2020093098-appb-000003
Figure PCTCN2020093098-appb-000004
从测试结果可以看出,含碱铝硅酸盐玻璃化学强化后比普通的钠钙强化玻璃具有更深的应力层压缩深度、更大的表面压应力、更大的抗弯强度和更大的维氏硬度,因而具有更强的抗冲击强度和抗表面刮擦能力,比钠钙玻璃具有更强的对电子产品的保护能力。
本发明的含碱铝硅酸盐玻璃除具有表面硬度高、抗划伤的特点外,还适合进行表面化学强化处理并得到较深的应力层压缩深度,从而使得强化后的玻璃与普通的钠钙强化玻璃比具有更强的抗冲击和耐刮擦性能,因此可用在电子装置中,属于电子显示产品的屏幕保护材料,该电子装置中包含本发明所述的经化学强化制成的含碱铝硅酸盐玻璃盖板、视窗玻璃和显示玻璃中的一种或多种玻璃制品,在使用时能实现较高的机械强度、抗弯强度和耐冲击强度,具体地适合于用作手机、平板等电子装置显示屏幕的保护盖板,可以有效地防止这些平板显示装置受到外力冲击和划伤造成的损害。

Claims (10)

  1. 一种含碱铝硅酸盐玻璃的强化方法,其特征在于,将含碱铝硅酸盐玻璃在350~450℃的硝酸钠和硝酸钾的盐浴中依次进行两次离子交换,得到化学强化的铝硅酸盐玻璃制品,其中,
    第一次离子交换时硝酸钠和硝酸钾的质量百分比为(3%~80%):(20%~97%),交换时间至少为1h;
    第二次离子交换时硝酸钠和硝酸钾的质量百分比为(0~10%):(90%~100%),交换时间不小于1h;
    经两次离子交换化学强化后,表面压应力至少达到600MPa以上,应力层压缩深度达到50μm以上。
  2. 一种含碱铝硅酸盐玻璃,其特征在于,所述玻璃的组分按质量百分比计包括,SiO 252%~68%,Al 2O 310%~23%,Na 2O 8%~13%,Li 2O 0~6%,P 2O 52%~5%,ZrO 20~5%,ZnO 0~3%。
  3. 根据权利要求2所述的一种含碱铝硅酸盐玻璃,其特征在于,所述的Al 2O 3的质量百分比为12%~20%。
  4. 根据权利要求2所述的一种含碱铝硅酸盐玻璃,其特征在于,还包括SnO 2,所述SnO 2的质量百分比为0.1%~1%。
  5. 根据权利要求2所述的一种含碱铝硅酸盐玻璃,其特征在于,所述的Na 2O和Li 2O的质量百分比之和为13%~19%。
  6. 根据权利要求2所述的一种含碱铝硅酸盐玻璃,其特征在于,所述玻璃为通过溢流下拉法、浮法或狭缝下拉法成型的平板玻璃,或者为经过热弯、模压和机械加工得到所需形状的2D或3D玻璃制品。
  7. 根据权利要求6所述的一种含碱铝硅酸盐玻璃,其特征在于,所述的平板玻璃厚度为5mm以下。
  8. 根据权利要求2~7任意一项所述的含碱铝硅酸盐玻璃经化学强化后的玻璃制品,其特征在于,所述玻璃经化学强化后,表面压应力>600MPa,应 力层压缩深度>50μm。
  9. 根据权利要求2~7任意一项所述的含碱铝硅酸盐玻璃经化学强化后的玻璃制品,其特征在于,所述玻璃经化学强化后,抗弯强度>600MPa,维氏硬度>600MPa。
  10. 一种包含如权利要求8或9所述的经化学强化的含碱铝硅酸盐玻璃制品的电子装置。
PCT/CN2020/093098 2019-05-31 2020-05-29 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用 WO2020239048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910468986.8A CN110316974B (zh) 2019-05-31 2019-05-31 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
CN201910468986.8 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020239048A1 true WO2020239048A1 (zh) 2020-12-03

Family

ID=68119247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093098 WO2020239048A1 (zh) 2019-05-31 2020-05-29 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用

Country Status (2)

Country Link
CN (1) CN110316974B (zh)
WO (1) WO2020239048A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698109A (zh) * 2021-08-02 2021-11-26 Oppo广东移动通信有限公司 玻璃壳体的强化方法、电子设备壳体及电子设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110316974B (zh) * 2019-05-31 2022-03-22 彩虹集团(邵阳)特种玻璃有限公司 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
CN110937823B (zh) * 2019-12-03 2022-08-09 东莞市晶博光电股份有限公司 一种可以减少翘曲和尺寸膨胀的玻璃强化工艺
CN111099841B (zh) * 2019-12-25 2022-04-26 东莞市晶博光电股份有限公司 一种可以缩小玻璃尺寸的强化工艺
CN111072292B (zh) * 2019-12-25 2022-05-20 东莞市晶博光电股份有限公司 一种能缩短强化时间的玻璃强化工艺
CN111087178B (zh) * 2019-12-26 2022-05-20 咸宁南玻光电玻璃有限公司 锂铝硅玻璃化学强化的方法
CN111056749A (zh) * 2019-12-31 2020-04-24 中建材蚌埠玻璃工业设计研究院有限公司 一种高铝玻璃化学强化方法
CN111170624A (zh) * 2020-01-07 2020-05-19 福建省万达汽车玻璃工业有限公司 一种高抗砾石玻璃及其制造方法
CN111348828A (zh) * 2020-03-13 2020-06-30 彩虹集团(邵阳)特种玻璃有限公司 一种含氟碱铝硅酸盐玻璃及其强化方法和应用
CN114075046B (zh) * 2020-08-18 2023-01-24 重庆鑫景特种玻璃有限公司 具有高压应力和高安全性的强化玻璃及其加工方法
CN111995243A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
CN112358198B (zh) * 2020-11-24 2022-11-18 中国建筑材料科学研究总院有限公司 一种高碱铝硅酸盐玻璃的复合增强方法
CN113416002B (zh) * 2021-06-23 2022-04-12 万津实业(赤壁)有限公司 改善电子玻璃强化尺寸膨胀现象的方法和强化玻璃的制备方法
CN113683304B (zh) * 2021-08-31 2023-08-29 河南旭阳光电科技有限公司 一种耐刮擦玻璃及其测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038090A (en) * 1974-12-02 1977-07-26 Jenaer Glaswerk Schott & Gen. Ion exchangeable glass having low thermal expansion
CN102815860A (zh) * 2011-06-10 2012-12-12 肖特玻璃科技(苏州)有限公司 形成具有多个表面应力层钢化玻璃的方法及钢化玻璃制品
CN107840570A (zh) * 2017-10-26 2018-03-27 中国南玻集团股份有限公司 铝硅酸盐玻璃及其制备方法、电子设备
CN108101362A (zh) * 2017-12-13 2018-06-01 彩虹显示器件股份有限公司 一种玻璃组合物及其强化方法
CN108863050A (zh) * 2018-06-20 2018-11-23 醴陵旗滨电子玻璃有限公司 锂铝硅酸盐玻璃及其制备方法
CN110316974A (zh) * 2019-05-31 2019-10-11 彩虹集团(邵阳)特种玻璃有限公司 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038090A (en) * 1974-12-02 1977-07-26 Jenaer Glaswerk Schott & Gen. Ion exchangeable glass having low thermal expansion
CN102815860A (zh) * 2011-06-10 2012-12-12 肖特玻璃科技(苏州)有限公司 形成具有多个表面应力层钢化玻璃的方法及钢化玻璃制品
CN107840570A (zh) * 2017-10-26 2018-03-27 中国南玻集团股份有限公司 铝硅酸盐玻璃及其制备方法、电子设备
CN108101362A (zh) * 2017-12-13 2018-06-01 彩虹显示器件股份有限公司 一种玻璃组合物及其强化方法
CN108863050A (zh) * 2018-06-20 2018-11-23 醴陵旗滨电子玻璃有限公司 锂铝硅酸盐玻璃及其制备方法
CN110316974A (zh) * 2019-05-31 2019-10-11 彩虹集团(邵阳)特种玻璃有限公司 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698109A (zh) * 2021-08-02 2021-11-26 Oppo广东移动通信有限公司 玻璃壳体的强化方法、电子设备壳体及电子设备

Also Published As

Publication number Publication date
CN110316974B (zh) 2022-03-22
CN110316974A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2020239048A1 (zh) 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
JP6278152B1 (ja) 化学強化用ガラス
WO2022048377A1 (zh) 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
JP5889702B2 (ja) 化学強化用ガラスおよびディスプレイ装置用ガラス板
JP5672405B2 (ja) 板ガラス
JP5427278B2 (ja) ガラス組成物、それから得られたガラス、並びに、ガラスの製造方法及び使用。
CN106348588B (zh) 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN104803602A (zh) 一种适合化学强化的高碱高铝硅酸盐玻璃
CN103992032A (zh) 适于化学强化的玻璃及其强化方法
CN113135655A (zh) 一种可快速离子交换的含硼铝硅酸盐玻璃
JP5793256B1 (ja) 化学強化用ガラス
CN109020196B (zh) 一种易于离子交换的化学强化玻璃
WO2021179623A1 (zh) 一种含氟碱铝硅酸盐玻璃及其强化方法和应用
WO2018124084A1 (ja) 化学強化用ガラス板及び化学強化ガラス板の製造方法
JP7332987B2 (ja) 化学強化ガラスおよび化学強化ガラスの製造方法
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
WO2022172813A1 (ja) 強化ガラス板及びその製造方法
WO2023008168A1 (ja) 強化ガラス、強化用ガラス、およびディスプレイデバイス
CN107365071B (zh) 一种玻璃组合物及其制备方法和应用
JP2023118789A (ja) カバーガラス
TW201434781A (zh) 觸控保護玻璃之組成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812671

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20812671

Country of ref document: EP

Kind code of ref document: A1